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Plan of the course

1. review classical reconstructions:
TVD, ENO, WENQO, ...

2. Central WENO reconstructions in 1d
3. CWENOZ, Non-uniform meshes, higher dimensions

4. Adaptive-order reconstructions (CWAO) and
boundary reconstruction (CWB)

5. Applications to well-balanced schemes and
Adaptive Mesh Refinement

(time permitting) “towards implicit CWENO schemes” (QUINPI)




Conservation and balance laws
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® systems of conservation laws: u € RP
e multidimensional: x € RY

¢ with source terms and steady states d;u = 0 = —V - F(u) + s(u, x)




Semidiscrete finite volume schemes

For every cell €2; in the mesh, semidiscrete formulation
d 1 1
—uj=—— ]-“(ﬁin,ﬁex)'n—i——/ s(u, x)
At (9 Jag; t Q] Jo,
and use
® Runge-Kutta timestepper (SSP-ERK)
® quadrature rule on 9€2; and quadrature rule on ;

® must obtain point values at quadrature points from the cell averages




ADER-FV schemes

For every cell in the mesh,

compute a Galerkin predictor {;(&, 7) in each space-time volume
Q;j x [t "]
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and integrate by parts only in time

need a starting value 0;(£,0) € IP, that is computed from the cell
averages at time t”

fully-discrete update
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Other discretizations

In finite difference schemes,

® need to reconstruct face values of fluxes from point values at cell

centers

In P, — P, schemes (hybrid between ADER-FV and DG)

® need to reconstruct P, in each cell, using P, data in the neighbours

In well-balanced schemes,

® need to reconstruct at specific quadrature points in the cell

This is an example for Euler+gravity:
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Adaptive Mesh Refinement

When a cell is refined

refine

one needs to compute the sub-cell averages s.t.

Uy + Us +U3 +Us —
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® For accuracy,
— 1
Ui = — u;(x
ul Jo, ™)

where uj(x) is an accurate reconstruction




Reconstruction procedure

A reconstruction from cell averages in cell Q; is

Rjlj—ps -+ Ujtq(x)
a procedure that computes a function (polynomial) R;(x) such that
1 —_
* 1 Jo, Rilx)dx =1
® is of accuracy r > 1 in the sense that
whenever the data Uj_p, ..., Uj4q are sampled from a smooth enough
function u(x), then R;(x) — u(x) = O(Ax")
Examples:
® (constant) Rj(x) = 1;
® (central) Rj(x) € Py, such that

Vk = —

x)dx = T;_g
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Requirements for the reconstruction procedure

For a FV scheme, the reconstruction must be:
® high-order accurate and non-oscillatory
For high order finite volume methods, it should also be efficient at:

® reconstructing point values at many locations on 0€2;
Mesh topology (= quadrature nodes) is changing in time

® reconstructing point values at locations inside €;
for source terms, refinement, moving mesh schemes

® For the ADER predictors, one really needs a polynomial defined in the
whole cell £2;




TVD flux/slope limiters

For second order 1D schemes, choose reconstruction of the form

Rj(x) = Uj + oj(x — x))

® g is the limited slope

® & is the slope limiter
® ; is the regularity indicator
9 — gj _UJ:I N U (xj) — u"(xj)Ax/2

~1
Uj+1 - U_/ U/(Xj) + U”(Xj)AX/2

® 0 chosen as the ratio of left/right slope

9 Sweby - SINUM (1984)



Sweby region

For second order accuracy
Since 0#; = 1+ 0o(1) on smooth data, we need a condition on ®(1).
Precisely

o(1) =1

For TVD
We expect TVD issues to arise when the left/right slopes are very different,
so for 6 = 0 and 0 ~ co

&~ D)

t t t

1 2 3
Admissible limiter region for second-order TVD schemes
(Sweby, 1984)
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Some limiters

Second-oder TVD limiters:
they differ in diffusivity, accuracy, “wave deformation”, etc

And more recently, also third order (TVB) schemes based on limiting were
introduced, e.g. Schmidtmann et al. - J. Sci. Comput. (2016)
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TVD or TVB?

For a second order scheme, let

U - Uiy U1 — U
L= Ax IR = Ax
Then,
0 if opor <=0
Ominmed = § 01 if opog > 0 and |oy| < |og]

or iforor >0and |oL] > |og|

Remark Using

o _ oL if ’UL|<’0'R|
Enoz OR if ’ULl > ’UR’

yields a scheme which
e it TVB (not TVD)

® has a much better resolution, does not “clip extrema”




Essentially Non Oscillatory (ENO) schemes

For a reconstruction of order r, in cell QJ-:

e form polynomials Py, ..., P, € P,, each interpolating data in
stencil for Py : {Qj—r—i-k; ceey Qj+k}

Q;

® compute some “oscillation indicators” for every polynomial

small if Py interpolates smooth data

OSC[Py] = {

large if Py interpolates discontinous data

® set Rj(x) = Pi(x), where P; is the polynomial with the smallest
indicator

13 Harten, Osher - SINUM (1987)
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Multi-dimensional (ENO) schemes

1. Dimensional splitting

2. Stencil search

Remark One-dimensional ENO and multi-dimensional ones (except
dimensional splitting) yield a reconstruction polynomial which is defined in
the whole cell. Thus

® initial effort to choose R;

® easy evaluation of R; at any point in cell ;
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Jiang-Shu oscillation indicators

20-1 d‘P\?

OSC[P] = Ax“T —

P1=S e [ (G0
>1 j

Remark The factors Ax?~1 are there to ensure that OSC[P] = O(1) in

the worst case scenario, which is a jump discontinuity in the case of

conservation laws. ,

In fact, if P interpolates across a jump, then % = Ax~*

Remark When dealing with Hamilton-Jacobi, or in general with equations

with globally continous solutions, one should change the definition into

( de : > 2
4
>2 Qj dx

OSC[P] =)~ Ax*3 /

Remark In multi-D, one gives a similar definition, involving the diameter of
the cell in the scaling factor

Jiang, Shu - JCP (1996) ®




Jiang-Shu oscillation indicators: properties

L [ (AP
OSC[P] =)~ Ax* /Q (M>
L]

>1

On smooth data, the oscillation is dominated by the first term:

OSC[P] = Ax?(ux)? 4 o( Ax?)

so
e OSC[P] =< 1 on jump discontinuities (slide before)
* OSC[P] < Ax? on regular solutions, away from local extrema
® OSC[P] = o(Ax?) on local extrema (“critical points")
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Jiang-Shu oscillation indicators: computation

AP’
OSC[P] =) Ax* / —
[ ] ; x Ja, dx?
Writing P(x) = > >0 ak(x — x;)k,

e OSC[P] is a quadratic form on the coefficients a of P

Since a depends linearly on the data u = [U;_ 4k, ..., U;jk]" in the
stencil of P,

e OSC[P] is a quadratic form on the data u which are interpolated by P
Remark In any case, the computation of OSC[P;],... can become the

bottleneck of the algorithm, espacially in multi-D. There have been
proposals of special polynomial basis to speed up their evaluation

Balsara, Garain, Shu - JCP (21086)



18

Pros/cons of ENO

@© provides a reconstruction polynomial in the whole cell, can be
evauated afterwards at little cost

@® polynomial selection can be affected by roundoff errors on very
smooth /flat areas (where OSC[P] = O(Ax*) and maybe much
smaller)

® on smooth flows, uses 2r + 1 data, but gets only order r + 1 accuracy.
With 2r 4+ 1 data, one would expect 2r + 1 instead.
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Weighted Essentially Non Oscillatory (WENO)

The ideas
® blend, instead of choosing, all ENO candidate polynomials

® do so to “mimick” the behaviour of the Py, € P2, interpolating all
data

® |let the above happen only on smooth data, revert to ENO otherwise
The bad news

Py > Popt(x Z dy Pk
ep,

So d, must depend on x!
The realization To avoid oscillations,

1

eP,
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WENO implementation

The original Jiang-Shu definition was

o dy

N T (OSCPI+P

On local extrema, the interplay between the very small OSC'’s and the ¢
can lead to uneven convergence or even to loss of accuracy. Thus “mapped
WENQ" was proposed:

® compute wy as in WENO

® but use in the reconstruction the “mapped weights”

G = Yu(we)

where ¢ : [0,1] — [0, 1] with a fixed point in (d, d) and flat
derivative there

Jiang, Shu - JCP (1996)
Henrick, Aslam, Powers - JCP (2005)




Variable ¢ and the Z-weights

Another solution is to choose

€ ~ Ax?

Yet another to combine it with a different definition of weights

2
(7% T
= = 1 _—
Wk Zjaj o dk( + (OSC[Pk]—l—e) )

where 7 is a global smoothness indicator.
For efficiency,

® 7 is chosen as a linear combination of the OSC's
e optimal coeffcients are in the 2013 paper

Hint: on smooth data, OSC[P] ~ Ax?(uy)? so that any combination
7 =31 _o M OSC[Px] with 3";_o Ak = 0 will yield 7 = O(Ax3)

Arandiga, Baeza, Belda, Mulet - SINUM (2011)
71 Don, Borges, ...(2008-2013) @®
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Multi-dimensional WENO

1. Dimensional splitting: easy and fast!

2. Stencil search: a truly multi-dimnsional WENO, using Px(x,y,...) in
stencils Sk 3 Qy, is very complicated because one has to find the d

coefficients for every reconstruction point

a b
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Figures from Dumbser, Kaser (2007)



Thank you for your kind attention!

Matteo Semplice
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