
Astérisque

SERGE ALINHAC
An example of blowup at infinity for a quasilinear
wave equation

Astérisque, tome 284 (2003), p. 1-91
<http://www.numdam.org/item?id=AST_2003__284__1_0>

© Société mathématique de France, 2003, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_2003__284__1_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Astérisque 
284, 2003, p. 1-91 

AN EXAMPLE OF BLOWUP AT INFINITY 
FOR A QUASILINEAR WAVE EQUATION 

by 

Serge Alinhac 

Dédié à J-M. Bony à l'occasion de son soixantième anniversaire 

Abstract. — We consider an example of a Quasilinear Wave Equation which lies 
between the genuinely nonlinear examples (for which finite time blowup is known) and 
the null condition examples (for which global existence and free asymptotic behavior 
is known). We show global existence, though geometrical optics techniques show 
that the solution does not behave like a free solution at infinity. The method of proof 
involves commuting with fields depending on u, and uses ideas close to that of the 
paradifferential calculus. 

Résumé (Explosion à l'infini pour un exemple d'équation d'ondes quasi-linéaire) 
Nous considérons un exemple d'équation d'ondes quasi-linéaire qui se situe entre 

les exemples vraiment non-linéaires (pour lesquels l'explosion en temps fini est 
connue) et les exemples vérifiant la condition nulle (pour lesquels la solution existe 
globalement et est asymptotiquement libre). Nous montrons l'existence globale, bien 
que des arguments d'optique géométrique non-linéaire indiquent un comportement 
non libre de la solution à l'infini. La méthode de la preuve fait intervenir la com
mutation avec des champs dépendant de u, et utilise des idées proches de celles du 
calcul paradifférentiel. 

In this text, Theorems, Propositions etc. are numbered according to the section 
where they appear, without any mention of the Chapter. When quoted in a différent 
chapter, they appear with the additional mention of the Chapter. For instance, in 
Chapter III, section 2, there is Lemma 2. In Chapter IV, section 4, the same Lemma 
is quoted as Lemma III. 2. 

2000 Mathematics Subject Classification. — 35L40. 
Key words and phrases. — Quasilinear Wave Equation, Energy inequality, decay, blowup, geometrical 
optics, Poincaré inequality, paradifferential calculus, weighted norm. 
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2 S. ALINHAC 

Introduction 

We prove in this paper the global existence (for s small enough) of smooth solutions 
to the équation in x R* 

d2u — c2(u)Axu = 0, c(u) = l + u, 

with smooth and compactly supported initial data of size s. 
This resuit has been proved before only in the radially symmetric case by Lindblad 

[13], who also pointed out to some évidence that the nonradial solutions should have 
a very large lifespan. It turns out that the solutions do not behave at t — -hoc like 
solutions of the free wave équation (that is, u ~ e/(l + t)); most derivatives of u 
have, apart from the factor e/(l + £), an exponential growth expCV at infinity, where 
T = elog(l + t) is the slow time. This explains the title of this paper. 

The method of proof is that of Klainerman [11], combining energy inequalities 
and commutations with appropriate "Z" fields. Because of the blowup at infinity, the 
fields we use have to be adapted to the geometry of the problem (as in Christodoulou-
Klainerman [7]), and their coefficients smoothed out. This is very close to the parad
ifferential calculus of Bony [6], or, equivalently, to a Nash-Moser process. 

I. Main resuit and ideas of the proof 

We consider in R^ x Ht the équation 

(l.l)a F(u) = d2u - c2(u)Axu = 0, 

where we will take for simplicity c — c{u) — 1 + u, since higher powers of u produce 
only easily handled terms. The coordinates will be 

x = (xi,X2,Xs), t = xo, 

and 
du = (diu, dsu, dtu). 

The initial data are 

(1.1)6 u(x, 0) = eu\(x) + e2u02(x) + • • • , (dtu)(x, 0) = su\(x) + s2ul(x) + • • • , 

for real C°° functions u\, supported in the bail |x| < M. 
We will use the usual polar coordinates r = x = rou, and define the rotation 

fields 
Ri = x2d3 - £3<92, R2 = x3di - xi<93, Rs = xid2 - x2di. 

By Zo we will dénote one of the standard Klainerman's fields 

(1.2) di,Rj, S = tdt + rdr, hi = Xidt + tdi. 

For the Laplace operator, we have then 

Ax = d2r + (2/rR + (l/r2)Aw, 
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 3 

where the Laplace operator on the sphère Aw is = R\ + i?2 -h 
We define two linear operators 

(1.3) P = c-xd1 - cA, Px = c-1^2 - c(5r2 + r"2Aw), 

such that, setting u = e/rU, we have Pu = 0, P\U = 0. We also set 

L = c-^dt + c^2dr, Lx = c-l'2dt - cl'2dr, 

for which we have 

(1.4) [L, L{\ = (Liw/2c)Li - (Lu/2c)L, Pi = LLX - cr"2Au + {Lu/2c)L. 

Remark that, since c = c(u), iterated use of the fields L, L±, dj,Rj,S will generate a 
considérable number of terms depending again on u. To master this phenomenon, we 
will have to construct an appropriate "Calculus". Finally, we set 

(1.5) ai = M + 1-r + t, 

which is positive and roughly équivalent to the distance to the boundary of the light 
cone. 

Our main resuit is the following Theorem. 

Theorem. — Let so G N . For s small enough, the Cauchy problem (1.1) has a global 
smooth solution u. Moreover, we have the estimâtes 

\Z%du\L2^Ce(l + i)Ce, \a\ <50 , 

\du\ ^ Ce(l + t)~\ \Z£du\ < Ce(l + t)~1+C£a~1/2, \a\ ^s0-2. 

In the case of radially symmetric data, the solution u is a smooth function of (r2, t). 
For this case, Lindblad [13] has proved global existence. We explain now the main 
ideas of the proof. In the whole paper, ail constants will be denoted by C, unless 
otherwise specified. 

1.1. A fîrst insight using nonlinear geometrical optics 

a. If w dénotes the solution of the linearized problem on zéro 

(<92 - A)w = 0, w(x,0) = ul(x), K)(x,0) = u\(x), 

we know (see [10]) that, for some smooth Fo, 

w ~ l/rFo(u, r — t), r —» +oo. 

Taking sw as a rough approximation of we observe as in [10], [1] that the quadratic 
nonlinearity uAu produces a slow time effect, for the slow time r = e\og(l + t). This 
means that, for large time, we expect formally u to be better approximated by 

e/rV{r -t,u,r), 
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4 S. ALINHAC 

for a smooth V satisfying V(r — £,OJ, 0) = FO(CJ, r — i). Substituting the above expres
sion of u in (1.1), we obtain 

(1.6) V(rT + VV<T<T=0, V(a,oj,0)=Fo(uj,<j), a = r-t. 

As pointed out already in [13], this is in sharp contrast with what happens, for 
instance, for the équation d^u — (1 + ut)Au = 0. In this case, a similar approach 
yields for V the équation 2Var — VaVaa = 0, which is essentially Burgers'équation and 
blows up in finite time. Here, one easily sees that (1.6) has global solutions: this gives 
a hint that the lifespan of u could be very large (though not necessarily +oo, see for 
instance the case of the null condition in two space dimensions [1]); the conséquences 
of this fact are precisely stated in Theorem II. 1. 

b. Looking more closely, we see that the solution V of (1.6) satisfies 

K\ < C, \d"V\ < Cec\ 

Since we are willing to use Klainerman's method [11], we have to apply products Z§ 
to (l.l)a, and use an energy inequality for P to control \8ZQU\L2. On the one hand, 
the boundedness of Va yields 

\du\ ^ Ce/(l + t). 

In the standard energy inequality for P (see [10] Prop. 6.3.2), this will cause an 
amplification factor of the initial energy of the form 

exp Ce 
rt 

fo 
ds/(l + s) = (l + tf£. 

Thus the best one can expect, using the energy method and Klainerman's inequality, is 

\Z$du\ ^ Ce(lsssssssss + t) (a,oj,0)=Fo( 

which is the resuit we obtain. On the other hand, if we believe that u and its deriva-
tives actually behave like e/rV, we see that derivatives like Riu or d^u, etc. do behave 
like e/r(l + t)Ce, which matches with what we just obtained from the energy method. 
This is why we say that we have blowup at infinity: the solution u exists globally, but 
does not behave like a solution of the linear équation. This phenomenon has been 
observed already, for instance in the study by Delort [8] of the Klein-Gordon équation. 

1.2. Commuting Klainerman's fîelds 
a. If we apply for instance a rotation field Ri to (l.l)a, we obtain 

PRiU-2(Riu)(Au) =0. 

Writing the energy inequality for P, it is not possible to reasonably absorb the term 
(Riu)(Au) using Gronwall's lemma since 

exp 
'0 

Riu\Loo -exp[C-1(l + )̂C1 
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 5 

is far too big. On the other hand, applying Zfî to (l.l)a produces a term (ZQU)(AU) 
in the équation for PZfîu, which is a zéro order term: to handle this term will require 
some type of Poincaré lemma, controlling ZQU by dZ^u. Note that even in a finite 
strip \r — t\ ^ C close to the boundary of the light cone, such a term cannot be 
reasonably controlled since again Au behaves exponentially in r at infinity. 

b. Hence we have to modify the standard fields Z$ to get better commutation 
properties. Following the géométrie approach of Christodoulou-Klainerman [7], we 
define an optic function (in fact, only an approximate optic fonction) I/J = ip(r, OJ, t) by 

Lip = 0, ip(0, ou, t) = -M -1-t. 

This is a substitute for the standard optic function r — t + C, whose level surfaces are 
the light cônes r = t + C. To write down the modified fields Zm, we first adapt Zo to 
the geometry of the operator by defining Ho = ctdr + r/cdt- For some a(Ri), a(S), 
a(Ho) to be defined, we set now 

R? = Ri + a(Ri)Lu Sm = S + a(S)Lu #0m = H0 + a(ff0)ii. 

Let us pause to explain how this compares with the approach of [7]. In [7], the 
authors introduce an exact optic function, whose level surfaces give a foliation of 
outgoing cônes. The rotation fields and L are defined to be tangent to thèse cônes. 
This way of taking into account the exact geometry of the symbol has the advantage 
of producing in the computations relatively easily understandable géométrie objects. 
On the other hand, it leads to rather tedious computations: may be, one is demanding 
too much. Here, since Lu and (Ri/r)u are expected to behave much better than other 
derivatives of u, we consider that the effect of taking more complicated perturbations 
(of the standard fields) involving L or Ri/r would be negligible. The choice of the 
perturbation coefficients a is dictated only by commutation properties with L. Ideally, 
taking 

(1.7)a La(Ri) + a(Ri)(L1u/(2c)) = -Riu/(2c), 

(1.7)6 La(S) + a(S)(L1u/{2c)) = -Su/(2c), a{H0) = -a(S), 

would give 
[iC, L] = *L, [S™, L] = *L, [tf0™, L] = *L. 

To avoid singularities at r = 0, we introduce in fact a cutoff x = x(r/(X + 0) m (1-7) 
(see III. 1 and the commutation relations of Lemma III.3.1). 

1.3. Induction on time. — The proof is by "induction on time" (see [10] for 
instance). We first make the induction hypothesis 

(IH) \Zgdu\ ^ Ce(l + t)"1+Vr1/2, \a\ ^ s0, r) = 10~2, s0 ^ 10. 

This is a pointwise estimate, which is supposed to be valid up to some time T. The 
strategy of the proof is the following: 
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6 S. ALINHAC 

Step 1. — Prom (IH), we deduce (still for t ^ T) the better behavior in L°° norm 
of a small number of derivatives of u (see Proposition III.7) 

\Z$du\ < Ce(l + t)-1+Cea^~\ \a\ < s0 - 4. 

Here,/i = 1/2+1CT1. 

5£ep £ — Using the energy method of Klainerman, we bound in L2 norm (still for 
t ^ T) a large number of derivatives of u (see VII.3) 

|Z0adu|L2 < Ce(l + 0C", M ^ 2(5o - 4). 

Ŝ ep 3. — Using Klainerman's inequality, we obtain 

\Z£du\ < Ce(l H- t)-1+C£<j~1/2, \a\ ^ s0 ^ 2s0 - 10. 

If Ce < 77/2 and t is large, this is much better than (IH) and Theorem II. 1 allows us 
to prove that for small enough £, (IH) never stops being true and u exists globally. 

To prove the L°° estimâtes of Step 1, we write the équation in the form 

LLiU = c/r2AuU - (Lu/2c)LU, 

and apply products Z^ to the left. In particular, we get \L\U\ < C, which eventually 
gives \du\ < Ce/(l + t). 

To prove L2 estimâtes without loosing derivatives, we have to commute Zm with P, 
which causes new problems we analyze now. 

1.4. Smoothing 
a. In the expression of [Zm, P]u necessarily appears the term (Pa)L\u, containing 

(r~2 A^o^Liu and (LL\a)L\u. Since, from (1.7), we expect to control R^a in terms 
of R^Zmu only, we see that we are missing two derivatives if we want to keep the full 
r~2 decay, or missing one if we rather write 

|Z0adu|L2 < Ce(l + 0C (5o 

In both cases, we have to put a smoothing operator Se in front of a. Here, 0 is a 
big parameter, and SQV is roughly the smooth truncation of v(£) for |£| ^ 6. This is 
very close to the paradifferential approach introduced by Bony [6], where symbols say 
a(x)£ correspond to operators TaDx and not to aDx. A typical application of thèse 
ideas is given in Alinhac [4], where instead of using true vectors fields ̂  aidi tangent 
to some (non smooth) surface, we use ^Tai<%. In other words, we have to commute 
to the équation vector fields (here, the Zm) tangent to characteristic surfaces of the 
operator (here, essentially the modified cônes ip = const), but thèse vector fields have 
to be smoothed first. Alternatively, one can say that we use a Nash-Moser procédure 
(see for instance [5]). As shown by Hôrmander [9], the two approaches are essentially 
équivalent. 
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 7 

Since La is already known, we hope to neglect the term LL\a and concentrate on 
A^a. If we take Se to be smoothing in the u variables only, we have (with another 
S0 on the right) 

RiSev ~ 0Sev. 

Choosing 6 = 6(t), we hope for the decay factor 1/r to compensate for the growth 
0(t) in the term such as 1/rRiSev. Unfortunately, since L and L\ have variable 
coefficients, commutators arise in LL\Sea which display second order derivatives of a 
with respect to dr and dt also. We are thus forced to introduce Se as a smoothing 
operator both in the variables LU and r, say 

c _ c(r) ai") 

where the two parameters Oi(t) and 02(i) have to be determined. 

b. According to the analysis of a., we use now the smoothed modified fields 

R™ = Jfc + a(/fc)Li, S™ = S + a(S)Lu H™ = Hi + a(Hi)Lu 

where Hi = ctdi + Xi/ cdt and 

a(Ri) = Sea(Ri), a(S) = S0a(S), a(H{) = -u^S) - (ou A £(#)),. 
Thèse fields are denoted by Zm. Of course, we have to develop a calculus for thèse 
fields and their commutators with Se, etc., which is very similar to the calculus of 
paradifferential opérât or s. Needless to say, this part of the paper, corresponding to 
sections IV.3, IV.4, IV.5, is quite tedious, and should be skipped by the reader. 

c. On the one hand, we have the formula (cf. Lemma IV.5.1) 

[dt, Se] =O'1/O1S0 +Oïfose. 

On the other hand, we need in our estimâtes to have 0[/0i = 0(e(l + t)-1). Hence 
we are forced to take 

0i = 0?(l+ 

It turns out that the two speeds fa will have to be chosen différent: fa and fa —fa have 
to be big enough. This reflects the dissymmetry between the first order derivatives 
of u: £-1(l + t)ur is bounded while e~x(l -f t)RiU may grow like (1 -f t)Ce. 

1.5. Structure of [Zm,P]u. — This is the heart of the matter. Since the Zo 
fields have been modified so as to improve the commutation with L (see 2.b), we 
expect good formulas for [Zm,LLi] also. In contrast, Computing the term [Zm, Aw] 
and taking the smoothing operator Se into account is rather tedious. The resuit is 
described in Proposition VI. 1. It turns out that the most délicate terms to control 
are the ones containing a, especially 

(1.8) r 2L\aAUJu, LaL\u, L\Ladu, (1 + 0 lLadu. 
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8 S. ALINHAC 

Thèse terms are handled in part C of the proof of Proposition VII. 1. Formulas for the 
higher order commutators [Zm,P] are also established, and require the full calculus 
for the fields Zm. 

1.6. Energy inequalities. — Writing PZmu = — [Zm, P)u, v = Zmu and using an 
energy inequality for P, we have to check that the various terms of [Zm, P]u can be 
absorbed from right to left in the inequality. To handle the first term in (1.8), we 
need an inequality displaying a better control of the spécial derivatives (Ri/r)v. Such 
inequalities have been already discussed and used in [2], [3]: the idea is to establish 
an energy inequality with a "ghost weight" eb^r_t\ where b is bounded. Here, we use 
il) instead of r — t, and take a weight 

exp(r + 1)6(̂ 0, Ks) = B(-s)-v, v > 0, B > 0, 

where v and B-1 have to be chosen small enough (see Proposition V.3.1). This weight 
does not disappear, but is bounded below and above by C(l + t)Ce, which is allowed 
in our context. 

1.7. Poincaré Lemma. — As explained in 2.a, we need a Poincaré Lemma to 
control the zéro order term (Au)v in the linearized operator acting on v. In the 
context of the weighted L2 norms explained in §6, we obtained roughly the formula 
(see Proposition V.2) 

s > ;s >2 
tf(Au)2v2dx < Ce2(l + t)-2 

r^t/2 
epv2dx, p= (T + l)b(rb). 

The miracle here is that we only know 

\Au\ <Ce(l + t)-1+Cl£ar2 

and still get the estimate we would obtain if we had Ci = 0. This is due to the spécial 
structure of L2U displayed in Lemmas II.3.3 and II.3.5.1, which say roughly 

L2U ~ 4>M\ \h(s)\ < Cil + |5|)-3/2+4r?. 

To prove the inequality, we make the change of variable s = ̂ (r, in the intégrais, 
and proceed as usual in the s variables. 

1.8. Calculus for Systems of modified ZQ flelds. — In the course of this paper, 
we use in fact several Systems of modified fields, each of which giving birth to a spécial 
calculus. For instance, besides the two main Systems of the Zm of Chapter III. 1 and 
the Zm of Chapter IV. 1 mentioned above, we have 

i) The enlarged calculus for Zm and the System ZQ in the proof of Proposition 
III.7, 

ii) The new System Zm and the System Zo in the proof of Proposition IV. 1, 
iii) The System Zm in the proof of Proposition VII.2. 
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AN EXAMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 9 

We deliberately made the following choice: rather than building before the proofs 
of thèse results a tight wall of Lemmas that no reader can cross, we chose to rather 
write "Scheherazade type" of proofs, where the needed Lemmas are displayed and 
proved exactly when one needs them. This allows the reader to view Proposition 
III.7, Proposition IV. 1, Proposition VII.2 as black boxes which need not be opened 
in a first approach, and avoids confusion between the différent Systems of fields. 

The plan of the paper is as follows: in part II, we prove the large time existence 
theorem (needed to start the induction) and discuss the first conséquences of the 
induction hypothesis, in particular the boundedness of £-1(l + t)du and the spécial 
structure of L2U. Chapter III is devoted to obtain the improved L°° estimâtes on u. 
In part IV, the smooth modified fields Zm are defined and many lemmas display the 
calculus for thèse fields. The weighted energy norms, the energy inequality and the 
Poincaré Lemma are proved in Chapter V. The structure of the commutators [Zm, P] 
and [Zm,P] are discussed in VI. Finally, using V and VI, simultaneous weighted L2 
estimâtes of Zm+Xdu and Zmda are obtained in VII, allowing us to finish the proof of 
the main resuit in VII.3. 

II. Large time existence, induction hypothesis and first conséquences 
II. 1. Large time existence. — We consider the Cauchy problem 1.1.1. Our first 
resuit displays a very large lifespan of the solution. 

Theorem 1. — Let r > 0 and SQ G N . Then, if s is small enough, the solution u to 
the Cauchy problem (1.1) exists and is C°° for r = £log(l + t) ^ r. Moreover, we 
have for some C the estimâtes 

(1.1) \Z%du\ ^ Ce(l + *)"V"172, \a\ ^ s0. 

Proof — We only sketch the proof, since it is very close to the proof of Theorem 
6.5.3 in [10], using "induction on time". There are two main différences: 

i) The approximate solution ua can be constructed without time limitation. 
ii) The structure of the équation on the différence û = u — ua is slightly différent. 

Let us review this more closely. 

i) Construction of an approximate solution 

a. Let w satisfy 

wu — Aw — 0, w(x, 0) = u\(x), wt(x,0) = u\(x). 

Then w can be written 

w = l/rF(uj, 1/r, r — t), 
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10 S. ALINHAC 

where F is defined in [10], (6.2.5). Note that here F is supported, like w, in -M ^ 
r - t < M. When t —> +00, 

w~l/rF0(uj,r-t), F0(UJ,(T) = F(uj,0,a). 

We consider now, for UJ G S2, r ^ 0, a = r — £ ^ M, the Cauchy problem 

d2rF + I ^ F = 0, V>,w,0) = F0(o;,<7). 

We claim that this problem has a smooth solution for 0 ^ r ^ r, supported for 
a ^ M. In fact, set 

a = 0(s, a;, r), W(s, UJ, T) = V(0, a;, r), 

We have 
Ws = 4>sVa, WST = <$>STVa + (psiVvr + (f)TVa<T), 

Ôr(Wa/0fl) = (KrT+0T^). 
We choose now (j> defined by 

4> s = exp(r^Fo), (/)(M,UJ,T) = M, 

and set VF = <j>T. Note that 0(s,u;,O) = 5, and Ws is zéro for |s| ^ M. Since 
Ws/(j)s = daF0(uj,a), we have 

0 = dT{Ws/(j>s) = (VaT + ^ ) ( ^ , r ) . 

Moreover, for r = 0, Ws = dSF0, W(M,UJ,0) = F0(UJ,M) = 0, hence 

W(s,u,0) = F0(u,s), V(c,u,0) = Fo(u,a). 

Finally, for a ^ <j>(—M, UJ, r), F is a smooth function of (UJ,T). In particular, | V| ^ C. 
b. We introduce now two smooth real cutoff functions 

Xi=Xi(et), X2 = X2(r/(l + t)), 

where Xi(5) 1S zero for s ^ 2 and one for s ^ 1, while X2(s) is zéro for s ^ 1/2 and 
one for s ^ 2/3. We define the approximate solution by 

ua = £Xiw + e/r(l - Xi)X2̂ (r - t,UJ, T). 

As in [10], we have for ail a the estimâtes |Zo*?xa| ^ Ce/(1 + t). We set also Ja = 
dfUa — (1 + wa)2Awa. To prove the analogue to Lemma 6.5.5 of [10], we have to note 
that 

d2t{X2V) = X2$V + 2{dtX2){-Va + e/(l + t)VT) + {d2X2)V, 

d2r(X2V) = X2d2TV + 2{drX2){V„) + {^Xi)V. 

In thèse expressions, note that 

0X2 = 0(1/(1 + 0), d\2 = 0(l/(l + t)2), x2K = 0. 

For t > 21 e, we obtain 

Ja = -2e2/r2{V„T + VVa<r) + 0(e/(l +1)3). 
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AN EX AMPLE OF BLOWUP AT INFINITY FOR A QUASILINEAR WAVE EQUATION 11 

Thanks to the équation on F, we finally obtain in this région, for ail a, 

\ZgJa\ ^Ce(l + t)-3. 

In the first period et ^ 1 or in the transition région 1 ^ et ^ 2, the discussion is the 
same as in [10], and we obtain 

\ZZJa\^Ce2\\oge\(l + t)-2. 

The main différence here with [10] is that V is no longer zéro for a ^ —M. Hence 
the support of J0 is only contained in the région (l + t ) / 2 ^ r ^ M + t, and 

\Z%Ja\L2 ^C^IlogeKl + t)-1/2, t<2/e, 

\ZSJa\L* < Ce(l +1)"3/2, t > 2/e. 

We obtain finally 

sd 
|Z£Ja|L2dt<Ce3/2|loge|. 

zz) T/ie induction argument. — We write the équation on u = ua + û in the form 

(cP)û = d^û - (1 + ua + û)2Aû = - Ja + (Aua)(2(l + wa) + u)ù. 

We make the induction hypothesis 

\Z$dù\ ^eaïl/y(l + t), \a\^30. 
This means that this pointwise estimate is supposed to hold for t < T, for some T. 
We will eventually prove that T satisfies elog(l + T) ^ r. First, since |#ua -f 5û| < 
Ce(l + t)~l, we can use the standard energy inequality for the operator cP to evaluate 
\dù\L2. We wish to apply Zfî to the left to the équation on û, with |a| ^ 2so- Since 
we have, for constants Cap, 

[Zg,(d?-A)} = 

|/3|<H 

c^z^dl - A), 

we write the équation in the form 

(d2 - A)ù = ((1 + u)2 - l)Aù -Ja + (Atia)(2(l + ua) + u)û = G. 

Applying Z£, we obtain (<9t2 - A)Z£û = Z%G - Y, CA(3Z^G. In Z%G, we distinguish 
the term ((l+u)2 — 1)AZQÛ which we take back to the left-hand side to get (CP)(ZQU). 

a. We ignore the factor (2(1 + ua) + u) accompanying {Aua)ù in G. For terms 

(ZZAua)(Z*ù), | 7 | + |£ | < M , 

we use the inequality |crf 1v\L2 ^ C|<9t>|L2. Since ai\Z^Aua\ ^ Ce/(l + i), such terms 
are absorbed using Gronwall's inequality. 

b. We ignore the factor 2(1 + (ua + ù)/2) accompanying (ua + it)Aû in G. We 
have to deal with terms 

i) (Ua + Ù)[Z§',A]U> 
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12 S. ALINHAC 

2) (ZZ(ua + ù))(Zs0Aù), \6\<\a\, M + I ^ K H . 

We use (the stars denoting irrelevant coefficients) 

*d2Z?d = d 

I/3KH-1 
*d2Z?d = a71Z*Z0 

Hence 
*d2Z?d = a71 *dZ2û. 

d +d41 
On the other hand, 

gx 1\ua + ù\ ̂  Ce/(l + t), 

thus the term 1) will be controlled using Gronwall's inequality. 
For 2), we remark fîrst that the part {Z^Uo)(Zq AU) is easily handled. For the other 

part, we distinguish which factor we are going to évaluâte in L2 norm. If |7| ^ so, we 
write as before 

\Z^ùZs0Aù\L2 <: 

d+b4 

C\a^Z^Ù\Loo\dZ^Ù\L2 

and use Gronwall's inequality. If |7| ^ SQ + 1, we write 

{(aï1 ZjùXcnZ*Aù)\L2 < 
d+gf4 

C\dZgù\Loo\dZ2ù\L2 

and use once again Gronwall's inequality 
Finallv, we obtain 

\ZSdù\L2 < Ce3/2\loge\, \a\ ^ 2s0. 

Using Klainerman's inequality, we obtain for \a\ ^ 2SQ — 2 

\Z£dû\ < Ce3/2|loge|crr1/2(l + *)"1-
If 2̂ o — 2 ̂  5o, that is so ̂  2 and e is small enough, we obtain the statement by the 
usual induction argument. • 

II.2. The optic function. — We assume in what follows that u is defined and C°° 
for t ^ T"; u is also defined in any finite strip — C ^ t ^ 0 for small enough e. We 
extend the intégral curve r = t + M of L for négative time until it reaches the t-axis. 
Ail objects and estimâtes related to u will implicitly be considered as defined in the 
corresponding région. We define the optic function ip — ip(r,u;,t) by 

Lé = 0. ib(0. LU. t) = -M -1-t. 

Then ip ^ C < 0 in the région of interest. As in [12], the function ij) is a substitute for 
the usual phase r — t — M — 1. The cônes ̂  = const will be considered as déformations 
of the standard cônes a\ = const, and later on, the geometry of the fields Zo will be 
adapted to thèse new cônes. 

Lemma 2. — For r ^r, we have for C big enough 
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1) \^\ ^C(<7!+T2), 

ii) for ai^Cr2, C\$\> <xx. 
Proof — Prom a given point Mo = (ro,o;o,£o) we draw backward, for some big 
enough C, the intégral curve T of L, along with the curves Ti and T2 respectively 
defined by 

a[ = -Cs{l + t)-la\/2, a[ = Ce(l + t)'1^'2. 

According to the bound of u deduced from (1.1), the first curve is above, the second 
below T. The three curves meet r = 0 at ti, 0, t2, with t\ ^ -M - 1 - ip ^ t2. By 
intégration, 

2<j\/2(t) + Celog(l +10) = 2a\/2(tl) + Ctelog(l 4- ti), 

hence 
H<(Ti(*i)<C((7i + (Êl0g(l-ht))2). 

From the second differential équation, we get, if <JI ̂  (Celog(l +1))2, 4\ip\ ^ o\. • 

II.3. Induction hypothesis and its conséquences. — We already know that u 
exists as a C°° function for t ^ T7, £log(l + T') ^ r. For some s0 G N and some 
small rj > 0 to be fixed later independently of s (we will take in fact so ^ 10 and, say, 
rj = 10-2), we assume now 

(IH) \ZSdu\ < Ce(l + £)-1+V~1/2, * < T < T', |a| ^ so-

From now on, ail estimâtes will take place for t ^ T, and will use the induction 
hypothesis (IH). We will eventually prove that T = X", thus getting global existence. 

II.SA. Estimâtes on the optic function 
Lemma 3.1. — For C big enough, we have 

i) M<C(<7i+S2(l+t)2f0. 
ii) Forai ^ Ce2(l + t)2ri, C\t/>\ > ax. 
iii) Everywhere for r ^ r, /icwe 

ai < Ce2(l +t)2"M, M < Ce2(l + t)2Vi. 

The proof is exactly the same as the proof of Lemma 2. 

11.3.2. Structure of L\U. — Since, from (IH), du is much smaller than e(l -j-t)-1 as 
soon as ai ^ 7(1 +1) (for any 7 > 0), most of the estimâtes we need will take place 
in the "exterior" région Re defined by 

r ^ M + t/2, r < r. 

The part of the boundary of Re which is the union ofr = M-M/2 and r = r will be 
denoted by 7. First of ail, to establish later an energy inequality, we need to prove 
that \dll\ is bounded. 
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14 S. ALINHAC 

Lemma3.2. — In Re, we have 

LiU = VT(1>,v)+pu 
with 

\VT(s,u)\ < C(l + |s|)-1/2+2^, \pi\ ^ Ce|V|1/2(l + i)"1+2n-

Proof. — First, we obtain from (IH) the estimâtes 

| Z ^ | <C(l+t)Vi"1/2. 

Set now 

/ = cr~2AuU - (Lu/2c)LU, 

for which LLXU = / . Noting that (r + t)(dt + dr) = + S, we get 

\Lu\ ^ C\(dt + dr)u\ + C\u\\du\ < e(l + t)-2+2^a\'2, 

\LU\ < C\(dt + dr)U\ + C\u\\dU\ < (1 + t)-1+2*<j\/2, 
hence 

|/ | ^ (1 + t)-2+"aî/2 < Ce(l + t)-2+2^|Vr/2. 
If we draw from a point M in i?e the intégral curve T of L, meeting 7 at M', we 
dénote by T_ and T+ respectively the backward and forward parts of R in Re. We 
set then 

VT(jjj,u) = (L1U)(M') + 
'i 

f,Pi = ~ i f. 

Here, the intégrais are taken along F. From the estimâtes on / , we get (uniformly 
in T) 

\Pi\^Ce\^2 
r+00 

t 
(1 + s)-2+2r>ds ^ Ce\^2(l + 0"1+2r? 

To estimate VT, we compare both sides on 7, using Lemma 2. 

In the rest of the paper, to simplify notations, we drop the dependence of V on 
( 7 » . 

IL3.3. The quantities ai, bi. — Let us define and fix in the séquence a cutoff function 
X by 

X = x(r/(C + t)), 
where 0 ̂  x ^ 1 is smooth, zéro for s ^ 1/2 and one for s ^ 2/3 and C = 2(M + 1). 
We define now ai, bi by 

£&i = —xLiu/2c, 6i(0,t) =0, ai = exp 61. 

The following Lemma indicates the précise structure of 61. 

Lemma 3.3. — We have 

i) 6i = - ( r /2M^) + P2,IP2l<C, 
ii) aii/jr = 1 + P3, \ps\ ^ Ce. 
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Proof 
a. By définition, using Lemma 3.2, 

g = L{h + {r/2)V(il>)) = -{e/2rc)Pl - (ex/2c^2r2)U + (e(l - x)/2rc)L1U 

+ e 
1 + t 

Vie-1'212 - l/2c) + e(V/2c)((l + t)'1 - r"1), 

hence 

\g\ < Ce(l + t)_2+VÎ/2 + Ce2(l + t)-2+2"|V|1/2 

+ Ce2(l + t)-2+V11/Vr1/2+2" + Ce<n(l + t)-2|V»|-1/2+2" 

<Ce2(l + t)-2+2rî|t/»|1/2+2". 

Thus, 
61+r /2^)=p^(V) + pi, 

with 
|pl| ^Ce2(l + *)-1+2^/2+2^. 

Since b\ + r/2V is bounded on 7, P2 ls bounded, which proves i). 
b. We have Lipr + c~l/2uril)r = 0. Hence 

Llog(ai</v) = -(Liu/2c + c~1/2ur) + (1 - x)Liu/2c. 

Now L±u + 2cxl2ur = Lu, 

\L1u + 2c1l2ur\ < Ce(l + t)-2+2VÎ/2, |Llog(ai^r)| < Ce(l + t)-2+2VÎ/2. 

Since ai?/v(0,£) = 1/c = 1 + O(e), we obtain ii). 

ILS.4- Improved estimâtes on the optic function 
Lemma 3.4. — For C big enough, we have the estimâtes 

i) M ^ c e n + c a + t p , 
ii) If ai ^ C(l + £)Ce, then C\tp\ ^ ai. In ail cases, we have 

ai < C\i/>\(1 + *)Ce, < Cai(l + t)Ce. 

Proo/ 
a. From Lemma 3.2, we obtain \LiU\ ^ C\ip\~l/2+2r), since ^ C(l + £). Hence, 

using (/#), 

\aru\ ^ c(i+t)-i+vî/2+cî ri/2+27? ̂  î r1/2 .̂ 

Using the estimâtes ai ^ (7(1 + £)Ce and aî /v ^ 1/2 from Lemma 3.3, we have 

iarc/Kc(i+t)C£ivrl/2+2Vr, 

and by intégration 
|tfUC0(l + t)Co£h/>l1/2+2r'. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



16 S. ALINHAC 

b. Just as in Lemma 2, let us consider the intégral curve T of L through a point 
M0, and dénote by Ti and T2 respectively the curves 

a[ = -± Ce/(1 + t)(l + t)CeA\/2+2\ 

where A0 = |^(M0)| and C is big enough. Let us call respectively a{, âi, a\ the 
values of o\ at the points where Ti, T, T2 intersect 7. Since o\ is decreasing along 7, 
and T is above T2 and below Ti, we have 

2 / — ^ 1 

Integrating the équation for Ti, we thus get 

A0 < Câ1 ^ Cal < C(7i(M0) + c4/2+2r?(l + t0)C£, 

which gives i). 
c. Using T2, we get 

<TI(M0) < <y\ + C(l + to)0^72"1"2" < o\ + C(l + to)C£(a1(M0))1/2+2 ,̂ 

hence CTI(M0) ̂  CT2 + C(l + t0)C£. If 

<n(M0) ^2C(l + i0)C£, 

we obtain ai (Mo) < 2a2. Since \ip\ > 1/2CTI on 7, we have finally 

A0 > (1/2)5=1 > (1/2)<t2 > (1/4)^(Mo), 

which is ii). • 

We conclude from this Lemma that is not quite équivalent to g\\ there exists 
a blind zone 

<71 < C(l + t)C£ 
in which we cannot ensure that is big even is cri is. This is due to a possible drift 
of the intégral curves of L toward the cone r = t + M. Inside this blind zone, we can 
only prove \Liu\ ̂  Ce(l +1)-1, while \Lxu\ ^ Ce(l + t ) - 1 ^ 1 ^ 0 outside. 

IL3.5. Structure of L\U. — To prove later the Poincaré Lemma, we need to elucidate 
the spécial structure of L\U. 

Lemma 3.5.1. — In RE, we have aiLfU = /IT(^J^) + Pa, with 

\hT(S,w)\ < c(i + |S|)-3/2+4", \P4\ ^ c(i+t)-v2+4«. 

Proof. — We have first 

[L,aiLi] = -(a1/2c)LuL + (1 - x)°<i{L1u/2c)L1, 

hence 

g = L(axL\U) = -(a1/2c)LuLL1U + aiL^LLxU) + (1 - xhi(L1u/2c)L21U. 
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But 

L\(LL\U) = -Lm/^A^U - 2c3/2/r3AUJU - C/R2 (LIAwï7) + LxLuftcLU 

- LuLhl/2c2LU + (Lu)2/4c2LU - LuLiu/Ac2LiU + LuftcLLtf, 

thus \g\ < C(l + £)~5/2+4r?. By integrating L, we get the structure of aiL2U with the 
estimate on p±\ comparing then both sides on 7 yields the estimate on h. • 

Finally, we have to evaluate the smallness of i\)rr. 

Lemma 3.5.2. — We have, for r ^ M + t/2, the estimate 

\AM < Cr(l + W)-3^ + Ce(l + |^|)-3/2+4^. 

Proof. — First iptt = c2^rr + (cur - ut)ipr, (dt + cdr)ipt + utipr = 0, 

M < Cr(l + W)-3^ + Ce(l + |^|)-3/2 

Hence 
(cfe 4- côr)(̂ ttM2) = WfaM ~ 2îx2/(c2^). 

For r ^ M + t/2, the right hand side is less than Ce(l + t)"5/2+277; since 
^«/^(O, = 0, we obtain by intégration 

IVWV<2I < c£|^|-3/2+2". 

Now, for r > M + </2, 

«« = ce/(4r)L2C/ + 0(e|V>|-1/2)(1 + i)_2+4 ,̂ 

hence 

|u„/(c&) - 2w2/(cV2)l < Ce(l + t)"1!/^)! + 0(e|V|-1/2(l + t)~2+*>), 
which gives by intégration from r = M +1/2 the desired estimate. 

III. Improved L°° estimâtes on u 

In this chapter, we will prove that the L°° estimâtes (IH) on u imply in fact the 
much better estimâtes of Proposition 7. 

III. 1. Modifiée! vector fields. — In order to control u and its derivatives in the 
spirit of Klainerman [11], we will need modified vectors fields Zm ("m" for modified), 
which are perturbations of the standard vectors fields ZQ defined in (IL 1.2). First, we 
set 

Ho = c(u)tdr 4 
r 

du) 
du Hi = c(u)tdi + 

Xi 
c(u) 

du 1 ^ i ^ 3, 

thus defining hyperbolic rotations adapted to the operator P. Note that 

Ho = Y uiHu Hi = ujiH0 + ct(di - uJidr). 
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18 S. ALINHAC 

For each of the fields Ri, S, Ho we define now a(Ri), a(S), a(Ho) by 

(l.l)a La{Ri) + xa(Ri){L1u/(2c)) = -xRiu/(2c), 

(1.1)6 La(S) + xa(S)(LiV(2c)) = -X*W(2c), a(H0) = -a(S), 

(l.l)c a(i^)(0, t) = 0, a(Ri)(x, 0) = 0, a(5)(0, t) = 0, a(S)(x, 0) = 0. 

Remember that x is a standard eutoff defined in II.3.3. Thus the coefficients a are 
smooth functions (as long as u exists), vanishing for r ^ t + M or r<£/2 + M + l. 
The set of the coefficients 

a(Ri),a(S),ai 

will be denoted by (Coeff7)- We then define the modified fields R7/1, Sm, H^1 and K 
by 

(1.2) R™ = Ri+a(Ri)Lu Sm = S + a(S)Lu #0m = H0^a(H0)Lu K = axLx. 

We will write thèse equalities simply as Zm = Z + aL\, where Z will be one of the 
adapted vector fields Ri, S, Ho or 0, and a will stand for the corresponding coefficient 
as in (1.2). Remark that 

(r + ct)L = ^ ( # 0 + S) = V~c{H^ + 5m). 

We finally define the family $' as the collection of the fields Zm = R™, S™, Hg1, K. 
As usual, Z^ will simply dénote a product of k fields taken among 3>'. It is always 
understood here that some of the fields in 3>; are singular at r = 0, and they will be 
considered only for r ^ 70 (1 +1) (70 > 0). 

In what follows, we will simply write / to dénote a real C°° function of the (finitely 
many) variables 

£,^,a;,ai(l + t)-1,(l + t)-I/i,crfI/Sz/i > 0. 

Remark that x = /• Finally, we dénote by Nk one of the quantities 

e-Vl + tWr^mf, e-H\ + t)Z!LlM, e-\l+ t)Z*LlU, 

a^Z^a, Z^La, Z^Lia, a € (Coeff'). 

We add the convention that 1 is also a NQ. We need now develop a calculus for thèse 
modified fields. To simplify the notation, we dispense in gênerai with writing sums of 
terms of the same kind. For instance, we will write Nk for a sum of various JVfc, Zm 
for a sum of Zm, etc. 
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111.2. Some calculus Lemma 
Lemma 2. — We have the following identities: 

i) ZU = <<<<<w<<<<wwki + ... + kj < k, 
ii) ZmNp = Y, fNkl '"Nkj9 h + • • • + kj ^ k + p, h ^p for some i, 
iii) Zmt = tYfNkl'-Nkj, h + --- + kj^k, 
iv) Z*la1=<r1'EfNkl...Nkj, k! + --.kj^k. 

Proof — In view of the structure of the formulas, it is enough to prove them for 
k = 1 and any p. 

We have 

RiUj = /, Riai = 0, Rit = 0, 

Su = 0, 5cri = -M - 1 -h ai, St = t, S((7i/1 + *) = /, 5(1 +1)"* = /, 5(7^ = /, 

H0UJ = 0, Ho*! = toJVb, Ho* = A ffo(^i/l + *) = /JVb-

On the other hand, 

Lia; = 0, Liai = /, = /, Li(ai/1 + *) = / / l + 

Li(l + t ) ^ = / / l + t, L1{aîv) = f/<r1. 

Hence 

= /iV0 + /iVo^i, Zm(ai/1 + t) = /JVo + /iV1; 

Zm(l + i)"" = /JVo + fNx,Zmaïv = fN0 + fNlt 

and Zmf = / + /Â 0 + /Ni. Thus, i), iii) and iv) are proved. Now 

+ xx xxx = xxx xx x + *)M), z((i + t)M) = ((i + t)M)/JV0, 

hence 
zm((i + t)/<n) = ((i + t)M)(/^o + /Ni). 

Thus, with 4̂ = L or 4̂ = Li, 

Zm[e_1((l + *)M)^>] = (/^o + /iVi)JVp + Np+1, 
Zm[e-\l + t)ZPmAu] = (/N0 + fNi)Np + Np+1, 

[a^Z^a] = (fN0 + /Ni)iVp+1 + Np+2, 

which proves ii). • 

111.3. Commutation Lemmas. — For fields Xi, Y, we will note 

(adX)Y = [X, Y), (adXk)Y = [Xu [X2,... Y]... ]. 

The following Lemmas justify the introduction of the modified fields Zm: they just 
commute better with L than the standard fields Z0. 
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Lemma 3.1. — We have 

i) [Zm,L] = fdLl + fN0NiL, 

ii) [Zm, Li] = yWoJVjL + fNoNiLi, 

iii) {adZkm)L = E fNkl • • • NkjL + E f(Zqmd)Nh •••Nl{L1, 

fcH h fcj < k, q + h-\ h U ^ k - 1 

tv) (odZ£)L! = E /^fei • • • ^ i + E fNh • • • 

ki H h fcj s$ A;, /i H \-h ^k. 
Here, d dénotes one of the quantities d = (1 — x)Zmu = efN\. 

Proof. — Since d = efNi, thanks to Lemma 2, it is enough to prove the formulas for 
k = 1. We have 

[-Ri, ^] = -Riu/(2c)Lu [Ri, Li] = -RiU/(2c)L, 

\S, L] = -L- Su/(2c)L1, \S, LA = -Lx - Su/(2c)L, 

[Ho,L} = 1 + r — et 
2cJc 

Lu L + <r + et 
K 2cjc 

LU-H0U/(2C))LU 

[ffo,ii] = 
r — et 
2cjc 

Lxu- H0u/(2c))L + 1 + 
r 4- et 
2cjc 

LIUJLI. 

Remark here that 

(r - c*)Li = v^(#o - 5), (r + ct)L = J~c{HQ + 5), 

hence the above formulas simplify to 

[H0,L]= - 1 r — et 
2c Je Lu)L + Su/(2c)L1, 

[H0,L1} = -Su/(2c)L + 14-
r 4- et 
2c Je' 

Liu\L\. 

Since 

[aLi,L] = —(La)Li - aL\uj{2c)L\ 4- aLu/(2c)L, [aLi,Li] = — (Lia)Li, 

we obtain, thanks to the choices of the a for each Z, 

[-R™> ^] = -(1 - x)J*T«/(2c)£i + aLu/(2c)L, 
[Sm, L] = -(1 - x)S"V(2c)Li + (aLu/(2c) - 1)L, 

[Hr,L} = {l-x)Smu/{2c)Ll + r — et 
. 2c Je 

-Lu + aLu/(2c) - l)L, 

[K, L] = aLu/(2c)L - (1 - x)Ku/(2c)L1. 
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Similarly, 

[R™, Li] = -l/(2c)(fljn« - aLlU)L - {Lxa)Lu 
[Sm, Lx) = -l/(2c)(5mu - oLi«)L - (1 + Lia)Lu 

[H^, Li] = -l/(2c)(5mw - aLm)L ^ 1 + r 4- et 
2cv^ LiajLi. 

If we remark that 

aLu = <7i ae<7i/(l + (1 + = fN0Nu 

(r - ct)Lu = r- ct/(r + ct)yfc{H™u + Smu) = fNu 
we can write 

[Zm, L] = /(l - www zs<< + /iVoiViL = fdL1 + fN0NiL, 

[Zrn,L1] = fN0N1L + fN0N1L1. 

Lemma 3.2. — Ĥe Aove 

i) [ZL L] = E fNkl • • • NkiZ?L + £ fZ*dNh • • • ^ZLLi , 
p ^ k — 1, p + &i H \- kj ^ k, r ^ k — 1, g + r + ZiH h ^ fc — 1. 

NuZl^LlaZ L] = E fNkl • • • NkiZ?L x + 1 L] = E fNkl dd dddd 
p ^ A; — 1, p-h^iH \-kj ^ k, r^k — 1, r +/i H h Zi ̂  

iii) fZ*,L1] = 
d +d41d 

d+d1d+d 

NuZl^LlaZssdd dd 
+b1r+d1r 

fNu.--NuZl^LlaZl^L1 

+ 
(p+£fc;^-i) 

fNkl...NkiZ*nL1 + 
(E*i+<H-r<fc-l) 

fNh-..NliZ«>dZ!nL1. 

Proof. — For fc = 1, the formulas i) and ii) follow from Lemma 3.1. For iii) we write 

[Zm, Lx] = /NQNIL + (/iV0 - Lia)LL 

Since 
[Z*+1, 4] = Zkm[Zm, A) + [Zkm, A)Zm, 

we obtain easily the Lemma by induction, using Lemma 2. 

For technical reasons, we will need the following variant of Lemma 3.2. 

Lemma 3.3. — If Lw = g, we have 

LZkmw = £ fNh • • • NtiZ^g + £ fZ%d- • • Z%dNkl • • • NkMZk^w 

+ £(1 + t)-lfZ%d- • • Z«dNk, • • • NkiZ%-»w 

= Ei + E2 + £3 
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ss<KX 

In £l> J2l3 ̂  k' In £2* * ^ M + £tfj + £ * i < Mj+l < * ~ 1- /n £3 ; 

* + £ # + £&* ^ fe + 1, 1 < kj+i < fe - 1. 

Proo/. — For fc = 1, 

LZmW = - [Zm, L]w = + fN0Nig + fN0dLiw. 

Hence the formula is correct, with £3 = 0. Now 

ZmLZ^w = fNo^LZ^w + fNodL^w + LZ£+V 

LZ^w = Zm Zi +Zm £2 +Zm E3 +/̂ 0iVi(£1 + £2 + £3) + fNodL^w. 

The last term belongs to £2 for /c + 1. The terms involving £x again belong to £x 
for fe + 1. The terms involving £3 again belong to £3 for fe + 1, and fNoNi £2 
belongs to £2 for fe + 1. In Zm £2, the only nontrivial term is the one containing 

ZmLxZ^w = fNo^LZ^w + fNoN^Z^w + LxZ^+1w. 

The last two terms give terms belonging to £2 for fe + 1. For the first, we write 

LZ%+*w = f(i + ty1 E V 

and the corresponding terms belong to £3 for fe + 1. • 

111.4. A computation of Z^ 

Lemma 4. — We have, Z0 denoting the standard fields defined in 1.1.2 

Zkm = ZfNl0°Nl^Nkl . • -NkjZl 1 < p ^ k,h> 2, p + £(fc, - 1) < fc. 

Proof. — We use the formula di = cr^YjfZo- We get by inspection Zm = 
£ fNoNiZo, which implies the Lemma for fe = 1, and the Lemma follows in gênerai 
by induction, using Lemma 2. • 

111.5. Estimâtes of the Nk 
Proposition 5. — We have, for fe ̂  so — 3 

\Nk\Lo° ^C(l+tf£. 

Proof 
a. We have La = -x/(2c)Zrnu = F0 = efN±. Hence 

L(a^a) = -x/(2c)aïlZmu + /turf 2a = e(l + t ) " 1 / ^ ^ = Fi, 

LLia = [L, Li]a + LxLa = Liu/(2c)L1a - Lu/(2c)F0 + ZaF0 = F2. 

Also LLiï/ = cjr2AJJ - Lu/(2c)LU = G. 

b. From Lemma 2, we get 

Z^i = eil + t)-1 £ 7 ^ • • • A .̂,£fê  l + 1, 

where here and later £ ' means that not ail N^ are one. We now evaluate F2: 
F2 = fe(l + t)-1N0N1 + L1F(h 
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LiFo = fLmZmU + /( l + tYxZmu + f NQ Ni Lu + fN0NiLxu + fZmLiu 

= /e(l + t)-1JV?JVi. 

We thus obtain 

f-Vr^l + t)Z^u = fa^Z^U + fNoa^Z^a + sdr + ;dmd 

c. We have in fact 

Zrnr = fr + fa, eZmU = fru + /CM + RZMÎZ, 

hence 

eZi+1U = rZt+1u + r 
l^p^k 

feH—kj +p̂ fc+l 

fNkl---NkiZ^u + r 
p+ki-\ t-kj^.k 

fNkl---NkiZVmu 

p + q + k-\ \-h ^ k. 
br fNit---NilZ*aZ*u, 

Thus 

ff-Vr^l + t)Z^u = fa^Z^U + fNoa^Z^a + £' fNkl • • • Nkj, 

ki H h kj ^ k + 1, ki ^ k. 

Similarly, we obtain, with A = L or A = Li 

eAU = ±c1/2u 4- rAu, eZmAU = fN0Zmu + frAu + faAu + rZmAu. 

The last three terms are handled as before. For the first term, we write 

Z^(fN0Zmu) = fNoZ^u + E fNkl • • • NkjZmu, 
p + *i H + fcj < fc + 1, 1 ^ P < fc. 

Thus 

(5.1) e-^l + t)Z^+1 Au = /Z^+1 AU + fN^Z^u + fN0a^Zma 

f-Vr^l + t)Z^u 
fci H h fcj < + 1, k{ ^ k. 

d. Using Lemma 3.3 for u? = a and g = Fi or w = Lia et g = F2, we obtain 

L Z ^ ^ a ) = Fi, LZkmLxa = Fl Ff = Ft.. 

To estimate the right hand sides, we need the following Lemma. 

Lemma 5.2. — In any région r < 7(1 + t), 7 < 1, Aûwe 

(l + *)IM<C£|Zmu;| . 
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Proof. — We have the identity 

r — et Li = #0m - Sm + 2oLi. 

On the other hand, a rough estimate of a shows that 

a^\a\ ^Csaï1/2(l + tf£+r>. 

Hence, in the région we consider, ax 1\a\ is as small as we want, and the Lemma 
follows. • 

We have, with the notations of Lemma 3.3, applied for the index k with w = aa\, 
9 = FU 

f-Vr^l + t)Z^u d 

From the structure of F\, we get 

f-Vr^l + t)Z^u = fa^Z^U + fNoa^Z^a + d 

Using Lemma 3.3 and the structure of d = efNi, we have 

I E 2 K C\d\(l + ty^Nk^ | + Ce{l + t)-1 E \Nkl | • • • \Nki+11, ki < fc. 

Note that |d| ^ Ce(l -j- t)-77. We have a similar estimate for £3- The computations 
are completely similar for F£. 

e. We have now to control the values of Z^(crf 1a), Z^Lia, Z^YL\U on the 
boundary r = M + t/2. 

Lemma 5.2. — On the boundary r = t/2 + M, /or k ^ so — 1, 
I) Z£LL0 = 0, \Zl{a^a)\ < C, 
II) |Z£+1LIT/| ^ C. 

Proof. — Close to this boundary, a is either identically one or zéro: the value of 
Z^Lia is zéro. For the U term, we remark that we can replace Zm ^ K by the 
corresponding Z, K by L\. For such fields Z (including Li), we have 

Z = Z0 + ftu/axZo = fN0Z0. 

Denoting only here by Nk the terms 
e" V H l + t)Zku, e~l(l + £)ZfcLu, e-^l + t)ZkLxu, 

we get as before 
f-Vr^l + t)Z^u = fa^Z^U + fNoa^Z^a + od 

Hence, with A = 1, L, L\ 

ZkAu = YJNu NuZÏ+1Au. 

By induction, starting from |JV0| < C by the induction hypothesis, we get \Nk\ ^ C 
for k ^ sn. Finallv 

Zk+1L1U = ZfNh---NliZl0i+1L1U 
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hence the conclusion. The proof is similar for Z^Tla1 1. 

f. We now set 
à(cr-2Awt/)| ^ C(l 

and assume by induction <\>\ ^ C(l + t)Ce, / ^ A: (we have already shown and used that 
l-Wol ^ C). Because of the structure of Lemma 4, we need first control (j)\ without 
using Lemma 4. Let 

G = c/r2AWI/ - Lu/(2c)LU, 
d = LZ^U = ZmG + fdL\U + fN0NxG = fNo^G + fN^N^G + fdL\U. 

It is clear that 
|Zj(cr-2AwE0| ^ C(l +t)"2+VÎ/2. 

On the other hand, 
L = C-l'2{dt + dr) + (C1/2 - C-^dr = /( l + t)-1 J2Z0 + fud, 

and as usual 
fud = /u^-1 s z0 = £ ( i + « r ' j w o s z0. 

Finally L = (1 + t)-1 J2fNoZ0- Hence 

Lu/(2c)LU = (1 + ty2fN^Z0uZ0U, 

\Zl0(Lu/(2c)LU)\ < C(l + 0-2+2". 
Adding, we get 

| Z £ G K C ( I + * ) " 3 / 2 + " -

We also have 
idL?t/Kc(i+*r2+2"(i+<M, 

hence 
|Gi| < C(l + <)"3/2+" î + C(l + t)~1^. 

From this estimate, we get by integrating 

\ZmLxV\ ^ C{l + t)Ce + C 
B 

R 
^ida/(l + s)1+". 

Integrating the équations on 1a and Lia, we get, using the estimâtes on Ff estab-
lished in d., 

a7l\a\ + \Lia\ < Cil + t)Ce + Ce 
R 

o 
<pids/(l + s) + C 

D 

Jo 
è,ds/(l + s)1+r>. 

Now, 

|(l+i)(^l)_1^mW| < C(l + ^_1|5RZmU|Loo 

^ C(l + \LZmu\Loo + C(l + t)e^\LxZmu\La*. 

At this point we need the refinement iii) in Lemma 3.2: 

(1 + t)e-x\\Zm,Lx\u\ ^ C(l + t)e-l{\Lu\4>i + \LlU\(l + \Lia\)). 
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Since (1 +WWWW < C(l + *)"'', we have 

|(1 +t){a1e)-1Zmu\ ^ C(\+t)e-x\LZmu\ + C(l + t)e-l\ZmLlU\ 

+ C(l + i)_,?<Ai + C(l + t)Cs + C\Lia\. 

We use Lemma 3.1 to evaluate the first term: 

(1 + t)e-l\LZmu\ < (1 + t)e-x\ZmLu\ + C\d\(l + t)e-l\LlU\ + C|iVi|(l + t)e-1|£«|. 

But 
\ZmLu\ <C0i|ZoLu| + C(l + i)C£|^oiu|. 

Since 
(î + f j r ' I ^ K ^ i + t p , 

we get 
(1 + \ZmLu\ ^ C + C(l + 1 ) " , 

and finally 

(1 +WWWWWW < ^(l + tf£ + C(l + + Ce^i. 

From (5.1) we get now 

(1 + t)e-x\ZmLlU\ < C\ZmL!U\ + e_1|Zmu| + C|af^1 + C(l + tf£. 

Since 
e-1\Zmu\<C + C(l + t)-,i<ln, 

and, from the very définition of a, \La\ ^ Ce<j)\, we get finally 

4>i 4 C(l + *)C£ + C(l + + Ce4>x + C 
•t 

'o 
d>Teds/(l + s) + C 0ids/(l + s)1+". 

The conclusion follows by Gronwall's Lemma, since \4>x\ ^ C for finite t. 
g. To control 4>k, k ^ 2, we essentially have to repeat the argument of f., using 

Lemma 4 when necessary. Setting LZ^L-JJ = Gk+i, we estimate first Gk+i using 
Lemma 3.3, which requires controlling ZlmG, l ^ k + l. Thanks to Lemma 4, 

ZlmG = £ fNl0°NÏNkl • • • Nki2%G, 

and we already know \ZlQG\ < C(l +t)-3/2*7*. Hence 

\ZmLlU\ < C\ZmL!U\ + e_1|Z 

SQKJQS < C(l + *)"1_Vfc+i + C(l + t)-1-". 
We obtain from Lemma 3.3, applied for the index k + 1 with w = LxU,g = G, and 
the induction hypothesis on <j>i 

\Gk+1 K c(i + i)-1-" + c(i + i)-1-vFE+I 

+ Ce(l + t)-1+C£ + Ce(l + ty^Z^LiUl 
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From this estimate, we get by intégration down to the boundary r = t/2 + M 

|Z*+1LiE7| <C(l+t)Ce + C re 
dd 

|Z£+%£/|ay(l + s)1+7> + C 
br 

b 
\ZmLlU\ <DD 

hence 
lZ^+1LI*7l £ C(l + ÛCe + C 

b 

J0 
\Z1|Zmu| + C|a 

Integrating the équations on Zm(ax la) and ZmL±a we get, using the estimâtes on 
F* established in d., 

\Zkm{o^d)\ + \ZkmLxa\ < C(l+tfe+Ce 
d 

d 
4>k+1ds/(l + s) + C d 

'o 
4>k+1ds/(l + s)1+r>. 

Now, 
|(1 + t)(ea1)-1Zt+1u\^C(l LODL IdrZ^ulL-

< CKl + t ^ - ^ Z ^ u l i » +C|(1 +i)£-1L1^+1w|x,oo. 

At this point we need the refinement iii) in Lemma 3.2: 

|(1 + t)e-l[Z^\LM < |(1 + t)e-xLu\(f>k+1 + C(l + t)Ce 

+ C|Z* Lio||(l + t)e-1ii«| + C(l + t)Cs + C 
S+SH 

{l+tf'\Z^d\. 

We have |(1 + t)s lLu\ ^ C(l + t) 71. Using Lemma 2 and Lemma 4, we get 

Zqmd = 
qi+q2=q 
+ 4dr9 

\ZmLlU\ < C\ZmL!s 

\ZmLlU\ < C\ZmL!U\ + e_1 
Since IZS SKZ ZK +1)~27> we obtain 

(1 + t)Ce\Z*d\ < C + C(l +DD SQ</ ^ fc. 

Finally 

|(1 + t ) ^ ) - ^ 1 * ! ^ C|(l + t ^ L Z ^ 1 * ! + C|(l + i ^ Z ^ L H 

+ C(l + t)-"^fc+i + C(l + t)Ce + C|Z* Lio| 

We use Lemma 3.3 to evaluate the first term: 

|(l + i)£-1LZ£+1uK£i + £2 + £3 

We obtain 
Ei + Z*<C(l + t)C£ + Ce<f>k+1, 

Ex < C|(l + Oe-^ullJVfc+il + C(l + t)C£ 
K<L<C 

(l + t^IZS.LUL. 

Using again Lemma 4, we obtain for p ^ A: + 1, 

|Z*Lu| < C|iVfc+1||Z0Uu| + C(l + t)Ce|Z?Lu|. 
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Since (1 + t)e 1\ZQLU\ < C(l + t) 77 by the induction hypothesis, we get 

El <C + C(l+t)-V*+i, 
and finally 

|(1 + t)e-LLZ^lu\ < C(l + t)C£ + C(l 4- j s+ k + Ce<l>k+1. 

From (5.1) we get now 

|(1 + t)e-lZ^lLlU\ < C\Zk^LxU\ + Ce-l\Zk^u\ + C^Z^a] + C(l + tf*. 

From Lemma 4 we have 

\e-XZk^xu\ < C + C(l +x + h |Z* La| < C + C(l + t)"Vfe+i. 
From Lemma 2 we have 

K - 1 ^ < c iz^^r^)!+c( i+*)Ce, 

thus finally 

sd +1 < k r ^ ^ a l + \Z^La\ + |Z* Lia| + |(1 + t ^ ) - 1 Zk^lu\ 

+ 1(1 + t)e-1Z*+1Lu| + 1(1 4- te^Z^Lid 

< C(l 4- *)Ce + C(l + *)" + C^fc+i 

+ C|Z* (af'a)! 4- C|Z^Lia| + C\Zk^LxV\ 

< C(l + t)Ce + C(l + t ) " > f c + i ^ + i 

= d 
b 

7o 
<f>k+ieds/(l + s) H- C 

s 

o 
<fe+ids/(l4-s)1+T7. 

The conclusion follows by Gronwall's Lemma. _ 

III.6. Improved estimâtes of the NK. — We will need later to know that the 
NK have a better behavior inside the light cone. 

Proposition 6. — Let ji > 1/2. For rj > 0 small enough, we have for k ^ so — 3, with 
the exception of NQ = 1, the estimâtes 

\Nk\^C(l + t)Ce<^-\ 

Proof. — We follow here the proof of Proposition 5 and use the notations there. 
a. We have 

L(aî-"LI TF) = <j}-"G + fN0e(l + tYHa^LxU), I ^ G I < C(l + t)-1-". 

Since \a\ >iLiU\ < C on r = i/2 + M, we get by integrating the équation 

\ZmLlU\ < C\ZmL!U\ 

On the other hand, we know \LU\ ^ Ca\/2(1 + < Ca^12^. Hence \drU\ K 
Cil + ti^a?'1, which implies 

\U\ < C(l + t)Cea?, (1 +w+ hj +d< C{+t)Cea^1. 
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Finally, with A = L or A = L\, 
Au = e/rAU - {Ar/r)u, (1 + fyr1 \Au\ ^ C\AU\ + C(l +1)'1 \U\ ^ C(l +1)0**?'1. 

This proves the estimate for NQ. 
b. We assume now 

INil^Cil + tftaÇ-1, Kfc, 
and set ipk = Wi'^Ni^l00- We follow the proof of Proposition 5, g, just looking 
more closely to the powers of a\. Set Vfc+i = o\~^ Z^XL\\J. We have 

LFFC+1 = <j\-»Gk+1 + fN0e(l + J)""1 W 

We see that 
\o-\-»Zl0G\^C{\ + t)-l~2\ 

hence 

al-^Z^Gl^Cil + t)-1^, l^k, 

o-\-»\Zkn^G\ ^ C(l +1)"1-^! + |JVfc+1|). 

Usine: Lemma 3.3 with w = LiU<a = G, we get 

\ZmLlU\ < C\ZmL! 
We have from the above estimâtes 

*i IEi \<c(i +1)-1-^! + Wk+i\) + c(i +1)-1-"!^!! + c(i +1)-1-" 
\ZmLlU\ < C\ZmL! 

Since we get easily 
*î-"|Z^Litf|<C(l + t)Ce, ZO, 

we have, using |d| < Ce(l -M) 77 and the estimate on already establishec 

^"" l£21 < cidKi + trMVfc+ii + c|z^d|(i + i)-1+Ce + c(i + i)-1-" 
^ c a + t r ' - ' a + i^+ii) 

and a similar estimate for £3. Finally 

<7Î-"|Gfc+i| < C(l + t)-^2(l + \Vk+1\). 

We already know that |T4+i| <Con the boundary r — t/2 + M, hence by intégration 
we obtain 

\Vk+1\^C(l + t)Cs. 

c. We have, still with the notations of Proposition 5, 

Lia^a) = al-» Fi + fN0e(l + t)-\a^a). 

L(o\-'iLxa) = <t\~»F2 + /JV„e(l +1)-1 {pi-» Lia). 

Set now 
LZkm{a^a) = F\, LZkm{<j\-»Xl0) = F*. 
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To estimate F1, we use Lemma 3.3 with 

w = al" a, g = <T}-"FI + fN0e(l + ty^a^a). 

WEFIND 

^ Î = Ei + E2 + E3-
We have 

Ei I < CE(L + *)-1 

+b1rd+ 
d+ 1d 

fNk^>>NkjZ!*ft +e(l + t)-1 
h+h=i 

b+ d1 

fNkl--.NkiZl*(*-»a). 

Since 

aî-"|Z* Fxl ^ Ce(l + t)-1\aî-'lNk+1\ + Cs(l + t)-1+Cs, 

g\-"\Z^FX\ < Cdddde(l + ddddt)-1+Cs, 

the first sum is less than 

Ce(l + t)~1+C£ + Ce(l + t rVî -^fe+i l . 

The second sum is less than 

Ce(l +1)"1^* (arMo)| + CFE(L + *)~1+CI 

and finally 

| Ei I < CE(L + *)-1+C£ + + *)-1(L -̂"JVJFE+1| + \Zkm{al»a)\). 

Just as before, we also get 

I E2 I + I Es K C(l +1)-1"^! + \Zkm{ol»a)\), 

hence 

\F\I ^ CE(L + t)~1+C£ + C(L + I)"1-" + Ce(l +1)~Vfc+i 

+ (CE(L +1)"1 + C(L + I ) - 1 - " ) ^ ^ ^ ) ! 

and a similar estimate for F2. Intégration along L, we get 

\Zkm{o-l»a)\ + \zM^Lia)\ < C(L + *)C£ + C 
b 

db 
Ei I < s+sls CE(L + *D 

d. We have 

Ei I < CE(L + *)-1+C£ + + *)-1(L^-"JVJFE+1| + \Zkm{a +dslsl l»a)\ kl +xcl + lpd 

Just as before, using point iii) in Lemma 3.2, we obtain 

(1 + V } - " ^ 1 , LM < (1 + W K + KD + C(L + 

+ C(L + t)E_1|Liu||(T11-'1Z* Lio| + C, 
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hence 
(1 + t)e-VrMz£+1«| < C(l + t)Ce + C(l + t)e-VÎ~Mi^m+1w| + C(l + t)""^fc+i 

+ C|aî-"Z* Ll0| + (7(1 + t)e-1|a11-"^+1LlU|. 

Exactly as before, we get 

(1 + t)e-1\v11-'iLZ%'1u\ < C(l + t)Ce + C(l + 

From (5.1) we get now 

(1 + t)e-1kî-"Z^1JL1«| < Claî^^+^iC / l + Cs-'la^Z^u] 

+ C\a^Z^a\ + C(l + tfE. 

Using Lemma 4, we obtain 

K ^ Z ^ I < C, \a\-»ZkmLa\ < C. 

We also have from Lemma 2 

\^Zkma\^\Zkm{a^a)\+C{\ + t)c^ 

\o\-»ZkmLxa\ < |Z* (^-"^0)1 + C(l + t)C£. 

Finally, 

V>fc+i < C(l + t)Ce + C(l 4- t)-^fc+i + C / ^fc+ied5/(l + s), 
Jo 

which yields the resuit by Gronwall Lemma. • 
III. 7. Back to the standard fields. — In this section, we will transform the 
estimâtes on u given in terms of the fields Zm into estimâtes given in terms of the 
standard fields Zo. Remember that we have fîxed // > 1/2 (fi as close as we want to 
1/2). 

Proposition 7. — We have, for k ^ SQ — 4, the estimâtes 

\Z$u\ ^Ce(l + t)-1+cVf, 

\Z^du\^Ce{l + t)-1+C£a^-\ 

Proof 

1. First, we need control b\. 

Lemma 7.1. — We have, for a ^ SQ — S, 
\ZZh\^C(l + tf*. 

Proof. — We use Lemma 3.3 with w = &i, g = —x/2cL\u = fe/(l + t)No. We obtain 

^ A = £ i + £2 + £3-
Since 

£ i = e/(l +1) £ fNh ...NkNki--- Nkj, £ lj + £ h < k, 
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we obtain | K Ce(l + t)-1+C£. 
Exactlv as before, usine: Lemma 5.1, we have 

| £2 K C(l + t )"1-"^* 6x| + Ce(l + i)-1+C£ 

d < ds <0 
\zlmh\-

For E3, we get simply | E3 K Ce(l + i)-1+Ce EKk-x I 4 M 
We already know that < C(l + t)Ce. By induction, assuming already 

d+ 4d 
|Z I ,5 i |<C ( l + t)Ce 

we obtain 
\LZkJ>i 6X| ^ Ce(l + i)-1+C£ + C(l +1)-1""^* 6i|. 

Integrating yields the desired estimate. • 

2. We have Zm = Z + aL\, but we have only a good control of a/ai, not of a. 
This forces us to display the fact that L\ is a better field than the Zm. To motivate 
some technical définitions which will be given in 3., we présent the following attempt 
to express a\L\ in terms of the Zm. We first write 

r — et 
brd 

L\ = Ho - S = H™ - S"™ + 2o(5)Li. 

We introduce now a cutoff in the blind zone. For this, set q = qocr1 exp Cor, and 
define XI = Xi(o)> where XI(S) is zero for s < 1 and one for s > 2. We write then 

r - 1 Li = #0m - Sm + 2Xio(5)Li H br 
brd 

Li+2o(5)(l-Xi)ii , 

<n£>Li = ( D - 2a(S)V~cXi)Li - V~c(H? - Sm), 
D = (I- otHu - 2^(1 - x iWrys) ) . 

Since 
Ei I < CE(L + *)-1+C£ +SK 

we have 
( 1 - y O o ^ M I ^ Ca'f-Vl + i ) ^ - ^ 1 - " ) . 

If we choose qo and CQ large enough, we obtain 

|(1 - xi)«ria(S)| < 1/4. 

Hence, for e small enough, D 1 will be a smooth function of 

u, tu/au ( l -Xi)^! a(S). 
We fix now this choice of qo, CQ. 

3. We have now to develop a calculus analogous to that of Chapter III, and enlarged 
so as to contain the cutoff in q we have just introduced. We dénote by No as before 
one of the quantities 

1, ÉT^l + fyrfV e_1(l + t)Lu, e_1(H-t)Liw. 
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When we want to emphasize the fact that N0 is not 1 but actually involves u, we 
write NQ. We dénote now by Nk, for k ^ 1, one of the quantities 

e-Hl + t y r 1 ^ , e-^l + QZ^Lu, e'^l + t)ZmLlU, 

a^Z^a, go(q)Zm~1a, Z^La, Z^Lia, a G (Coeff). 

Here, go is any smooth function, vanishing for q ^ 1/2, whose derivative belongs to 
CQ°. This is of course a slight abuse of notation, since the go actually used in the 
whole computation are generated by xi and finitely many derivatives of xi- Hence, 
for thèse enlarged Ni, we still have 

|ty| <C(l + t)Ce, ls s ls ddw 

In fact, 
IgoMZ1-1^ < C\q-lgo{q)\{l + t)c°£\aïla\ 

and q ^ 1/2 on the support of #o-
In view of 2., we enlarge a little the définition of /. We will dénote by / a smooth 

function of 
s, u, u, a i t l+t)-1, (1 + *)""*, ^ P , ^o. 

Here, g is any smooth function whose derivative belongs to Co°(R+). Finally, we need 
to introduce nonlinear analogues to Ni, denoted by vi. We define vi as any smooth 
function of 

s, u,LU, ai(l + t)"1, (1 + t)~», a^,g(q), N0, (1 - Xiiq))^1 a-
In some sensé, we see that vi is a gêneralization of / to order one derivatives. Of 

course, the quantity D~~l from 2 is a v\. 

4. Some calculus Lemmas 
We have to prove that the analogue to Lemma III.2 for the enlarged quantities is 

correct. 

Lemma 2'. — We have the following identities: 
i) Z^î = E/Wfe! • • -Nkj,ki + • • • + kj < k, 
ii) Z îVp = ^ /iVjbj • • • Nkj, ki H h fej < fe + p, and, /or some i, ki ̂  p, 
iii) Zmt = tZfNkl---Nkj, ki + .-- + kj^k, 
iv) Z^ai =aiY:fNkl...Nkj, ki + --' + kj 
v) = E ^ i ^ i i * ' 'i ^ 2> Eft ~ 1) ^ k. 

Proof 

a. We try first i) for k = 1. With g = qoo~ïl expCoT, 

ifc(g)=0, S(q) = fq, Ho{q) = fqNo, Li(q) = fqa^, L(q) = fqa^, 

hence 

Zm(g) = Z(q) + aLi((z) = JWo + fqNu 
Zm(g(q)) = qg\q)(f + = / + / ^ L 
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Finally, ZmN0 = f + fNv 
b. From a., we have Zmgo(q) = go(q)fNi, hence 

ZmNp = fNiNp + Np+1 

and ii) is proved for k = 1 and any p. 
c. iii) and iv) are clear for k = 1. Thus, by induction, i)-iv) are proved. 
d. To prove v) for k = 1, we just have to check the factor (1 — Xi Vi-1a: 

Zm[(l - XiK ' a ] = sss + /JV2. 

Now, by induction, 

= E MNi+2 + N{N2)Nh • • • Nh + E IviNl-^fK + fNÏ)Nh • • • Nh Z ms + 1dr 

+ 
xb+dkrd4 

V!N[Nh • • • (E fNkl •••Nkr)---Nij. 

For a term iV̂AT̂  • • • iV .̂, the sum of indexes is less than or equal to k + j + 2 = 
+ 1 + j + 1, as desired. For a term in the last sum, we note that ZmNp contains at 

least one factor Nq, q ̂  p if p ^ 2. Let r' be the number of ki greater than or equal to 
two: 1 ^ r' ^ r. The sum of indexes corresponding to thèse terms is less than the sum 
of ail indexes, which is less than or equal to (]T h) + l ^ /c + j -h l ^ /c + l + j — 1 -h r' 
as desired. • 

We define, for k ^ 1, 

Mk = uxNiNi, • • • Nt., Z > 0, ^ > 2, £(Z< - 1) < k - 1. 

This définition is justified by Lemma 2', v). Remark that 

MI = vxN[, MIMFC = Affc, MkMt = MFC+Z-I, 

and 

+ 45dpo dnd 
i/iWfcl • • • - Mfc, ZMMFC = EMfc+i, Z^MFC = EMFE+P. 

5. We are now ready to prove Proposition 7. Dénote by ZQ the fields 

Ri, 5 , h0 =tdr + rdt, dt. 

Lemma 7.5. — We have 

Zk0 = ZMqall(ZrM-(2rMZ^, 

with 
p^l, 0 ̂  l ^ fc, r» ^ 1, g - 1 -h J ] r j+ P < k. 

Proof 
a. Consider first k = 1. We write, according to 2., 

CRILI = DSSS + /IVI)LI + fZm) = MXZM + Mm^Z™. 
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Then 

Ri = R™ - a^aiRi^MiZm + Mm^Zm), 

and similarly for S and H0. Then 

Ho = ctdr + r/cdt = ho + ftuL + ftuLi, 

h0 = H0 + /(#0m + Sm) + MxZm + M ^ r 1 ^ . 

Finally, 
dt = 2yfc{L + Lx) = fZm + / a f 1 ^ . 

b. Now 

Z*+1 = (M1+M1aï1)Zrn(Zk0), 

and the formula follows at once by induction, since 

MiMq = Mq, ZmMi = M/+i, Zniax 1 = -lax lZmbi. 

From this Lemma, we get, for / ^ SQ — 3, 

\e-\l + t)a^Zou\ +s ddd d d+ kis d+dkl+ t)Z0Lu| + ddd dd+ t)Z0Liu| < C(l + t)Cea^~l. 

For Z ^ so — 4, we can in fact enlarge this estimate to have also 

\e~\l + t)Zl0du\ < C(l + f V f 1 . 

To prove this, we write 

dt = 2yfc{L + Li), di = (u>i/2y/c)(L - Li) - l/r(u A R)h R{ = Z0. 

From the weak control 
\Zl0u\^C(l+tf£ 

already proved, we get 

\zif(uj,u)\ + \rZlJuj/r)\ < C(l + 0C£. 

6. Finally, we want to replace, in the above formula, the fields Zo by Z0. But ail 
fields ZQ can be expressed in terms of Z0. In fact, Ri, S and dt are already Zo, and 

fti = + a?;<9£ = ujiho — t/riu A i?)z, 

di = uJi(-dt + (r -f t ) " 1 ^ + S)) - l/r(u A R){. 

Thus 

ô = E / ( ^ ( l + *)"1,r(l + *)-1)Zo. 
This implies that we have the desired estimâtes of Proposition 7. 
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IV. A calculus of modified Klainerman's vector fields 

IV. 1. Définitions and L°° estimâtes of the perturbation coefficients. — In 
the previous chapter III, we have already used modified fields 

Zrn = Z + aL\ 

where the a have been defined by III. 1.1. Our final resuit in Chapter III was the 
estimâtes, for k ^ so — 4, 

\ZSu\^de(l + t)-1+Cie(T^ 

\Z%du\ < Ci^l + O"1^1^"1-
For aesthetic as well as technical reasons, we will start again from scratch and define 
new, and better supported coefficients a, by the formula 

La(Ri) + X(q)a(Ri)(L1u/2c) = -X{q)Riu/2c, 

La(S) + X(q)a(S)(L1u/2c) = -X(q)Su/2c, 

a(H0) = -a(S), a(ifc)(0,t) = 0, a(^)(x,0) = 0, 

a(S)(0,t) = 0, a(S)(x,0) = 0. 

Here q = qo&ï1 expCor, where qo is taken to be 

q0 = l/2exp(-C0£log2) 

in such a way that the boundary of the support of X(q) intersects r = t + M&tt = l. 
The big constant Co is still to be determined. The function X(s) is a real C°° function 
being zero for s ^ 1/2 and one for s ^ 1. The aesthetic reason is to perturb as little 
as possible the standard (adapted) fields Z. It turns out that it is enough to take 
perturbation coefficients a supported in a logarithmic zone ai ^ C(l + t)Ce. The 
technical reason will appear in the proof of Proposition VII. 1, where powers of ai on 
support of a have to be bounded by factors (1 + t)li£ for appropriât e 7$. 

Proposition 1. — The coefficients a(Ri) and a(S) defined by (1.1) are zero fort small, 
for r ^ M + t or q ̂  1/2. Moreover, we can choose Co such that, for k < SQ — 5, we 
have 

\a~lZ*a\ + \Z%da\ < C(l -h tf£. 

Proof 
a. To prove the claim about the supports, we have to check that the domain left 

to the curve 
ai — 2q0 exp Cor = 0 

is an influence domain of the t-axis (where a is zero) for L. But, on this curve, 
L(ai - 2<7o exp C0T) = Lo\ - (qo/Vc)(expCor)C0e/(l +1) 

= -<7ie/(vÇ(l + *))((! + t)u/{eai) + C0). 
If Co is big enough, this is négative, proving the claim. 

(1.1) 
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We will write / to dénote a real C°° function of the variables 

s, u, UJ, (n(l + t)-\ (1+ *)-*, a p , g(q), N0, 

where 
N0 = l, ^ ( l + fyrfV £~l(l + t)Lu, e~lfl + t)Lxu, 

and g is any smooth function whose derivative belongs to Co°(R+). We dénote by 
Nk, k ^ 1 one of the quantities 

e-l{l + t)o^Zkmu, e-\l + t)ZkmLu, e'^l + t)Z^LlU, 

aT'Zfa, Z^La, Z^Lxa. 
This machinery is the same as in III, except that we have enlarged / with g(q) and 
7Vo. As we can see from the proof of Lemma 2' in section III.7, ail the calculus and 
commutation Lemmas of III (that is, Lemma 2, Lemma 3.1, 3.2, 3.3 and Lemma 4) 
remain valid with thèse new définitions. We will refer to thèse calculus lemmas just 
as Lemma 2, Lemma 3.1, etc. The only différence in the commutation relations is 
that 

[Li,L] = -L1u/{2c)L1 + Lu/(2c)L, 
which means that, in Lemma 3.1, 3.2 or 3.3, we have either d = (1 — %(g))Zmu or 
d = L\u. 

c. We will need the following correspondence between the fields Zm and the stan
dard fields Zo-

Lemma 1.1. — We have 

Zkm = E fNkl •••NkjZ% + J2 fNh • • • NltZZ(a/<n) • • • Z^{a/a1)Zl 

In the first sum, p ^ 1, Yl^i + p ^ k. In the second sum, p ^ 1, q < k and 
Y.h + Y.n +P < &• 

Proof. — We have d = fo\Z$. For k = 1, we write 

L1=fdi + fdt = fa1Z0, 

= Ri + aLx =Z0 + fa/axZo, Sm = S + fa/atfo. 
Then 

H0 = tdr + rdt + f(l + t)ud = Zui(tdi + Xidt) + ftu/atfo = fZ0, 

H0^ = fZ0 + fa/a1Z0, 
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b. To estimate a and its derivatives, we will use the same method as in Chapter 
III, except that we already know estimâtes on u. Exactly as in III. 1, we define 

R™ = Ri + a{Ri)Lu Sm = S + a(S)Li, H™ = H0 + a(#0)£i. 
We forget about K now, and take the family of the fields Zm as the collection of 
the fields 

Rp, Sm, Hm , L 1 3 
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which proves the claim. For k ^ 2, we write Zm+l = ZmZm, and the Lemma follows 
by induction, since a term 

ZmZl = fZ$+1 + fa/aZ^1 

adds one term in each sum. • 

d. The following Lemma will be crucial in the whole construction. 

Lemma 1.2. — Assume 1/2 < fi < 2/3. Then we have 

\at\ + K | + la/aj4! < C3(l + tf*£, 

where C3 dépends only on Ci and u and not on Co. Moreover, if Co is big enough, 
we have, on the support ofl — x, the estimâtes 

\a/ai\ ^ C, \Zmu\ ^ C\Z0u\, \Zmdu\ ^ C\Z0du\, 

\ZQu/ai\(l + \da\ + e-\l + t)(\Z0du\ + \Z0u/ai\) ^ Cs{l + t)-1"'. 

Proof 

a. In fact, with b = a/a^, 

Lb = -fib(Laifai) — xbLiu/(2c) - x/(2c)cr /̂zZ0 ,̂ Lai = —u/y/c, 

hence 
\Lb\ < C2e(l + t)-xb + C2e(l + t)~1+Cl£. 

By intégration, we get 
|6K(C72/C'1)(l + 0(Cl+C3)e. 

We have now 

LiLa = -Li(x/{2c)){aLiu + Z0u) - x/(2c)(L1aL1ix + fÔZ0u + f(a/ai)Z0Liu). 

But, since Liq = fqa^1, 

Li(x/(2c)) = l/(2c)x,(g)/^r1 " x/(2c2)L^ - / /a i , 

LiLa = f(a/ai)Liu + fZ0u/ai + /e(l -h £)-1Lia + fdZ0u + f(a/ai)Z0Liu. 

LLia = + t ^ L i a + /(Z0Liî*)(a/<7i) + + t)(a/ffi) 

+ fZou/ai + /<9Z0u + f(Z0u/ai)(a/ai) = gi. 

We deduce that 

|LLia| ^ Ce/(1 + t)|Lia| + Cte/(1 + t)(l + t)Ce, 
where again C does not dépend on Co- Since La is bounded independently of Co, we 
get by intégration the first part of the Lemma. 

b. From a., we get |a/<xi| ^ C as soon as Co(l — p) ^ C3. Then, for any v, 

\Zmv\ ^ C\Z0v\ + C\a/ai\\Z0v\ < C|Z0t;|. 
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Since 
\Z0u(a/a1)2\ < C£(l + t)-1+Cl£+2C3V^-2, 

we obtain on the support of 1 — x 

IZouMI + |Z0î*(a/<7i)2| ̂  Cs(l +t)"1+C4£(l + t)-(2~3^Co£, 

where C4 does not dépend on Co- This complètes the proof. • 

e. From now on we assume that Co has been fixed big enough for the estimâtes of 
Lemma 1.2 to hold. We now assume by induction 

|W,|^C(l + t)Ce, l^k, 

which is true for k = 0. In particular, in view of Lemma 2, 

|Ẑ (a/(7i)|<sssC7(ssssssl-ht)Ce, 

Using Lemma 1.1 for the index fc, we obtain 

\Zkmdu\ + \a^ZkmZ0u\ < Ce(l +sssss t)~l+Cs. 

We write now 

L(a/ai) = -X/(2c)(a/a1)L1u - X/(2c)(Z0î*M) + + t)(o/ai) = p. 

Applying Lemma 3.3 for the index A; with w = a/ai, we get 

L^(a/<71) = E1 + E2 + E3-
Since 

g = fe(l + ty^a/ax) + /(Z0uM), 
we have 

| Z ^ | ^ C e ( l + t)-1+Ce, l^k-1, 
\Zkmg\ < Cte(l + i)C£ + Cte(l +1)"1^* (oM)|. 

Hence 
I E i K Ce(l + <)-1+C£ + Ce(l + ty^Ztia/a^. 

In ail terms are controlled by induction, and | I ^ Ce{l + t)~1+Ce. In J]2, 
if fcj+i < k - 2, we just write L'iZm+1w = Zm+1+1w and the term in controlled by 
induction. If kj+i = k — 1, the corresponding term is just fdLiZ^~1w. If d = L\u, 
we remember L\ — Zm and keep the term as it is. If d = (1 — x)Zmw, we need to use 
that Li is a better field than the Zm. We write as in 2, Proposition III.7, 

r - t/y/cLx =H™-Sm + 2aLx + tu/y/cLu 

aiLi = fZm + faLi + /Li. 

Iterating this, we obtain 

axLi = fZm + f(a/ai)Zm + fa2/axLi. 
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Using the corresponding inequality to estimate the term at hand, we get 

IfdL.Z^wl < CMMKC + qaMDIZ^I + Ca2/a1\L1Z^1w\}. 

From Lemma 1.2, we obtain finally in ail cases, 

IE2K Ce(l + t)~1+Cs + Cs(l + ty^Z^a/^l 

Integrating the équation on Zm{a/a\), we obtain 

\Zt{al<jx)\ < C(l +tf\ a^\Zkma\ < C(l+tf. 

f. Since 

\Z0pLu\ +sss dss d< Ce(l + t)"1+C£, p < fe + 1, 

we obtain, using now Lemma 1.1 with the index fe + 1, applied to u, Lu or L\u, 

\a^Z^u\ + \Z^Lu\ + \Z^LlU\ < Ce(l + *)"1+Ce. 

Similarly, since La = fZ$u + f(a/ai)Zou, we obtain directly \ZmLa\ < C. 
g. Remember that 
LL\a = fe(l + t^L^ + f(ZQL1u){a/a1) + fe/(l + *)(a/<7i) 

+ fZQu/ai + /<9Z0u + fiZou/a^a/ai) = gx. 

Applying Lemma 3.3 for the index fe and w = Lia, we obtain 

LZ^L1a = E1 + E2 + E3. 

As before, we get first 
\Zlmgi\^Ce(l + ty1+c*, l^k-1, 

\ZkmQl\ < Ce(l + ty1+Ce + Ce(l + tyx\ZkmLxa\, 

which gives 
| El I < Ce(l + t)"1+C£ + Cte(l +1)-1 \ZmLia\. 

The analysis of E2 anô  E3 are strictly identical to the ones we have done for con-
trolling Zm(a/(Ji). Finally 

\LZmLia\ ^ Ce(l + t)~1+C£ + Ce(l + t)"1 \Zkmha\, 

which gives by intégration the desired estimate, and proves that |ATfc+1| ^ C(l + t)Ce. 
h. It remains now to translate this resuit using the standard fields ZQ. As in 5, 

Proposition III.7, we dénote by ZQ the fields 

Ri, S, h0 = rdt +tdr, dt. 

Lemma 1.3. — We have 

Zo = E fNkl • • • Nki{Z2a) • • • (2£a)Z&, 

with 
p^l, j^k, Efcj + E ^ + P ^ ^ 
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Proof. — The argument is not the same as in Lemma 7.5, since we have defined no v\ 
here. We have 

Ri = R™ — aZm, S = S171 — aZm, HQ = H™ + aZm, 

H0 = h0 + fZrn + f(l + t)uL1. 
Remembering that 

tri Li = fZm + fLi + faLi, 

we get 

/(l + t)uLx = /((l 4- t)w/(7i)(/Zm + /Li + /aLi) = /Zm + /aZm. 

This proves the Lemma for k = 1, and the gênerai case follows by induction. • 

Now, since support a is contained in q ̂  1/2, 

hence this Lemma, applied to a, La or Lia, yields 

\(T^%a\ + |ZoLa| + \z\hxa\ ^ C(l + t)Ce. 

| ^ a |< | a rXok i<C - ( l+t )Ce: 

The transition from Zo to ZQ is now identical with 7.5 c, and this complètes the 
proof. • 

IV.2. Smoothing operators 
IV. 2.1. Smoothing operators on the sphère. — We will need, in the spirit of the 
paradirïerential calculus of J.M. Bony [6], smoothing operators S2, acting on functions 
on the unit sphère S2. To define thèse S2., we will fix 

02 e C0°°(R2), o < 02 < i, 02 = 1, 

and a partition of unity on S2 

X+ + X- = 1, 

where x± is one f°r ^ 0 and vanishes near the pôle (0,0, — ± 1). For w defined 
on the sphère, we set 

S2w = 

d+ 4dr 
(02,0 * [(X±w)(P-±)])(P-±)> 

where p± are the stereographic projections from the pôles (0,0, ±1), and 

(j>2Ay) = o2M6y)' 
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The operators S| enjoy the usual properties 

(2.1.1)a \\Slw\\^C\\w\\, 

(2.1.1)6 \\s2ew-w\\^e-k 

l<k 
\\Rlw\l 

(2.1.1)C \\RkS2ew\\ ^ C6k\\w\\. 

Here, ||.|| stands for the L2 or L°° norm on the sphère, and 

R — ' ' ' Ltijç • 

When Computing with the Se, we think of them as if they were only the convolution 
with 02,0, omitting for simplicity the cutoff functions etc. Note that if we abandon 
the property / 02 = 1, properties (2.1.l)a and (2.1.1)c remain. 

IV.2.2. Smoothing operators. — We choose now 

01 G CN°(R), O<0 !<1 , 01 = 1, supp0i C {r < 0}, 

and set 
Sl<w(r,u,t) = 6fa(6(r - r'))w(r',u,t)dr'. 

This is the standard smoothing operator in the r-variable. We will use it only in a 
fixed domain on the form 

r ^7i(l + t), 7i >0, 

acting on functions supported in r ^ M + t. With to différent (big) parameters 6\ 
and #2 to be chosen later, and 6 = (61,62), we define finally 

Sew(r,u,t) = SllS22w. 

It is clear that, for some C (independent of t) we have the inequality 
\sew(.,t)\Ll ^ K , t ) | L 2 . 

This inequality holds also if the intégrais of the fa are not normalized to be one, in 
which case, to avoid confusion, we dénote the corresponding operators by SQ. 

Computing commutators of Se with various fields, we will also need operators 

V \p\Q]w = s0\p;q]w, p= (p!,...,pk), q= 

defined by 

selp; q]w = 6\+kfa(6Ar-r'))62+lfa(62(y-y')) 

\pi(r,p+\y),t)-pl(r\p+\y),t)]---\pk(r^ ,,PL1(Y),0 - qi(rf,Pl\y%t)ddd dd d 

fei(r,,PL1(Y),0 - qi(rf,Pl\y%t)] • • • [qi(rf ,pl\y),t) - «(r,,PL1(TF/),*)] 

X(y,)w(r,,y,,t)dr,dy' [(P+), 
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or similar intégral involving p-. Here, and need not have intégral one, and \ 
is an arbitrary mnction in Co°(R2). Note that q] is automatically normalized to 
take into account the effects of the factors 

Pi(r) -Pi(r'), Qj(y)-qj(y')-

The continuity of thèse operators is given in the following Lemma. 

Lemma 2.2. — We have (uniformly int) 
i) |S0[P;<?HL°° ^C\w\LooU\drpi\LOoU\Rqi\Loof 
ii) \se\p;q]w\L2 ^ C\w\L2U\drPi\L°°n\Rqi\L<*>, 
iii) \se\p;q]w\L2 ^ C\w\Idrp^ L2Ui^2\drPi\L^U\Rqi\Loo, 
iv) \se\p;q]w\L2 < C\w\L<~\Rqi\L^\drPi\L^i^2\Rqi\L^. 

Proof. — The first two points are obvious. To prove iii) or iv), it is enough to consider, 
for instance, an intégral 

Ei I VJFE+1| + \Zkm{al»a)\ 

Since \bx(y) - h(y')\ < \y - y'\ L1\dh\ (y' + s(y - y'))ds, 

o3UO(y-y'))(bi(y)-h(y'))dy' 

= d /•l 

br 
ds / e2ip{dz)\dbl\2{y' + sz)dy'dz < C|<%I||2, 

which gives the resuit. 

IV.3. Modified Klainerman's fields 
a. We define now fields Zm, analogous to the fields Zm used in chapter III, but 

with two important différences: 
i) Zm has to have smooth coefficients everywhere and not only outside r = 0. 
ii) The perturbation coefficients a from Zm = Z + aL\ have to be smoothed by 

Se, so as to bear extra derivatives (as occurs typically in a Nash-Moser scheme, see 
[5] for instance). 

From now on, we fix, for some 

Ei I < CE(L + *)-1+C£ +SKL + KLDD+ÇOE 

to be chosen later, 
0.=0.(t)= 00(1+ 

The coefficients a(Ri),a(S) have already been defined in IV. 1. We define a = a(Hi) 
by 

a(Hi) = -uJia(S) - (u A a{R))t. 
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We set now (recalling Hi = ctdi + Xi/cdt) 

(3.1)„ K? = Ri + cHRi)L1, 

(3.1)6 Sm = S + à(S)L1, 

(3.1)c H™ = Hi + â{Hi)Ll, 

(3.1)„ ^ = Lj + L = (2/Vc)ft. 

Here 
ô(7îi) = 5«o(iîi))a(5) = 5tfa(S), 

and, for technical reasons, 

(3.2) a(Hi) = -ùJià(S) - (u A 5(1?));. 

We do not use Ho since it does not satisfy i). Remark also that 

(3.3) failli) =-a{S), 2><5(ff<) = -Ô(S). 

Thanks to thèse choices. we eet 
r + et 
br 

L = T.uJiHi + S = Y. LU i HT1 + Sm 

The set of the coefficients 

a(ft), a(5), o(Jîi) 
will be denoted by (Coeff), while the set of 

a(Ri), 5(5), a{Hi) 

will be denoted by (Coeff). We will dénote by $ the collection of the fields 
nm cm zjm TV-

and call Zm any of them. Except for K, we will write simply 

Zm = Z + aLi, 

where Z means one of Ri, S, Hi. 
b. We dénote by NQ one of the quantities 

1, €~l(l +t)(JÏlU, E~l{l+t)du. 

Remark that |iVo| ^ C. When we want to emphasize the fact that NQ is not 1 but 
actually involves u, we write NQ. We dénote by Nk, for k ̂  1, one of the quantities 

e-\l + t)o-lxZkmu, e~\\ + t)Zkmdu, 

a^Z^à, Z^% Zk^da, a G (Coeff). 

As before, we enlarge a little the définition of / . We will dénote by / a smooth 
function of 

e, u, ou, (nil + t)-1, (l + t)-"*, axVi, g{q), N0, v{ > 0. 
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Here, g is any smooth function whose dérivâtive belongs to CQ°(R!!j_). 
c. We can now express L\ in terms of the ZM. 

Lemma 3.1. — We have the relations 
i) Lx =fZm, L = fl(l + t)Zm, 
ii) Z = fZm + fN1Zrn,^ 
iii) aiLi = fZm + fNiZm, 
iv) CJldt = fZrn + fmZrn, GXdi = fZm + jN\Zm. 

Proof 
a. Prom the définition of If, Li = K — L. But L = fZm, hence i). Writing 

Z = Zm — aLi and using i), we get ii). 
b. Once again 

r — et 
br 

L1 = H0-S = E ^ ^ r -Sm + 2a{S)L1. 

As before, we deduce from this o\L\ = fZm + fNiZm, which is iii). 
Finally, 

di = f/(l + t)R + fL + fLx = a^fiZm ~ a£i) + / / ( l + t)Zm + ./Vf Vi^i) , 

which gives iv). • 

IV.4. Some calculus Lemmas for the modified fields. — We have to prove 
the analogue to Lemma III.2. 

Lemma 4.1. — We have the foliowing identities: 

i) % / = E /NkL • • • NhjJki + • • • + kj ^ k, 
ii) ZmNp = E /NFCI • • • IV .̂, /ci H H kj ^ k+p, and, for some i, ki > p, 
iii) Zmt = tJ2fNkl-'NkjLk1 + --- + kj <fc, 
iv) Z£t7i =<TiEfMk1-'Nkj, fci + --- + fci 

Prw/ 

a. We try first i) for /c = 1. For the variables 

S, U, CJ, (7i/(l + t), ( l+ t )"^ , <7p 

in / , we only have to check the action of Hi and L. But, analogously to Ho, 

HiU = /, fTrf = /t, ffiCTi = (7i/AT0, ffi((7i/(l + t)) = /IV0 
and the action of L is at least as good as that of L\. 

Now, with q = qoer^1 exp Cor, 

= 0, S(q) = fq, Hi(q) = fqN0, Li(q) = M f \ L(q) = fqa^\ 

hence 
ZRO(G) = Z{q) + HLI(G) = /GÂT0 + /GIVI, 
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Zm(g(q)) = qg'(q)fN1=fN1. 
FmaOy,ZmN0 = f + fN1. 

b. We have 
ZmNp = fN1Np + Np+1 

and ii) is proved for k = 1 and any p. c. iii) and iv) are clear for k = 1. Thus, by 
induction, i)-iv) are proved. • 

We define, for k ^ 1, 

Mk = fN[Nh • • • Nt., l> 0, 2,ssss dss- 1) O - 1. 

Remark that 
Mx=fNl MlMk = Mk, MkMi = Mk+l^u 

and 

MkMi = Mk 
fNkl."Nki=Mk. 

As in 4 of Proposition III.7, we get easily 

if. ai = -di(ct)di - di(xJc)dt = /a, \K,dd 

We will state here for further référence the following commutation Lemmas. 

Lemma 4.2. — We have the formula 

i) [ZLd) = ZfNkl---NkiZ^d. 

ii) &d] = J2fNkl---NkidZ^. 

In both sums, we have p ^ k — 1, kj + P ^ 
iii) [Z* ai = £ fNkl • • • NkiZ?d + £ /iVfcl • • • Nki(Z2A) • • • (Z£ A)Z* d. 

Here, A = da or A = a11a. In the first sum, we have J2^j -\-p ^ k — 1. In the second 
sum, we have q ̂  1, kj + XXr* + 1) + p < fc. 

Proof 
a. Consider first fc = 1. While fi?;, d], [5,91 are just d multiplied by constants, we 

have 
iif. ai = -di(ct)di - di(xJc)dt = /a, \K,d] = fd. 

Now 
[Lud] = fdud + /( l + t)-1^ = /( l + t)-1^. 

Hence 
\aLud] = f (1 +sss ds d+ /<9a<9 = /Aô. 

This proves the Lemma for k = 1. 
b. We write now 

[zi+1,d] = zm[z^d} + {zm,d}z^, 
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and consider formula i). We see that the first term yields obviously terms of the 
desired form, while the second is 

(/ + /#i)([0,Z*] + Z*ô). 

This proves i). To prove ii), we write instead 

zmdzm = [zrn,d]zm + dzm+1. 

To prove iii), we see that Zm([Zm, d]) yields automatically good terms. For [Zm, d]Zm, 
we write this term as 

{f + fA){[d,Zkm) + Zkmd), 
which yields only terms of the desired form. • 

Lemma 4.3. — We have 

i) [Zm,Rj/r] = Mi/(l + t)Zm + M1ai/(l + t)0 + dff + t)(Rjâ)d, 

ii) [Z^Rj/r] = {l+t)-1MlZ^+l+a1{l+t)-lMldZ^+e2{sssssssssssssssl+t)-lM 

In ail terms of formula ii), we have l — l + J2Pi ^ k ~ 1-

Proof 
a. We have 

[Ri,Rj] = —SijkRk, — [hi,Rj] = —Sijkhk-

Now 
Hi = hi + tudi - Xiu/cdt, [Hi, Rj] = -eijkhk + ftud + ftRud. 

But 

hk = Hk- tudk + xku/cdt = fR + vkH0 + ftud, H0 = faid + fZm, 

hence 

[Hu Rj/r] = fR/r + Mi*i/(1 + t)d + / / ( l + *)Zm 
and the same is true for the other Z as well. Finally, 

[aLi,Rj/r] = -R^a/rL\ +a[Li,Rj/r], 
[Lu Rj/r] = fR/r2 + f 6^/(1 + tfNrf, 

which gives i), which is also ii) for k = 1, since Rjd, = f02Sea. 
b. Since [Zm, d] = M\d, ii) follows by induction from the properties of the Mk. • 
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IV.5. Some commutation Lemmas for the modified fields 

Lemma 5.1. — We have the formula 

i) \dt,Se\w = s$w + 0'2 
02 sew, 

ii) [dt, Se]w = 9\ 
e2 igdrW + 

0k 
01 

[sgW + SgfRw), 

iii) [b, Sg]w = <?! 1so[b; }w + 62 1sg[; b]w, 

iv) 9i[di, Se]w = fsgfdw + fsg[; h(w)]fdw + fse[; h(u)]fw(l + t)'1 

+ fse{; MwMl + t)"1]!, 

v) [Zm,Se]w = fe^1se[fN[;}MlZmw + fe^se[,fN[]M1Zmw + fN^sgfdw 

+ fNrf^sgw + fNxe^8eMiZmw + fO^sgl; fw]l. 

Proof 
a. We have 

[dt,Sl]w = 
6' 
d 

0(r î)P(0(r - r'))w{r')dr' 

br+ 
6' 

e 
dr'KrfaWir - r'))]w(r')dr' 

br r e2. 
0(rfo)(0(r - r'))drw{r')dr''. 

Similarly, 

[dt,s2e]w = e'/e{ 02[2<f>2 + yd<h\{9{y - y')){x+™){p--\y'))dy'}{P-) + • • • 

= #/0{ 0Y,dM<hMv - v'))](x+w)(pz1(v,)W}(P-) + • • • 

= e'/e2{Z / 62(yj<p2)(6(y-i/))dj[{x+w)(pz1(y'))W}b-) + •••. 

This gives the formula i) and ii). b. Let p'_Ri = YL^i^vy We have 

dj / <h,oHv'W = / MdMi/W' 

<4(V)9J /<f>2,eh(v'W= / ^ ( « i ' W - ^ ) ) ( ¥ ) W + / < h M & M v ' W , 
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hence, with h(y) = (x+^)(p_1(?/))5 

[Ri,s$]w = o~1\ / o<hA<4iv) - 4{y'))dMy')dy' W-) 

-e-H OhA^Riix+WzAy)) - Mfc(x+))(p: V ) W >(P-) + • • • 

+ wRi(x+ + 
the dots meaning a similar term with p+ and the last term being zéro since we have 
a partition of unity. Since R commutes with SQ , we obtain 

02[Ri, So)w = sel; h]w + se[; h]fRw + /iw]l, 
where /i = h(uj) stands for various smooth functions of UJ. 

c. Now remark that, for any function 6, 

b(r, y) / Mi(0i(r - r'))9î<i>2{62(y - y'))w{r', y')dr'dy' 

= / ... [(6(r, y) - 6(r', y)) +wwww www- &(r', y')) + b(r\ y')]w{r', y')dr'dy', 

which gives iii). 
d. Since 

di =ujidr - l/r(uj A R)i, 
we have 

[di, se)w = [uji, se]wr + / / ( l + s*]™ + / / ( l + i)[uj, se)Rw + [1/r, 
Since 

1/r - 1/r7 = —(r — r')/rr', [1/r, s$]w = (Oir)~1se(w/r), 
we obtain iv). e. With the above formula, we also obtain, using Lemma 2, 

[aLi,So]w = a/y/c[dt, S0]w + [a/y/c, So]dtw - \ày/c, So]drw. 
Now, since 
(b(r,y) - &(r',y))/c7i(r') - 6(r,y)/<n(r) - 6(r;,y)/a1(r/) + (r' - r)6(r,2/)/(7i(r)<7i(r'), 

-e-H OhA^Riix+WzAy)) - Mfc(x+))(p: V)W >(P-
-e-H OhA^Riix+WzAy)) - ss 

^ [p; G] (w/ai ) = s$\p;qi,... ,qi/ai,... ,qt]w. 
Here, pi means as usual that pi is omitted. We may write sometimes 

se[...,pi/<ri,...;q] 
instead of the correct 

se]pu...>>Pi/(TU">,Pk\q], 
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the ... meaning that the non-written terms are unchanged. We thus obtain for 
instance 

[B, SE]DW = O^selb; ]DW + 0^LSE[, B]DW 

= Oï1so[B/<Ji;]aidw + B/A\SEDW 4- 021so[;B/o~I]<JIDW. 

To summarize, using ii), we get 

[aL1,Se]w = f/O^fNv,\MxZ^w + f/02se[; fN^M^w 

+ fNi/Oxsofdw + f/e2seM1Zmw. 

f. We also have 
[S, Se]w = t[dt, Se]w + [r, S*]ôrw. 

Since [r, S0]w = 9ï1S0w, 

[S, S*]™ = f/OlSefdw 4- //02(**w + seMrZmw). 

Similarly 

[Ho, Se]w = [c, Se)tdrw + [c"1,S*]rftn; + r/c[dt, S0]W + l/c[r, S*]&w 

= f/elSe[tu; }a^1fa1dw + f/02s0[; f\MxZmw + f/O^efdw 

+ f/O2{S0W + S0fRw). 

Since, using the formula of d., 

se[tu;]v/ai = SE[F',)v + FSe(v/o-I), 

we obtain again 

[Ho, S0]w = f/elS0[f;\MxZmw + f/OlSefdw + f/O2S0[, f\MxZmw 
+ f/O2{S0w + SefRw). 

Since Hi = UJIHO — ct/r(u A R)i, we get the same formula for [Hi,S0], with the 
additional term f /62S0[, fw]l. This complètes the proof. • 

Lemma 5.2. — We have the formula 

i) [Zm, se[p', q]]w = MiSfl[p; q]w + Mi/eiSB\p', q]fdw + f/Ois0\p\ ^[M^ZmW 

+ Y, Mise\pii • • •, MiZmpj, .-•,Pk',q]w + Yl MiSe[p\ qi,..., MiZmqj,qt]w 

+fl0i89\p> Mi; a]MiZmK; + f/62S0[p; q, M^M^w 

+ Mis0[pi,... ...Vk\q]f{dpj)w 

+ EMi/0is#[p; 9i,..., . - -, 4z]w + EMi/02S0[pi, • • • iPji • • • iPk\Q, fdpj]w. 

ii) ZMS0W = MiseMiZmw,r < 1, 

iii) Zmse]p;]w= Y, MiSo[MiZ%p;]MiZ%w H- Mise(fdp)w + Mis^[; /<9p]w, 
1̂+̂ 2̂ 1 
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iv) Zmse[;q}w= Y se\;M1Z2q}M1Zrr?w + MlSe(fdq)w + M^gl; fdq]w. 
r-i+r2<l 

v) Zkmse[, q]w = se[; MloZ2+Plq}MllZr^w + MloseMhZ^qZ^w. 

In formula v), we have for both terms 

ri + r2 ̂  1, £(Zi - 1) +pi +p2 < fc - 1. 

Proof — We prove only the délicate formula i), and v), the other formula ii), iii) 
and iv) being proved more easily along the same lines. We need only to get terms 
involving Zmp, Zmq or terms in ZmW with a small factor in front, a. We have easily 
the formula 

[du se\p\ q]]w = f/(l + t)se[p; q]w + £ se\pu • • •, dtPi, • • • q]w 
+ E ^ b ; qu--,dtqi,...,qi]w, 

[dr, se]p\ q]]w = £ se\pu • • •, drPu • • • ,Pk;q]w+ se\p', Qu • • •, drqu..., 

Uso 
[6, g]]iu = 6>x 1se[b,p; q]w + 02 ^[p ; 6, 

b. Since 

^ e2+lM0(y - y'))(<n(y) - <n(y'))• • • («(y) -*(v ' ) )MyW = 

E e2+lfo(0(y-y'))(<?i(y) -91(2/')) • • • VMv) -®My')) • • • (©(y) - sss ss W 

+ e2+lM0(y - y'))(qi(y) - <?iG/)) • • • («(») - qiiv'WMy'W, 

we need only push coefficients through the last intégral. We thus obtain as in b, 
Lemma 5.1, 

[Ri, se\p; q]]w = fse[p; q]w + J2 fso[pi, • • •, fRpi, -.-Pk\q]w 

+ E fse[p\ qi, • • •, fRQi, • • • Qi}™ + #2 h(uj), q]fRw. 

This is of the désir ed for m. 
c. Similarly, since 

r(p(r,y) -p(r',y)) = rp(r,y) - r'p(r',y) + (r' - r)(p(rf,y) -p(r',y1) + p(rf,y')), 

we obtain 

rse[p;q]w = se[pi,... ,rp{,... ,pk;q]w 

+ Ô2 1se\pi,. • • .. • ,p*ï + Sflbi,...,Si,... , dp;w, 

and trivially 

rse[p; q]w = 0, ^ [p ; glw + ŝ ta; qu ..., ra,..., gzlw. 
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Hence 

[S, se\p; q]]w = fse[p-, q]w + 0f 1se[p; q]wr + £ |s^[pi» • • • > • • -P*; tf]™ 

+ se\p\ gi, • • •, Sqj,..., qi\w + se\pi,... ... ç](<9rpi)w 

+ 02 ^ [p i , . . . ... ,pfc; g, drp;]w}. 

This is of the desired form. 
d. We have now 

HoSe\p', q]w = cs0[p; q]tdrw + r/csB\p; q]dtw + fse]p\ q]w 

+ J2 \csol • • ^rPj ... ; g]w + r/cs^[... <9tpj ...\q]w 

+ cse\p;... tdrqj .. .]w + r/cse\p;... dtqj ... ]w ). 

Since it is technically awkward to commute 1/c with s#, we proceed slightly differently. 
We write for instance 

(r/c)so[.. • dtpj ...\q]w = rcse[... dtpj ...\q]w + f(l + t)use[... dtpj ... ; 

Using the formula 

°ise]p', q]v = s0[. • • ^îPi»... + M-.. ,Pj, • • • ;<?b^ + 1/02M-.. ,Pj,.. .\q,pj]v, 
viselp; q]v = s^|p;...,<7i^-,...]v + l/0iSô[p; g]v, 

we obtain for the same typical term, remembering that (1 + €)ujo\ is an / , 

/(l + t)usel.., dtpj, ...;q]w = fse[-.., (JidtPj, ...;q]w 

+ .. ,pj , . . . ; ç](d*Pj)w + f/fosel • • ,Pj, • • • ; <L ftPj]^. 
Similarly, we have 

/(l + t)use\p;. • •, dtqj,. • • ]w = /s*|p;..., cri<9 ,̂ • •. ]w + f/0ise[p\..., ôt^-,... H 

Using the formula of c. to move r to one of the factors p or q, we get 

ffo^[p; g]w = s^b; Q]HQW + £ /s*[..., M1Zmpj,... ; g]w 

+ E /^[Pï • • •, M1Zrnqj, ...]w + fse\p; q]w + f/9ise[p; q]dtw 

+ Y. \ fsal.."S,-,... ; à\(dtPi)w + flO\se\v\..., fta7-,... 1^ 

f f/02so[... ,Pj,. . . ; q, dtpj]w\ 

+ f/elSe[u,p; q]f(l + t)Ôw + f/e2se\p; q, «]/(l + t)dw. 

To see (1 + t)ujo\ instead of u in the last two terms, we use the formula 

se[. • • > ̂ ift? • • • ; Q\v = Pjsol • • iPji • • • ; <?b + ^ b ; tfki^ 

^ [ p ; . . . , ^ - , . . . ^ = se\p\ q]a\v. 

We thus obtain the desired form for [Ho, se\p; q]]. 
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e. Finally, we write 

aLise\p; q]w = fNi8e\p\q]w + a/y/cse\p; q]dtw -7i\/c8e]p\ q]dru) 

+ E \a/y/cs0[. ..,dtpj,...', q]w - ay/cse[..., drpj, ...;q]w 

+ a/y/cs0\p\..., dtqj,... ]w - ay/cse\p;..., drqh ... 

To see the term aL\w, we will consider for instance 

[a/y/c, se\p\ q]]dtw = l/Oise\a/y/c,pi q]dtw + l/62se\p; q,a/y/c]dtw. 

In order to see a/ai = Ni instead of a, we have to move around ai using the formula 
of d. We get 

Ni/0ise\pi q]dtw + l/0iS0[Mi,p; q]MiZmw + l/Q2se[p; q, Mi]MiZmw. 

The computation is analogous with the term containing drw. To handle a term like 

a/y/cse[... ,dtpj,.. .\q]w, 

we again have to move around o\ : this term is equal to 

fNiaise[..., dtpj, ...;q]w = fNiSg[..., (TidtPj, ...;q]w 

+ fNise[... ,pj,... ; q](dtpj)w + fN1/028o[. • • ... ; q, drpj)w, 

and a similar expression for the terms involving drPj,dtqj,drqj. 
To complète the proof, we note that Hi = uiiHo + fR, hence 

[Hi,se\p;q]] =Ui[H0,so\p;q]] + [ui,so\p;q]]H0 + f[R,se\p;q]] + [f,se\p;q]]R, 

which yields only terms of the desired form. Finally, 

Kso\p; q]w = 2/y/c{se\p; q]dtw + se[..., dtPj, ...',q]w + se\p\ • • •, dtqj,... ]w}. 

We could write dtw = fKw and this would be enough for what we have in mind, but 
since we want a commutator, we proceed differently. We write 

2/y/cse\p; q]dtw = se\p; q]Kw + (2/y/c - 2)se\p; q]dtw + se[p; q](2 - 2/y/c)dtw, 

and again move around ai in the first term to see ujo\ and aidw. We obtain terms 
of the desired form with a gain of 1/(1 + t) instead of and this is enough to 
complète the proof of i). 

f. To prove v), we note that it is true for = 1, since fd = MiZm. Applying Zm 
to v) and using ii) and iv), we get the formula by induction. • 

Lemma 5.3. — For ail k, we have the formula 

[Zkm, Sg}w = E Mio5,[M(l; }MhZl+rw + Mloseb Mh\Ml2Z^rw 

+ Mi0seMhZ^rw + Mi0se[> ^ . W , , } . 
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In ail terms, we have 
r < l , YAi-D+p^k-1. 

Proof 
a. We will prove by induction that Z l̂"1[Zm, SQ]W is equal to the right hand side 

with the same conditions 

r < 1, £ ( J i - l ) + P < * - l -
For k = 1, by inspection of the formula for [Zm, S#] in Lemma 5.1, we see that this is 
true, since 6\ ^ #2-

Assuming that this is true for k, we write = Z^Z^1 and examine the various 
terms. We have, using formula iii) of Lemma 5.2, 

Zmse[Mh;}Ml2Ziïrw = MlS0{M1Z^(Mh);}M1Z^(MhZ^rw) 

+ Mlse{M1Zm{Mh)MhZ^rw) + M1s,[;M1Zro(M,1)]M,aZ*+pu;. 

Since Z^MP = Mp+q, we get 

= MlSe[Mi1+Pl;}(Mh+P2Z^-rw + Ml2Z^+rw) 

+ MlSe{Mh+hZ%-rw) + MlSe[; Mh+l)Ml2Z^rw. 

Taking into account that 
Zm(M ,0 = 9^Ml+1, 

we see that the action of Zm on the first term of the right-hand side yields terms of 
the desired form. The issue is completely similar with the second term, and easy for 
the third. For the last term, we write 

Zmse[; Mhztw]Mh = MlSe[; Mh+PtZ^w + MhZ^w}Mh 

+ Mlse{Mh+l2Zllw + M^-iZ^w) + Miae[\ Mll+1Z^w + MhZl£lw\Mi2, 

and see that ail terms are of the desired form. 
b. Since 

[ZLSe]w = 
x+b41 

Zk-l[Zm,Se]Zl-lw, 

we see that this term is a sum of terms of the desired form with 
£(ZI - l ) + p + ZI<FC-Z + Z - l = fc-l. 

This complètes the proof. 

Later on, we will need the following pseudo-commutator formula. 

Lemma 5.4. — We have the formula 

Zmsew = fsefZmw + 61a1Mi0seMllZmw + e^Mlose[^ Mh]MhZ^rw 

+ e^MlnaeMu Z^rw + O^Musok MhZmw}Mh. 
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In thèse sums, 
r < l , £ ( Z i - l ) + p < f c - l . 

Proof 
a. We consider first k = 1, and set dtw + cdrw = g. As in the proof of Lemma 5.1, 

we have 
[S, s0]w = se)w 4- O^soWr = fsow + ŝ w, 

since, by intégration by parts, S0IZ;R = 9\s0w. Next, 

[#o, Sé>]w = [c, S0]£wr 4- [c-1,5 ]̂r t̂ 4- r/(ct)s0w + c_10f 

First, 

USQWR = u9\S0W, SQUWR = S0(uw)r — SQURW = Q\SQUW — S0URW, 

[c, se]wr = [u, s0]wr = 9\[u, s0]w 4- s0urw. 

Second, 

[1/c, s0]h = -l/c[u,s0](h/c), 

[u, s0]rwt/c = [u, s0](rg/c - (rw)r +w) = f(l 4- t)[u, s0]fg 4- #i/(l 4- t)[u, s0]fw. 

Finally, 

9^ls0wt = 9^ls0(g - (cw)r 4- urw) = Oï1s0g 4- s0fw 4- 9^1s0urw. 

Collecting the terms, we obtain 

[H0, s0]w = fsofw 4- /s*/<7 + /0i(l + i)[u, s0]fw + /( l + t)[u, s0]fg. 

On the other hand, 

aLis0w = fa[dt, s0]w 4- fas0(g - (cw)r 4- urw) 4- fa9is0w 

= 91M1s0fw 4- fNisog, 

seÇaLnv) = sotfNxg) 4- f91s0(fN1w). 

Finally, 
#»S0Î/; = /[-Ho, 4- fs0How -h /[-R, Sfl]u> + fs0Rw. 

Collecting the terms, we obtain 

Zms0w = fsefZmW 4- 91M1s0Miw 4- 0iMi(l 4- s^]Mi^ 

+ fNiseg + ^(/iVJ>) + /( l + s*]/s 

+ /0^(M; / ] ^ > + M; /Hi) . 

Opening the commutator term on ^, we find 

9iMi(l 4- t)[u, s0]Miw = 9io~iMis0Miw. 

Remember now that 
g = y/dLw = f(l + t)-1Zmw. 
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Hence 
/(l + t)[u, so]fg = fsofZmW, 

and we replace also g by this value in the two other terms containing g. We thus 
obtain 

Zmsew = fsefZmW + (1 + tyifN^sefN^ZmW 

+ OwMxseMw + /0^(M; fWiZ^w + se[; fw]l). 

Thus the resuit is true for k = 1, the second term in the right-hand side being of the 
form 

02 1M1s0M1Zrnw 

since + = fâ1. 
b. Let us assume now the formula for Z^sew, l < k. We obtain 

Z^sew = Zm{Zkmsew) = MlSefZkmw + f{fsefZm{fZkmw) 

+ 6la1M1seM1(fZiw)) + f6ï\MlSe[, M^M^j Zkmw) 

+ MxseMxfZKmw + MlSe[; MiZ* w]Mi) + 0i<n(MiM|o + M^+^seMi^w 
+ e^M^MiSeM^iMi.Z^w)) + Zm(-•• + ••• + •• •). 

The last three terms are identical to the corresponding terms in the proof of Lemma 
5.3, we need not redo the computation. Ail other terms are easily seen to be of the 
desired form. • 

IV.6. L°° estimâtes of the quantities Nk 
Proposition 6. — Fix fi > 1/2. For rj small enough, and f3\ big enough, we have 
the estimâtes (except of course for N0 = 1) 

i) IJVfcl < C(l + t)Ciea?-\ k^so-A. 

ii) Z^a\ + \Z^lÔa\ < C(l + t)Cl£, k < s0 - 4. 

if ère, Ci rfoes noi dépend on the Oi. 

Proof. — From Proposition III.7 and Proposition IV. 1, we know that, for k < SQ — 4, 

e-Hl + ûy^zUl e-H\ + t)\Z5dul a7l\Z*-la\AZkQ-lda\ 

are bounded by C(l + t) , for a = a(iîi),a(S'). Thèse estimâtes extend easily 
also to a = alHi) = — uiia(S) — (UJ A a(i?))i. Remark that, since a are supported in 

a, <C(l + t)Co£, 

we can ignore the powers of ai in estimâtes involving a. 
a. First we estimate N\. From the properties of Se and Lemma 5.1, we get 

\a\ < C(l + £)C£, |32| < C\a\Loo + C|<9a|Loo < C(l -h t)C£. 
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Now 
Zm = fN0Z0 + fa^aZ0 

gives the control of the terms of Ni involving u. Remark also 

\Zma\ ^ C(l + tf£\Z0a\Loo C(l + tf£. 

b. We need to establish an analogue to Lemma 1.1, including some refinement 
using the fact that u and a do not play the same rôle in the process of estimating 
the Nk. 

Lemma 6.1. — We have the formula 

i) Zk=J2fNiNkl---NkiZl 

ii) Zkm = 
d+b4 

fNkl---NktZ$-
d+b4 

fNkl • • • NkiZ2(à/ai) •••Zti(à/ai)Zl 

J2 ki+p^k 
In the sum of i), we have p ^ 1, ki ^ 2, XX ̂  — l)+p^k. In the second sum of ii), 
we have p ^ 1, q < k, kj + ri + P ^ ^-

c. We assume 1 ^ k < SQ — 5 and 
Ei IL^-"JVJFE+1| + \Zkm{al»a)\ 

\Zla\ + \Zlda\ ^ Cil + t)Ce, l^k-1. 

Using first Lemma 6.1 i) for the index k, applied to a or da, we get 
\Zkma\ + \Zkmda\^C{l + t)c*. 

Using Lemma 5.3 for the index k and w = a, we see that the only terms which are 
not already controlled (using the induction hypothesis), are the terms 

MlSe[Mk; }M1Z^a, Mis*[; Mk\MxZTma, MlSe[; Mka]Mx. 

It is important to check the way 6i enters the constants (that is, /) in Lemma 5.3: Pi 
and 6® enter the computation only through formula i) or ii) of Lemma 4.1. In thèse 
formula, 0® do not appear, and Pi appear only through replacing O^1 by 
or O^1 by /, gives / containing #i/#2 ^ 1 or (^î)_1 ^ 1 as constants, and négative 
powers of (1 +1) expressed with fae. Hence, thanks to the constraints efti ^ 1, ail / 
entering the computation are bounded independently of the choices of the quantities 
0f, pi. We thus obtain 

|Z* a| < C(l + t)Ce + C2(l + tf*^1 |7Vfc+11, 

where here and later numbered constants C2 and C3 do not dépend on 6i. We obtain 
similarly 

6i\[Zkm,sg]da\ < C(l + t)Ce + C2(l + <)C3£|iVfc+1|. 
We have 

ZkJTa = Zkm\d, S8]a + [Z* , 5tf]ôa + Sez£c>a. 
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To evaluate the first term in the right-hand side, we use Lemma 5.1 ii) or iv) and 
Lemma 5.2. With the same reasoning as before, we obtain 

0i|Z* [ô, Se]a\ ^ C(l + t)C£ + C2(l + tf3£\Nk+1\. 

Finally, 
\zkmdà\ < c( i + t)Ce + c2(i + tf^e^iN^i 

Using now Lemma 6.1 ii) for the index k + 1, applied to u or du, we get 

a^(l + t J e - W M < C(l + t)C£ + C4(l + i)C5£|^S|, 

and a similar formula for du. Finally, 
kî-"wfc+ii ^ c ( i+ t f e + c6(i+t)C7^rVî"^fc+1|, 

where as before the constants CQ and Cj are independent of ^. We choose then 

0i > C7, 0? > 2C6 

to obtain the desired estimate. • 

V. Weighted L2 norms, Poincaré Lemma and Energy Inequalities 

V.l. Weighted norms. — For small v > 0 and big B > 0 to be chosen later, we 
set 

b(s) = B(-s)~v, s^C < 0, p = (r + l)ft(^). 
Remark that pr > 0, since 6' > 0 and t/V > 0. For fixed t, we define the L2 weighted 
norm bv 

\w\l = / (expp)\w\2dx. 

We first have to clarify the control of a1 w by dw in this norm. 

Lemma 1.1. — We have, for any smooth w supportée in \x\ < M + t, 

\ax 1w\0 ^ C|u>r|0. 

Proof. — For fixed uoA, omitting thèse variables for simplicity, we write 

w(r) = — 
M+t 

Jr wr(s)ds, 

w(r)2 ^Ciatir))1-» 
•M+t 

br 
(a1(s)Yw2(s)ds, 0 < fjL < 1. 

Hence, since p is increasing, 
•M+t 

'0 
e^(^(r))-2^(r)2r2dr^C 

M+t 

0 
e^HaUsWw^ds 

d 

xx 
WM < C(l + t)C£ 

We split the right-hand side intégral in 
,(M+t)/2 

wsq + 
•M+t 

'(M+t)/2 
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In the first intégral, 
<7,(r) ^ l + (M + i)/2, 

hence it is less than 

C 
r-(M+t)/2 

rd 
S2W2JS)((JAS)(1 + (M + tyï)-1)»^! + (M + 0/2)_1)ds 

= d {M+t)/2 

br 
ep(s)wt(s)s'ds. 

In the second intégral, we write 
/•s 

0 
Ei I < C DRDS+ 1| + \Zkm{al»a)\ 

and obtain that it is less than 
d+g 

;M+*)/2 
Ei I < CE(L + *+1| + \Zkm{al»a)\ 

/•M+t 

(M+i)/2 
+ dl +dlf+ ld 

Collecting the two bounds and integrating in u finishes the proof. 

We now have to make sure that the smoothing operators behave properly. 

Lemma 1.2. — If (3\ is big enough, we have the formula 

i) |s0b;#lo ^ C\b\0n\drPi\L°°R\Rqj\L°°i 

ii) k0b;#lo < cf|arpi|0|6|Looii^2|5rpi|L-ii|JRçj|Loc, 

iii) l«b;̂ ]&|o < C\Rqi\o\b\LooU\drpi\LooUj^2\Rqj\Loo. 

Proof — We prove only iii), which is the more difBcult. With 

qi(r',y)-qi(r',y') = 
r1 

br 
)yqi)(sy + (1 - s)y')ds)(y - y'), 

we can rewrite so\p\ q]b (assuming k factors pi and Z factors g7) as sums of 
ri 

Jo 
ds el^el+^MOiir-r'VMWy-y'mPi^yypiir^y)) • • • (pk(r,y)-Pk(r',y)) 

(dyjqi)(r', sy + (1 -s)y')(q2(r', y) -q2(r', y')) • • • (qi(r', y) -qi(r', y'))(Xb)(r', y')dr'dy'. 
To introduce ep into this intégral, we write 

eP(r,y) _ ep(r,y) _ ep(r',y) _j_ ep(r',y) _ ^p{r',sy+(l-s)y')) _j_ ep(r',sy+(l-s)y') 

For the intégral corresponding to the last term, the previously proved L2 estimate 
works, yielding the quantity |i?gi|o- The first two terms are bounded by 

\ep\Loo(\r - r'||pr|Loo + \y- y'\\py\L<x>), 

and 
Ei I +d ldVJFE+1| + \Zkm{al»a)\ 
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From the équation tpt + apr = 0, we get 

(dt + cdr)(a1 ^Riip) = -ax ^RiUipr + pu/aifa ^Ritp), 

and we already know that 

\a~^RiU^r\ ^ Ce(l + t)~1+C£ 

Hence, while dip is bounded for r < t/2, we get for r ^ t/2 and thus everywhere 

\a^Rrt\^C(l + t)C£. 

This shows 
\RV\ ^ c(r + î ^ r ^ W I ^ c(i + 0C£. 

Thus the intégrais corresponding to the first two terms we have just bounded are 
bounded by 

C9ï1(i + t)Ce\dyq1\t2\b\L~n\arpi\LoBnj>2\dyqj\Loo. 
Putting the weight ep inside \dyqi\L2 costs only an extra factor C(l + t)Ce, hence if 
Pi is big enough, the claim is proved. • 

V.2. The Poincaré Lemma. — The Poincaré Lemma is what we need to control 
the zéro order term (Au)v in the linearized operator on u acting on v. 

Proposition 2. — Fix v, 0 < v < 1/4, and let b(s) = B(-s)~v, B > 0. Then we 
can choose B such that, for any smooth v supported for r ^ M + t, we have, with 
P = (T + 1)&M, 

W^t/2 
(expp){LJu)2v2dx < Ce2(l + t)~2 

r^t/2 
(expp)v2dx 

+ Ce2 
d+dkd 

(expp)(l + 0 ~ 7 / W d : 

The point of this Lemma is this: the factor L2u is well localized near the boundary 
of the light cone, but behaves only like Ce(l + t)~1+Cl£ there. In this Lemma, we get 
the inequality we would easily get if Ci were zéro. 

Proof — Using Lemma II.3.5.1, we get first, with i" = Jr>t^2(expp)(L2U)2v2dx 

I^C 
r^t/2 

(EXPPÏÏL + t)~3/2a71v2dx + 2 
'r^t/2 

[expp)a1 2h(if;)2v2dx 

We perform a change of variables in the last intégral, setting 

s = ̂ (r, u,t), r = <f>(s, u, t), (̂</>, u;, t) = s. 

The domain t/2 < r ^ t + M is sent on the domain 

i/j(t/2,uj1t) ^ s < ip(t + M,uj,t) = C(u), 
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since ip is constant along any ray r = t -f M. Hence, with w(s, OJ, t) = v((j), uu, t), 

W^t/2 
(expp)a1 2h(il))2v2dr = 

Jil>(t/2)^s^C(u>) 
eTb^a72(ô)h2(s)w2ôads. 

We also have, from Lemma II.3.3 

(j)s/a2M < 2/0s, 

hence 
Ei I < CE JFE+1| + \Zkm{al»a)\ 

Now, with b(s) = e^T+1^s\(j)s)-\ 

b(sy/b(s) = (T+l)bf(s)-<t>ss/<t)s. 

But 
Ei I < CE(L VJFE+1| + \Zkm{al»a)\ 

and Lemma IL3.5.2 implies 

\4>ss/<Ps\ ^ [WrAli^rfm ^ CT(1 + \s\)-3^ + Cs(l + |S|)-3/2+4". 

Since 0 < v ^ 1/2 — 4ry, we can choose B big enough to ensure b' > 0. 
Proceeding as usual we write now 

w(s) = 
b 
C(w) 

ws(s')ds'', 

\w(s)\2 < 
•C(u;) 

/a 
wsV)&(s')^' 

,C(u,) 

./s 

ds' 
d+fg4 

and, since b is increasing, the last intégral is less than (C(u>) — s)/b(s). Hence 

•C(u;) 

d+d14 
b(s)h(s)2w2(s)ds < 

d+1d 

iP(t/2) 
b(s')wi(s')dsf 

d+b 

s+d1 
h(sy(C(u>)-s)ds) 

and the last intégral is bounded by 
,C(u,) 

J-oo 
(1 + \s\)-2^ds < C. 

Noting that ws = (j)svr(<t)) and </>sb(s) = erb^s\ we obtain by changing back the 
variables 

.C(w) , 

d+d1 
WsW;(s)ds ^ 

rt+M 

h/2 
(exp rb(il)))v2dr. 

Finally, we obtain easily 

|Lfu - e/rL2U\ ^ Ce(l + t)-2+2V"1/2, 

which complètes the proof. 
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V.3. The energy inequalities. — We présent here one of the many possible vari
ations on the ideas of [3]. 

Proposition 3.1. — Let P = c~ld2 — cAx and p = (r + l)b(ip) as in Proposition 2, 
TiV = diV + (tJi/c)dtv. Assuming that u satisfies the induction hypothesis (IH) on 
[0,T], we have, fort^ T, 

\(dv)(.A)\2 + C 
d+d1 

o d9+d14 
(expp)(r + Y,{Tiv)2dxdt' 

<C\(dv)(.Ml + C 
re 

/o 'R3 
(exp p) I Pu 11 «t I dxdt' 

+ Cs 
rt 

>0 
dt'/(l + t')\(dv)(.,t')\l 

Proof. — We have 

{expp)Pvvt = dt{l/2(expp)(v2/c + c\vx\2)) -Y,di((expp)cviVt) 4- (expp)Q, 

with 
Q = l/(2c)(ut/c - pt)v2 + ^2(m + cpi)viVt - l/2(ut + cpt)\vx\2. 

Writing explicitly the derivatives of p we get 

Q = (r + l)/(2c)&'(y>)[-cVt Uvi - (ViMM)2 - vîiutâ - c2|Vx|2)] 
- £(1 + i)-16(^)/2(c-1t;t2 + c\vx\2) + ut/2c2v2 + V^ti^t - ut/2\vx\2. 

Integrating this identity in the strip [0, t] x R3, we obtain as usual the control of the 
energy 

E(t) = 1/2 
/R3 

(expp)(t;2/c + c|vx|2), 

and the terms of the last line in Q are bounded by 

Ce b 

'o 
E{t')dt'/{\ +1') 

Now, V is not an exact phase function for P. For r ^ t/2, dtp is bounded, hence the 
terms of the first line of Q are bounded by 

C(t + l)\b'(i>)\\dv\2 ^ C(l + r)(l + t)-x-v\dv\2, 

which are negligible terms. For r > t/2, we write 

^2-c2|Vx|2 = -c2/r2E(P^)2. 

From the équation ijjt + aj)r = 0, we get 

(dt + cdr)(a1 ^Riip) = -o1 ^RiU^r + \iuja\{ax ^Riip), 

and we already know that 

\a7^Riuér\ < Ce(l + t)~1+Ce. 
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Hence 
\a^R^\^C(l + tf£. 

The error term 
(T+l)b'v2/MRi^r/r2 

is then bounded by 
Cv2(l + elog(l + t))(l + m-1-"^! + t)~2+C£ ^ C(l + t)-1-V 

which is negligible. Finally, 

v» - (tl>i/il>t)vt =Vi + (ui/c)vt - (vtM)(^* + (vi/c)ipt), 
Ei I < CE( + \Zkm{al»a)\ 

Replacing — ipi/^tVt by in Q gives an error term bounded by 

(r + l)b'(^t\v2(R^)2/r2, 
which we have already seen to be negligible. • 

In contrast with what could seem obvious, the energy inequality for L is non trivial. 

Proposition 3.2. — Let p = (r + l)b(ip) as in Proposition 2, and 7 > 0. Then, for 
smooth functions v supported in 7(1 + t) < r ^ M + t, we have the inequalities 

n ( î + t r v / v . , o u v e 
RT 

'0 
(i + 0 ~ V / 2 ( ^ ) M ' ) U ^ ' 

d+d5 
Jo 

(l + t')-2W.,t')\odt',v(x,0)=0, 

II) (L + T)-1|(Ô«)(.,T)|O<C 
d+d 

R 
0 

l + t')-l\(dLv){.,t')\0dt' 

+ Ce 
•t 

'0 
(1 + t')- \(dv)(.,t')\odt',v(x,0) = vt(x,0)=0. 

Proof 
a. We write 

epVcLvv = l/2dt(epv2) + l/2dr(cepv2) - (l/2)epv2(pt + cpr) - (l/2)epurv2, 

and remark that 

Pt + cpr = (r + l)b'{i>){<4>t + cipr) + e(L + *)-1&W0-

Hence, integrating in r and t on [0, +oo[x [0, t], we get 

epy/cLvvdrdt' = 1/2 epv2(r,Lo,t)dr-(l/2) epv2(l+t')-1 f( l+t')ur+eb(é)}drdt', 

which gives the bound 

(1/2) / epv2(r,u,t)dr < Ce / epv2(l + t'^drdt' + C / ep\Lv\\v\drdt'. 
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Intégrâting now also in UJ and using again the support condition on v, we obtain 

Cv2(l + elog(l + t))(l + m-1 
r*. 

i + o-152(*/)*/ 

+ 
rt 

Jo 
;l + f)-1|ep/2(L1;)(.,t,)U (̂*,)*, 

which gives i). 

b. With Lv = h, we have 

HT = L̂ T — (ut/2c)Liv,hr = LVR — (ur/2c)Liv1 Rih = LRiV — (Riu/2c)Liv. 

Using the inequality of a. for vt,vr yields the desired terms. For RiV, we obtain 

Cv + t)~2+C£ ^ C(l + t)-1-V 
d 

sk +sl + ks +sks 

+ c 
d 

7o 
l + t')-l[\e^2Rih\L2 + |^|Loo|e^2(^)|L2]^/. 

Dividing both sides by (1 -h t), using the support condition and the fact that t' ̂  t in 
the intégrais, we get 

(l + T)-L|EP/2(jR./r.M^)|L2 ^ C d 

JO 
(i + O'V/2(fliA0fc|L*<ft' 

= d 
d 
BR 
0 

l + t')-V/2(&>)L*<fe'. 

Since = uJidr — (UJ A (R/r))i, this gives ii). 

VI. Commutations with the operator P 

VI. 1. Computation of [Zm,P] and conséquences. — Recall that 

P = c^d2 - cA. 

To establish formula describing [Zm, P], we compute separately the two terms [Z, P], 
which involves only u, and [aLi, P]. 

Lemma 1.1. — VKe fta^e the formula (1.2)a, (1.2)&, (1.2)c, (1.2) .̂ Away from r = 0, 
we also have the formula 

(1.1). [K,Pl = Ku/cP- 1 
8c 

[Lu + 3Liu)L2 -1 
8c 

(3Lu + Lxu)L2 - c~*/2utLiL 

1 
y/cr2 

RjuRjdt — (l/2c)[3/2c3u2 - 1/Ac2utur + l/4az2 + 3(u2/c2 - \ux\2)]Lx 

- (l/2c)[L1u/2c(^/2ur - UtlV~c) + 3(wt2/c2 - K|2)]L, 
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(1.1)6 [Ri, P] = {Riu/c)P - (Riu/2c)L\ - (Riu/2c)L2 - (Rm/c)^ 

- RiuLu/^Lx - Riu/2c2(Lu + Lxuj2)L, 

(l.l)c [S, P] = (Su/c - 2)P - {Su/2c)L\ - (Su/2c)L2 - (Su/^LLx 

- SuLu/^Lx - Su/2c2(Lu + LlU/2)L, 

(l.l)d [Hu P) = (Hiu/c)P + (-Hiu/2c + 
Ui(r + cb) 

2cJe 
]-Lu)L\ 

+ (-Hiu/2c 
u)i (r — et) 

2cy/c 
L\u)L2 + (—Hiu/c-\-XiUt/c2 — tuJiUr)LLi 

- (tLiuL + tLuLi)(di - ujidr) + 2ct I r2 RjuRjdi - 2xi/cr2RjuRjdt - 2ut/cdi 

- {HiuLu/Ac2 -00i(r - et) 
Ac2y/C 

LuL\u +Xi/c\fc(u2/c2 — \ux\2) + diu/y/c)Li 

— (HiuLu/2c2 + Liu/Ac2(HiU — uJiSu) + diu/yfc + uji/c\/c(ctu2 — r\ux\2))L. 

Proof 
a. We have 

(l-2)a [K, P] = Ku/cP - Ku/c2d2 - c'1'2 £Ujd2t, 

(1.2)6 [Ri,P] = [Rhc^df]-[Ri,cA] = -Riu/c2d2-RiuA = Riu/cP-2Riu/c2d?. 

Similarly, since [S, d2] = -2d2, [S, A] = -2A, 

(1.2)c [S, P] = [S, c-itf] - [S, cA] = -Su/c2d2 - SuA - 2/cd2 + 2cA 

= (Su/c - 2)P - 2Su/c2d2. 

b. We have 

[Ô2, Hi] = 2((c + tut)d2t - xiUt/c2d2) + (2«t + tutt)di + Xi/c2{2u2t/c - utt)du 

[A, Hi) = 2(tuM - Xi/^Ujdl + l/cdl) 

+ tAudi - 2/c2Uidt + Xi/c2(2\ux\2/c - Au)dt 

Hence 

[Hi, P] = Hiu/cP - 2Hiu/c2d2 - 2ut/c{td2it - Xi/c2d2) + 2uj{ctd2j - Xi/cd2t) 

- 2ut/cdi - 2/c2(cui + Xi(u2/c2 - \ux\2)dt. 
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We can write 

ctd% = dtHi - Xi/cd2 - (c + tut)di + XiUt/c2dt, 

ctdfj = djHi - Xi/cd2t - tujdi + (xiUj/c2 - ôij/c)dt, 

ctd2, = djHi - (xi/c2t)dtHj + (xixJcHïd2 

+ (xi/c2i){c + tut)dj - tujdi - c 1(Sij + (xiXj/c3t)ut - XiUj/c)dt. 

Using thèse identities to express ail second order derivatives as d2 modulo dHk, we get 

(1.2)d [Hu P] = Hiu/cP - 2Hiu/c2d2 - 2ut/c2dtHi - 4(xiUj/c2t)dtHj 

+ 2ujdjHi + A(xi/c3t)Sud2 + 2t(u2/c2 - \ux\2)di + 4(x^J/c2t)(c + tut)dj 

- Axi/c2(u2/c2 - \ux\2)dt - 4t/c(ui + XiXjUjUt/c3t)dt. 

If we are away from r = 0, we can handle differently, using the identity 

Vjdj = vrdr + 1/r2 RjyRj-

We write then 

[Hu P] = Hiu/cP - 2Hiu/c2d2 + 2xiUt/c3d2 

— 2tut/cdt{di — ujidr + uJidr) + 2ct(urdrdi + \/r2RjuRjdi) 

- 2xilc{urdif + îyRiuRidt) - 2ut/cdi - 2xi/c2(uf/c2 - \ux\2)dt - 2ui/cdt 
— Hiu/cP — 2Hiu/c2d? — 2(tut/cdt — cturdr)(di — uJidr) 

+2/r2(ctRjuRjdi-Xi/' cRjuRjd^^Ut/'cdi-2xi/'c2(u2Jc2-\ux\2)dt-2ui/cdt+2YJ, 

where ^2 means here the sum of the following four terms 

^2 — XiUt/c3d2 — tuJiUt/cd2t — XiUr/cd2t + cturuJid2. 

Using the identities 

2/c<92 = 1/2L2 + 1/2L2 + LLi + Lw/4cLi + (L& + 2Lu)/4cL, 

2cd2 = 1/2L2 + l/2L\ - LL\ + Lu/kcLx + (Lm - 2Lu)/AcL, 

4d2t = L2-Lj + Lul2cLx - L1u/2cL, 

we obtain from a. the desired forms for [K,P], [Ri,P] and [S, P]. In the présent 
computation of [Hi ,P], we get 

2 £ = uji(r - et) 
2Cy/ë 

LxuL2 + 
uji(r + et) 

2cJc 
LuL2 + (xiUt/c2 — tuJiUr)LL\ 

+ (xiU2/c3yfc — tUJiU2/yfc + ujiLiuSu/4c2)L + LUi(r - et) 
Ac2Jc 

LuL\uL. 

After some algebraic manipulations, we get the resuit for [Hi, Pl. 
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Lemma 1.2. — We have 

[5Li,P] = (-Lxa + aLmlcjP - (La+ aL1u/2c)L21 + a/c(Lu/2 - LivjLxL 

+ r~2RjaRjLi - ar~2RjuRjL - cr~2(L{a + 2ay/c/r)AUJ 

+ [—L\La — L\uj2cL{a + cr~2 Aua + >/c/rLa 

- a(-c/r2 + (-Li^)2/2c2 + LuLm/Ac2 - l/4c(u2/c2 - K|2))]Li 

+ [L1a(Lu/2c - y/c/r) - a(c/r2 + Lmut/c2^ + l/2c(u2/c2 - \ux\2))]L. 

Proof. — We have 

[Lu d2] = ut/cdtL + utt/2cL - l/4c-^2u2dt - 3/4c"3/2u2dr, 

[Lu A] = Uj/cdjL + 2^/r3Au - \j^l2\ux\2dt 

- 3/4c-3/2\ux\2dr + Au/2cL + 2^fc/r2dr, 

hence, writing here b = a, 

[6L1, P] = bLw/cP - 2b/c2L1ud2 - (Pb)L1 - 2btlcdtL1 + 2cbrdrL1 

+ 2c/r2RjbRjL1 + but/c2dtL - burdrL - b/r2RjuRjL - 2bcy/c/r3AUJ 

- 2bc^/r2dr - b/Ac(u2/c2 - \ux\2)(2L - la). 

The strategy is the following: after some algebraic arrangements, we express LL\ 
using P only in the term {L\ti)LL\, and take a careful look at the first order terms. 
We have first 

-2btlcdtLx + 2cbrdrL1 = -{Lb)L\ - (Lifc)LLi, 

ut/c2dtL - urdrL = (Lu/2c)L1L + (L1u/2c)L2. 

Next 

-2b/c2L1ud2 = -b/cL1u(LL1 + 1/2L2 + 1/2L? + Lu/4cL1 + ut/cy/cL). 

Now we replace, in the term (Lib)LLi, 

LLi = P + c/r2Aw -h 2c/r<9r - Lu/2cL, 

which gives 

[bLuP] = (6LIÎX/C - Li6)P - (L6 + bLiu/2c)LÎ + 6(Ltx/2c - L1u/c)L1L 

+ 2c/r2RjbRjL1 - b/r2RjuRjL - cr~2(2by/c/r + Li6)Aa; + Qi, 

where the first order terms Qi are 

Qi = 2c/r(brL1 - (Lib)dr) + qiLi + <?2£, 

^ = -6/2c2(Li^)2 - b/Ac2LuL1u + bc/r2 - L1u/2cL1b 

- LxLb + c/^Aub - l/4c(u2/c2 - \ux\2), 

q2 = -b/c2y/cL1uut - bc/r2 + LuL1b/2c + l/2c(u2t/c2 - \uxf). 
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iii) LER", P] = (Hiu/c - L{a + aLiu/c)P - A(Hi)L\ r — et 
2cr 

o A Ru)iL\ 

+ (-HiU/c+XiUt/c2 - tUJiUr + b 

c 
k / 2 - Liu))LiL + (-Hiu/2c + s+ ù^s 

2Cy/ë 
Liu)L2 

- (tLiuL + tLuL\)(di - u)idr) + 2ct/r2RjuRjdi - 2xi/cr2RjuRjdt 
+ r~2RjaRjLi - ar~2RjuRjL - cr 2(Lia + 2ay/c/r)AUJ - 2ut/cdi 

+ [-#^/2c2(£i^ + W2) + rsd 
ic2\/c 

Liu[—2c\fctur + (r — ct)Lu) — diu/y/c 

+ xi/2c2(utL1u - 2y/c(u2/c2 - \ux\2)) - LiLa - Liu/2cLia + cr 2Awa + y/c/rLa 
- a(-c/r2 + (-LM)2/2c2 + LULM/4c2 - L/4c(U2/c2 - \ux\2))]Li 

+ [+Litt/4c2(CT;i5ii - Hiu) - diii/y/c+Wi/cy/c(r\ux\2 - cfru2) + Lu/2c(touiUr - XiUt/c2) 

+ Lia(Lu/2c - y/c/r) - a(c/r2 + Liuut/c2y/c + L/2c(^/c2 - \ux\2))]L. 
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It is important to remark that 

brL\ — L\bdr = br(L — 2y/cdr) — (Lb — 2y/cbr)dr = brL — Lbdr 
= brL - (Lb)/2y/c(L - Li) = l/2yfc(-LibL + LbLx). 

Collecting the terms gives the resuit. 

Putting together the two above Lemmas yields the desired expression. 

Lemma 1.3. — We have the formula 

i) [R™sss, P] = (Riu/c - L{à + aLlU/c)P - A(Ri)L\ - Riu/2cL2 

+(-Riu/c+-(Lu/ssss2-Liu))LiL+r~2RjaRjLi-ar~2RjuRjL-crqqqq~^ 
+ [-Riu/2c2(L1u + Lu/2) - LxLa - L1u/2cL1a + cr~2'A^a + y/c/rLa 

- a(-c/r2 + (-LlU)2/2c2 + LuLlU/±c2 - l/4c(u2t/c2 - K|2))]Li 

^-Riu/Ac2Liu+Lia(Lu/2c-yJc/r)-a(c/r2+sssssssssssL1uut/c2y/c 

ii) [5m, P] = (Su/c - 2 - L{a + aLxu/c)P - A(S)L\ - (Su/2c)L2 
+xxxxu/c+-(Lu/2-Liu)))L1L+r-2RjaRjL1-ar~2RjuRjL-cr~2(L^ 

+ [-Su/2c2(L1u + Lu/2) - LxLa - Lxu/2cLxa + cr 2AUJa + y/c/rLa 
- a(-c/r2 + (-L1u)2/2c2 + LuLlU/Ac2 - l/Ac(u2/c2 - K|2))]Li 

4- [-Su/4c2Liu+L1a(Lu/2c-y/c/r)-a(c/r2+Li uut/c2y/c+l/2c(u2/c2-\ux\2))]L 
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Here, 

Â(Ri) = La(Ri) + L1u/2ca(Ri) + Riu/2c = La{Ri) + R^u/^c), 

1(5) = La(S) + L1u/2ca(S) + Su/2c = La(S) + Smu/(2c), 

I(Jïi) = -uJiÂ(S) - (u A !(#)),. 

Proof. — The formula are obtained by just adding the formula of Lemma 1.1 and 
1.2, and using [L, L\] = L\uj2eL\ — Lu/2cL to replace LL\ by L\L. The expressions 
of A(Ri) and A(5) are clear. We get 

A(Hi) = Hiu/2c- Ui(r + et) 
2cJc~ 

Lu + La(Hi) + L1u/2ca(Hi) -r — et 
2cr 

(LU A i?it)i. 

Since 
Hi = (jJïHQ - ct/r(u) A R)i,u>iH0 uji(r + et) 

d+d41d 
•L — u^5, 

we obtain 

A(Hi) = La(Hi) + L1u/2ca(Hi) - UiSu/2c - l/2c(u A Rui). 

Using the définition of a(Hi), we get the resuit. 

We will dispatch the terms in Lemma 1.3 into three catégories: 
i) A term which can be written in the form 

MxOidZm, M\OLG, 1Zrn, MiCtd 

will be called "standard"(st.); otherwise, it will be called "spécial" (sp.). 
ii) A standard term for which, for some 7 > 0, 

| aKC( l + *r1-7 

will be called integrable (int.). Otherwise, it will be called "just". 
Rewriting appropriately the terms in Lemma 1.3, we obtain the following Propo

sition. 

Proposition!. — We have 

[zm,p] = £P + £1 + £2 + £3, 

S = fZmu + fda + fdua, 

i) is a sum of standard integrable terms with 

a = ai/(l + t)2{e-\l + t)du), a = ai/(l + t)2Nx 

ii) YI2 25 ^e sum °f the just standard terms 

Y,2 = fdudZm + fdZmud + fdud, 
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iii) is the sum of the spécial terms 

J2~ = -AL\ + r~2RjaRjLi + /r"~2LiaAw + cr~2 A^aLx 

+ f(l + t)-lduRiad+ fL,Lad+ fduUad+ fil-ht)-1 Lad 

Proof — We proceed by inspecting the terms in Lemma 1.3, after an appropriate 
rewriting. We discuss only the terms in [if*, P], which are the most difficult, examining 
the terms in the order they appear in the Lemma. The terms of the other [Zm, P] 
have the same forms. The spécial terms will be discussed in the next Proposition. 

1. The term —AL2 is spécial. 
2. We have 

r-ct = f + aif = /(7i, 
hence 

r — et 
2cr (UJ A Ru)i = M / ( l + t)RjU, 

and using Lemma IV.3.1, 

<TI/(1 + t)RjuL\ = Mi/(1 + t)Zmu([Zm, Li] + fdZm). 

Since [Zm,Li] = M\d, the term is 

M1e(jl/(l + t)2N1(d + dZrn). 

It is st. int. with a = eai/(l + t)2Ni. 
3. Recalling that 

L = b 
r + et 

'EutiHi + S). 

we note first 

= re 
r + ctJ 

r — et 
2^c~(r + et)5 

d+d LI r 
"r -I- et 

1 
2Vc(r + et)2 

((r - et)Lu - 4cy/c). 

Hence 

(1.3) d+ d d+d5 

a+t)2 
duzm + / / ( i + t)dzm, 

(1.4) L2 = / / ( l + tfZm + / / ( l + t)dZm. 

We write 

M\ZmuL\L = Ml£<7i/(1 + t)Ni(ai/(l + tf{du)Zm + 1/(1 + t)0Zro, 

hence both terms are st. int., with 

a = e2oi/(l + t)*Nl, a = ea1/(l + t)2N1. 
We write 

ftduLxL = /(aw)2cr1/(l + t)Zm + fdudZm, 
the second term is (iust) while the first is st. int. with 

a = e2a2/(l + i)3((l + t)du/e). 
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We write 
faduLxL = (cr-1a)(/cr2(^)2/(l + t)2Zm 4 M / ( l + t)dudZm), 

showing that bot h terms are st. int. with 

a = e2af(l 4 t)ANu a = 6^/(1 41)2^. 

We write 
fHiuL2 = M1Zmu(f/(l 4 t)2Zm 4 / / ( l + t)dZm), 

hence both terms are st. int., with 

a = sa2/(l 4 tfNu a = eaftl 4 t)2^. 

4. To handle the term 

tLlUL(di-uJidr) = fLmZmiuiRj/r) = Mi(du)/(l+t)fljH-/ÔM[Zm,iîi/r]+/dMÔZm, 

we need Lemma IV.4.3. The term 

M1{(l + t)due)e/(l + t)2Zm 

is st. int. with 
a = £<7i/(l 4 t)2({l 4 t)du/e). 

According to Lemma IV.4.3, he middle-term is equal to 

Mxdu/il 4 t)Zm 4 Miai/(1 4 i)dud 4 fdu/(l 4 *)i^50. 

The last term is sp., the first two are st. int. with 

a = ea1/(l + t)2((l+t)du/e). 

5. We write the term tLuL\(di — C0idr) as 

fZmuL^R/r) = f/(l 4 tfZmuR 4 / / ( l 4 t)Zmu([Lu R] 4 i*Li). 

Since 
[Li,iî] = fRuL, RLi = fN[ZmLu [Z^L^ = fNtf, 

the term is 

Mi/(1 4 £)2ZmuZm 4 Mi/(1 4 ^Zm^ZmuL 4 <9 4 ÔZm). 

Ail three terms are st. int. with 
a = ea\l(\ 4 t)3Nu a = eai/(l 4 t)2Nx. 

6. We write 

/ / ( l 4 QRjuRjdi = Mi/(1 4 t)Zmu([Zm, di) 4 ÔZm). 

In view of Lemma IV.4.2, both terms are st. int. with a = ea\/(l 4 t)2N\. 7. The 
term r~2RjaRjL\ is sp. 

We write 
ar-2RjuRjL = M{a/(1 4 t)2Zmî/([Zm, L] 4 LZm), 
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showing that both terms are st. int. with a = sa2/(l + t)3Ni. The next term is sp., 
then we write 

far~3R2 = fayRjiRj/r) = MKTI/(1 + t)2JVi([Zm, d] + d + dZm), 

which gives three st. int. terms with a = <Ji/(l + t)2N\. 
8. We reach now the first order terms. While 

fdud, f(l + t){du)2d = fe^l + tJdUdud = fdud, 

are just, we write 
f(du)Zud = MiZmudud, 

which is a st. int. term with a = e2a\/(l + i)2N\. 
9. The next four terms containing a are spécial. 

10. We write then 

/ / ( l + t)2ad = M / ( l + t)2ATiô, fa(du)2d = f6^/(1 + t)2((l + t)due)d, 

hence the two terms are st. int. with 

a = <ri/(l + t)2Nu a = <7i/(l + t)2((l + t)du/e). 

Finally, the terms in L have exactly the same structure, with the exception of 

/(l + ty'L^L = /Lia(ai/(1 + t)2)(a^Zm) 

which is st. int. with a = <7i/(l -h t)2Ni. • 

The following Lemma displays the structure of the most délicate terms in £3 . 

Lemma 1.4. — We have 

y/cLa = —Seixl{^Vc)(ZmU + (a - a)Liu)) + e(l + t)~1sea + [u, So]ar, 

dr(y/cLa) = -drSe(x/'(2y/c)(Zmu + {a-a)L\u)) 

+ e(l + t)~lsoar + urSoar + 0\[u,8e]ar, 

dtWcLa) = -dtSe(x/(^)(ZmU + (a - a)LlU)) 
+ e/(l + t)2sea + e/(l + t)seat + utS0ar 

+ u/(l + t)sear + (1 + t)~1S0uar - Soutar + Sourat + S0K, 

r-2RiaRiLx = Afi(l + t)-2e2(s0a)dZrn + Àfi(l -f t)"2fl2(^a)ô, 

/r"2L1SAa; = Mi(l + t)-\da)(R/r)Zm 

+ Mi(3S)(ai/(l + t)2)^!-1^) + Mi(l + t)-2(05)(ai3 + e2(sea))d), 

cr^A^ad = f(l + t)-2922{sea)d, f(l + i)~lduRad = /( l + t)-2fl2(^a)ô. 
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< Ceil + t)-1-*. 

Moreover, we have 

|(1 4 \dta\ 4 |ôrH| 4- a2An + + t)(\Z0du\ 4 \Z0u/a i\)) 1 Â\Loo 

Proof 
a. We have 

\fcLa — (dt 4 cdr)a = e/(l 4 i)soa 4 [c, So]ar - Se(y/cLa), 

which gives the first formula. The second formula follows, since 

drsea = sear, drSeb = 6\Sob. 

The third is also clear, using the formula of Lemma IV.5.1, since Sebr = 9\Seb. 

b. From the définition of se, we have 

Riseb = h(u;)02Seb, A^Seb = fOlsBb. 

Hence 

r"2RjaRjLi = h(u)r-262seaRjL1 = Mx(l 4 t)~262sea(M1d 4 LiZm), 

cr~2Au;aL1 = /(l 4 t)-2dlsead, 

f(l 4 t)-lduRjad = f(l 4 t)-202sead. 

c. We have 

fr-2L{aR) = fr^L^R^Rj/r) = Mi{l + t^d^Z^, Rj/r) + Rj/rZrn). 
Using Lemma IV.4.3, we get the resuit. 

d. Using Lemma IV.5.1 to evaluate [dt,Se] and Lemma IV.3.1 to express P, we 
can write 

y/cÂ = e(l 4 £)-1<9f 1soar 4 e(l 4 t^O^seMiZ^a 4 [w, S^K 

- 5^(x/(2v^)LlW(a - a)) 4 ^ Z m u 4 x/(2>/S)Zmu - S*(x/(2^)Zmu). 

Using the already established formula se(o~ib) = aisgb 4 9ï1seb, we can bound the 
first three terms of aï1 A by 

Ce(l 4 O"1^"1!^! 4 Cte(l 4 t^e^M^Qa^Z^al 4 |ar|). 

Next, since 

\b - Seb\ < Ctff1^! 4 Cfl̂ fl&l 4 |i»|), 

|a - a\ < Côf^ôal 4 Cfl̂ 1(|a| 4 |Afi||Zma|), 

\X/(2y/c)Zmu/<T1 - S0(X/(2Vc)Zmu/ai)\ < Ce(l 4 t ) " 1 ^ ^ ! 4 ^1|M2|). 
Note that the error term produced when introducing crf1 in Se is bounded by 

Ceil + ty^î^Mil 
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Finally, observing that 

\Zmu\ ^ C\Z0u\, \dta\ + |ôro| ^ C\a\/(1 +t) + C\at\ + C|ar|, 

we see that we can use Lemma IV. 1.2 to control the terms containing (1 — x)°~i Zmu. 
Taking f3i big enough with respect to |M2| yields the desired estimate. • 

VL2. Higher order commutators. — Taking a standard cutoff x = x(r/(l + 0) 
(that is x(s) is zero for s ^ 1/2 and one for s > 2/3), we write 

[Zm, P] = x[Zm, P] + (1 " x)[Zm, P], 

and use the formula of Lemma 1.3 for the first term, the formula (1.2) of Lemma 1.1 
for the second. 

We need now a Lemma describing the structure of [Z^, P]. 

Lemma 2.1. — Writing in short 
[Z7n,P] = 6P + Q, 

we have 

i) [Zm,P] = EZ1ÀS-- z^sz^p + Ez%s- • • Z%ÔZ^QZ^. 

By an abuse of notation, we do not put indexes for the ô and Q, though there is one 
for each Zm. In the first sum, 

i^l, p + £(L + l)<fc. 

In the second sum, 
q + p + 52(ki + l)^k-l. 

ii) Zl\Zm, P]Z^ = EZm°~--- Zl^6Z^P + £ Z%6 • • • Z%5Z%QZ%. 

In the first sum. 

Pi + E(^ + 1)^P + ^ + 1-
In the second sum, 

Pi + P2 + + !) < P + Q-

Proof. — For k = 1, i) is clear. We write now 

[Zknt\P] = Zm[Zkm,P] + [Zm,P]Zkm. 

We see that Zm acting on both sums yields only correct terms. On the other hand, 

[Zm, P]Zkm = Ô[P, Zkm] + 8ZkmP + QZkm. 

and ail three terms are of the desired form. This proves i). The proof of ii) is 
completely similar. • 
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VII. L2 estimâtes of u and a 

Using the structure of PZ^u displayed in VI, and the energy inequality for P, 
we want to estimate now |dZ^+1tx|o. Similarly, we will estimate \dZ^a\o. To this 
aim, we introduce some notations. We set, with a = a{Ri) or a = a(5), 

Ak = (l + tyWv^Z^ah + {Z^dalo), k > 1, fa = £ |W*|o, * > 0, 

4>'k = e-\l + flu|o + \cr^Ziu\o) + IZt'dalo + {a^Z^a^ k > 1. 

The point of thèse notations is that the "bad" Nk is Z^a, that we were forced to 
introduce to have Lemma IV.3.1. The quantity (j)'k is just fa deprived of this bad 
term. Note that, since a is supported for o~\ ^ (7(1 + t)Co£, we have 

fa^C(l + tf°£<l>fk, 

but this "small" amplification factor is very important in ail this paper. According to 
Lemma V.l.l, we have 

^ - e - ^ i + t ^ d u i o + iz^aoïo. 

Since the energy inequality will control dZt+1u, we introduce also 

^ ^ e - ^ l + t ^ u l o + IZ^aolo. 

Thanks to Lemma IV.4.2, we see that, assuming 

Cv2(l + elog(l + t))(l + m-1-" 

we obtain 
\[Z^\d]u\0 ^ Ce(l + tf£ + Ce(l + ty^Z^da^ 

It follows that 

4>'k+1 < C(i + + C4>Ui,4>ï+i < c ( ! + *) + + C<W 

VII. 1. L2 estimâtes of 
Proposition 1. — PFe can choose j3\ and fa — Pi big enough to ensure the following 
implication: Assume that, for 0 ̂  / ^ k < 2(sq — 4) — 1, we have 

\Ni\0 < C(l + *)1+Ce, Ai < C(l + *) • 

T/ien, /or some 7 > 0, 

|PZ£+1ti|o ^ Ce(l + t)"1"7 + Ce2(l + *)~1+C£ + Ce(l + t)-2-^0fc+i 
+ Cs2(l + t)~2<l>'k+1 + Ce(l + t)-1-*Ak+1 + Ce2(l + t)-Mfc+1 

+ c(i + t)-1+C£i 
:n̂ C(l+t)co* 

ePiTiZ^ufdx) . 

Remark that the statement of the Proposition does not change if we replace 4>k+1 
by</4'+1-
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Proof. — Before proceeding, let us explain how we classify the various terms of 
PZ^~1u. We call SC (for subcritical) the terms which can be estimated by already 
known quantities, that is, using the induction hypothesis. We wish thèse SC terms 
to be bounded in weighted norm either by e(l +1)-1-7, or by e2(l + t)~l+Ce (7 will 
dénote here various strictly positive numbers). In both cases, 

rt 

r 
SC termlodt' ^ Ce(l-f 

The other terms are called C (critical) terms, and are more délicate to handle, since we 
want them to be bounded by quantities we control direct ly through energy inequalities, 
in such a way that application of Gronwall's Lemma will be possible without damage. 
More precisely, the quantities we expect to control are 

\dZ^u\0, \dZkma\0, 

using the inequalities for P and for L respectively. The C terms for which we have an 
easy control will be bounded by e(l + £)~2-74>k+i or e(l + t)~1~1Ak+i. The limiting 
case will be C terms bounded by e2{l+t)~2(j)'k+l or s2(l+t)~1Ak+i. Finally, one term 
involves the spécial derivatives T{, and is expected to be handled using the control of 
thèse spécial derivatives given in Proposition V.3.1. 

A. 1. According to Lemma 2.1, ignoring \ here, we have 
pzl+1u = yzkT}ô--- zkj6zuy^ + v9 + v j ( z » , 

with 
a + r +YY/^ + l) ^ k. 

We are going to write down operators like Z^Q, and estimate the corresponding 
terms. With the notations of Proposition 1.1, 

zqmQ = zsssssss^+z^+zir.3 
A.2. We have 

+ddl +dm 
<?l+<?2+<?3=<? 

Z%M1Z%a[Z%dZm + Z%{aïlZm) + Z£d]. 

Now Z%M1 = M1+qi, 

Z* (<n/(l + tf{e-\l + t)du)) = ss sss + tf Y! fNh •••Nli, £ I,- < Q2, 

Z*(<n/(1 + tfN,) = ax/{l + tf £' fNkl • • • , £ < 1 + q2. 

Using Lemma IV.4.2, we also have 

Z%Ô = ÔZ% +yjfNh---NudZ^, Ek+P^qs, P^qz-l, 

Z%(a^Zm) = aï1 E fNh •••NliZ^, £ l s + p' < q3 + 1. 

We will often use the following standard remark: we have 

Mr = fNiNh---Nh, U>2, £(/< - 1) < r - 1. 
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Either ail U are ^ «o — 4, or one of them at least is ^ SQ — 3; in the latter case, noting 
Y^\h — 1) the sum corresponding to the other indexes, we have 

£'(Zi - l) + *o- 4 < r - l . 

If r ^ 2(so — 4), this implies that for ail other indexes, k < So — 4. 
Hence 

|Mfc+i|o < C(l + tf£\NM\0 + C(l + t)1+Ce, 

|Mr|0^C(l+*)1+C£, r<fe. 

If gi = g = fc, the corresponding term in J2i ̂ mu ls bounded in weighted L2 norm 
hy 

|Mfc+i|0|ae(l + ty1^'^OO ^ CTE(l + T)-2~7(l +1 + |JVJFE+i|o). 
If q2 = q = k, the corresponding term has the same bound, and also if q% = q = /c 
or r = k. In ail other cases, the term is bounded by Cs(l +1)-1-7. Since 5 = fN±, 
Z^ô = Mi+fc., 1 + fci < fe, the term involving m PZ^u ls bounded in weighted 
L2 norm by 

Ce(l +1)-1-* + Cs(l + t)-2-*\Nk+110. 
A.3. We turn now to the ternis involving ^2- We have 

ZqmZ2Z>= E Zqnl(fdu)Z%dZ^u + ZMfdZmudZrmu). 

For the first term, we have as before, 

Z«i(/du)=e(l + t)-1M,1, g i ^ l , 

Z%dZrmu = ÔZ%+ru + NudZf^u, Elj+P^Q2, P^Q2- 1. 

If #2 + r = /c, necessarily q± = 0 and no £ terms are présent, hence the corresponding 
term is bounded by 

Ce{l + t)-l\Z^luW 
If q2 + r < k~ 1, the weighted L2 norm is bounded by Ce2(l-\-t)~1+C£. For the second 
term, either q = k and ail derivatives fall on the middle term to give fdZÏ?+ludu, 
or the powers of Zm acting on u are ail at most k. In the first case, the L2 norm is 
bounded by 

Ce/il + t^dZ^ul^. 
In the second case, it is bounded by Ce2(l + t)~l+Ce. To summarize, the term 
involving YI2 m P^m~lu ls bounded in weighted L2 norm by 

Ce2(l + t)~1+C£ + Ce(l +1)~ V/20^+1U|L*-
B. We turn now to the spécial terms Z^ Z^iz. We claim that, iip + q ^ k — 1, 

ail thèse terms are SC. In particular, any term in PZ^u containing at least one ô 
factor will be SC, since then 

p + q ̂  k — 1, ki ^ k — 1. 
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It is also important to remark that, for SC terms supported for ai < C(l + t)Co£, 
powers of ai are not crucial, since extra factors (1 + t)Ce are admitted in the estimate 
of the Proposition. In what follows, the index r is always r = 0 or r = 1. 

B.l. We have 

Z^r-iRjaRjLiZ^u) = Mh(l + t)-202(Z%sea)dZ%+v+ru, 

with li — 1 + pi + p2 < q. If p + q ^ k — 1, the term is SC, and also for p + q = k 
except for the C terms 

Mi{l+t)-2e2{sea)dZl^1u, Mk+i(l+t)-202(sea)dZ^u, Mi(l-^t)-2e2(Z^sea)dZ^u. 

Considering the last term, using Lemma IV.5.3, we see that ail terms in [Z^, so]a are 
SC, except 

O^iMiSoiMi-,\MxZkma + MlSe[Mk;\MxZrma + Mxse[, Mx\MxZkma 

+ Misel Mk\MxZrma -f MiseMiZkma + MlS*[; Mka + MiZ^la)Mi). 

Thèse terms are bounded in weighted L2 norm by Ki x |Z^a|o, K2 x |Mfc+i|o. Here. 

Ki = 0^\M2\LOO, K2 = 0^(\Z^a\Loo + IMIILOO). 

Let us explain here once for ail the meaning of such expressions. The notation Mi, M2 
etc. is a commodity not to write explicitly the exact powers of Ni involved. The point 
is that thèse powers, in the finite computation we are doing here (once so has been 
chosen), never exceed some number depending on so. The important fact is that, 
according to Proposition IV.6, Ni, l ^ So — 4 is bounded in L°° norm by C(l + £)Cl£, 
where Ci does not dépend on 6. Hence, here and in what follows, we can choose fii 
big enough to have 

K u c ( i + t r c ' £ , 

with C as big as we want. 
Returning to our term, we see that its norm does not exceed 

Ce{l + 0~1-7 + Ce(l + t)-2-T<f>k+1 + Ce(l + ty^A^ 

The same analysis applies to the terms coming from 

cr^A^àd, /(l + t^duRàd, 

with the same resuit. 
B.2. We have 

ZMfr-^âAuZ&u) = Z^Mril + ty'idà^RMZ^n 

+ Z*m(Mx{da){<nl{\ + tf^Z^u)) + ZMMri&aKvxHl + t)2)dZ^mu) 

+ ZUMAl + t)-2e2(dâ)(sea)dZlu) = (1) + (2) + (3) + (4). 
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The term (4) is handled just as in B.l. The term (3) is analogous to (2), with one 
less derivative. We have 

(2) = M J l(ai/(l + t ) 2 ) (^ô5)a 1 -
1 2« + 1 «, 

with l\ - 1 + pi H- P2 ^ p + The only C terms here are 

MM (l + t)2)(da)a^Z^\ MxOn/Cl + t)2)(Z^da)(a^Zmu), 

Mfc+i(<7i/(L + J ) 2 ) ^ ) ^ 1 ^ ) -

They are bounded by C£(l+t)~2-^(pk+i. The SC terms are bounded by Ce(l+t)" 1 - 7 . 
Usine Lemma IV.4.3, we can write 

(I) = 

d+dl +d;k + 
Cv2(l + elog(l + t))(l + m-1-"^! + td 

+ 
ie e md+w'ç 

MZ l(l + t)- 2 (^a5)Z^ + 1 n 

+ 
Zi-i+pi+p2̂ g-i 

MtMii + tfKzsdQdzzssWusss 

+ 
Z!-l+Pl+P2+P3̂ g-l 

M ( l(02/(1 + t?){Z%fà){Z%sea)dZ%+P+lu. 

The last three terms corne from the commutator of R/r with some power of Zm, and 
the last two are SC and bounded by C£(l +£)~1~7. The second term is easily handled 
and bounded by 

Ce(l + t)-1'1 + Ce(l + t)'2^</>k+1 • 

If P2 H- P + 1 ^ A:, the first term can be rewritten as 

M l l(l + t ) - 2 ( ^ 1 Ô 5 ) ^ + p + 2 « . 

The C terms are then 

M F E + 1 ( I + ty2(dà)zlu, MJ(I + T) _ 2 (Z* azoz^u, 

Cv2(l + el dd +d+ t)~2+C£ ^ C(l + t)-1-V 

AU others are SC terms. The sum of ail terms is bounded by 

Ce(l + 1 ) - 1 ' 1 + Ce(L + *)~ 2~ 7<W 

If P2 + P + 1 = fc + 1, we keep the first term as 

MAl + tyHdaSR/rZ^u. 

If we think of R/r as /<9, we cannot control this term. We have to keep in mind that 
R/r = fTi and keep the term as such for later treatment. 
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B.3. We have 

ZMfduLiâdZfLu) = ZUfeil + Ù^dàdZ^u) 

+ = 
Pi+P2^P+q 

fe{l + ty\Z%da)dZ%u 

+ 
h - +p2̂ p+q-l 

Mhe{l + t)-\Z%da)dZ%u. 

Ail terms in the second sum are SC. The only C term in the first sum is 

feil + t^Z^dadu, 

which is bounded by Ce2{\ +1) 2</4+1. Ail SC terms from both sums are bounded 
by Ce2(l + t)~1+C€. 

C. To understand the behavior of the last three spécial terms 

-AL2, fLxLad, /(l + t^Lad, 

we cannot consider La as an Ni. We need make explicit its closeness to La, and, in 
particular, show that a factor e is présent in its estimâtes. 

C l We prove the following estimâtes: 

\Zlm(y/cLa)\Loo ^ Ce(l + t)~1+C£, l < s0 - 5, 

\Zlm(V^La)\0 ^ Ce(l + tf£, l ^ k - 1, 

\Z^(^La)\0 < Ce(l + t)Ce + Ce(l + t)~1+C£^+1 + Ce(l + t)CeAfe+1. 

From Lemma 1.4, we have with a self-defined E 

\fcLa = —SQE + e(l + t) 1soa + [u, 5^]ar. 

a. We have 

Cv2(l + elog(l + t))(l + m-1-"^! + t)~2+C£ 

lf>l 
[(Zlrl,a-Zirl,a)Zl'L1u)) 

+ 

Z'̂ Z-l 

\Z^(^La)\0 < Ce(l + t)Ce + Ce(l + tsmd 

If Z ^ k — 1, ail terms in 
[Zlm,Se]E + SgZlmE 

are SC, and are easily seen to be bounded as indicated. If l = fc, the only C terms in 
Z!LE are 

f{Zkntlu + {Zkma-Zkmà)Llu). 

Thèse terms, and also ail other SC terms, are bounded as desired. Since we do not 
care about factors (1 + t)Ce here, we see that the same bounds are true also for ail 
terms in [Z]L,So]E. 
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b. We have 

Zlm{e(l + t)-1*«a) = £(1 + t)-\[Zlm, se]a + se(Zlma) + 
+d + d 

MhZ^Sea). 

The terms in the last sum are ail SC, and bounded as desired. For Z ^ k — 1, ail other 
terms are also SC and appropriately bounded. For l = k, 

\Zka\0^C(l + t)1+c°*Ak+1, 

[Zkm, se]a\0 < C(l + t)1+C£Ak+1 + C(l + tf^k+1. 

c. We write 

Zlm([u,S0]ar) = 
h+h=i 

Z^uZ^Sear - [Zlm,Se)uar - SBZlm{rmr). 

We do not use here the bracket structure, estimating each term séparâtely. 

C.2. We prove the following estimâtes, where A = dr or A = dtm. 

\ZlmALa\Loo < Ce(l + *)"1+C£, l ^ s0 - 5, 

\ZlmALa\0 < Ce(l + t)Ce, l < k - 1, 

\ZiALa\o < Ce{l + t)Ce + Ce(l + t)~l<t>'k+1 + CeAk+1. 

We handle only A = dt, the other case being similar and easier. 
a. We have first 

dtSeE = SeEt + es0(l+ty1E, 

Et = dt(X/(2V^))(Zrnu + (a - a)LlU) 

+ (x/{2y/c))(dtZmu + (at - dta)Liu + (a - a)dtLiu). 

We note first that 
ô(x/(2VH)) = M-1. 

We observe now, using Lemma 1.4, that ail terms in dt{yfcLa) are either 
i) linear in d^Z-mU (r ^ 1), 
ii) bilinear in dru (r ^ 1) and dr a (r' ^ 1) or dr a (rf ̂  1), with the exception of 

(a — a)dtL\u, 
iii) linear in 9ra (r ^ 1) with a coefficient at least as good as e(l +1)-1. 
Since we do not care about factors (l+i)Ce in the estimation of SC terms, we obtain 

that ail SC terms in ZlmALa have the desired bound. We concentrate therefore on 
C terms, which can occur only for l = k. If we ignore at first the bracket terms in 
Z^dtSeE, we can consider only SoZ^Et, since the other term involving (1 + t)~xE 
is similar and simpler. The C terms in Z^Et are 

faï'Z^u, fo-ïl{Zkma - Zkma)Lxu, 

ZidtZmu, (Zkmat - Z^dtâ)LlU, {Zkma - Zkma)dtLxu, (a - à)ZkmdtLlU. 
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Except for the last two terms, they are respectively bounded in weighted L2 norm by 

Ce(l + *)-y*+i, CeAk+1 4 Ce(l 4 t)-y*+i, 

Ce(l + t)Ce 4- Ce(l + t)"Vfc+i, CeAk+! + Ce(l 4- *)~ Vi+i-
We now write 

\dtLlU\ ^ C\LLlU\ 4- C|L2u| < Ceaf-^l 4 t)~2+C£ + C|L2u|. 

Thus, using the Poincaré Lemma, and Lemma IV.4.2, we obtain 

\(Zkma - Zkma)dtLxu\^ < Ce(l + *)" + CeAfe+1 4- Ce(l + t)Ce. 

For the last term, we write 

IZ^dtLwlo < C|Z£+10u|o + Ce(l 4- t)Ce, \a - a\ < Côjf1 |M2|. 

Choosing /?i big enough in the sensé we have already explained will give \a — a\ ̂  C, 
which fînishes the estimate of ^Z^E^Io. Now, as explained before, if has been 
chosen big enough, the bracket terms 

[Zkm, S6]Eu[Zkm, se]{l + t)-1E 

generate terms having the same bound, except the terms involving Mk+i. This terms 
will be bounded by 

ceys(i + tr1+Cecf>k+1 < ce^s(i + i)-1+cVfe+i, 

which have the desired bound if /?i is big enough. 
b. The term e/(l + i)2sea is much better than e/(l + t)seat, and similarly the 

terms u/(l -\-t)sQdr, (l + t)~1seuar are much better than utSear, Seutar. Considering 
onlv 

Zlm(e/(1 + t)soat 4- utSoar - Soutar 4 Sourat), 
we see that ail terms are SC, except when l = k. In this latter case, the C terms may 
corne only from 

e/(l + t)Z^seat + utZ^Sear - Z^Seutar + Z^Seurat. 

Ignoring first the bracket terms, we obtain the desired bound CeAk+i for the C terms, 
and the bound Ce(l 4 t)Ce for the SC terms. For the bracket terms, we proceed as 
before, getting the same bound plus Ce(l 4- t)~l<t>k+i' 

c. The term 6\[u,SQ\at, being already amplified by #i, is the most délicate to 
handle. We write 

Zlm([u,se]at) = 
d +d d+d+de 

Zl^uZ^seat + uZ^seat - Zlmseuat. 

If / ^ k — 1, ail terms are SC and bounded as desired. If l — fc, we use Lemma IV.5.4 
to express Z^SQ. This Lemma displays terms of three types: 

i) A term fsefZ^, critical with no amplification, 
ii) Subcritical terms, 
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iii) Possibly critical terms accompanied by a factor 62 1 > 
We obtain 

0iZ* [u, s0]at = sss se]fZ^at + 9i x SC terms + fl^1^ .. ). 

The first term is bounded in weighted L2 norm by 

C(K|Loo +fl1/ô2|iîu|Lco)|Z*at|o. 

Having chosen /?i, we can choose /?2 big enough with respect to f}\ to obtain (on the 
support of a) 

e1/02\Ru\L°o < C^l + t)"1. 
The SC terms are bilinear in u and a and bounded by Ce(l + t)Ce. The terms 
containing O1O21 are either SC, or involve Z^at or M^+i. We handle them as usual, 
choosing /32 — Pi big enough if necessary, and get the bound 

Ce(l + tf£ + CeAk+! + Ce(l + *)" Vi+i-

C.3. Consider now the term s sss 4- t)~1LadZ^lu). Ail terms are SC, except if 
p = 0, q = k the only term 

f{l + t)-lZ^Ladu. 
According to the estimâtes of C l , the weighted L2 norm of thèse terms is bounded 
by 

Ce(l + f)"1"7 + Ce(l H- t)~2~70fc+i + Ce(l + t ) - 1 " ^ ^ . 
C.4. We use the estimâtes of C.2 to handle the term Z^fALadZ^u). We obtain 

right away the bound 

Ce2(l + t)-^C£ + Ce2(l + *)-yfc+1 + Ce2(l + 

C.5. We consider finally 

Z^ALfZ^u) = 

qi+q2=q 
(Z%A)Z%L2Zlu. 

a. For 1 ^ gi ^ k — 1, ail terms are SC. Remembering that L\ = fZm, we write 

(Z£La)Z%fZmfdZ*U. 

Using the estimâtes of C l , we see that thèse SC terms are bounded as desired. For 
the other part of A we write, since L? = fd2 + f/(l + t)d, 

Z%+luZ%L\ZVmu = M,(l + t)-\Z%+lu)Zsmdu + Ml(Z^xu)dZsmdu, 

where in both sums l — 1 + s < p + ç2. Using d = M\o^Zm in the last term, we see 
that ail thèse SC terms are bounded by Cs2(l + t)~1+Ce. 

b. If qi = fc, we have the term Z^ALfu, which gives (apart from trivial SC terms) 
Z^LaL2u, Z^rluL2u. Using Poincaré Lemma, we see that the last term is bounded 
by 

Ce/(l + t)\dZ^+1u\0, 
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which is the desired bound. Similarly, the first term is bounded by 

Cs/(l + t)\drZ^Là\0. 

Here arises a slight technical difSculty: the commutation of dr with Z^ yields non 
radial derivatives, and our C.2 estimâtes are only for A = dt or A = dr. We have 
easily, in the spirit of Lemma 4.2, 

d+bod +dl 

l^k-1 

Mk-iZlmd. 

Hence 
drZ^La = ZtdrLa + £ Mk^ZlmdLa. 

If, in the last term, d = dt, we use C.2. If not, we write 

di = + f/(l + t)R = fdr + Mi/(1 + t)Z„ 

and Z^dLa yields either SC terms involving Z^drLa that we have already handled 
(in C.4), or terms 

d+ d+ dl 
(l + t^Mi-ssswZ^La 

that we have already handled in C.3. 
c. Finally, if qi = 0, apart from already discussed terms, we are left with 

AL\Zkmu. 

We proceed now exactly as in the proof of Proposition IV. 1, e), writing 

a\L\ = fZm + f(a/a1)Zrn + fa2/aiLu 

so our term is 

(A/ai)(fZmLiZ^lu + /(H/(7i)ZmLiZ* u + fÇcP/aJZmL^u). 

Using the estimate of Lemma 1.4, we obtain the bound 

Ce2(l + t)"1+C£ + Ce2(l + *)-2"ff0fc+i. 

D. Taking Y into account now, using Lemma 2.1, we obtain 

[z^\p} = EzqJzm,P}z^ 

as the sum of the main term 

xEzqm[Zm,P]z^, 

and terms supported on the support of 1 — The main term has been analyzed in 
A, B, C using the expression of [Zm,P] given in Proposition 1.1. The other terms 
are easily analyzed using formula (1.2) of Lemma 1.1, and yield terms bounded by 

Ce(l + t)-2-^ôk^. 
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VII.2. L2 estimâtes of a. — We estimate now the perturbation coefficients. 

Proposition!. — We have the estimate 

(1 + ty^z&aio < C(l + tf£ + C(l + ty^idz^uio 

+ c 
b 

b 
£Afc+ids/(l + 5) + C 

r 

/o 
i f c+ i ( i+^r^ds+c £(/4+1(s)ds/(l + s)2. 

Proo/. — The new difficulty here is that the fields Hi do not commute very well 
with L: we have to use HQ instead. 

1. We construct a calculus just as in IV.3. We define / as before, and keep the 
fields 

R? = Ri + a(Ri)Lu Sm = S + a(S)Lll K = L + L1. 
We replace H™ = Hi + a(Hi)L\ by Hm = H0 — a(S)Li. We dénote by Zm any one 
of the fields 

iC, Sm, HQ-a(S)Lu 
and by Nk any of the quantities 

{l+t)e-la^Zkmu, {l + t)e^Zkmdu, o^Zk~\ Zk'\ Z^'dà, 

where a = a(Ri) or a = a(S). We have for thèse fields the usual calculus Lemmas: 
Lemma 4.1 is straightforward. Note also 

r + ct/y/cL = H0 + S = Hrn + Sm = Zm, LX = K-L = fZm. 

The analogue to Lemma 3.1 is also true: 

R = fZrn + fNxZm, axLx = fZm + JNxZm. 

We define as before quantities 

Mk = E/A^iV^ • .-Nki, kj > 2, £(fc, - 1) O - 1. 

The following Lemma gives the relations between the fields Zm and Zm. 

Lemma 1. — We have the formula 

i) Zkm = ZfNkl---NkiZri, p^ l , E f c + p O , 

ii) Zkm = Y,fN[Nkl.-.NkiZp+\ 

Here, kj > 2, - 1) +p < k - 1. 

iii) AT* = 
CEhi<k) 

fNkl---Nki, Mk = Mk, 

iv) ^ = (/ + M / ( i + t)S)fezm + 
d ld+ kd 

Mk-pZP^' 

Note that |ai/(l + t)a\ ̂  C 
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Proof 
a. We have 

Hm = Ho - a{S)Lx = E"iH™ ~ Œ > * W ) + a(S))Li = £>iZm, 

which proves i) for k — 1. Conversely, 

H™ = Hi + a(Hi)L! = uJiH0 - ct/r{uj A + A(^)^I 

= ^(i70 - A(5)LI) - ct/r(u A B)» - (R - ct)/r(uj Aa(R))iLi 

= fZm + fa1/(l + t)aZ m 5 

which proves ii), iii) and iv) for k = 1. 
b. Formula i) is immédiate by induction. Formula ii) can be written 

m — 
d+dmd 

d+dflmd+dl 

Hence the calculus on M\ proves ii) for ail fc, and the same reasoning applies to prove 
iv). Finally, iii) follows from i) and ii) by the very définitions of the quantities, since 

MI = MI, Nk = Mk, Nk = Mk. 

2. We have the following commutation Lemma. 

Lemma 2. — We have 

i) \ZmM\ = (/ + fNi)L + (/ + fNjLi, 

= +d [Zm,L] = /dL1 + (/ + /tfi)L. 

iîene, d means one of the three auantities 
d = La(fli) + RTu/2c, d = La(S) + Smu/2c, d = Luz. 

Thus the critical quantity d is just A (or L\u). We have, with Lw = g, the formula 

iii) [L, ZkJw = E fNh • • • Nhzt+19 + E fZld... Z*dNkl • • • N^Z^w 

+ EU + < ) ~ 7 0 • • • ZtdNkl • • • Nkj Z%+lw = E i + E2 + E3 

In Ei> Efj < k> k+i < k - 1. In E2' * ^ * + E9j + Efc* < k> ^ k-l. 
In E3> O 1, i + E 9j + E fc» ̂  fe + 1 ^ < ^ - 1 

froo/. — Since i) is clear, we need only prove ii), the proof of iii) following then 
exactly as in Lemma III.3.3. We have 

[R™, L] = (f + fNi)L - (Là(Ri) + RTu/2c)Lu 

[Sm,L] = (/ + fNjL - (Là(S) + Smu/2c)Lly 

\Hm, L] = f + fNAL + (Lâ(S) + Smu/2c)Ll, 

[K, L] = Lu/2cL - Liu/2cLv 
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3. We write now 

La = —x/(2c)(Zu + aLiu) = -\l(2c)(Zmu + (a - a)Lxu), 

LL\a = gi + Liu/(2c)L\a = Gi, LR/ra = g2 — \fcRajr = G2, 

with 

9i = f/(JiZmu + fdZmu + fdu(a/ai) + fduda + fdu(a/ai) + fduda + f(a-a)dLiu. 

Using the structure of the gi, we see that ail terms in Zlmgi are SC (in the sensé of 
Proposition 1) for Z < k — 1 and 

\Zm9i\0 ^ Ce(l + t)Ce, l^ikoo ^ Ce(l + t)'1+Ce. 

For Gi, we have the same estimâtes as for gx. If Z = k, we can replace the fields Zm 
by Zm in the critical terms of Zmgi, this substitution generating only SC terms with 
the already seen estimate. Hence 

\Zkm9i\0 + \ztd\o ^ Ce(l + t)Cs + Ce(l + + CsAk+1. 

The délicate part is the estimation of Zlm(y/cRa/r2) in ZlmG2- We write 

Zlm(V~cRa/r2) = V~c/rZlm(Ra/r) + 
d+dl 

(l + ty'M.z'J'iRa/r). 

Now Ra = MiZma, 

JJ1(M1(l + t)-1Zma) = 
d+ ùd+d 

(l+t)-1M1+«X,1_,a+1a, 

C dxr 2+C£ ^ C(l + t)-ssss1-V 
s +sd1 +d1d+ 

(l+t)-aM,1+iX,1_'a+1«-

If Z = fc, we keep the first term as it is, the second sum being bounded by 

G(l + £)-7 + G(l + * ) - ^ + 1 . 

If / = k — 1, we compute the first term as before, and obtain for the whole of 
Zm (y/cRa/r2) the above bound. If Z ^ k — 2, the bound is the same as before, 
without the critical part containing Ak+\* 

4. With w = Lia or w = Ra/r and Lw = G, we write the resuit of Lemma 2 in 
the form 

LZkmw = ZkmG + 

d+dm 

Mk-lZlmG + fdL1Zkm lw 

d+ ls 

d+d 
M1ZqmdZkm iw + aï1 

p^l,q^l 
p+qi^.k-1 

Mk-p-qZmdZ^W. 
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Ail terms of the second line are SC terms, and we see using the C l estimâtes of 
Proposition 1 that they are bounded by Ce(l+t)Ce. We also have, using the estimâtes 
of 3., 

= d 
\Mk^ZmG\0 ^ Ce(l + tf£ + C(l + + C(l + t ) " 7 i W 

We handle the critical term dLiZ^ 1w exactly as we have done with the term ALfZ^u 
in C.5 of the proof of Proposition 1. Using the energy inequality for L, we finally get 

(1 + ty^zlLMo + \Zkm(Ra/r)\0) C(l + tf° 

+ C 
•t 

lo 
s(pk+ids/(l + s)2 + Ce 

lo 
Ak+ids/(l + s) + C 

re 

Jo 
Ak+l(l + 8)^-^8. 

From the very définition of o, we obtain 

\ZlLa\o € Cell + t)Ce + Ce(l + t)CeAk+1 + Cil + t)Cs\dZi+1u\0. 

Adding this to the preceding estimate, we get 

(1 + tr'lztdalo < C(l + tf* + C(l + tr1+Cs\dZ^+1u\0 

+ C 
'o 

e(f>k+lds/(l+sr + Cs 
'o 

Ak+1ds/(l + s) + C 
•t 

lo 
Ak+iil + s)-1-^. 

Now, using Lemma 1, we can replace the fields Zm by Zm in the above estimate, 
obtaining the desired resuit. • 

VII.3. End of the proof of the main resuit 
a. We first use the energy inequality and Proposition 1. In doing so, we have to 

take care of the spécial quantity 

E = 
d 

'0 
(1 + ^)-1+C£|^+1u|o|T,Z^^|o^ 

arising from 
f e^\PZ^1u\\dtZi+1u\dxdtf. 

It is understood here, in accordance with Proposition 1, that the intégral of TiZ^'1u 
is taken only on 

ai ^C(l + t')Co£. 

Using Cauchy-Schwarz inequality, we obtain, with a > 0, (3 > 0 to be chosen, 

E ^ a d 
dr 

+ t')-0e\TiZÏn+1u\2dt' + l/(4a) 
lo 

{l + t')-2+2C£+,3e\dZiïlu\20dt'. 

Since the energy inequality gives us a control of 
rt r 

JO Jr^t'/2 
ep{r + l)6'ty) ZiTiZ^ufdxdt', 
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and b'(^) = Bv\i/)\ v 1, we have, by Lemma II.3.4, a control of 
d 

Jo ./<7î C(l+t')C°e 
eP(i + t')-C2£ EiTiZ^ufdxdt'. 

Taking (3 = C2 and a small enough, we see that the first term of E is absorbed in the 
left-hand side of the inequality, while the second is smaller than terms already there. 

b. We have now 

|0Z*+1u|o<Cte + Cte 
vr 

Jo 
dt'/(l + ï)\dZ*+1u\0 + C 

re 

lo 
PZi+1u\0dt' 

^ Ce(l + tf£ + Ce 
dr 

Jo 
^+1^/ ( l + 02+7 + Ce2 

rt 

lo 
4>'k+ldt'/(i + t')2 

+ Ce 
d 

'0 
Ak+Idt'/{1 + i')1+7 + Ce2 r 

'0 
Ak+1dt'/(l + t'). 

We set here for convenience 

£;fe+1=e-1|5Z^+1do + Afe+1. 

We use now the formula 

\Zkmdâ\o ^ C(l + t)1+Cs + C\Z^da\0 + Ce~\\ + t)\dZ^+1u\0. 

To prove it, we go back to the formula 

Zkmdà = Zkm\d, Se\a + \Zkm, Se]da + SeZkmda. 

As before, the first two terms in the right-hand side involve 
i) Terms already bounded by the induction hypothesis, 
ii) Terms bounded by \Zmda\o with a coefficient of the form 0ï1C2(l + t)C3€, where 

C2 and C3 do not dépend on 0\. 
iii) Terms involving Nk+i, with a coefficient of the same form as in ii). 
The part of Nk+i involving a will be absorbed in the left-hand side by choosing 

(5\ and 6® big enough. Keeping the part involving dérivâtives of u, we obtain the 
formula. Using it, we obtain 

(1 + * ) - < c(i + t)Ce + C J W 

With thèse notations, the control of dZm+1u given by the energy inequality for P and 
the control of Ak+i given by the energy inequality for L, added together, give 

Ek+i <C(1 + t)Ce + C r1 
0 

Efc+idt7(l + 01+7 + Ce 
rt 

0 
Efc+idt7(l + 0 , 

which yields by Gronwall Lemma Ek+i ^ C(l + t)Ce. This proves the induction 
hypothesis for Z = k + 1 

Nk+1\Q^C{l + t)1+C£, Ak^^C(l + tf£ 
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c. It remains now to obtain, for the standard fields ZQ = Ri, S, hi, d, 

\Z*du\L2 < Ce(l + tf£, k ^ 2(s0 - 4). 

First, we obtain 
z0 = fiqzm, r^l. 

Next, exactly as in Lemma 2, we get 

Z* = J2fNiNkl---NkiZl+\ 

with 
kj>2, y;(*i-i)+po-i-

Applying this identity to du, we obtain finally 

\Z*du\0^Ce(l+t)C£. 

Since we have the inequality 

\w\0^C(l + tf£\w\L2, 

this gives the resuit. 
d. From Klainerman's inequality, we obtain now 

\Z$du\ < Cea~1/2(1 + t)~1+C£, k < 2(s0 - 4) - 2. 

Assuming that 
2(5o-4)-2 ^50 , 

for instance, so = 10, we obtain the same control as the induction hypothesis, with rj 
replaced by Ce. 

Fix now r > 0: we know from Theorem II. 1 that, for e small enough, there exists 
a smooth solution for r ^ r = e log(l + t) with 

\Z*du\ < C(1W1/2(1 + t)"1, k < 50. 

In particular, u exists as a smooth function for t < T" (with Tf > t), and satisfies for 
t<T ^Tf (with T >t) the inequality (say r? = 10"2) 

IZ£dul ^ C(1 W1/2(l + t)"1+r?. 

If T < T', we obtain from this hypothesis, as we have seen, for t ^ T, 

|Z0fc^|^C^£a-1/2(l + t)-1+C£. 

If e is small enough to verify Ce < we deduce from this 

|Z0fcdd ^ C<2) (1 + ï)"^2ear1/2(l + t)~1+TJ, t^t^T. 

If 5 is such that 
C^(l + t)-^2 ^C^/2, 

we see that the supremum of such T cannot be strictly less than T', hence T' = +oo 
and our estimâtes are true for ail t, which finishes the proof. • 
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