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Plan of the course

1. review classical reconstructions:
TVD, ENO, WENO, . . .

2. Central WENO reconstructions in 1d

3. CWENOZ, Non-uniform meshes, higher dimensions

4. Adaptive-order reconstructions (CWAO) and
boundary reconstruction (CWB)

5. Applications to well-balanced schemes and
Adaptive Mesh Refinement

(time permitting) “towards implicit CWENO schemes” (QUINPI)
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Conservation and balance laws

∂u

∂t
+∇ · F(u) = s(u, x)

• systems of conservation laws: u ∈ Rp

• multidimensional: x ∈ Rd

• with source terms and steady states ∂tu = 0 = −∇ · F(u) + s(u, x)
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Semidiscrete finite volume schemes

For every cell Ωj in the mesh, semidiscrete formulation

d

dt
uj = − 1

|Ωj

∫
∂Ωj |

F(ûin, ûext) · n+
1

|Ωj |

∫
Ωj

s(u, x)

and use

• Runge-Kutta timestepper (SSP-ERK)

• quadrature rule on ∂Ωj and quadrature rule on Ωj

• must obtain point values at quadrature points from the cell averages

Ωj
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ADER-FV schemes

For every cell in the mesh,

• compute a Galerkin predictor ûj(ξ, τ) in each space-time volume
Ωj × [tn, tn+1]

ûj ∈ Pr (ξ, τ) s.t.

∀ψ ∈ Pr (ξ, τ) :

∫ tn+1

tn

∫
Ωj

(
∂u

∂t
+∇ · F(u)− s(u, x)

)
ψ(ξ, τ) = 0

and integrate by parts only in time

⇒ need a starting value ûj(ξ, 0) ∈ Pr that is computed from the cell
averages at time tn

• fully-discrete update

un+1
j = unj −

∫ tn+1

tn

∫
∂Ωj

F(ûj , ûext) · n+

∫ tn+1

tn

∫
Ωj

s(ûj , x)
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Other discretizations

In finite difference schemes,

• need to reconstruct face values of fluxes from point values at cell
centers

In Pn − Pm schemes (hybrid between ADER-FV and DG)

• need to reconstruct Pm in each cell, using Pn data in the neighbours

In well-balanced schemes,

• need to reconstruct at specific quadrature points in the cell

This is an example for Euler+gravity: Ωj



m
a
tteo

.sem
p
lice@

u
n
in
su
b
ria

.it

6

Adaptive Mesh Refinement

When a cell is refined

U j

refine
U1 U2

U3 U4

one needs to compute the sub-cell averages s.t.

U1 + U2 + U3 + U4

4
= U j

• For accuracy,

U1 =
1

|Ω1|

∫
Ω1

uj(x)

where uj(x) is an accurate reconstruction
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Reconstruction procedure

A reconstruction from cell averages in cell Ωj is

Rj [uj−p, . . . , uj+q](x)

a procedure that computes a function (polynomial) Rj(x) such that

• 1
|Ωj |
∫
Ωj

Rj(x)dx = uj

• is of accuracy r ≥ 1 in the sense that
whenever the data uj−p, . . . , uj+q are sampled from a smooth enough
function u(x), then Rj(x)− u(x) = O(∆xr )

Examples:

• (constant) Rj(x) = uj
• (central) Rj(x) ∈ P2r such that

∀k = −r , . . . , r :
1

|Ωj−k |

∫
Ωj−k

Rj(x)dx = uj−k
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Requirements for the reconstruction procedure

For a FV scheme, the reconstruction must be:

• high-order accurate and non-oscillatory

For high order finite volume methods, it should also be efficient at:

• reconstructing point values at many locations on ∂Ωj

Mesh topology (⇒ quadrature nodes) is changing in time

• reconstructing point values at locations inside Ωj

for source terms, refinement, moving mesh schemes

Uj

U1 U2

U3 U4

• For the ADER predictors, one really needs a polynomial defined in the
whole cell Ωj
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TVD flux/slope limiters
For second order 1D schemes, choose reconstruction of the form

Rj(x) = U j + σj(x − xj)

• σj is the limited slope

σj =
U j+1 − U j

∆x
Φ(θj)

• Φ is the slope limiter

• θj is the regularity indicator

θj =
U j − U j−1

U j+1 − U j

∼
u′(xj)− u′′(xj)∆x/2

u′(xj) + u′′(xj)∆x/2
∼ 1

• θj chosen as the ratio of left/right slope

Sweby - SINUM (1984)
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Sweby region

For second order accuracy
Since θj = 1 + o(1) on smooth data, we need a condition on Φ(1).
Precisely

Φ(1) = 1

For TVD
We expect TVD issues to arise when the left/right slopes are very different,
so for θ ≈ 0 and θ ≈ ∞
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Some limiters

Second-oder TVD limiters:
they differ in diffusivity, accuracy, “wave deformation”, etc

And more recently, also third order (TVB) schemes based on limiting were
introduced, e.g. Schmidtmann et al. - J. Sci. Comput. (2016)



m
a
tteo

.sem
p
lice@

u
n
in
su
b
ria

.it

12

TVD or TVB?

For a second order scheme, let

σL =
U j − U j−1

∆x
σR =

U j+1 − U j

∆x

Then,

σminmod =


0 if σLσR <= 0

σL if σLσR > 0 and |σL| < |σR |
σR if σLσR > 0 and |σL| > |σR |

Remark Using

σENO2 =

{
σL if |σL| < |σR |
σR if |σL| > |σR |

yields a scheme which

• it TVB (not TVD)

• has a much better resolution, does not “clip extrema”
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Essentially Non Oscillatory (ENO) schemes
For a reconstruction of order r , in cell Ωj :

• form polynomials P0, . . . ,Pr ∈ Pr , each interpolating data in

stencil for Pk : {Ωj−r+k , . . . ,Ωj+k}

Ωj

P0 P1 Pr Pr

• compute some “oscillation indicators” for every polynomial

OSC[Pk ] =

{
small if Pk interpolates smooth data

large if Pk interpolates discontinous data

• set Rj(x) = Pi (x), where Pi is the polynomial with the smallest
indicator

Harten, Osher - SINUM (1987)
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Multi-dimensional (ENO) schemes

1. Dimensional splitting

2. Stencil search

Remark One-dimensional ENO and multi-dimensional ones (except
dimensional splitting) yield a reconstruction polynomial which is defined in
the whole cell. Thus

• initial effort to choose Rj

• easy evaluation of Rj at any point in cell Ωj
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Jiang-Shu oscillation indicators

OSC[P] =
∑
ℓ≥1

∆x2ℓ−1

∫
Ωj

(
dℓP

dxℓ

)2

Remark The factors ∆x2ℓ−1 are there to ensure that OSC[P] = O(1) in
the worst case scenario, which is a jump discontinuity in the case of
conservation laws.
In fact, if P interpolates across a jump, then dℓP

dxℓ
≍ ∆x−ℓ

Remark When dealing with Hamilton-Jacobi, or in general with equations
with globally continous solutions, one should change the definition into

OSC[P] =
∑
ℓ≥2

∆x2ℓ−3

∫
Ωj

(
dℓP

dxℓ

)2

Remark In multi-D, one gives a similar definition, involving the diameter of
the cell in the scaling factor

Jiang, Shu - JCP (1996)
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Jiang-Shu oscillation indicators: properties

OSC[P] =
∑
ℓ≥1

∆x2ℓ−1

∫
Ωj

(
dℓP

dxℓ

)2

On smooth data, the oscillation is dominated by the first term:

OSC[P] = ∆x2(ux)
2 + o(∆x2)

so

• OSC[P] ≍ 1 on jump discontinuities (slide before)

• OSC[P] ≍ ∆x2 on regular solutions, away from local extrema

• OSC[P] = o(∆x2) on local extrema (“critical points”)
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Jiang-Shu oscillation indicators: computation

OSC[P] =
∑
ℓ≥1

∆x2ℓ−1

∫
Ωj

(
dℓP

dxℓ

)2

Writing P(x) =
∑

k≥0 ak(x − xj)
k ,

• OSC[P] is a quadratic form on the coefficients a of P

Since a depends linearly on the data u = [U j−r+k , . . . ,U j+k ]
T in the

stencil of P,

• OSC[P] is a quadratic form on the data u which are interpolated by P

Remark In any case, the computation of OSC[P1], . . . can become the
bottleneck of the algorithm, espacially in multi-D. There have been
proposals of special polynomial basis to speed up their evaluation

Balsara, Garain, Shu - JCP (2106)
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Pros/cons of ENO

provides a reconstruction polynomial in the whole cell, can be
evauated afterwards at little cost

polynomial selection can be affected by roundoff errors on very
smooth/flat areas (where OSC[P] = O(∆x4) and maybe much
smaller)

on smooth flows, uses 2r + 1 data, but gets only order r + 1 accuracy.
With 2r + 1 data, one would expect 2r + 1 instead.
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Weighted Essentially Non Oscillatory (WENO)

The ideas

• blend, instead of choosing, all ENO candidate polynomials

• do so to “mimick” the behaviour of the Popt ∈ P2r interpolating all
data

• let the above happen only on smooth data, revert to ENO otherwise

The bad news

P2r ∋ Popt(x) =
r∑

k=0

dk Pk(x)︸ ︷︷ ︸
∈Pr

So dk must depend on x!
The realization To avoid oscillations,

Rj(x) =
r∑

k=0

ωk Pk(x)︸ ︷︷ ︸
∈Pr

with ωk ∼ 1

(OSC[P])m
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WENO implementation
The original Jiang-Shu definition was

ωk =
αk∑
j αj

αk =
dk

(OSC[Pk ] + ϵ)2

On local extrema, the interplay between the very small OSC’s and the ϵ
can lead to uneven convergence or even to loss of accuracy. Thus “mapped
WENO” was proposed:

• compute ωk as in WENO

• but use in the reconstruction the “mapped weights”

ω̂k = ψk(ωk)

where ψk : [0, 1] → [0, 1] with a fixed point in (dk , dk) and flat
derivative there

Jiang, Shu - JCP (1996)

Henrick, Aslam, Powers - JCP (2005)
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Variable ϵ and the Z-weights
Another solution is to choose

ϵ ∼ ∆x2

Yet another to combine it with a different definition of weights

ωk =
αk∑
j αj

αk = dk

(
1 +

(
τ

OSC[Pk ] + ϵ

)2
)

where τ is a global smoothness indicator.
For efficiency,

• τ is chosen as a linear combination of the OSC’s

• optimal coeffcients are in the 2013 paper

Hint: on smooth data, OSC[P] ∼ ∆x2(ux)
2 so that any combination

τ =
∑r

k=0 λk OSC[Pk ] with
∑r

k=0 λk = 0 will yield τ = O(∆x3)

Arandiga, Baeza, Belda, Mulet - SINUM (2011)

Don, Borges, ...(2008-2013)
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Multi-dimensional WENO
1. Dimensional splitting: easy and fast!

2. Stencil search: a truly multi-dimnsional WENO, using Pk(x , y , . . .) in
stencils Sk ∋ Ωk , is very complicated because one has to find the dk
coefficients for every reconstruction point

Figures from Dumbser, Kaser (2007)
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