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Shock formation in Hopf equation

Hopf equation (obtained at no rotation and weak
nonlinearity) :

UT + UUx = 0 (1)

Characteristic description :

U = Ẋ , ⇒ Ẍ = 0, ⇒ Ẋ = UI (x), ⇒ X (x ,T ) = x +UI (x)t.
(2)

UI - initial distribution of U. Characteristic curves X (x , t) ↔
“Lagrangian” trajectories

Breaking :

∀x1, x2 : x2 > x1, UI (x2) < UI (x1), (3)

intersection of characteristics ≡ breaking.
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1d quasi-linear systems

Definition :

∂tVi (x , t)+
N∑
j=1

Aij

(
~V
)
∂xVj(x , t) = Bi

(
~V
)
, i = 1, 2, ...,N.

(4)

Eigenvectors and eigenvalues :
Let ~l (a) - left eigenvectors and ξ(a) - corresponding
eigenvalues, a = 1, 2, ... :

~l (a) · A = ξ(a)~l (a), ⇒ (5)

~l (a) ·
(
∂t ~V + A ◦ ∂x ~V

)
= ~l (a) ·

(
∂t ~V + ξ(a)∂x ~V

)
. (6)
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Characteristics :

dx

dt
= ξ(a) (7)

Advection along a characteristic :

~̇V ≡ d ~V

dt
=
(
∂t + ξ(a)∂x

)
~V . (8)

~l (a) · ~̇V = ~l (a) · ~B (9)

- ordinary differential equations (easy to integrate).
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Hyperbolic systems :
N real and different eigenvalues ξ(a).

Riemann invariants :
If ~l (a) = const (or integrating multiplier exists) - Riemann
variables (invariants if ~B = 0) :

r (a) = ~l (a) · ~V :,
dr (a)

dt
= ~l (a) · ~B (10)

Shocks :
Intersection of characteristics ↔ derivatives of Riemann
invariants become infinite in finite time.
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Example : 1D SW

Quasi - linear form of 1D SW equations :

∂t

(
u
h

)
+

(
u 1
h u

)
∂x

(
u
h

)
= 0, (11)

Eigenvectors and eigenvalues :

~l± = (±
√
h, 1), ξ± = u ±

√
h. (12)

Riemann invariants :

r± = u ± 2
√
h,

dr±

dt±
= 0,

d

dt±
≡ ∂t + ξ±∂x . (13)
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Wave-breaking in 1D SW

Equation for derivatives of Riemann invariants :
D± ≡ ∂x r±

dD±

dt±
+ ∂xξ

±D± = 0, ξ± =
3
4
r± +

1
4
r∓, ⇒ (14)

dD±

dt±
+

3
4
(
D±
)2

+
1
4
D±D∓ = 0. (15)

Suppose one of the invariants is identically zero ⇒ Riccatti
equation along the characteristic for remaining D :

dD

dt
+

3
4

(D)2 = 0, → D = (D−1
I +

3
4
t)−1 (16)

⇒ singularity in finite time, if initial D is negative.
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1.5D RSW vs 1D SW
Eulerian 1D SW - 2 dependent variables (u, h). Eulerian 1.5D
RSW - 3 variables (u, v , h). Pfaff theorem guarantees finding
Riemann invariants only for 2 dependent variables.
Simplification in Lagrangian form - use of conservation of
geostrophic momentum M = v + fX → v not independent,
expressed in terms of X .

Quasi-linear Lagrangian 1.5D RSW
Mass-weighted variable a : J = ∂X

∂a = H
h(X ,t) .

∂h
∂X = ∂P

∂a , where

P = gH
2J2 . Rewriting Lagrangian equations i terms of (u, J) :

u̇ − fv + gH
∂

∂a

(
1
2J2

)
= 0, (17)

Ṁ ≡ v̇ + fu = 0, (18)

J̇ − ∂u

∂a
= 0, (19)

Below : nondimensionalization → g ,H out.
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Hyperbolic structure

Quasi-linear system :(
u
J

)
t

+

(
0 −J−3

−1 0

)(
u
J

)
a

=

(
v
0

)
. (20)

Eigenvalues of the matrix in the l.h.s. : µ± = ±J−
3
2 ,

corresponding left eigenvectors :
(
1 ,±J−

3
2

)
.

Riemann invariants : r± = u ± 2J−
1
2

∂tr± + µ±∂ar± = v . (21)

Original variables in terms of r± :

u =
1
2

(r+ + r−), J =
16

(r+ − r−)2 > 0, µ± = ±
(
r+ − r−

4

)3

.

(22)
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Equations for derivatives D± = ∂ar± of Riemann
invariants

∂tD±+µ±∂aD±+
∂µ±
∂r+

D+D±+
∂µ±
∂r−

D−D± = ∂av = Q(a)−J ,

(23)
where potential vorticity (PV) Q = ∂av + J, a Lagrangian
invariant.
Using derivatives along characteristics d

dt±
= ∂t + µ±∂a :

dD±
dt±

+
∂µ±
∂r+

D+D± +
∂µ±
∂r−

D−D± = Q(a)− J . (24)

Breaking corresponds to D± → ±∞ in finite time.
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Conditions of shock formation

New variables D± = eλD±, with λ = 3
128 log |r+ − r−| →

dD±
dt±

= −e−λ∂µ±
∂r±

D2
± + eλ (Q(a)− J) , (25)

where ∂µ±
∂r±

= 3
64(r+ − r−)2 > 0.

This is a generalized Ricatti equation, and from its
qualitative analysis it follows that :
1. if initial relative vorticity Q − J = ∂av is sufficiently

negative, breaking takes place whatever initial
conditions are

2. if the relative vorticity is positive as well as the
derivatives of the Riemann invariants at the initial
moment, there is no breaking.
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Geostrophic adjustment
Master equation for initial-value problem in terms of
χ(x , t) = X (x , t)− x :

χ̈+ f 2χ+ gh′I
1

(1 + χ′)2 +
1
2
ghI

[
1

(1 + χ′)2

]′
= fvI . (26)

χ̇(t = 0) = uI (x)
If gh′I = fvI , a geostrophic equilibrium, ⇒ χ ≡ 0 solution ↔
steady state. Relaxation to geostrophic equilibrium by
minimizing energy by wave emission = geostrophic
adjustment. Example : initial unbalanced localized bump in h.
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Existence of adjusted state

Reduced of quasi-linear system to a single equation :

J̈ + f 2J +
∂2P

∂a2 = fHQ , (27)

where Q(a) = 1
H

(
∂v
∂a + fJ

)
= 1

H

(
∂vI
∂a + fJI

)
.

Adjusted state ≡ stationary solution of (27). Re-introducing
the h and X variables :

− g

f

d2h(X )

dX 2 + h(X ) Q(X ) = −f . (28)

Potential vorticity in terms of initial height and velocity :

Q(X (x)) =
f+

∂vI
∂x

hI
.

Theorem. Equation (28) has unique bounded and
everywhere positive solution h(X ) on R for positive Q(X )
with compact support and constant asymptotics.
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Numerical simulations of Rossby adjustment
Initial state and evolution of potential vorticity

−2L/Rd −L/Rd 0 L/Rd 2L/Rd 

0  

1

Normalized profile N
L
(x)

x/Rd
−4 −2 0 2 4

−1

0

1

2

3

potential vorticity q; Ro=1 and Bu=0.25

x/Rd

q

initial pv
final pv

Adjustment process

ï10 ï5 0 5 10

height h; Ro=1 and Bu=0.25

x/Rd

h

t/Tf = 0.0 

t/Tf = 0.2 

t/Tf = 0.4

t/Tf = 0.6

t/Tf = 0.8

t/Tf = 1.0
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Master equation for stationary waves
Stationary-wave solutions of (17, 18, 19) :
u = u(ξ) , v = v(ξ), J = J(ξ), ξ = a− c t.
Eliminating u : u = c

f v
′ (“” ’ = d

dξ ) ⇒
fJ + v ′ = const = QH. Elimination of u and J →

v ′′ +
f 2

c2 v +
gH

2c2 f
3
(

1
(f − v ′)2

)′
= 0 (29)

Integrating once, after multiplying it by (c2/f 2)v ′ ⇒

H =
1
2

(
c2

f 2 v
′2 + v2 − gH

v ′2

(f − v ′)2

)
= const. (30)

Using v ′ = f (1− J) and fv = c2J ′ + gH
(
1/2J2)′

H =
1
2

[
R2
d

[
M2J ′ +

(
1
2J2

)′]2

+ M2(1− J)2 − (1− J)2

J2

]
,

(31)
M = c/c0, c0 =

√
gH, Rd = c0/f .
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Equivalent particle-in-a-well problem

A ’particle’ moving on the zero-energy level :

J ′2

2
+ U(J) = 0 , (32)

J - ’particle’s’ coordinate, ξ - ’time’,

U(J) =
1
R2
d

V (J)−H

(M2 − J−3)2

is a singular ’potential’ built from ’pre-potential’

V (J) =
(1− J)2

2
(
M2 − J−2)

Turning points ↔ zeros of the potential.
Stationary-wave solution ⇔ potential well bounded by two
positive zeros.



Essentially
nonlinear waves

V. Zeitlin

Wave-breaking in
1.5D RSW
Reminder on Lax
method
Hyperbolicity and
shock formation
Geostrophic
adjustment and
existence of
steady state

Finite-amplitude
periodic waves in
1.5D RSW
Exact
steady-moving
solutions
Relation to
small-amplitude
limit
Finite-amplitude
waves in 2 layers
Pulsons

Wave-breaking in
1.5D TRSW
Hyperbolicity and
shock formation
Thermo-
geostrophic
adjustment and
existence of
adjusted state

Finite-amplitude
waves in 1.5D
SGN

Pre-potential and potential for different H

a) 0.5 1 1.5 2

J

-0.02

0.02

0.04

0.06

0.08

0.1

0.12

V

b)
0.2 0.4 0.6 0.8 1 1.2 1.4

J

-0.02

-0.01

0.01

0.02

0.03

U

a) ‘Prepotential’ V (J) (dashed), for M = 2, ‘potential’ U(J)
(solid) for H = 0 and Rd = 1.
b) ‘Potential’ U(J) for three values of the constant H : the
critical value Hc = 0.1013 . . . (solid), 0.101 (dotted curve),
and 0.05 (dashed curve). A nonlinear wave can exist for
values of H such that the potential has two zeros for strictly
positive values of J. For H = Hc this is no longer the case.
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Profiles of stationary waves

5 10 15 20

x

0.5

1

1.5

2

h

Height profiles of stationary nonlinear waves in physical space
for various values of M and H, with Rd = 1. Shorter
wavelength : M = 2, longer wavelength : M = 3. Limiting
asymptotics (H = Hc) : dotted ; solid lines ↔ H = 0.9Hc in
both cases. Wave with M = 2, H = 0.5Hc : dash-dotted
curve. Maximum amplitude and wavelength increase with M.
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Periodic nonlinear waves in OH equation
Renormalized equation for steady-moving waves
η = η(x − cT ) :(

ηT + ηη′
)′ − η = 0 →

(
−c η + ηη′

)′ − η = 0, (33)

Solvable in elliptic functions. Continuous 2π-periodic
solutions exist only if

1 ≤ c ≤ π2

9
, (34)

with the limiting-amplitude cusp wave

η(x) =
π2

9
− π

3
|x |+ 1

2
x2 (35)
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Waves of increasing amplitude : family 1
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Waves of increasing amplitude : family 2
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Double outcropping front

Adjustment : no outward wave emission. The "pulson" ansatz

X (x , t) = xχ(t), hI (x) =
h0

2

(
1− x2

L2

)
, vI (x) = xV ,

(36)
h0,V , L are constants. Plugging it in the master equation :

Ẍ + f 2X + gh′I
1

(X ′)2 +
ghI
2

[
1

(X ′)2

]′
= fM ,

and non-dimensionalizing results in the ODE for χ :

χ̈+ χ− γ

χ2 = µ, (37)

γ - Burger number gh0
f 2L2 , µ = 1 + V

f .
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Equivalent particle-in-a-well problem
Integrating once :

χ̇2

2
+ P(χ) = E , P(χ) =

χ2

2
− µχ+

γ

χ
, (38)

integration constant E - from initial conditions
χ(t = 0) = 1, χ̇(t = 0) = U : E = U2

2 + 1
2 − µ+ γ. Equation

(38) can be integrated in elliptic functions.
Example : "potential" P(χ) for µ = 2, γ = 1 :

Solution : finite-amplitude, oscillating with supra-inertial
frequency.



Essentially
nonlinear waves

V. Zeitlin

Wave-breaking in
1.5D RSW
Reminder on Lax
method
Hyperbolicity and
shock formation
Geostrophic
adjustment and
existence of
steady state

Finite-amplitude
periodic waves in
1.5D RSW
Exact
steady-moving
solutions
Relation to
small-amplitude
limit
Finite-amplitude
waves in 2 layers
Pulsons

Wave-breaking in
1.5D TRSW
Hyperbolicity and
shock formation
Thermo-
geostrophic
adjustment and
existence of
adjusted state

Finite-amplitude
waves in 1.5D
SGN

Master equation for 1.5D TRSW
Lagrangian 1.5D TRSW

v̇ + f Ẋ = 0, ḃ = 0 (39)

Ẍ − fv + bhX +
h

2
bX = 0, (40)

with h(X ) dX = h0(x) dx ⇐⇒ h(X )X ′ = hI (x). Direct
integration of (39) ⇒

v(X , t) = v0(x)− f (X (x , t)− x) and b(X , t) = bI (x),→
(41)

Master equation :

Ẍ + f 2X +
bI
X ′

(
hI
X ′

)′
+

hIb
′
I

2(X ′)2 = f (vI + fx), (42)

hI , vI - initial values. In terms of parcel deviations :
χ(y , t) = X (x , t)− x :

χ̈+ f 2χ+
b0

1 + χ′

(
h0

1 + χ′

)′
+

h0b
′
0

2(1 + χ′)2 = fv0. (43)
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Hyperbolic structure of Lagrangian equations

Rewriting Lagrangian equations : u̇ +
1
hI
P ′ = fv ,

J̇ − u′ = 0,
(44)

with P =
bIh

2
I

2(Y ′)2 . and hI = H.
Quasi-linear form :(

u̇

J̇

)
+ A ·

(
u
J

)
y

=

(
fv +

Hb′I
2J2

0

)
, A =

(
0 −HbI J−3

−1 0

)
;

Put H = f = 1 and proceed as in RSW.
Eigenvalues of A : µ± = ±

√
bI J
−3/2,

Left eigenvectors : (1,∓
√
bI J
−3/2) ⇒

Riemann invariants : r± = u ± 2
√
bI J
−1/2.
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Derivatives of Riemann invariants
Differentiating in time :

ṙ± + µ±(r±)x = v +
b′I
2J2 . (45)

Differentiating with respect to x ⇒ equations for
D± := (r±)x :

Ḋ± + µ±(D±)x + (µ±)xD± = vx +

(
b′I
2J2

)
x

. (46)

Reverse : r+ − r− = 4
√
bI J
−1/2 → µ± = ± 1

bI

(
r+−r−

4

)3
,⇒

Ḋ± + µ±(D±)x ∓
b′I
b2
I

(
r+ − r−

4

)3

D± +
∂µ±
∂r+

D+D±

+
∂µ±
∂r−

D−D± = vx +

(
b′Ih

2

2

)
x

, (47)

generalized Riccatti equation.
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Breaking criteria

Differences with RSW :
I First term (vorticity) on the r.h.s. of (47) acquires

addition
(
b′Ih

2

2

)
x
⇒ vorticity plus the new term

depending on initial distributions of buoyancy and
thickness should be sufficiently negative for breakdown
to take place.

I Breakdown conditioned by signs of derivatives of
Riemann invariants which depend not only on the signs
of derivatives of v and h (as in RSW), but also on the
sign of the derivative of b0 ⇒

Sign of b′I is of crucial importance.
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Thermo-geostrophic adjustment

Adjusted state - stationary solution of the equivalent master
equation :

J̈ + fJ +

(
1
h0

P ′
)′

= 1 + fv ′I , (48)

Lagrangian pressure in TRSW :

P :=
bIh

2
I

2(X ′)2

Back to h(X ) = J−1, for hI = H = 1 :

− d
dX

(√
bI

d
(√

bIh
)

dX

)
− Q(X )h(X ) = −f , (49)

Q :=
f + v ′(X )

h(X )
− potential vorticity (50)
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Existence of the adjusted state

Change of variables : h→ ĥ =
√
bIh and X → ξ =

∫ √
bI dX

−1
f

d2ĥ

dξ2
+ Q(ξ)ĥ = f

√
bI ⇒ (51)

Theorem
For positive monotone bI with constant asymptotics at
infinities (density/temperature front), and nonnegative
potential vorticity Q ≥ 0, there exist a unique solution of
(51) decaying at ±∞
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Master equation for stationary waves

Steady propagating waves : functions of y − V τ , V = const[[
J +

1
2J2

]′
+ δ̄

[
V 2 − c2

a

J2

(
1
J

)′]′]′′
+ γ2J = 0. (52)

Prime : derivative with respect to y − V τ, δ = 3δ̄.
Non-rotating limit, integrating once →

J +
1
2J2 + δ̄

1
J2

(
1
J

)′′
= A = const. h = J−1 → (53)

δh′′ +
1

2V 2 +
1
h3 −

A

h2 = 0↔ δ̄
h′2

2
+

h

2V 2 −
1
2h2 +

A

h
= E , (54)

Particle-in-a-well problem, δ̄ - mass, h - position, E - energy,

V(A,V ; h) =
h

2V 2 −
1
2h2 +

A

h
- potential.
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Periodic and solitary stationary waves

Potential V(A,V ; h) at A = 2,V = 1 (left panel), and the
corresponding phase portrait of the system (54) in the h, h′

plane (right panel).
Solid, closed trajectory : periodic waves.
Dashed : separatrix trajectory, solitary wave.
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Solitons in SGN system

From Q. Fu, A. Kurganov, M. Na and V. Zeitlin,
JFM under consideration.
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