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Abstract. This paper deals with the Cauchy problems of nonlinear hyperbolic systems in two
space dimensions with small data. We assume that the propagation speeds differ from each other
and that nonlinearities are cubic. Then it will be shown that if the nonlinearities satisfy the null
condition, there exists a global smooth solution. To prove this kind of claim, one usually makes use
of the generalized differential operators Ωij , S, and Li, which will be introduced in section 1. But
it is difficult to adopt the operators Li = xi∂t + t∂xi to our problem, because they do not commute
with the d’Alembertian whose propagation speed is not equal to one. We succeed in taking Li away
from the proof of our theorem. One can apply our method to a scalar equation; hence Li are needless
in this kind of argument.
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1. Introduction and statement of main result. We consider the initial value
problem for

�iui ≡ ∂2
t u

i − c2i∆ui = F i(∂u, ∂2u) in Rn × (0,∞),(1.1)

ui(x, 0) = εf i(x), ∂tu
i(x, 0) = εgi(x) in Rn,(1.2)

where i = 1, . . . ,m, n = 2, 3, ci are positive constants and ε > 0 is a small parameter.
Besides, F i ∈ C∞(R(n+1)m × R(n+1)2m) and f i, gi ∈ C∞0 (Rn). We also denoted
u = (u1, . . . , um), ∂ = (∂t, ∂1, . . . , ∂n) with ∂t = ∂/∂t, ∂j = ∂/∂xj and ∂2u stands for
the second derivatives of u. As for F i, we assume

F i(∂u, ∂2u) =

m∑
l=1

n∑
γ,δ=0

Hγδ
il (∂u)∂γ∂δu

l +Ki(∂u),(1.3)

where Hγδ
il and Ki ∈ C∞(R(n+1)m) satisfy

Hγδ
il (∂u) = O(|∂u|p−1), Ki(∂u) = O(|∂u|p) near ∂u = 0.(1.4)

Here p is an integer with p > 1. In order to derive an energy estimate we further
assume

Hγδ
il (∂u) = Hγδ

li (∂u) = Hδγ
il (∂u).(1.5)

∗Received by the editors August 15, 1997; accepted for publication (in revised form) March 16,
1999; published electronically February 1, 2000.

http://www.siam.org/journals/sima/31-3/32606.html
†Faculty of Engineering, Kitami Institute of Technology, Kitami, Hokkaido 090, Japan (a-

hoshig@ptolemy.comm.kitami-it.ac.jp).
‡Department of Applied Mathematics at Ohya, Faculty of Engineering, Shizuoka University,

Shizuoka, Japan.

486

D
ow

nl
oa

de
d 

02
/0

9/
22

 to
 1

04
.1

49
.1

69
.1

46
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 487

Although our interest lies in the case where the system (1.1) has different prop-
agation speeds, we start with a review of known results for the case where m = 1 or
the system (1.1) has same propagation speeds. Indeed, such cases have been studied
extensively. Set pc = (n + 1)/(n − 1). If p > pc, then the problem (1.1) and (1.2)
has a smooth global solution for sufficiently small ε. Moreover, if p = pc, then the
problem (1.1) and (1.2) admits an “almost” global solution for small initial data. (See
F. John and S. Klainerman [12], S. Klainerman [16], and M. Kovalyov [19], for in-
stance). On the other hand, if 1 < p ≤ pc, then the problem (1.1) and (1.2) does not
admit global solutions in general. (See R. Agemi [1], S. Alinhac [3], L. Hörmander [7],
A. Hoshiga [9], and F. John [10].) Therefore, we shall call the number pc the critical
exponent in the following.

In the critical case p = pc, the following interesting result is known. If the
nonlinearity has a special form, a global solution of (1.1) and (1.2) exists, instead of
an almost global solution. (See D. Christodoulou [4], P. Godin [6], A. Hoshiga [8],
F. John [11], S. Katayama [13], and S. Klainerman [17], for instance.) We shall call
the restriction on the nonlinearlities null condition, according to S. Klainerman [15].
We will restrict ourselves to the case where n = 2 and p = pc = 3. Then, when
c1 = · · · = cm = 1, the null condition is stated as follows: For any i, j, k, l = 1, . . . ,m,

2∑
α,β,γ=0

AαβγijklXαXβXγ = 0 and

2∑
α,β,γ,δ=0

Dαβγδ
ijkl XαXβXγXδ = 0(1.6)

hold on the hypersurface (X0)2 − c2i {(X1)2 + (X2)2} = 0, where we have set

Aαβγijkl ≡
∂3Ki(∂u)

∂(∂αuj)∂(∂βuk)∂(∂γul)

∣∣∣∣
∂u=0

and Dαβγδ
ijkl ≡

∂2Hγδ
il (∂u)

∂(∂αuj)∂(∂βuk)

∣∣∣∣
∂u=0

.(1.7)

A role of the null condition is closely connected to the following vector fields which
generate a Lie algebra with respect to the usual commutator of linear operators:

∂t, ∂1, ∂2, S = t∂t + r∂r, Ω = x1∂2 − x2∂1,(1.8)

and

Li = xi∂t + t∂i (i = 1, 2),

where r = |x|. In fact, we may write

∂i = −ωi∂t +
1

t
Li +

ωi
t+ r

S −
2∑
j=1

rωiωj
t(t+ r)

Lj (i = 1, 2),(1.9)

where ωi = xi/|x|. (See [11].) In the leading terms of F i, replacing ∂i with (1.9) and
using the null condition (1.6), we get

|ΓaF i(∂u, ∂2u)| ≤ C

t

∑
|b+c+d|≤|a|+1

|Γbu‖Γc∂u‖Γd∂u|+ (higher order terms),(1.10)

which gives us an additional decaying factor t−1. This is a crucial point to treat the
critical nonlinearity.

We now turn our attention to the case where m ≥ 2 and the propagation speeds
are different from each other when n = 2 and p = 3. M. Kovalyov proved the existence
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488 AKIRA HOSHIGA AND HIDEO KUBO

of the global solution of (1.1) and (1.2) in [20] under the assumption that for each

i(= 1, . . . ,m), Aαβγijjj = 0 for any α, β, γ = 0, 1, 2, j = 1, . . . ,m and Hγδ
il (∂u) ≡ 0

for any γ, δ = 0, 1, 2, l = 1, . . . ,m. In [2], R. Agemi and K. Yokoyama had the

same result under the weaker assumption that for each i(= 1, . . . ,m), Aαβγiiii = 0

for any α, β, γ = 0, 1, 2 and Dαβγδ
iiii = 0 for any α, β, γ, δ = 0, 1, 2. Here we have

used the notation in (1.7). These results imply that when the propagation speeds
are distinct, the global solution of (1.1) and (1.2) exists even if the nonlinearities do
not satisfy (1.6). In this paper, we would like to show more generally that when
the propagation speeds are distinct, (1.1) and (1.2) has a global solution under the
following condition: For each i = 1, . . . ,m,

2∑
α,β,γ=0

Aαβγiiii XαXβXγ = 0 and
2∑

α,β,γ,δ=0

Dαβγδ
iiii XαXβXγXδ = 0(1.11)

hold on the hypersurface (X0)2− c2i {(X1)2 + (X2)2} = 0. Having the condition (1.11)
in mind, we shall rewrite F i in the following form:

F i(∂u, ∂2u) = N i(∂ui, ∂2ui) +Ri(∂u, ∂2u) +Gi(∂u, ∂2u),(1.12)

where

N i(∂ui, ∂2ui) =
2∑

α,β,γ,δ=0

Dαβγδ
iiii ∂αu

i∂βu
i∂γ∂δu

i +
2∑

α,β,γ=0

Aαβγiiii ∂αu
i∂βu

i∂γu
i,

Ri(∂u, ∂2u) =
m∑

j,k,l=1

2∑
α,β,γ,δ=0

Eαβγδijkl ∂αu
j∂βu

k∂γ∂δu
l

+
m∑

j,k,l=1

2∑
α,β,γ=0

Bαβγijkl ∂αu
j∂βu

k∂γu
l,

and

Gi(∂u, ∂2u) =

m∑
l=1

2∑
γ,δ=0

Hil(∂u)∂γ∂δu
l +Mi(∂u).

Here Eαβγδijkl and Bαβγijkl are defined by

Eαβγδijkl =

{
Dαβγδ
ijkl (j, k, l) 6= (i, i, i),

0 (j, k, l) = (i, i, i),
(1.13)

Bαβγijkl =

{
Aαβγijkl (j, k, l) 6= (i, i, i),
0 (j, k, l) = (i, i, i).

Also, we assume Hil and Mi ∈ C∞(R3m) satisfy

Hil(∂u) = O(|∂u|3), Mi(∂u) = O(|∂u|4) near ∂u = 0.

By (1.11), N i has the usual null-form for a scalar wave equation. Its concrete form will
be proposed in section 3. We shall call N i the null-form, while Ri is the resonance-
form.
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 489

Now we state our main theorem.
Theorem 1.1. Let n = 2 and ci 6= cj if i 6= j. Suppose that (1.12), (1.5),

and (1.11) hold. Then there exists a positive constant ε0 such that the initial value
problem (1.1) and (1.2) has a unique C∞-solution in R2 × [0,∞) for 0 < ε ≤ ε0.

Remark 1. We would like to mention here the key idea of the proof of Theorem 1.1.
Compared with the case where the system (1.1) has common propagation speeds, a
treatment of the null-form is much more complicated when the speeds are different.
The difficulty comes from the simple fact that Lj does not commute with �i if ci 6= 1.
Therefore, it seems difficult to adopt the operator Lj (or some modification of them)
for the system (1.1) with different propagation speeds. Our main idea in this paper is
to use the operator S effectively. More precisely, in order to obtain a variant of (1.10)
without using Lj , we shall use the following relation instead of (1.9):

∂t = −ci∂r +
cit− r
t

∂r +
1

t
S(1.14)

and

∇ =
x

r
∂r − x⊥

r2
Ω,(1.15)

where ∇ = (∂1, ∂2) and x⊥ = (x2,−x1). Since we need an additional decaying factor
only in the region near the characteristic lay, we rewrite (1.14) as

∂t = −ci∂r − δ(r, t)√
t
∂r +

1

t
S for |cit− r| ≤

√
t,(1.16)

where −1 ≤ δ(r, t) ≤ 1. This is a key point in our argument. (For the details,
see section 3 below). Moreover, this approach also works when either m = 1 or
c1 = · · · = cm holds.

Remark 2. The other attempts to argue within the framework of (∂α,Ω, S) were
also done by S. Klainerman and T. Sideris [18] and by T. Sideris [23]. They studied
the nonlinear elastic waves with the critical exponent. They used the operator S in
order to extract a decaying factor from the elastic wave operator. However, their
method requires that the nonlinearity has a divergence structure. Unfortunately, we
can not apply their method to our case due to the lack of such a structure. Hence,
following [19], [20], and [2], we make use of L∞-weighted estimates derived by esti-
mating the fundamental solution of the wave operator ∂2

t −∆, pointwisely. (See also
section 4 below.)

2. Notations. In this section we collect some notations which will be used in
the following discussion. Without loss of generality, we may assume

c1 > c2 > · · · > cm.(2.1)

We denote the vector fields introduced in (1.8) by Γi as follows:

Γ = (Γ0,Γ1, . . . ,Γ4) = (∂,Ω, S),

where

∂ = (∂0, ∂1, ∂2), ∂0 = ∂t, Ω = x1∂2 − x2∂1, and S = t∂t + r∂r.
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490 AKIRA HOSHIGA AND HIDEO KUBO

We can easily verify the following commutator relations:

[Γσ,�i] = −2δ4σ�i for σ = 0, . . . , 4, i = 1, . . . ,m(2.2)

and

[∂α, ∂β ] = 0 (α, β = 0, 1, 2), [Ω, ∂0] = 0, [Ω, ∂1] = −∂2, [Ω, ∂2] = ∂1,(2.3)

[S, ∂α] = −∂α (α = 0, 1, 2), [S,Ω] = −Ω.

Here [, ] denotes the usual commutator of linear operators and δαβ is Kronecker’s
delta.

Next we define several norms for a vector valued function u(x, t):

|u(t)|k =
∑
|a|≤k

m∑
i=1

‖Γaui(·, t)‖L∞ ,

[u(t)]k =
∑
|a|≤k

m∑
i=1

‖wi(| · |, t)Γaui(·, t)‖L∞ ,

‖u(t)‖k =
∑
|a|≤k

m∑
i=1

‖Γaui(·, t)‖L2 ,

where k is a nonnegative integer, a = (a0, . . . , a4) is a multi-index, Γa = Γa0
0 · · ·Γa4

4 ,
and |a| = a0 + · · · + a4. In addition, wi is the following weight function associated
with the ith component of u:

wi(r, t) = (1 + r)
1
2−γ(1 + t+ r)γ(1 + |cit− r|) 1

2 for r ≥ 0, t ≥ 0,

where 1/4 < γ < 1/2. Moreover, we also use

|u|k,T = sup
0<t<T

|u(t)|k, [u]k,T = sup
0<t<T

[u(t)]k, ‖u‖k,T = sup
0<t<T

‖u(t)‖k.

Next we split the region (0,∞)× (0,∞) for each i(i = 1, . . . ,m) as follows:

Λ̃i =

{
(r, t) ∈ (0,∞)× (0,∞) :

1

3

(
2 +

ci
ci−1

)
r ≤ cit ≤ 1

3

(
2 +

ci
ci+1

)
r and r ≥ 1

}
and Λ̃ci = ((0,∞) × (0,∞)) \ Λ̃i, where we have set c0 = 4c1 and cm+1 = cm/4.
Because of (2.1), this definition is meaningful. In particular, we have

Λ̃i ∩ Λ̃l = ∅ if i 6= l.(2.4)

Using the fact that 1+r is equivalent to 1+ t+r for (r, t) ∈ Λ̃i, while, so is 1+ |cit−r|
for (r, t) ∈ Λ̃ci , we easily see that

wi(r, t) ≥ C(1 + t+ r)
1
2 for (r, t) ∈ (0,∞)× (0,∞)(2.5)

and that if γ > 1/4,

wi(r, t) ≥ C(1 + t+ r)
3
4 for (r, t) ∈ Λ̃ci .(2.6)
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 491

We conclude this section by showing an important property of the weight function
based on the following other decomposition of (0,∞)×(0,∞) for each i(i = 1, . . . ,m):

Λi = {(r, t) ∈ (0,∞)× (0,∞) : |cit− r| ≤
√
t}

and Λci = ((0,∞)× (0,∞)) \ Λi.
Proposition 2.1. Let 1/4 < γ < 1/2 and i = 1, 2, . . . ,m. Then we have

wi(r, t) ≥ C(1 + t)
3
4 for (r, t) ∈ Λci ,(2.7)

wi(r, t) ≤ C(1 + t)
3
4 for (r, t) ∈ Λi.(2.8)

Proof. First we shall show (2.7). If (r, t) ∈ Λ̃ci ∩ Λci , we have

wi(r, t) ≥ C(1 + t+ r)γ+ 1
2 ≥ C(1 + t+ r)

3
4

for γ > 1/4. If (r, t) ∈ Λ̃i ∩ Λci , we have

wi(r, t) ≥ C(1 + t+ r)
1
2 (1 +

√
t)

1
2 ≥ C(1 + t)

3
4 .

We thus obtain (2.7).
Next we shall show (2.8). Note that

cit

2
≤ r ≤ 2cit for (r, t) ∈ Λi with t ≥ 4

c2i
.(2.9)

Therefore, we get

wi(r, t) ≤ C(1 + t)
1
2 (1 +

√
t)

1
2 ≤ C(1 + t)

3
4

for such (r, t). On the other hand, if (r, t) ∈ Λi and 0 ≤ t ≤ 4/c2i , r is also bounded
by some uniform constant, hence (2.8) follows. This completes the proof.

3. An estimate for the null-form. By (1.11), one can write N i defined
in (1.12) as linear combinations of the following:

N i
1 = ((∂0u

i)2 − c2i |∇ui|2)∂α∂βu
i,

N i
2 = ∂αu

i∂β((∂0u
i)2 − c2i |∇ui|2),

N i
3 = ∂αu

i∂βu
i�iui,

N i
4 = ∂αu

i(∂βu
i∂γ∂δu

i − ∂γui∂β∂δui),
N i

5 = ∂αu
i((∂0u

i)2 − c2i |∇ui|2)

for α, β, γ, δ = 0, 1, 2. As we have already discussed in introduction, we shall extract
an additional decaying factor from the null-form, by making use of their special form
together with the identity (1.16). This is a crucial point in our argument.

Proposition 3.1. It holds that for i = 1, . . . ,m

|ΓaN i(∂ui, ∂2ui)| ≤ C√
1 + t

Φia +
C√
1 + t

Θi
a in Λi,(3.1)

where we have set

Φia =
∑

|b+c+d|≤|a|+1

|∂Γbui‖∂Γcui‖∂Γdui|,

Θi
a =

∑
|b+c+d|≤|a|+2
|b|,|c|,|d|≤|a|+1

|Γbui‖∂Γcui‖∂Γdui|.
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492 AKIRA HOSHIGA AND HIDEO KUBO

Proof. It is evident that (3.1) holds for 0 ≤ t ≤ max{1, 4/c2i }. Therefore, we shall
assume t ≥ max{1, 4/c2i } in the following. For simplicity, we omit the upper index i
of ui during the proof.

First, we consider the case N i = N i
1. If we set

Q1(u, v) = ∂0u∂0v − c2i∇u · ∇v,

then we may write

ΓaN i
1 =

∑
a′+d′=a

(
a
a′

)
Γa
′
(Q1(u, u))Γd

′
(∂α∂βu).(3.2)

By the commutator relations (2.3), we obtain

ΓQ1(u, v) = Q1(Γu, v) +Q1(u,Γv)− 2δ4σQ1(u, v) for σ = 0, . . . , 4.

Therefore, we have

Γa
′
Q1(u, u) =

∑
b+c≤a′

Ca
′
b,cQ1(Γbu,Γcu).(3.3)

By (3.2), (3.3), and t ≥ max{1, 4/c2i }, it suffices to show

|Q1(u, v)| ≤ C√
t
|∂u‖∂v|+ C

t
(|Γu‖∂v|+ |∂u‖Γv|).(3.4)

Setting

Q̃1(u, v) = ∂0u∂0v − c2i ∂ru∂rv

and using the formula

∇ =
x

r
∂r − x⊥

r2
Ω, x⊥ = (x2,−x1),(3.5)

we get

Q1(u, v) = Q̃1(u, v) +
c2i
r2

ΩuΩv;

hence

|Q1(u, v)| ≤ |Q̃1(u, v)|+ C

r
|∂u‖Ωv|,(3.6)

where we used the fact that |Ωu|/r ≤ C|∂u|.
If we introduce operators S±i = ∂t ± ci∂r, then a simple computation yields

2Q̃1(u, v) = S+
i uS

−
i v + S−i uS

+
i v.

Moreover, by the formula

S+
i = ∂t + ci∂r = −δ(r, t)√

t
∂r +

1

t
S with − 1 ≤ δ(r, t) ≤ 1 in Λi,(3.7)
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 493

we obtain

|Q̃1(u, v)| ≤ C√
t
|∂u‖∂v|+ C

t
(|Su‖∂v|+ |∂u‖Sv|) in Λi.(3.8)

Thus (3.6), (3.8), and (2.9) imply (3.4).
Second, from the above argument, we immediately obtain (3.1) for the case N i =

N i
2 and N i = N i

5, because of the fact that

N i
2 = 2Q1(∂βu, u)∂αu and N i

5 = Q1(u, u)∂αu.

Third, we consider the case N i = N i
3. It follows from (2.2) that

Γa�iu =
∑
b≤a

Cb�iΓbu and �iΓau =
∑
b≤a

C ′bΓ
b�iu,(3.9)

where Cb and C ′b are some constants. By (3.7), (2.9), t ≥ max{1, 4/c2i }, and the
identity

�iu = S+
i S
−
i u−

c2i
r2

Ω2u,

we obtain

|�iu| ≤ C√
t
|∂2u|+ C

t
|Γ∂u|.(3.10)

Hence, by the first identity in (3.9) and (3.10) we have (3.1) for the case N i = N i
3.

Finally, we consider the case N i = N i
4. Using a notation

Qαβ(u, v) = ∂αu∂βv − ∂βu∂αv, α, β = 0, 1, 2,

we can write

N i
4 = Qβγ(u, ∂δu)∂αu.

Note that Qβα = −Qαβ . Moreover, it follows from (2.3) that

∂ηQαβ(u, v) = Qαβ(∂ηu, v) +Qαβ(u, ∂ηv), η = 0, 1, 2,

SQαβ(u, v) = Qαβ(Su, v) +Qαβ(u, Sv)− 2Qαβ(u, v),

ΩQ01(u, v) = Q01(Ωu, v) +Q01(u,Ωv)−Q02(u, v),

ΩQ02(u, v) = Q02(Ωu, v) +Q02(u,Ωv) +Q01(u, v),

ΩQ12(u, v) = Q12(Ωu, v) +Q12(u,Ωv).

Therefore we have

ΓaQαβ(u, v) =

2∑
γ,δ=0

∑
b+c≤a

Cγδbc Qγδ(Γ
bu,Γcv).(3.11)

On the other hand, by (2.9), (3.5), and the formula

∂t = −r
t
∂r +

1

t
S,

we have

|Qαβ(u, v)| ≤ C

t
(|∂u‖Γv|+ |Γu‖∂v|).(3.12)

Combining (3.11) and (3.12), we have (3.1) for the case N i = N i
4. This completes the

proof of Proposition 3.1.
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494 AKIRA HOSHIGA AND HIDEO KUBO

4. Weighted L∞-estimates. The aim of this section is to establish weighted
L∞-estimates of a solution u = (u1, . . . , um) of (1.1) and (1.2) such that ui ∈ C∞(R2×
[0, T )) and satisfies

[∂u]k,t ≤ δ1 for 0 ≤ t < T,(4.1)

where k is a nonnegative integer and δ1(0 < δ1 < 1) is a real number independent of
T > 0. A main result of this section is the following proposition.

Proposition 4.1. Suppose that u = (u1, . . . , um) is the solution of (1.1) and (1.2)
and that (1.12) holds. Then we have for (|x|, t) ∈ Λci with t < T and |a| ≤ N

|wi(|x|, t)Γa∂ui(x, t)| ≤ CN
(
ε+ [∂u]2[N+2

2 ],t‖∂u‖N+4,t

)
,(4.2)

provided (4.1) with k = [(N + 2)/2] holds. Moreover, if (1.11), (1.12), and (4.1) with
k = [(N + 4)/2] hold, we have for (x, t) ∈ R2 × [0, T ) and |a| ≤ N

|wi(|x|, t)Γa∂ui(x, t)| ≤ CN
(
ε+ (ε+ [∂u]2[N+4

2 ],t)‖∂u‖N+6,t

)
.(4.3)

Here we take δ1 to be sufficiently small positive number and CN denotes a positive
constant independent of T and δ1.

By (3.9) and (1.1), Γa∂bui(x, t) satisfies

�iΓa∂bui(x, t) = F̃ i(∂u, ∂2u) in R2 × (0, T ),(4.4)

where we have set F̃ i(∂u, ∂2u) =
∑
d≤a Ca,b∂

bΓdF i(∂u, ∂2u) and a, b, and d are multi-

indices. Moreover, the initial values of Γa∂bui(x, t) are determined by ε, f j , and gj

(j = 1, . . . ,m) by using (1.1). For instance, when a = 0 and ∂b = ∂t, we have

(∂tu
i)(x, 0) = εgi(x), (∂2

t u
i)(x, 0) = εc2i∆f

i(x) + F i(∂u, ∂2u)(x, 0).

We can solve the second equation with respect to (∂2
t u

i)(x, 0) if δ1 is sufficiently small.
Based on this, we decompose Γa∂bu(x, t) as follows:

Γa∂bu(x, t) = u0(x, t) + u1(x, t) with u0 = (u1
0, . . . , u

m
0 ), u1 = (u1

1, . . . , u
m
1 ),(4.5)

where ui1 is a solution to �iui1 = F̃ i(∂u, ∂2u) with the zero initial data, while ui0 is a
solution to �iui0 = 0 and ui0(x, 0) = (Γa∂bu)(x, 0), ∂tu

i
0(x, 0) = (∂tΓ

a∂bu)(x, 0). Since
f j(x), gj(x) ∈ C∞0 (R2), the initial values of ui0 also belong to C∞0 (R2). Therefore,
when |a|+ |b| ≤ N , we have

|ui0(x, t)| ≤MNε(1 + t+ r)−
1
2 (1 + |cit− r|)− 1

2 for (x, t) ∈ R2 × [0,∞),(4.6)

where MN depends on L1-norms of f j , gj and their finite times derivatives. (See
Lemma 1 in R. T. Glassey [5] and also Lemma 4 in [19] and [21].)

Therefore, we need to estimate only ui1. We may assume ci = 1 without loss of
generality. In the following, we shall consider the solution to an inhomogeneous wave
equation (∂2

t − ∆)u = ∂bF with the zero initial data. When F ∈ C∞(R2 × [0, T )),
we have

u(x, t) =
1

2π

∫
|x−y|≤t

∂bF (y, s)√
t2 − |x− y|2 dy.(4.7)
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 495

Switching to polar coordinates as x = (r cos θ, r sin θ) and y = (λ cos(θ+ψ), λ sin(θ+
ψ)) as in section 2 in [19], we have

u(x, t) =
1

2π

∫∫
D′
λdλds

∫ ϕ

−ϕ
∂bF (λξ, s)K1dψ(4.8)

+
1

2π
H(t− r)

∫∫
D′′

λdλds

∫ π

−π
∂bF (λξ, s)K1dψ,

where H is the Heaviside function and we have set

ξ = (cos(θ + ψ), sin(θ + ψ)),

K1 = K1(λ, s, ψ; r, t) = {(t− s)2 − r2 − λ2 + 2rλ cosψ}− 1
2 ,

ϕ = ϕ(λ, s; r, t) = arccos

[
r2 + λ2 − (t− s)2

2rλ

]
for (λ, s) ∈ D′.

Moreover, the domains D′ and D′′ are defined as follows:

D′ = {(λ, s) ∈ (0,∞)× (0,∞) : 0 < s < t, λ− < λ < λ+},
D′′ = {(λ, s) ∈ (0,∞)× (0,∞) : 0 < s < t− r, 0 < λ < λ−},

where

λ− = |t− s− r|, λ+ = t− s+ r.(4.9)

The key point to get such estimates as in Proposition 4.1 is to integrate by parts
with respect to λ and s. Following [19] and [2], we shall sketch this process briefly. To
begin with, we split the regions of integration D′ and D′′ into subregions as follows:

D′ = blue ∪ white, D′′ = black ∪ red,
blue = {(s, λ) ∈ D′ : λ− < λ ≤ λ− + δ or λ+ − δ ≤ λ < λ+},(4.10)

black = {(s, λ) ∈ D′ : λ− − δ̃ ≤ λ < λ− or 0 < λ ≤ δ̃},
where we have set δ = min{r, 1/2} and δ̃ = min{(t− r)/2, 1/2}. Notice that white is
empty if 0 < r ≤ 1/2 and that red is empty if 0 < t− r ≤ 1.

Let ∂b = ∂α (α = 0, 1, 2) in (4.8). Then, according to the above decompositions,
we have

2πu(x, t) =

∫∫
blue

λdλds

∫ ϕ

−ϕ
(∂αF )(λξ, s)K1dψ(4.11)

+H

(
r − 1

2

) 1∑
j=0

∫∫
white

λdλds

∫ 1

0

(∂αF )(λΞj , s)K2dτ

+H(t− r)
∫∫

black

λdλds

∫ π

−π
(∂αF )(λξ, s)K1dψ

+H(t− r − 1)

∫∫
red

λdλds

∫ π

−π
(∂αF )(λξ, s)K1dψ,

where we have changed the variable as ψ = Ψ in the second term and set

Ψ = Ψ(λ, s, τ ; r, t) = arccos[1− (1− cosϕ)τ ],

Ξj = Ξj(λ, s, τ ; r, t) = (cos(θ + (−1)jΨ), sin(θ + (−1)jΨ)),

K2 = K2(λ, s, τ ; r, t) = {2rλτ(1− τ)(2− (1− cosϕ)τ)}− 1
2 .
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496 AKIRA HOSHIGA AND HIDEO KUBO

Carrying out the integration by parts in the second and fourth terms, we get the
following proposition.

Proposition 4.2. Let u(x, t) be the solution to (∂2
t −∆)u = ∂αF with the zero

initial data. If F ∈ C∞(R2 × [0, T )), then |u(t, x)| is dominated by the following:

I1(F )(x, t) =

∫∫
blue

λdλds

∫ ϕ

−ϕ
|(∂αF )(λξ, s)|K1dψ,

I2(F )(x, t) =

∫
∂(white)

λdσ

∫ 1

0

|F (λΞj , s)|K2dτ,

I3(F )(x, t) =

∫∫
white

dλds

∫ 1

0

{|F (λΞj , s)|+ |(ΩF )(λΞj , s)|}K2dτ,

I4(F )(x, t) =

∫∫
white

λdλds

∫ 1

0

|F (λΞj , s)|{|∂sK2|+ |∂λK2|}dτ,

I5(F )(x, t) =

∫∫
white

λdλds

∫ 1

0

|(ΩF )(λΞj , s)|K2{|∂sΨ|+ |∂λΨ|}dτ,

J1(F )(x, t) =

∫∫
black

λdλds

∫ π

−π
|(∂αF )(λξ, s)|K1dψ,

J2(F )(x, t) =

∫
∂(red)

λdσ

∫ π

−π
|F (λξ, s)|K1dψ,

J3(F )(x, t) =

∫∫
red

dλds

∫ π

−π
{|F (λξ, s)|+ |(ΩF )(λξ, s)|}K1dψ,

J4(F )(x, t) =

∫∫
red

λdλds

∫ π

−π
|F (λξ, s)|{|∂sK1|+ |∂λK1|}dψ.

Proof. It is easy to see that the first and second terms in (4.11) are dominated
by I1(F ) and J1(F ), respectively. Since

(∇F )(λξ, s) = ξ∂λ(F (λξ, s))− ξ⊥

λ
(ΩF )(λξ, s), ξ⊥ = sin(θ + ψ),− cos(θ + ψ)),

we find that the fourth term in (4.11) is dominated by Jj(F ) (j = 2, 3, 4) by integration
by parts.

To deal with the second term in (4.11), we use the following identities:

(∂sF )(λΞj , s) = ∂s(F (λΞj , s))− (−1)j∂sΨ(ΩF )(λΞj , s),

(∇F )(λΞj , s) = Ξj(∂λ(F (λΞj , s))− (−1)j∂λΨ(ΩF )(λΞj , s))−
Ξ⊥j
λ

(ΩF )(λΞj , s),

where Ξ⊥j = (sin(θ+ (−1)jΨ),− cos(θ+ (−1)jΨ)). Again by integration by parts, we
find that the second term is dominated by Ij(F ) (j = 2, . . . , 5). The proof is com-
plete.

We shall use the following estimates of K1 and K2. For the proof, see Proposi-
tion 2.1 in [19] and also Proposition 5.3 in [2].

Lemma 4.1. It holds that for (λ, s) ∈ D′∫ ϕ

−ϕ
K1dψ = 2

∫ 1

0

K2dτ ≤ C

(rλ)
1
2

log

[
2 +

rλ

(λ− λ−)(λ+ + λ)
H(t− s− r)

]
,(4.12)
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 497∫ 1

0

{|∂sK2|+ |∂λK2|}dτ ≤ C

(rλ)
1
2 (λ+ s+ r − t) ,(4.13)∫ 1

0

K2{|∂sΨ|+ |∂λΨ|}dτ ≤ C(r + λ)

{rλ(λ2 − λ2−)(λ2
+ − λ2)} 1

2

(4.14)

and that for (λ, s) ∈ D′′∫ π

−π
K1dψ ≤ C{(λ+ λ−)(λ+ − λ)}− 1

2 log

[
2 +

rλ

(λ− − λ)(λ+ + λ)

]
,(4.15) ∫ π

−π
{|∂sK1|+ |∂λK1|}dψ ≤ C

(λ− − λ){(λ+ λ−)(λ+ − λ)} 1
2

.(4.16)

Now we are in a position to derive a new weighted L∞ − L∞ estimate for the
solution ∂u of (1.1) and (1.2). We introduce the following weight functions:

1

wi(r, t)
=

1

(1 + r)1−2γ(1 + t+ r)1+2γ
+
∑
j 6=i

1

(1 + t+ r)(1 + |cjt− r|)(4.17)

+
1

(1 + t+ r)1+µ(1 + |cit− r|)1−µ

and

1

w̃(r, t)
=

1

(1 + r)1−2γ(1 + t+ r)1+2γ
+

m∑
j=1

1

(1 + t+ r)(1 + |cjt− r|) ,(4.18)

where 1/4 < γ < 1/2 and 0 < µ < 1.
Proposition 4.3. Let ui1 be the solution to (∂2

t − ∆)ui1 = ∂αF
i(∂u, ∂2u) with

the zero initial data. Here u is a solution of (1.1) and (1.2).
(i) Let (r, t) ∈ Λ̃ci with r = |x| and t < T . Assume that w(r, t) satisfies

0 <
1

w(r, t)
≤ C

w̃(r, t)
.(4.19)

Then we have

wi(r, t)|ui1(x, t)| ≤ CM0,1,(4.20)

where we have set for a nonnegative integer k

M0,k =
∑
|a|≤k

sup
0<s<t

sup
y∈R2

‖y| 12w(|y|, s)ΓaF i(y, s)|.

(ii) Let (x, t) ∈ R2 × [0, T ). Assume ηj(r, t) (j = 1, 2) satisfy

0 <
1

η1(r, t)
≤ C

wi(r, t)
, 0 <

1

η2(r, t)
≤ C

w̃(r, t)
.(4.21)

Then we have

wi(r, t)|ui1(x, t)| ≤ C(M1,1 +M2,1 +M3,1),(4.22)
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498 AKIRA HOSHIGA AND HIDEO KUBO

where we have set for a positive integer k

M1,k =
∑
|a|≤k

sup
0<s<t

sup
y∈R2

‖y| 12 η1(|y|, s)Γa(Ri(y, s) +Gi(y, s))|,

M2,k =
∑
|a|≤k

sup
0<s<t

sup
y∈R2

‖y| 12 η2(|y|, s)ΓaN i(y, s)|,

M3,k =
∑
|a|≤k

sup
(|y|,s)∈Λi,s<t

‖y| 12 η2(|y|, s)(1 + s)
1
2 ΓaN i(y, s)|.

Here, we have divided the function F i into three parts: Gi, Ri, and N i as
in (1.12).

Proof. Employing Proposition 4.2, we find that |ui1(t, x)| is dominated by Ij(F
i)

(j = 1, . . . , 5) and Jj(F
i) (j = 1, . . . , 4).

In the proof of Proposition 5.4 in [2], the following estimates are shown. Strictly
speaking, they proved only the former part of Lemma 4.2 below. However, following
their proof, we find that the assumption (4.19) is sufficient to derive (4.24) with
j = 3, 4 and (4.25).

Lemma 4.2. Set

I ′1 =

∫∫
blue

λ
1
2

w(λ, s)
dλds

∫ ϕ

−ϕ
K1dψ,

I ′2 =

∫
∂(white)

λ
1
2

w(λ, s)
dσ

∫ 1

0

K2dτ,

I ′3 =

∫∫
white

1

λ
1
2w(λ, s)

dλds

∫ 1

0

K2dτ,

I ′4 =

∫∫
white

λ
1
2

w(λ, s)
dλds

∫ 1

0

{|∂sK2|+ |∂λK2|}dτ,

I ′5 =

∫∫
white

λ
1
2

w(λ, s)
dλds

∫ 1

0

K2{|∂sΨ|+ |∂λΨ|}dτ,

I ′′1 =

∫∫
black

λ
1
2

w(λ, s)
dλds

∫ π

−π
K1dψ,

I ′′2 =

∫
∂(red)

λ
1
2

w(λ, s)
dσ

∫ π

−π
K1dψ,

I ′′3 =

∫∫
red

1

λ
1
2w(λ, s)

dλds

∫ π

−π
K1dψ,

I ′′4 =

∫∫
red

λ
1
2

w(λ, s)
dλds

∫ π

−π
{|∂sK1|+ |∂λK1|}dψ.

Assume w(r, t) satisfies

0 <
1

w(r, t)
≤ C

wi(r, t)
.(4.23)

Then we have for (x, t) ∈ R2 × (0,∞)

wi(r, t)I
′
j ≤ C,(4.24)

wi(r, t)I
′′
j ≤ C.(4.25)
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 499

Moreover, (4.24) with j = 3, 4 and (4.25) are still true, if w(r, t) satisfies (4.19).
First, we shall show the statement (i) in Proposition 4.3. By the definition of

M0,1, (4.19), and Lemma 4.2, we get for (x, t) ∈ R2 × (0,∞)

wi(r, t)Ij(F
i)(x, t) ≤ CM0,1 for j = 3, 4,

wi(r, t)Jj(F
i)(x, t) ≤ CM0,1 for j = 1, . . . , 4.

Therefore, our task becomes to prove

wi(r, t)Ij(F
i)(x, t) ≤ CM0,1 for j = 1, 2, 5,(4.26)

provided (4.19) and (r, t) ∈ Λ̃ci . Since the treatment of I2(F i) is similar to that of
I1(F i), we shall deal with only I1(F i) and I5(F i). If we set

1

ξ(λ, s)
=

1

(1 + s+ λ)(1 + |s− λ|) ,(4.27)

then we have from (4.17) and (4.18)

1

w̃(λ, s)
≤ 1

wi(λ, s)
+

1

ξ(λ, s)
.(4.28)

Hence, using (4.24) with j = 1, 5, (4.12), and (4.14), we have

Ij(F
i)(x, t) ≤ CM0,1({wi(r, t)}−1 + Ĩj(ξ)) for j = 1, 5,

where we have set

Ĩ1(w) =
1

r
1
2

∫∫
blue

1

w(λ, s)
log

[
2 +

rλ

(λ− λ−)(λ+ + λ)
H(t− s− r)

]
dλds,(4.29)

Ĩ5(w) =
1

r
1
2

∫∫
white

1

w(λ, s)

r + λ

{(λ2 − λ2−)(λ2
+ − λ2)} 1

2

dλds.(4.30)

In the following, we shall prove for (r, t) ∈ Λ̃ci

Ĩj(ξ) ≤ C

(1 + r)
1
2 (1 + t+ r)

1
2 +γ

for j = 1, 5.(4.31)

First we consider Ĩ1(ξ). It follows from (5.33) and (5.34) in [2] that for 0 ≤ s ≤ t∫ λ−+δ

λ−
log

[
2 +

rλ

(λ− λ−)(λ+ + λ)
H(t− s− r)

]
dλ ≤ Cδ,(4.32) ∫ λ+

λ+−δ
log

[
2 +

rλ

(λ− λ−)(λ+ + λ)
H(t− s− r)

]
dλ ≤ Cδ 1

2 log[2 + |t− r|].(4.33)

Therefore we have

Ĩ1(ξ) ≤ Cδ
1
2

r
1
2

log[2 + |t− r|]
{∫ t

0

1

ξ(λ−, s)
ds+

∫ t

0

1

ξ(λ+, s)
ds

}
≤ C log[2 + |t− r|]

(1 + r)
1
2 (1 + t+ r)

{∫ t

0

1

1 + |2s− t+ r|ds+

∫ t

0

1

1 + |2s− t− r|ds
}D
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500 AKIRA HOSHIGA AND HIDEO KUBO

because δr−1 ≤ C(1 + r)−1 and 1 + |t − r| is equivalent to 1 + t + r for (r, t) ∈ Λ̃ci .
Since γ < 1/2, we thus obtain (4.31) for j = 1.

Next we consider Ĩ5(ξ). Notice that δ = 1/2 if the domain white is not empty,
hence r is equivalent to 1 + r. Moreover, since

λ± λ− ≥ δ, λ± λ− ≥ δ for (λ, s) ∈ white,

we have

Ĩ5(ξ) ≤ C

(1 + r)
1
2

∫∫
D′

1

ξ(λ, s)

× r + λ

{(λ− λ− + 1)(λ+ λ− + 1)(λ+ − λ+ 1)(λ+ + λ+ 1)} 1
2

dλds.

Note that

r + λ

{(λ− λ− + 1)(λ+ λ− + 1)(λ+ − λ+ 1)(λ+ + λ+ 1)} 1
2

≤ 2

(λ− λ− + 1)
1
2

{
1

(λ+ λ− + 1)
1
2

+
1

(λ+ − λ+ 1)
1
2

}
,

which follows from

λ+ + λ ≥ max{r, λ},
λ+ − λ ≥ max{r, λ} for λ ≤ λ+ − λ−

2
,

λ+ λ− ≥ max{r, λ} for λ ≥ λ+ − λ−
2

.

Therefore we have

(1 + r)
1
2 Ĩ5(ξ) ≤ C

∫∫
D′

1

ξ(λ, s)

1

{(λ− t+ s+ r + 1)(λ+ t− s− r + 1)} 1
2

dλds

+C

∫∫
D′

1

ξ(λ, s)

1

{(λ− t+ s+ r + 1)(t− s+ r − λ+ 1)} 1
2

dλds(4.34)

+C

∫∫
D′

1

ξ(λ, s)

1

{(λ+ t− s− r + 1)(t− s+ r − λ+ 1)} 1
2

dλds.

We shall show in the following that the right-hand side of (4.34) is dominated by
C(1 + t+ r)−γ−1/2. Since

1 + s+ λ ≥ 1 + |t− r| for (λ, s) ∈ D′,(4.35)

the second term is dominated by

C

1 + |t− r|
∫∫

D′

1

1 + |s− λ|
{

1

λ+ s− t+ r + 1
+

1

t+ r − s− λ+ 1

}
dλds

≤ C

2(1 + t+ r)

∫ t+r

|t−r|

{
1

α− t+ r + 1
+

1

t+ r − α+ 1

}
dα

∫ t−r

−α

1

1 + |β|dβ,

where we have changed the variables as

α = s+ λ, β = s− λ.(4.36)
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 501

Since the double integral is dominated by C{log(1 + t + r)}2, we get the desired
estimate.

To treat the first and third terms, we divide the domain D′ into two parts:

D− =

{
(λ, s) ∈ D′ : |λ− s| ≤ 1

2
|t− r|

}
, Dc

− = white \D−.(4.37)

Since D− is empty if 0 < t ≤ r, we have

λ+ t− s− r ≥ 1

2
|t− r| for (λ, s) ∈ D−.(4.38)

On the other hand, we have

1 + |s− λ| ≥ 1

2
(1 + |t− r|) for (λ, s) ∈ Dc

−.(4.39)

Using these estimates together with (4.35) and changing the variables as (4.36), we
find that the first term is majored by

C

1 + |t− r|
{∫∫

D′

1

(1 + s+ λ)
1
2 (1 + |s− λ|)(λ+ s− t+ r + 1)

1
2

dλds

+

∫∫
D′

1

(1 + s+ λ)

{
1

λ− t+ s+ r + 1
+

1

λ+ t− s− r + 1

}
dλds

}
≤ C

1 + t+ r

{∫ t+r

|t−r|

{
1

1 + α
+

1

α− t+ r + 1

}
dα

∫ t−r

−α

1

1 + |β|dβ

+

∫ t+r

|t−r|

1

(1 + α)

1

α− t+ r + 1
dα

∫ t−r

−α
dβ

+

∫ t+r

|t−r|

1

(1 + α)
dα

∫ t−r

−α

1

−β + t− r + 1
dβ

}
,

which yields the desired estimate. Since the third term is dealt with similarly, we
omit the details. This completes the proof of (4.26).

Second, we shall show the statement (ii). By (4.21), we have for |a| ≤ 1

|ΓaF i(y, s)| ≤ M1,1 +M2,1

λ
1
2 w̃(λ, s)

.

Therefore, by Lemma 4.2, we get for (x, t) ∈ R2 × (0,∞)

wi(r, t)Ij(F
i)(x, t) ≤ C(M1,1 +M2,1) for j = 3, 4,

wi(r, t)Jj(F
i)(x, t) ≤ C(M1,1 +M2,1) for j = 1, . . . , 4.

Moreover, similarly to (4.26), we get for (|x|, t) ∈ Λ̃ci

wi(r, t)Ij(F
i)(x, t) ≤ C(M1,1 +M2,1) for j = 1, 2, 5.

Thus it suffices to prove

wi(r, t)Ij(F
i)(x, t) ≤ C(M1,1 +M2,1 +M3,1) for j = 1, 2, 5,(4.40)
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502 AKIRA HOSHIGA AND HIDEO KUBO

provided (4.21) and (r, t) ∈ Λ̃i.
Having (3.1) in mind, we introduce a characteristic function of Λi denoted by

χ(λ, s). Then we may write

ΓaF i = Γa(Ri +Gi) + (1− χ)ΓaN i + χΓaN i

and find from (4.28) and the definition of Mi,1 given in (4.22) that

|ΓaF i(y, s)| ≤ C(M1,1 +M2,1 +M3,1)λ−
1
2

(
1

w̄i(λ, s)
+

1− χ(λ, s)

ξ(λ, s)
+

χ(λ, s)

ξ(λ, s)(1 + s)
1
2

)
for |a| ≤ 1. Therefore, using (4.24), we have for j = 1, 5

Ij(F
i)(r, t) ≤ C(M1,1 +M2,1 +M3,1)({wi(r, t)}−1 + Ĩj(ξ̃)),(4.41)

where Ĩj is defined in (4.29), (4.30) and we have set

1

ξ̃(λ, s)
=

1− χ(λ, s)

ξ(λ, s)
+

χ(λ, s)

ξ(λ, s)(1 + s)
1
2

.

In the following, we shall show for (r, t) ∈ Λ̃i and j = 1, 5

Ĩj(ξ̃) ≤ C

(1 + r)
1
2 (1 + |t− r|) 1

2

(4.42)

because 1 + r is equivalent to 1 + t+ r for (r, t) ∈ Λ̃i.
First we consider Ĩ1(ξ̃). Using (4.32) and (4.33), we have

Ĩ1(ξ̃) ≤ C log[2 + |t− r|]
(1 + r)

1
2

{∫ t

0

1

ξ̃(λ−, s)
ds+

∫ t

0

1

ξ̃(λ+, s)
ds

}
,

because δr−1 ≤ C(1 + r)−1. Since

(1 + |s− λ|) 1
4 ≥ (1 + s)

1
8 for (λ, s) ∈ supp{1− χ},(4.43)

we have from (4.27)

1

ξ̃(λ, s)
≤ 2

(1 + s+ λ)
3
4 (1 + |s− λ|) 3

4 (1 + s)
3
8

.

Therefore, we get

(1 + r)
1
2 Ĩ1(ξ̃) ≤ C log[2 + |t− r|]

(1 + |t− r|) 3
4

×
{∫ t

0

1

(1 + |2s− t+ r|) 3
4 (1 + s)

3
8

ds+

∫ t

0

1

(1 + |2s− t− r|) 3
4 (1 + s)

3
8

ds

}
,

which yields (4.42) for j = 1.
Next we consider Ĩ5(ξ̃). From (4.34), we have

(1 + r)
1
2 Ĩ5(ξ̃) ≤ C

∫∫
D′

1

ξ̃(λ, s)

1

{(λ− t+ s+ r + 1)(λ+ t− s− r + 1)} 1
2

dλds

+C

∫∫
D′

1

ξ̃(λ, s)

1

{(λ− t+ s+ r + 1)(t− s+ r − λ+ 1)} 1
2

dλds(4.44)

+C

∫∫
D′

1

ξ̃(λ, s)

1

{(λ+ t− s− r + 1)(t− s+ r − λ+ 1)} 1
2

dλds.
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 503

We shall show that the right-hand side is dominated by C(1+|t−r|)−1/2. Using (4.27)
and (4.35), we have

1

ξ̃(λ, s)
≤ 2

ξ(λ, s)

≤ 2

(1 + |t− r|) 1
2 (1 + s+ λ)

1
4 (1 + |s− λ|) 5

4

.

Therefore, the second term is majored by C(1 + |t− r|)−1/2 times∫∫
D′

1

(1 + s+ λ)
1
4 (1 + |s− λ|) 5

4

{
1

λ+ s− t+ r + 1
+

1

t+ r − s− λ+ 1

}
dλds

≤ C
∫ t+r

|t−r|

{
1

(1 + α)
5
4

+
1

(α− t+ r + 1)
5
4

+
1

(t+ r − α+ 1)
5
4

}
dα

∫ t−r

−α

1

(1 + |β|) 5
4

dβ,

which yields the desired estimate.
Next we deal with the first term, by dividing the domain D′ as in (4.37). Us-

ing (4.38) and (4.39), we find that the first term is majored by C(1 + |t − r|)−1/2

times ∫∫
D′

1

ξ(λ, s)

1

(λ+ s− t+ r + 1)
1
2

dλds

+

∫∫
D′

(1 + |s− λ|) 1
2

ξ(λ, s)

1

λ+ s− t+ r + 1
dλds

+

∫∫
D′

(1 + |s− λ|) 1
2

ξ̃(λ, s)

1

λ− s+ t− r + 1
dλds.

Analogous to the above calculation, we see that the first and second terms are bounded
by some constant. Since we have by (4.43)

(1 + |s− λ|) 1
2

ξ̃(λ, s)
≤ 2

(1 + s)
9
8 (1 + |s− λ|) 1

4

,

the third term is dominated by∫ ∞
0

ds

(1 + s)
9
8

∫ ∞
−∞

{
1

(1 + |s− λ|) 5
4

+
1

(λ− s+ t− r + 1)
5
4

}
dλ ≤ C;

hence we obtain the desired estimate of the first term in the right-hand side of (4.44).
Since the third term in the right-hand side of (4.44) is dealt with similarly, we omit
the details. This completes the proof of the proposition.

In our analysis, we need an upper bound of not only ∂ui but also ui itself.
Proposition 4.4. Let ui1 be the solution to (∂2

t −∆)ui1 = F i(∂u, ∂2u) with the
zero initial data. Here u is a solution to (1.1) and (1.2). Let 0 ≤ µ < 1/2. Assume
that w(r, t) satisfies (4.19). Then we have for (|x|, t) ∈ Λ̃i with t < T

(1 + t+ r)µ|ui1(x, t)| ≤ CM0,0,(4.45)

where M0,0 is defined in (4.20).
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504 AKIRA HOSHIGA AND HIDEO KUBO

Proof. It follows from (4.8) with b = 0, (4.12), (4.15), and (4.19) that

|ui1(x, t)| ≤ CM0,0(P1 + P2),(4.46)

where we have set

P1 =
1

r
1
2

∫∫
D′

1

w̃(λ, s)
log

[
2 +

rλ

(λ− λ−)(λ+ + λ)
H(t− s− r)

]
dλds

and

P2 = H(t− r)
∫∫

D′′

λ
1
2

w̃(λ, s){(λ+ λ−)(λ+ − λ)} 1
2

log

[
2 +

rλ

(λ− − λ)(λ+ + λ)

]
dλds.

Since t is equivalent to r for (r, t) ∈ Λ̃i, it suffices to show

Pj ≤ C(1 + r)−µ for j = 1, 2.(4.47)

First, we treat P1. We split the domain D′ into blue and white defined by (4.10).
According to this decomposition, we shall write P1 = P1,blue + P1,white. By (4.32)
and (4.33), we have

P1,blue ≤ Cδ
1
2

r
1
2

log[2 + |t− r|]
{∫ t

0

1

w̃(λ−, s)
ds+

∫ t

0

1

w̃(λ+, s)
ds

}
≤ C log[2 + |t− r|]

(1 + r)
1
2

∫ t

0

1

1 + s
ds

≤ C

(1 + r)µ

for 0 ≤ µ < 1/2 because 1 + r is equivalent to 1 + t+ r for (r, t) ∈ Λ̃i.
On the other hand, we have for (λ, s) ∈ white with 0 ≤ s ≤ t− r

rλ

(λ− λ−)(λ+ + λ)
≤ λ

λ− λ− ≤ 1 + 2λ− ≤ 1 + 2(t− r)

because δ = 1/2, if white is not empty. Therefore we have

(1 + r)
1
2P1,white ≤ C log[2 + |t− r|]

∫∫
D′

1

w̃(λ, s)
dλds

≤ C log[2 + |t− r|]
∫ t

0

ds

1 + s

∫ t+r

0

 1

1 + λ
+

m∑
j=1

1

1 + |cjs− λ|

 dλ;

hence P1,blue ≤ C(1 + r)−µ for 0 ≤ µ < 1/2. We thus get (4.47) for j = 1.
Second, we deal with P2. Notice that w̃(λ, s) is equivalent to w̃(λ−, s) for λ−−1 ≤

λ ≤ λ− and that (λ+ − λ)1/2 ≤ (1 + r)1/2 for 0 < λ ≤ λ− − 1 and 0 ≤ s ≤ t − r.
Moreover, we have for 0 < λ ≤ λ− − 1 and 0 ≤ s ≤ t− r

rλ

(λ− − λ)(λ+ + λ)
≤ λ

λ− − λ ≤ −1 + λ− ≤ t− r.
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 505

Splitting the integral into two parts, we have

P2 ≤ CH(t− r − 1)(1 + r)−
1
2 log[2 + |t− r|]

∫∫
D′′

1

w̃(λ, s)
dλds

+CH(t− r)
∫ t−r

0

1

w̃(λ−, s)
ds

∫ λ−

(λ−−1)+

λ
1
2

{(λ+ λ−)(λ+ − λ)} 1
2

× log

[
2 +

rλ

(λ− − λ)(λ+ + λ)

]
dλ.

Notice that∫ λ−

(λ−−1)+

λ
1
2

{(λ+ λ−)(λ+ − λ)} 1
2

log

[
2 +

rλ

(λ− − λ)(λ+ + λ)

]
dλ ≤ C log[2 + |t− r|]

(1 + r)
1
2

.

(For the proof, see (5.73) in [2].) Therefore we have

(1 + r)
1
2P2 ≤ C log[2 + |t− r|]

{∫∫
D′′

1

w̃(λ, s)
dλds+

∫ t−r

0

ds

1 + s

}
,(4.48)

which implies (4.47) for j = 2. This completes the proof.
Lemma 4.3. Let F i satisfy (1.12) and u be smooth function satisfying (4.1) with

k = [(N + 1)/2]. If we set

1

w(λ, s)
=

m∑
j,k=1

1

(wjwk)(λ, s)
for λ > 0, s > 0,(4.49)

then we have

M0,N ≤ CN [∂u]2[N+1
2 ],t‖∂u‖N+3,t.(4.50)

Moreover, if we set

1

w(λ, s)
=

m∑
j,k,l=1

λ
1
2

(wjwkwl)(λ, s)
for λ > 0, s > 0,(4.51)

then we have

M0,[N+1
2 ] ≤ CN [∂u]3[N+1

2 ]+1,t
.(4.52)

Here M0,N is defined in (4.20).
Proof. First, we shall show (4.52). Since (4.1) with k = [(N + 1)/2] implies

m∑
j=1

∑
|a|≤[(N+1)/2]

|Γa∂uj(y, s)| ≤ [∂u][N+1
2 ],T < 1 for 0 ≤ s ≤ t < T, y ∈ R2,(4.53)

by (1.12) we have for |a| ≤ [(N + 1)/2]

|ΓaF i(y, s)| ≤ C
m∑

j,k,l=1

1

(wjwkwl)(λ, s)
[∂u(s)]3[N+1

2 ]+1
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506 AKIRA HOSHIGA AND HIDEO KUBO

with λ = |y|. By (4.51), we therefore get (4.52).
Second, we shall prove (4.50). It follows that for |a| ≤ N

|ΓaF i(y, s)| ≤ C
m∑

j,k,l=1

1

(wjwk)(λ, s)
[∂u(s)]2[N+1

2 ]

∑
|b|≤|a|+1

|Γb∂ul(y, s)|.

We now use an imbedding theorem concerning the invariant norm

|x| 12 |f(x)| ≤
∑
|a|≤2

‖Γaf‖L2 for x ∈ R2.(4.54)

(For the proof, see, e.g., Lemma 6 in [19].) Applying this and using (4.49), we ob-
tain (4.50). The proof is complete.

Corollary 4.1. Let u = (u1, . . . , um) be the solution of (1.1) and (1.2) and let
F i satisfy (1.12). Let 0 ≤ µ < 1/2. Then we have for (|x|, t) ∈ Λi with t < T

(1 + t+ r)µ|Γaui(x, t)| ≤ CN
(
ε+ [∂u]2[N+1

2 ],t‖∂u‖N+3,t

)
for |a| ≤ N,(4.55)

(1 + t+ r)µ|Γaui(x, t)| ≤ CN
(
ε+ [∂u]3[N+1

2 ],t

)
for |a| ≤ [(N + 1)/2],(4.56)

provided (4.1) with k = [(N + 1)/2] holds.
Proof. Using the decomposition (4.5) with b = 0 and the estimates (4.6) and

(4.45), we have

(1 + t+ r)µ|Γaui(x, t)| ≤MNε+ CNM0,|a|,(4.57)

where M0,|a| is defined in (4.20), if w(r, t) satisfies (4.19). Note that both (4.51)
and (4.49) satisfy (4.19). Applying Lemma 4.3, we obtain (4.55) and (4.56). This
completes the proof.

End of the proof of Proposition 4.1. First we shall show (4.2). Using the decom-
position (4.5) with |b| = 1 and the estimates (4.6) and (4.20), we have

wi(r, t)|Γa∂ui(x, t)| ≤MNε+ CNM0,|a|+1 for (|x|, t) ∈ Λ̃ci with t < T(4.58)

if w(r, t) satisfies (4.19). Using (4.50) with N replaced by N + 1, we obtain (4.2).
Next we shall show (4.3). Similarly, it follows from (4.6) and (4.22) that for

|a| ≤ N

wi(r, t)|Γa∂ui(x, t)| ≤MNε+ CN (M1,N+1 +M2,N+1 +M3,N+1)(4.59)

if ηi(r, t) (i = 1, 2) satisfies (4.21).
First, we shall show

M1,N+1 ≤ C
(
ε+ [∂u]2[N+4

2 ],t‖∂u‖N+6,t

)
.(4.60)

If we set

1

η1(λ, s)
=

m∑
j,k,l=1

1

(wjwkwl)(λ, s)
+

∑
(j,k)6=(i,i)

1

(wjwk)(λ, s)
+

1− χ̃(λ, s)

{wi(λ, s)}2 ,(4.61)
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 507

then η1(r, t) satisfies the first condition in (4.21). Here χ̃ is the characteristic function
of Λ̃i. In what follows, we always assume |a| ≤ N + 1. By (1.12) and (4.1) with
k = [(N + 2)/2], we have

|ΓaGi(y, s)| ≤ C
m∑

j,k,l=1

1

(wjwkwl)(λ, s)
[∂u(s)]3[ |a|+1

2

] ∑
|b|≤|a|+1

|Γb∂ul(y, s)|.(4.62)

Using (4.54), we get

|λ 1
2 η1(λ, s)ΓaGi(y, s)| ≤ C[∂u(s)]2[N+2

2 ]‖∂u(s)‖N+4.(4.63)

As for the resonance-form Ri, we find from (1.13) that there is at least one index
among j, k, and l which does not coincide with i. Therefore, by (1.12) we have

|ΓaRi(y, s)| ≤ C
∑

(j,k)6=(i,i)

m∑
l=1

1

(wjwk)(λ, s)
[∂u(s)]2[ |a|+1

2

] ∑
|b|≤|a|+1

|Γb∂ul(y, s)|

+C
∑

(j,k)=(i,i)
l6=i

1− χ̃(λ, s)

{wi(λ, s)}2 [∂u(s)]2[ |a|+1
2

] ∑
|b|≤|a|+1

|Γb∂ul(y, s)|(4.64)

+C
∑

(j,k)=(i,i)
l6=i

1

(wiwl)(λ, s)

[∂u(s)]2[ |a|+1
2

]
wi(λ, s)

∑
|b|≤|a|+1

|(χ̃wl)(λ, s)Γb∂ul(y, s)|.

By (4.61) and (4.54), we find that the first and second terms are dominated by

Cλ−
1
2 {η1(λ, s)}−1[∂u(s)]2[N+2

2 ]‖∂u(s)‖N+4.(4.65)

On the other hand, by (4.61), (4.1) with k = [(N + 2)/2], and wi(λ, s) ≥ λ1/2, the
third term is dominated by

Cλ−
1
2 {η1(λ, s)}−1

∑
|b|≤N+2

|(χ̃wl)(λ, s)Γb∂ul(y, s)|.(4.66)

Moreover, since Λ̃i ⊂ Λ̃cl by (2.4), we get from (4.2),

|(χ̃wl)(λ, s)Γb∂ul(y, s)| ≤ CN
(
ε+ [∂u]2[N+4

2 ],t‖∂u‖N+6,t

)
for |b| ≤ N + 2. We thus find that the third term is dominated by

Cλ−
1
2 {η1(λ, s)}−1

(
ε+ [∂u]2[N+4

2 ],t‖∂u‖N+6,t

)
;(4.67)

hence, together with (4.65), we get

|λ 1
2 η1(λ, s)ΓaRi(y, s)| ≤ C

(
ε+ [∂u]2[N+4

2 ],t‖∂u‖N+6,t

)
.(4.68)

Combining (4.63) and (4.68), we finally get (4.60).
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508 AKIRA HOSHIGA AND HIDEO KUBO

Second, we consider M2,N+1. Taking η2(r, t) = wi(r, t)
2, we easily see that η2(r, t)

satisfies the second condition of (4.21) and that

M2,N+1 ≤ C[∂u]2[N+2
2 ],t‖∂u‖N+4,t.(4.69)

Third, we consider M3,N+1 by taking η2(r, t) = wi(r, t)
2. By (3.1) we have

(1 + s)
1
2 |ΓaN i(y, s)| ≤ C(Φia + (1 + s)−

1
2 Θi

a)

for (|y|, s) ∈ Λi. Therefore, we obtain

|λ 1
2 η2(λ, s)(1 + s)

1
2 ΓaN i(y, s)| ≤ C

∑
|b+c+d|≤|a|+1

|λ 1
2 η2(λ, s)|∂Γbui‖∂Γcui‖∂Γdui‖

+C
∑

|b+c+d|≤|a|+2
|b|,|c|,|d|≤|a|+1

|λ 1
2 η2(λ, s)(1 + s)−

1
2 |Γbui‖∂Γcui‖∂Γdui‖.(4.70)

We easily see that the first term is dominated by C[∂u(s)]2[(N+2)/2]‖∂u(s)‖N+4.
To treat the second term, we divide the argument into two cases. First we assume

|b| ≥ [(N + 2)/2]. Since 1 + λ is equivalent to 1 + s for (λ, s) ∈ Λi by (2.9), we have

|λ 1
2 η2(λ, s)(1 + s)−

1
2 |Γbui‖∂Γcui‖∂Γdui‖

≤ C[∂u(s)]2[N+2
2 ]|Γ

bui(y, s)|

≤ C
(
MNε+ [∂u]2[N+4

2 ],s‖∂u‖N+6,s

)
,

where we have used (4.1) with k = [(N + 4)/2] and (4.55) with µ = 0 and N replaced
by N + 3.

Next we assume |b| ≤ [(N + 2)/2]. In this case, we have

|λ 1
2 η2(λ, s)(1 + s)−

1
2 |Γbui‖∂Γcui‖∂Γdui‖

≤ C‖∂u(s)‖N+4[∂u(s)][N+2
2 ]|wi(λ, s)(1 + s)−

1
2 |Γbui(λ, s)‖

≤ C(1 + s)
1
4−µ‖∂u(s)‖N+4

(
ε+ [∂u]3[N+2

2 ]+1,s

)
,

where we have used (4.54), (2.8), (4.1) with k = [(N + 4)/2], and (4.56). Taking µ
such that µ > 1/4, we obtain

M3,N+1 ≤ C
(

(1 + ‖∂u‖N+4,t)ε+ [∂u]2[N+4
2 ],t‖∂u‖N+6,t

)
.(4.71)

Combining (4.60), (4.69), and (4.71) with (4.59), we obtain (4.3). This completes the
proof.

5. Proof of Theorem 1.1. By the existence and the uniqueness of the local
smooth solution of (1.1) and (1.2) (see, e.g., S. Klainerman [14]), it is enough to
establish a uniform a priori estimate of [∂u(t)]N for some large integer N . To deal
with the L2-norm in the right-hand side of (4.3), we need the following.

Proposition 5.1. Let ui ∈ C∞(R2 × [0, T )) be a solution of (1.1) and (1.2).
Suppose that (1.5) holds. Then there exists a sufficiently small δ1 > 0 independent
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GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS 509

of T and a constant CN > 0 independent of T and δ1 such that the following energy
estimate holds for 0 ≤ t < T :

‖∂u(t)‖N ≤ CN‖∂u(0)‖N (1 + t)
CN [∂u]2

[N+1
2 ],t ,(5.1)

provided (4.1) with k = [(N + 1)/2] holds.
Proposition 5.2. Let ui ∈ C∞(R2 × [0, T )) be a solution of (1.1) and (1.2).

Also let 0 < δ1 < 1 in (4.1). Suppose that (1.11) holds. Then there exists a constant
CN > 0 independent of T and δ1 such that the following energy estimate holds for
0 ≤ t < T :

‖∂u(t)‖2N ≤ C2
N

{
‖∂u(0)‖2N

+

∫ t

0

(1 + s)−
5
4 ([∂u(s)]2N+1 + 〈u(s)〉2N+1)‖∂u(s)‖2N+1ds

}
,(5.2)

provided (4.1) with k = [(N + 1)/2] holds. Here we have set

〈u(s)〉k =
m∑
i=1

∑
|a|≤k

sup
{x∈R2:(x,s)∈Λi}

|Γaui(x, s)|.

Proof of Proposition 5.1. If we set

Liv = �ivi −
m∑
l=1

2∑
γ,δ=0

Hγδ
il (∂u)∂γ∂δv

l −Ki(∂u) for v = (v1, . . . , vm),(5.3)

we have an identity

d

dt

∫
R2

{
(∂tv

i)2 + c2i |∇vi|2 −
m∑
l=1

H00
il (∂u)∂tv

i∂tv
l(5.4)

+

2∑
p,q=1

Hpq
il (∂u)∂pv

i∂qv
q

}
dx =

∫
R2

Ji(v)dx,

where

Ji(v) = 2Liv∂tv
i −

m∑
l=1

(∂tH
00
il (∂u))∂tv

i∂tv
l + 2

m∑
l=1

2∑
p=1

(∂pH
p0
il (∂u))∂tv

i∂tv
l

−2
m∑
l=1

2∑
p,q=1

(∂pH
pq
il (∂u))∂qv

i∂tv
l

+
m∑
l=1

2∑
p,q=1

(∂tH
pq
il (∂u))∂pv

i∂qv
l + 2Ki(∂u)∂tv

i.

Here we have used (1.5) and the divergence theorem. By (1.12), we have

|Hγδ
il (∂u)| < 1

2m
min{1, c2m}

D
ow

nl
oa

de
d 

02
/0

9/
22

 to
 1

04
.1

49
.1

69
.1

46
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



510 AKIRA HOSHIGA AND HIDEO KUBO

if we take δ1 in (4.1) to be sufficiently small. Therefore, (5.4) yields

‖∂v(t)‖20 ≤ C
(
‖∂v(0)‖20 +

m∑
i=1

∫ t

0

ds

∫
R2

|Ji(v)|dx
)
.(5.5)

Hence, if we take v = Γau(|a| ≤ N) in (5.5), we have

‖∂u(t)‖2N ≤ C
‖∂u(0)‖2N +

m∑
i=1

∑
|a|≤N

∫ t

0

ds

∫
R2

|Ji(Γau)|dx
 .(5.6)

Furthermore, it follows from (1.12), (4.1), and the Leibniz rule that∫
R2

|Ji(Γau)|dx ≤ C|∂u(s)|2[N+1
2 ]‖∂u(s)‖2N .(5.7)

Thus, combining (5.6) and (5.7) and using Gronwall’s inequality, we have

‖∂u(t)‖N ≤ CN‖∂u(0)‖N exp

(∫ t

0

CN |∂u(s)|2[N+1
2 ]ds

)
,(5.8)

which yields (5.1), due to (2.5). This completes the proof.
Proof of Proposition 5.2. Multiplying ∂tΓ

aui by (3.9) and integrating it over
R2 × [0, t], we have

‖∂ui(t)‖2N ≤ ‖∂ui(0)‖2N + CN
∑

|b|≤|a|≤N

∫ t

0

∫
R2

|Γb(F i(∂u, ∂2u))∂tΓ
aui|dxds.(5.9)

We divide the function F i into three parts: Gi, Ri, and N i as in (1.12).
First, we derive the estimate for the higher-order term Gi. Using (2.5) and (4.1)

with k = [(N + 1)/2], we have

|ΓbGi(x, s)| ≤ CN (1 + s)−
3
2 [∂u(s)]3[N+1

2 ]

m∑
j=1

∑
|c|≤|b|+1

|∂Γcuj(x, s)|,(5.10)

which yields∫
R2

|Γb(Gi(x, s))∂tΓaui|dx ≤ CN (1 + s)−
3
2 [∂u(s)]3[N+1

2 ]‖∂u(s)‖2N+1.(5.11)

Second, we consider the resonance-form Ri. Without loss of generality, we may
assume l 6= i by (1.13). We now use the “resonance” property by the aid of (2.5),
(2.6), and (2.4), namely,

1

(wlwi)(|x|, s) ≤
C

(1 + s)
5
4

.(5.12)

Using this estimate, we get

|Γb(Ri(x, s))∂tΓaui| ≤ CN
m∑

j,k,=1

∑
l 6=i

∑
|c+d+e|≤|b|+1

|Γc(∂uj)Γd(∂uk)Γe(∂ul)∂tΓ
aui|

≤ CN
m∑

j,k=1

∑
|c+d|≤|b|+1

(1 + s)−
5
4 [∂u(s)]2N+1|Γc(∂uj)Γd(∂uk)|,
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which yields∫
R2

|Γb(Ri(x, s))∂tΓaui|dx ≤ CN (1 + s)−
5
4 [∂u(s)]2N+1‖∂u(s)‖2N+1.(5.13)

Finally, we treat the null-form N i. When (x, s) ∈ Λci , we find from (2.7) that

|Γb(N i(x, s))| ≤ CN (1 + s)−
3
2 [∂u(s)]2[N+1

2 ]

∑
|c|≤|b|+1

|∂Γcui(x, s)|.

When (x, s) ∈ Λi, it follows from Proposition 3.1 and (2.5) that

|Γb(N i(x, s))| ≤ CN ((1 + s)−
1
2 Φib + (1 + s)−1Θi

b)

≤ CN (1 + s)−
3
2 ([∂u(s)]2N+1 + [∂u(s)]N+1〈u(s)〉N+1)

∑
|c|≤|b|+1

|∂Γcui(x, s)|.

Therefore, we get ∫
R2

|Γb(N i(x, s))∂tΓ
aui|dx(5.14)

≤ ‖Γb(N i(s))‖0‖∂u(s)‖N+1

≤ CN (1 + s)−
3
2 ([∂u(s)]2N+1 + 〈u(s)〉2N+1)‖∂u(s)‖2N+1.

Combining (5.11), (5.13), and (5.14) with (5.9), we obtain (5.2). The proof is com-
plete.

Corollary 5.1. Let ui ∈ C∞(R2 × [0, T )) be a solution of (1.1) and (1.2).
Suppose that (1.5) and (1.11) hold. Then there exist a sufficiently small δ1 > 0
independent of T and a constant CN > 0 independent of T and δ1 such that the
following holds for 0 ≤ t < T :

‖∂u(t)‖2N+6 ≤ C2
Nε

2

{
1 +

∫ t

0

(1 + s)
− 5

4 +4CN [∂u]2

[N+14
2 ],sds

}
,(5.15)

provided (4.1) with k = [(N + 14)/2] holds and 0 < ε ≤ 1.
Proof. It follows from (4.3) and (5.1) that for 0 ≤ s ≤ t

[∂u(s)]N+7 ≤ CN (ε+ (ε+ δ2
1)‖∂u‖N+13,s)(5.16)

and

‖∂u‖N+13,s ≤ CNε(1 + s)
CN [∂u]2

[N+14
2 ],s(5.17)

because ‖∂u(0)‖N+13 ≤ CNε for sufficiently small δ1. Therefore, we have

[∂u(s)]N+7 ≤ CN (1 + ε+ δ2
1)ε(1 + s)

CN [∂u]2

[N+14
2 ],s .(5.18)

Moreover, 〈u(s)〉N+7 has the same estimate as [∂u(s)]N+7, because of (4.55). Now
(5.15) follows from (5.2) and (5.18) together with (5.17). The proof is complete.

End of the proof of Theorem 1.1. As we stated at the beginning of the present
section, what we need to prove Theorem 1.1 is an a priori estimate for [∂u(t)]N . We
fix an integer N satisfying N ≥ 13, which guarantees [(N + 14)/2] ≤ N . We take a
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512 AKIRA HOSHIGA AND HIDEO KUBO

positive constant BN such that BN ≥ 2C̃N and BN ≥MN , where MN is the constant
in (4.6) and C̃N is the constant larger than CN appearing in (4.3) and (5.15). We
also take ε1 such that

0 < ε1 ≤ 1 and 3BNε1 ≤ δ1,(5.19)

where δ1 is the smallest one taken in Proposition 4.1 and Corollary 5.1. Moreover, set

Tε = sup{T > 0 : (1.1) and (1.2) have a solution ui in C∞(R2 × [0, T ))(5.20)

and [∂u]N,T ≤ 3BNε holds}.

We can see that Tε > 0, because of the existence of a local solution, the continuity
of [∂u]N,t, and (4.5). Then, for each ε satisfying 0 < ε ≤ ε1, we have ui ∈ C∞(R2 ×
[0, Tε)) and

[∂u][N+14
2 ],Tε ≤ [∂u]N,Tε ≤ δ1,

which imply that (4.3) and (5.15) hold. In particular, we have for 0 ≤ t < Tε

‖∂u(t)‖N+6 ≤ C̃Nε
{

1 +

∫ t

0

(1 + s)
− 5

4 +4C̃N [∂u]
[N+14

2 ],sds

} 1
2

.(5.21)

Now, we take ε0 to be

0 < ε0 ≤ ε1, 3C̃Nε0 ≤ 1, and 12C̃NBNε0 ≤ 1

8
,(5.22)

and fix an ε in [0, ε0) in the following. Then, by (5.21), (5.20), and (5.22), we have
for 0 ≤ t < Tε

‖∂u(t)‖N+6 ≤ C̃Nε
(

1 +

∫ t

0

(1 + s)−
9
8 ds

) 1
2

≤ 1.

Substituting this into (4.3) and using (5.20), we have

[∂u]N,Tε ≤ C̃N
(

2ε+ 3BNε[∂u][N+4
2 ],Tε

)
.

Hence, by BN ≥ 2C̃N and (5.22), we have

[∂u]N,Tε ≤ 2BNε.(5.23)

By the blowup criterion (see, e.g., [22, Theorem 2.2, p. 31]), we see that if Tε < +∞,
we must have limt→Tε−0[∂u]N,T = 3BNε, which contradicts (5.23). Therefore, we
have Tε = +∞. This completes the proof of Theorem 1.1.

Acknowledgments. The authors are grateful to Professor R. Agemi and Pro-
fessor K. Kubota for their valuable comments.
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