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Introduction

In this paper, we prove quasi-global existence (resp. global existence) for
quasilinear wave equations in two space dimensions satisfying the null
condition (resp. both null conditions). In contrast with the case of three space
dimensions where the result, due to D. Christodoulou and S. Klainerman, has
been known since 1986, this problem has remained open until now, except
for the special cases of cubic terms or rotationally invariant equations. Our
proof relies on the construction of an approximate solution, combined with
an energy integral method which displays the null condition(s).

1. Main results

We consider a quasilinear wave equation in R+ × R2

(
∂2

t − ∆x
)
u + Σ0≤i, j≤2gij (∂u)∂2

iju = 0.(1.1)

Here

Σgij∂
2
ij = g00∂

2
t + g01∂t∂1 + g02∂t∂2 + g11∂

2
1 + g12∂

2
12 + g22∂

2
2,

x0 = t, x = (x1, x2), ∂u = (∂1u, ∂2u, ∂tu).

The coefficients gij are smooth real functions vanishing at the origin, and,
more precisely,

gij (ξ) = Σgk
ijξk + Σhkl

ij ξkξl + rij(ξ), rij (ξ) = O(|ξ|3).
The initial conditions for u are

u(x, 0) = εu0
1(x) + ε2u0

2(x) + . . . , ∂tu(x, 0) = εu1
1(x) + ε2u1

2(x) + . . . ,

(1.2)

where the real functions u j
i are smooth and supported in |x| ≤ M.
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As usual, we define

g(ω) = Σgk
ijωiω jωk,(1.3)a

h(ω) = Σhkl
ij ωiω jωkωl,(1.3)b

where ω0 = −1, ω1 = cos ω,ω2 = sin ω. We assume throughout this paper
that the wave equation (1.1) satisfies the null condition, that is g(ω) ≡ 0.

In three space dimensions, it has been shown by Christodoulou [5] and
Klainerman [9] that the null condition implies global existence of smooth
solutions. The proof of Christodoulou uses the conformal method; the null
condition implies then that the nonlinear terms of the equations transform
into smooth terms, and the problem is reduced to a local problem with small
data. The proof of Klainerman uses a special energy inequality for the wave
equation, which is obtained by multiplying by an appropriate vector field
with quadratic coefficients (see [7] for an account of both aspects).

In the present case of two space dimensions, the problem is more delicate,
as we explain now:

a. First, methods of nonlinear geometrical optics show that the solution
formally looks like

u(x, t) = ε

r1/2
S(r − t, ω, τ),

where

r =
√

x2
1 + x2

2, x1 = r cos ω, x2 = r sin ω

are the usual polar coordinates in the plane, while τ = ε2 log(1 + t) is
a slow time taking into account the effects of the nonlinear terms. We
use also σ = r − t.

b. Second, as a first approximation, we have u ∼ εu1, where u1 is the
solution of the linearized problem on u = 0

(
∂2

t − ∆
)
u1 = 0, u1(x, 0) = u0

1(x), ∂tu1(x, 0) = u1
1(x).(1.4)

Defining

R1(σ, ω) = 1

2
√

2π
χ

−1/2
− ∗ [

R
(
u0

1

) − ∂s R
(
u1

1

)]
,

where

χλ
−(t) = χλ

+(−t), χλ
+(t) = tλ+

Γ(λ + 1)

and R is the Radon transform, we have for r ≥ t/2

u1(x, t) ∼ r−1/2 R1(r − t, ω).(1.5)
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We assume from now on that not both u0
1 and u1

1 are identically zero, which
implies that R1 is not identically zero either. We call “case I” the situation
when h is not identically zero, “case II” the situation when h ≡ 0.

In case I, the function h(∂σ R1)(∂
2
σ R1) has a positive maximum in (σ, ω),

and we define

τ̄ = [
max h(ω)(∂σ R1)

(
∂2
σ R1

)
(σ, ω)

]−1
.(1.6)

The number τ̄ appears as the principal term in the expression of the lifespan
of S. Hence the following two conjectures have been made in this case:

lim inf ε2 log T̄ε ≥ τ̄ ,(C )

lim sup ε2 log T̄ε ≤ τ̄ .(C̄)

Here, T̄ε is the lifespan of the smooth solution u of our problem (1.1), (1.2).
In case II (we say that the “second null condition” is satisfied), it has been
conjectured that

T̄ε = +∞.(C∞)

This approach is very similar to what has been done for wave equations
in two or three space dimensions (without null condition), where Hör-
mander [7] has conjectured the precise expression of the first term of an
asymptotic expansion of T̄ε (see also [4]).

In the semilinear case (with lower order terms satisfying the null condi-
tion), Godin [6] has proved (C) and C∞. In the present quasilinear case, as
far as we know, the conjectures (C) have only been proved in special cases:

i) If all gk
ij = 0 (the “cubic case”), energy integral methods show easily

that indeed (C ) and (C∞) hold. One can see for instance Hoshiga [8] or
Li Ta-tsien [11].

ii) For rotationally invariant equations and data, Ladhari [10] proved all
three conjectures.

The methods used for n = 3 are not available, since

i) The energy integral method used by Klainerman [9] works only for
n ≥ 3,

ii) The conformal method of Christodoulou [5] yields, for n = 2, singu-
lar nonlinear terms, making the problem after transformation look as
complicated as the original one.

In this paper, we prove (C ) and (C∞) in the general case. The conjecture
(C̄) is proved in [1].

Theorem 1. In case I (h �≡ 0), the lifespan T̄ε of the solution of (1.1), (1.2)
satisfies

lim inf ε2 log T̄ε ≥ τ̄ .
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Theorem 1′. In case II (h ≡ 0), the smooth solution u of (1.1), (1.2) exists
globally.

The method of proof is the following:

a) First, we construct an approximate solution ua, using nonlinear geo-
metrical optics techniques (see [4] for instance for an account of these
techniques).

b) Second, splitting u = ua + u̇, we prove by induction on time estimates
on

|Zα∂u̇(., t)|L∞ .

Part a) is straightforward.
Part b) uses the Z-fields method of Klainerman, along with the corres-

ponding weighted Sobolev inequality. Recall that Z is one of the fields

x1∂2 − x2∂1, t∂ j + x j∂t, x∂x + t∂t, ∂k, j = 1, 2, k = 0, 1, 2,(1.7)

and that

|v(x, t)| ≤ C(1 + t + r)−1/2(1 + |r − |t||)−1/2Σ|α|≤2|Zαv(., t)|L2 .

The key point is to obtain an energy inequality for the linearized operator
P on u

P ≡ ∂2
t − ∆ + Σgij(∂u)∂2

ij + Σgk
ij

(
∂2

iju
)
∂k.

It turns out that, in case I, for τ ≤ τ0 < τ̄ and ε small enough, we have for
P exactly the same inequality as for the ordinary wave equation

|∂v(., t)|L2 ≤ C(|∂v(., 0)|L2 +
∫ t

0
|Pv(., s)|L2 ds).(1.8)

In case II, we cannot obtain a similar global inequality, but we get an
inequality with some not too big amplification factor

|∂v(., t|L2 ≤ C(1 + t)Cε2
(|∂v(., 0)|L2 +

∫ t

0
|Pv(., s)|L2 ds).(1.8)′

This is enough to finally obtain global existence.
To obtain (1.8) or (1.8)′, we just compute as usual∫

ep Pv∂tvdxdt,

for some “ghost weight” p, that is, an appropriate bounded weight, which
thus disappears from the final inequality. The technical aspects of this energy
integral method are explained in some details in Sect. 3.2. It turns out that, for
a careful choice of p, we obtain a better control (in L2

x,t) of the “tangential”
derivatives ∂iv + ωi∂tv. This allows us to make the null condition(s) appear
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in the quadratic form on ∂v obtained by integrations by parts. We hope that
this method will be also useful elsewhere.

The plan of the paper is as follows: first, we describe briefly the approx-
imate solution ua in cases I and II (Sect. 2). Section 3 is devoted to the
proof of the energy inequalities (1.8) and (1.8)′ for the linearized operator
(Theorems 2 and 2′ and Theorem 3). In Sect. 4 (resp. Sect. 5), we show how
to control commutator terms, and finish the proof of Theorem 1 (resp. of
Theorem 1′). In fact, more precise Theorems 4 and 4′ are stated and proved,
giving estimates of the error u̇. Finally, to illustrate how our energy method
works, we give the proof of Theorem 3 in Sect. 6.

2. Construction of an approximate solution

We use here the simplest approximate solution, starting with εu1, blowing
up at time T̄a such that

ε2 log(1 + T̄a) = τ̄ .

For similar constructions, we refer to [7] or [8]. In Ladhari [10], a more
precise approximate solution is obtained, but we will not use it here.

2.1. Description of the construction (case I)

We fix 0 < τ0 < τ̄ and distinguish two periods of time: the period I is
0 ≤ t ≤ 2ε−p, the period II is ε−p ≤ t ≤ (exp τ0/ε

2) − 1, and the transition
period is ε−p ≤ t ≤ 2ε−p.

The approximate solution ua will be constructed separately in each
period as uI

a and uII
a , and we set

ua(x, t) = χ1(tε
p)uI

a + (1 − χ1(tε
p))uII

a

for a fix smooth function χ1(s) being 1 for s ≤ 1 and 0 for s ≥ 2.

a. In period I, we simply take ua = εu1. The function u1 has already been
introduced and studied in 1. Recall that also∣∣Zαu1

∣∣ ≤ C(1 + t)− 1
2 (1 + |σ |)− 1

2 .

Introducing the slow time τ = ε2 log(1 + t), it is natural to look for ua
in period II as

uII
a = ua = ε

r1/2
χ2S(σ, ω, τ) + (1 − χ2)u

I
a,

where χ2 = χ2(r/(1+ t)), the smooth function χ2(s) being 0 for s ≤ 1/2
and 1 for s ≥ 2/3.
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b. We have the identity(
∂2

t − ∆
)
(S/r1/2) = − r−5/2(S/4 + ∂2

ωS
)

+ ε2

t
√

r

[ − 2∂2
στ S − t−1∂τ S + ε2t−1∂2

τ S
]
.

On the other hand, for v = εS/r1/2,

Σgij (∂v)∂
2
ijv = Σgk

ij∂kv∂
2
ijv + Σhkl

ij ∂kv∂lv∂
2
ijv + ΣO((∂v)3)∂2

ijv =
= ε3

r3/2
h(ω)(∂σ S)2(∂2

σ S) + O(ε2r−2).

This suggests to take for S the solution of the equation

∂2
στ S − 1/2h(ω)(∂σ S)2(∂2

σ S
) = 0, S(σ, ω, 0) = R1(σ, ω).

The number τ̄ already defined in (1.6) is just the lifespan of this func-
tion S.

c. We fix p = 4 in the construction above. We denote by J I
a , J II

a , Ja the value
of the left-hand side of the equation evaluated on uI

a, uII
a , ua respectively.

We have the following estimates, for τ = ε2 log(1 + t) ≤ τ0 < τ̄ :∣∣ZαuI
a

∣∣ ≤ Cε(1 + t)−1/2(1 + |σ |)−1/2,(2.1.4)
∣∣Zα J I

a

∣∣ ≤ C
ε2

(1 + t)3/2
(1 + |σ |)−3,(2.1.5)

∣∣ZαuII
a

∣∣ ≤ Cε(1 + t)−1/2(1 + |σ |)−1/2,(2.1.6) ∣∣Zα J II
a

∣∣ ≤ Cε(1 + t)−2(1 + |σ |)−1,(2.1.7)

and, in the transition period ε−p ≤ t ≤ ε−2p,∣∣Zα
(
uI

a − uII
a

)∣∣ ≤ Cε2(1 + t)−1/2(1 + |σ |)−3,(2.1.8) ∣∣Zα Ja

∣∣ ≤ Cε2(1 + t)−3/2(1 + |σ |)−5/4.(2.1.9)

In particular, we have for τ ≤ τ0 < τ̄ ,∫ t

0

∣∣Zα Ja(., s)
∣∣

L2ds ≤ Cε2| log ε|.(2.1.10)

2.2. Description of the construction (case II)

This case is even simpler than the preceeding one. We just take ua = εu1
for all t. There is no slow time in this case. We have the estimates∣∣Zαua

∣∣ ≤ Cε(1 + t)−1/2(1 + |σ |)−1/2,(2.2.1) ∣∣Zα Ja

∣∣ ≤ Cε2(1 + t)−2(1 + |σ |)−2.(2.2.2)
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In particular,
∫ +∞

0

∣∣Zα Ja(., s)
∣∣

L2ds ≤ Cε2.(2.2.3)

2.3. Justification of the results

The proofs of the above estimates use two results:

i) The properties of u1 and R1 defined above,
ii) An analysis of the improved behavior of the nonlinear terms of the

equation resulting from the null condition. This analysis is contained in
the following two lemmas.

Lemma 2.3.1 (Hörmander [7], Lemma 6.6.4).

i) If the gk
ij satisfy the null condition

Σgk
ijωiω jωk = 0,

for functions u, v supported in |x| ≤ M + t,∣∣Σgk
ij∂ku∂2

ijv
∣∣ ≤ C(1 + t)−1(|Zu||∂2v| + |∂u||Z∂v|).(2.3.1)

ii) If the hkl
ij satisfy the null condition

Σhkl
ij ωiω jωkωl = 0,

for functions u, v,w supported in |x| ≤ M + t,∣∣Σhkl
ij ∂ku∂lv∂

2
ijw

∣∣ ≤ C(1 + t)−1(|Zu||∂v||∂2w|(2.3.2)

+ |∂u||Zv||∂2w| + |∂u||∂v||Z∂w|).

Lemma 2.3.2 (Hörmander [7], Lemma 6.6.5). Let

G = G
(
u(k1)

1 , u(k2)
2 , . . . , u

(kp)
p

)
be a multilinear form on R3 satisfying the null condition and Z one of the
usual Klainerman vector fields. Then

ZG = G
(
(Zu1)

(k1), u(k2)
2 , . . . , u

(kp)
p

) + . . .

+G
(
u(k1)

1 , . . . , (Zu p)
(kp)

) + G1
(
u(k1)

1 , . . . , u
(kp)
p

)
,(2.3.3)

where G1 also satisfies the null condition.

Finally, we list here some easy properties of ua which will be useful in
the proofs of the theorems.
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Lemma 2.3.3. For the approximate solution ua (case I or case II), we have,
for the relevant values of t in each case,

i) |∂ua| + |Z∂ua| ≤ Cε(1 + t)−1/2(1 + |σ |)−3/2,
ii) |∂2ua| ≤ Cε(1 + t)−1/2(1 + |σ |)−5/2.

Proof. Because of the identity

∂k = (t2 − r2)−1Σcij
k xi Z j ,(2.3.4)

where the c’s are constants, we have for any v

|∂v| ≤ C(1 + |σ |)−1|Zv|.(2.3.5)

This implies immediately i) and ii) in view of (2.1.4)–(2.1.6) or (2.2.1). ♦

3. Energy inequalities for the linearized operator

3.1 Let ua be the approximate solution from Sect. 2, and set u = ua + u̇. In
this section, we prove the following energy inequalities, separating case I
and case II for clarity.

Theorem 2 (case I). For any fixed 0 < τ0 < τ̄ , s0 ≥ 3, there exist ε0 > 0
and C0 such that: if ε ≤ ε0, if the solution u of (1.1), (1.2) exists and is
smooth for t < T with ε2 log(1 + T ) ≤ τ0 and if

Σ|α|≤s0|Zα∂u̇(., t)|L∞ ≤ ε3/2(1 + t)−1/2(1 + |σ |)−1/2(3.1.1)

there, then we have the inequality

|∂v(., t)|L2 ≤ C0(|∂v(., 0)|L2 +
∫ t

0
|Lv(., s)|L2ds),(3.1.2)

where L is either one of the two operators

Pa = ∂2
t − ∆ + Σgij(∂u)∂2

ij + Σck
a∂k, ck

a = Σgk
ij∂

2
ijua

or

P = ∂2
t − ∆ + Σgij (∂u)∂2

ij + Σck∂k, ck = Σgk
ij∂

2
iju.

Theorem 2′ (case II). For any fixed s0 ≥ 3, there exist ε0 > 0 and C0 such
that: if ε ≤ ε0, if the solution u of (1.1), (1.2) exists and is smooth for t < T
with

Σ|α|≤s0|Zα∂u̇(., t)|L∞ ≤ ε3/2(1 + t)−1/2(1 + |σ |)−1/2

there, then we have the inequality

|∂v(., t)|L2 ≤ C0(1 + t)C0ε
2
(|∂v(., 0)|L2 +

∫ t

0
|Lv(., s)|L2ds)(3.1.3)

where L is either P or Pa defined in Theorem 2.



The null condition for quasilinear wave equations in two space dimensions I 605

Remark. Under the assumptions of Theorem 2′, we are not able to obtain
a global energy inequality without the amplification factor (1+t)C0ε

2
, except

in special cases (see the remark after the proof of Theorem 2 and 2′):
the difficulty seems to come from the lower order terms of the linearized
operator. We do not know whether such an inequality exists or not.

To illustrate how our energy technique can works in this direction, we
also give the following “abstract” Theorem, closely related to Theorems 2
and 2′.

Theorem 3. Let w be a smooth function for t ≥ 0, supported in |x| ≤ M+t.
Define the linear operator P by

P = (
∂2

t − ∆
) + Σgij(∂w)∂2

ij ,

where

gij(ξ) = Σgk
ijξk + Σhkl

ij ξkξl

satisfies both null conditions g = h = 0. Assume that, for some η > 1/3,

|∂w(., t)|L∞ + Σ|Z∂w(., t)|L∞ ≤ C1(1 + t)−η.

Then, for C1 small enough, the following standard energy inequality holds
for some C0

|∂v(., t)|L2 ≤ C0(|∂v(., 0)|L2 +
∫ t

0
|Pv(., s)|L2 ds).

3.2. Idea of the method

The proof uses the method of “ghost weighted” energy inequalities. This
means that we proceed as in the usual energy inequality by computing in
a strip ∫

(exp p)Pv∂tvdxdt,

and determine a bounded p such that the quadratic form Q1 in ∂v obtained
by integration by parts is non negative (up to easily handled terms). Since
p is bounded, it will be eventually eliminated from the inequality, yielding
exactly the same inequality as for the unperturbed wave equation.

More precisely, the coefficients of Q1 are sums of terms either linear in
∂p, or linear in ∂2u, or bilinear in ∂u∂2u; moreover,

i) All second order derivatives of u can be expressed in terms of ∂2
t u

modulo integrable terms,
ii) ∂2

t u can be bounded by Cε(1 + t)−1/2(1 + |σ |)−3/2.



606 S. Alinhac

The second point suggests to use the simple weight

p = b(σ) − θ(t), b′ > 0, θ ′ > 0.

On the other hand, the effect of a weight such as b(σ) is to make appear in
Q1 the expression

b′[(∂1v + ω1∂tv)
2 + (∂2v + ω2∂tv)

2].
This means a (rather weak) control of the terms

Z jv, Z j = t∂ j + x j∂t, j = 1, 2.

In other words, it displays the fact that free solutions behave essentially like
functions of r − t. This fact had already been observed and used in [2]. What
is hidden here is that, thanks to the null condition(s), r − t is a very good
approximate phase function for the linearized operator on u.

The first point allows us to collect the terms of Q1 linear in ∂2u (resp.
bilinear in ∂u∂2u) as a single term containing ∂2

t u as a factor (resp. a single
term containing ∂tu∂2

t u as a factor). Rearranging Q1 as a quadratic form in

∂tv, ∂1v + ω1∂tv, ∂2v + ω2∂tv,

one sees both null conditions appear in the computation, causing some
coefficients in Q1 to cancel. It turns out that, thanks to this null condition,
one can take for θ ′ either zero (Theorems 2 and 2′) or some integrable
function of t (Theorem 3). The decay of ∂2

t u towards the interior of the light
cone makes it possible to take b′ integrable, hence b is bounded and so is p.

3.3. Proof of Theorems 2 and 2′

To avoid heavy notations, we write Z generically for one of the fields (1.7),
and, in inequalities, |Zu| stands for Σ|Zu| over all such fields, |Zαu| stands
for

Σ|β|≤|α||Zβu|,
and so on. The important thing is to distinguish for instance Zαu from
Zα−1∂u, since the first term may not contain any “true” derivative ∂ ju.

Remark that if we replace ua by u, the operator Pa becomes P; hence
we give the proof for Pa, and observe that it works identically if we replace
ua by u. In case I, it is understood that (according to the hypothesis in
Theorem 2) the induction hypothesis is true for 0 ≤ t < T , for some T > 0,
ε2 log(1 + T ) ≤ τ0. In case II, no such limitation occurs.
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Step 1: Perform the usual integrations by parts

We have

2ep Pv∂tv = ∂t
{
ep[(1 + g00)(∂tv)

2 + (1 − g11)(∂1v)
2

+ (1 − g22)(∂2v)
2 − g12(∂1v)(∂2v)]

}
+ ∂1

{
ep[g01(∂tv)

2 − 2(∂tv)(∂1v)(1 − g11) + g12(∂tv)(∂2v)]
}

+ ∂2
{
ep[go2(∂tv)

2 + g12(∂tv)(∂1v) − 2(∂tv)(∂2v)(1 − g22)]
}

+ Q1,

where Q1 denotes the quadratic terms in ∂v,

Q1 = K0(∂tv)
2 + K1(∂1v)

2 + K2(∂2v)
2 + 2H1(∂tv)(∂1v)

+ 2H2(∂tv)(∂2v) + 2H0(∂1v)(∂2v).

Here,

K0 = −∂t
(
ep(1 + g00)

) − ∂1
(
epg01

) − ∂2
(
epg02

) + 2epc0
a,

K1 = −∂t
(
ep(1 − g11)

)
, K2 = −∂t

(
ep(1 − g22)

)
,

H1 = −1/2∂2
(
epg12

) + ∂1
(
ep(1 − g11)

) + epc1
a,

H2 = −1/2∂1
(
epg12

) + ∂2
(
ep(1 − g22)

) + epc2
a,

H0 = 1/2∂t
(
epg12

)
.

Integrating in the strip 0 ≤ t ≤ T1 < T , the divergence terms yield control
of the usual energy at time T1.

Step 2: Simplify terms modulo Z∂u, Z∂ua

We set ḡk = Σgk
ijωiω j . Using for clarity the notation Dk to denote the

derivatives of the functions gij with respect to ∂ku, we write

e−p K0 = −(1 + g00)∂t p − g01∂1 p − g02∂2 p

+ (
∂2

t u
)[ΣDkg00ωk − ΣDkg01ω1ωk − ΣDkg02ω2ωk]

+ 2
(
∂2

t ua
)
ḡ0 − ΣDkg00

(
∂t∂ku + ωk∂

2
t u

)
− ΣDkg01

(
∂1∂ku − ω1ωk∂

2
t u

)
− ΣDkg02

(
∂2∂ku − ω2ωk∂

2
t u

) + 2Σg0
ij

(
∂2

ijua − ωiω j∂
2
t ua

)
,

e−p K1 = −∂t p(1 − g11) − (
∂2

t u
)
ΣDkg11ωk + ΣDkg11

(
∂t∂ku + ωk∂

2
t u

)
,

e−p K2 = −∂t p(1 − g22) − (
∂2

t u
)
ΣDkg22ωk + ΣDkg22

(
∂t∂ku + ωk∂

2
t u

)
,

e−p H1 = −1

2
g12∂2 p + (1 − g11)∂1 p

− (
∂2

t u
)[1/2ΣDkg12ω2ωk + ΣDkg11ω1ωk] + ḡ1

(
∂2

t ua
)

− 1/2ΣDkg12
(
∂k∂2u − ω2ωk∂

2
t u

) − ΣDkg11
(
∂k∂1u − ω1ωk∂

2
t u

)
+ Σg1

ij

(
∂2

ijua − ωiω j∂
2
t ua

)
,
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e−p H2 = −1

2
g12∂1 p + (1 − g22)∂2 p

− (
∂2

t u
)[1/2ΣDkg12ω1ωk + ΣDkg22ω2ωk] + ḡ2

(
∂2

t ua
)

− 1/2ΣDkg12
(
∂k∂1u − ω1ωk∂

2
t u

) − ΣDkg22
(
∂k∂2u − ωkω2∂

2
t u

)
+ Σg2

ij

(
∂2

ijua − ωiω j∂
2
t ua

)
,

e−p H0 = 1/2g12∂t p−1/2
(
∂2

t u
)
ΣDkg12ωk + 1/2ΣDkg12

(
∂k∂tu + ωk∂

2
t u

)
.

This allows us to simplify the terms modulo terms easily handled.

a. First, Dkgij = gk
ij + O(∂u). Since, according to the induction hypothesis,

|∂u|∣∣∂2
t u

∣∣ ≤ Cε2(1 + t)−1,

we can replace everywhere Dkgij by gk
ij in the terms containing (∂2

t u) as
a factor, modulo terms which are easily handled by Gronwall inequality,
since ∫ T1

0
ε2(1 + t)−1dt ≤ ε2 log(1 + T1).

b. Second, we can write, for k = 1, 2

∂kw + ωk∂tw = t−1 Zkw − ωkt−1σ∂tw, Zk = t∂k + xk∂t.

Applying this with w = ∂u, we obtain

∂k∂tu + ωk∂
2
t u = t−1 Zk∂tu − ωkt−1σ∂2

t u,

∂k∂1u − ωkω1∂
2
t u = t−1(Zk∂1u − ωk Z1∂tu) − ωkt−1σ

(
∂t∂1u + ω1∂

2
t u

)
,

and similarly for ∂k∂2u. From (2.3.4) and the induction hypothesis, we get

|∂2u| ≤ C(1 + |σ |)−1|Z∂u| ≤ Cε(1 + t)−1/2(1 + |σ |)−1,

hence ∣∣∂k∂tu + ωk∂
2
t u

∣∣ + ∣∣∂k∂1u − ωkω1∂
2
t u

∣∣ ≤ Cε(1 + t)−3/2.

We proceed similarly with the second order derivatives of ua. Hence the
corresponding terms are integrable.

We now write Q1 = Q2 + . . . , where the dots denote the form with the
coefficients handled in a. and b. For simplicity, we set

A0 = Σ
(
gk

00ωk − gk
01ω1ωk − gk

02ω2ωk
)
,

A1 = Σ
(
1/2gk

12ω2ωk + gk
11ω1ωk

)
,

A2 = Σ
(
1/2gk

12ω1ωk + gk
22ω2ωk

)
.

Step 3: Write Q2 in terms of ∂tv, ∂1v + ω1∂tv, ∂2v + ω2∂tv

By definition of Q2 and the choice p = b(σ) − θ(t), we have
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e−p Q2 = b′[(∂tv)
2 + (∂1v)

2 + (∂2v)
2 + 2ω1(∂1v)(∂tv) + 2ω2(∂2v)(∂tv)

]
+ (∂tv)

2[b′(g00 − ω1g01 − ω2g02) + θ ′(1 + g00)

+ A0∂
2
t u + 2ḡ0∂2

t ua
]

+ (∂1v)
2[ − b′g11 + θ ′(1 − g11) − (

∂2
t u

)
Σgk

11ωk
]

+ (∂2v)
2[ − b′g22 + θ ′(1 − g22) + (

∂2
t u

)
Σgk

22ωk
]

+ 2(∂1v)(∂tv)
[ − b′(1/2ω2g12 + ω1g11) − A1∂

2
t u + ḡ1∂2

t ua
]

+ 2(∂2v)(∂tv)
[ − b′(1/2ω1g12 + ω2g22) − A2∂

2
t u + ḡ2∂2

t ua
]

+ 2(∂1v)(∂2v)
[ − 1/2(b′ + θ ′)g12 − 1/2

(
∂2

t u
)
Σgk

12ωk
]
.

The coefficient of b′ in the first term is just X2
1 + X2

2, where

X j = ∂ jv + ω j∂tv, j = 1, 2.

This is the effect of a weight function of r − t for the wave equation.
With

∂ jv = X j − ω j∂tv,

we rewrite now Q2:

e−p Q2 = X2
1

[
(b′ + θ ′)(1 − g11) − (

∂2
t u

)
Σgk

11ωk

] + X2
2

[
(b′ + θ ′)(1 − g22)

− (
∂2

t u
)
Σgk

22ωk

] + 2X1(∂tv)
[ − ω1θ

′(1 − g11) + 1/2ω2θ
′g12

+ (
∂2

t u
)( − A1 + ω1Σgk

11ωk + 1/2ω2Σgk
12ωk

) + ḡ1∂2
t ua

]
+ 2X2(∂tv)

[ − ω2θ
′(1 − g22) + 1/2ω1θ

′g12

+ (
∂2

t u
)( − A2 + ω2Σgk

22ωk + 1/2ω1Σgk
12ωk

) + ḡ2∂2
t ua

]
+ K̄(∂tv)

2 + 2X1 X2
[ − 1/2(b′ + θ ′)g12 − 1/2

(
∂2

t u
)
Σgk

12ωk
]
.

The coefficient K̄ of (∂tv)
2 deserves special attention:

K̄ = θ ′(2 + A3) + b′[g00 − ω1g01 − ω2g02 + ω2
1g11 + ω2

2g22 + ω1ω2g12
]

+ (
∂2

t u
)[

A0 + 2ω1 A1 + 2ω2 A2 − ω2
1Σgk

11ωk − ω2
2Σgk

22ωk

− ω1ω2Σgk
12ωk

] − 2
(
∂2

t ua
)( − ḡ0 + ω1ḡ1 + ω2ḡ2

)
,

with

A3 = g00 − ω2
1g11 − ω2

2g22 − ω1ω2g12.

First, we remark that the coefficient of ∂2
t u in K̄ is just g(ω) ≡ 0. Second,

the coefficient of −2∂2
t ua is also g(ω) ≡ 0. Third, in the coefficient of b′,

we write

gij (∂u) = Σgk
ij∂ku + O((∂u)2)
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and use again ∂ku+ωk∂tu = t−1 Zku−ωkt−1σ∂tu. The induction hypothesis
implies now

|(∂u)2| ≤ Cε2(1 + t)−1,

and, by integration,

|Zu̇| ≤ Cε3/2(1 + t)−1/2(1 + |σ |)1/2.

Since we will eventually choose b′ ≤ C(1 + |σ |)−1, we get

b′gij (∂u) = −(∂tu)b′Σgk
ijωk + r

with

|r| ≤ b′O(|∂u|2) + b′(1 + t)−1(|Zu| + (1 + |σ |)|∂u|)
≤ Cε(1 + t)−3/2 + Cε2(1 + t)−1.

Hence the corresponding terms in (∂tv)
2 are handled by Gronwall’s Lemma.

The remaining part in the coefficient of b′ is just −(∂tu)g(ω) ≡ 0.
For the coefficient of X j∂tv, we remark that the terms containing ∂2

t u
cancel. Finally, we have obtained

e−p Q2 = e−p Q3 + . . . ,

where the dots denote the terms we have handled wia Gronwall’s Lemma
and

e−p Q3 = X2
1

[
(b′ + θ ′)(1 − g11) − (

∂2
t u

)
Σgk

11ωk
] + X2

2

[
(b′ + θ ′)(1 − g22)

− (
∂2

t u
)
Σgk

22ωk
] + 2X1(∂tv)

[
θ ′(−ω1(1 − g11) + 1/2ω2g12)

+ ḡ1∂2
t ua

] + 2X2(∂tv)
[
θ ′(−ω2(1 − g22) + 1/2ω1g12) + ḡ2∂2

t ua
]

+ 2X1 X2
[ − 1/2(b′ + θ ′)g12 − 1/2

(
∂2

t u
)
Σgk

12ωk
]

+ θ ′(2 + A3)(∂tv)
2.

Step 4: Show the non negativity of Q3 for suitable p

This is a straightforward step. For the proofs of Theorems 2 and 2′, we can
take θ ′ = 0. We have then

e−p Q3 = b′[X2
1(1 − g11) + X2

2(1 − g22) − g12 X1 X2
] + (

∂2
t u

)
q

+ 2
(
∂2

t ua
)
∂tv

(
ḡ1 X1 + ḡ2 X2

)
,

where q = q(X) is a quadratic form with bounded coefficients. Using∣∣∂2
t u

∣∣ + ∣∣∂2
t ua

∣∣ ≤ Cε(1 + t)−1/2(1 + |σ |)−3/2,

we can bound the last two terms in e−p Q3 by

Cε2(1 + t)−1(X2
1 + X2

2 + (∂tv)
2) + (1 + |σ |)−3(X2

1 + X2
2

)
.

Hence it is enough to take b′ = 2(1 + |σ |)−3. ♦
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Remark. In case ḡ1 = ḡ2 = 0 (for instance, in the cubic case), we write

e−p Q3 = b′[X2
1(1 − g11) + X2

2(1 − g22) − g12 X1 X2
] + (

∂2
t u

)
q(X)

+ θ ′[X2
1(1 − g11) + X2

2(1 − g22) − g12 X1 X2 − 2α1 X1vt

− 2α2 X2vt + v2
t (2 + A3)

]
,

with

α1 = ω1(1 − g11) − 1

2
g12ω2

and similarly for α2. Noting that α2
1+α2

2 = 1+o(1), and writing for instance

∣∣∂2
t u

∣∣ ≤ C(1 + t)−1/2(1 + |σ |)−3/2 ≤ Cε5/2(1 + t)−5/4 + C(1 + |σ |)−5/2,

we obtain Q3 � 0 for

b′ = B(1 + |σ |)−5/2, θ ′ = B(1 + t)−5/4

with B big enough. If we are in case II, we then obtain a global energy
inequality without amplification factor, as in Theorem 3.

4. Proof of Theorem 1 (case I)

4.1. Proof of Theorem 1

a. A localisation Lemma

Before proceeding, we need to recall a simple Lemma (see [3], Lemma 2.2,
p. 637).

Lemma 4.1.1. Let w(x) be a C1 function supported in |x| ≤ R. Then, for
m �= 1,

|w(1 + |R − r|)−m|L2 ≤ C|∂rw|L2 R(1−m)+ .

b. Proof of Theorem 1

We write the equation on u in the form
(
∂2

t − ∆
)
u̇ + Σgij (∂u)∂2

ij u̇ + Σ
(
∂2

ijua
)[gij (∂ua + ∂u̇) − gij (∂ua)] = −Ja,

where, as in Sect. 2,

Ja = (
∂2

t − ∆
)
ua + Σgij (∂ua)∂

2
ijua.
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Thus, to control ∂u̇, it is enough to use the energy inequality for Pa. When
we apply Zα (0 < |α| ≤ 2s0−1) to the sum Σgk

ij∂ku∂2
ij u̇, we have to separate

the two extreme terms:

ZαΣgk
ij∂ku∂2

ij u̇ = Σgk
ij∂ku∂2

ij Zαu̇ + Σgk
ij∂k Zαu∂2

ij u̇

+ Σ|β|,|γ |≤|α|−1 H(Zβu, Zγ u̇),

where here and in the sequence H(v,w) denotes various bilinear forms
analogous to Σgk

ij∂kv∂
2
ijw, satisfying the null condition, according to Lem-

ma 2.3.2. We see that we have to incorporate the first two terms of the
right-hand side to the operator, hence use the inequality for P. We obtain,
with gij (ξ) = Σgk

ijξk + g̃ij(ξ),

Σ|β|≤|α| ∗ Zβ Ja = P(Zαu̇) + Σgk
ij∂k Zαua∂

2
ij u̇(4.1.9)

+ Σ|β|,|γ |≤|α|−1 H(Zβu, Zγ u̇)

+ Σ|β|≤|α|−1 H
(
Zβ u̇, Zγ ua

)
+ Σ|γ |≤|α|−1 ∗ (

Zβ g̃ij (∂u)
)
Zγ ∂2u̇

+ Σ ∗ Zβ∂2
ijua Zγ [g̃ij (∂u) − g̃ij (∂ua)].

Here the ∗ simply denote irrelevant numerical coefficients.

a. The terms containing g̃ij are easily handled. In fact,

g̃ij (∂u) − g̃ij(∂ua) = [
∫ 1

0
g̃′

ij(s∂u + (1 − s)∂ua)ds]∂u̇.

When applying Zα to this difference, we obtain a sum of products in
which at most one term contains Zβu̇ for |β| ≥ s0. All other terms are
bounded by Cε(1 + t)−1/2. Hence the last term in the right-hand side is
bounded by

Cε2(1 + t)−1Σ|β|≤|α||Zβ∂u̇|.
Writing

g̃ij (∂u) = g̃ij (∂u) − g̃ij(∂ua) + g̃ij (∂ua),

we get the same estimate for the previous term too.
b. From Lemma 2.3.1, we get∣∣H(

Zαua, u̇
)∣∣ ≤ C(1 + t)−1

∣∣Zα+1ua

∣∣|Z∂u̇| ≤ Cε(1 + t)−3/2|Z∂u̇|.
For a term of the second sum in the right-hand side of (4.1.2), we get

|H(Zβu, Zγ u̇)| ≤ C(1 + t)−1(|Zβ+1u||∂2 Zγ u̇| + |Zβ∂u||Zγ+1∂u̇|).
If |β| ≤ s0 − 1,

|Zβ+1∂u̇| ≤ Cε3/2(1 + t)−1/2(1 + |σ |)−1/2,
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hence

|Zβ+1u̇| ≤ Cε3/2(1 + t)−1/2(1 + |σ |)1/2,

while |Zβ+1ua| ≤ Cε(1 + t)−1/2. In this case,

|Zβ+1u||∂2 Zγ u̇| ≤ Cε(1 + t)−1/2|Zγ+1∂u̇|,
|H|L2 ≤ Cε(1 + t)−3/2|Zα∂u̇|L2 .

If |γ | ≤ s0 − 1,

|Zγ+1∂u̇| ≤ Cε3/2(1 + t)−1/2(1 + |σ |)−1/2,

|∂2 Zγ u̇| ≤ Cε3/2(1 + t)−1/2(1 + |σ |)−3/2,

hence, by Lemma 4.1.1,

|(Zβ+1u̇)(∂2 Zγ ∂u̇)|L2 ≤ Cε3/2(1 + t)−1/2|(1 + |σ |)−3/2 Zβ+1u̇|L2

≤ Cε3/2(1 + t)−1/2|Zβ+1∂u̇|L2 .

In both cases, the terms |Zβ∂u||Zγ+1∂u̇| can be handled similarly (and
more easily). Thus, all the terms of the second sum can be handled by
Gronwall’s Lemma.

Applying Lemma 2.3.1 to a term of the third sum, we get
∣∣H

(
Zβu̇, Zγ ua

)∣∣ ≤ C(1 + t)−1|Zβ+1u̇|∣∣Zγ+1∂ua

∣∣.
Since, for instance, |Zγ+1∂ua| ≤ Cε(1 + t)−1/2(1 + |σ |)−5/4, we have,
by Lemma 4.1.1 with m = 5/4,

∣∣(Zβ+1u̇)
(
Zγ+1∂ua

)∣∣
L2 ≤ Cε(1 + t)−1/2|Zβ+1∂u̇|L2,

and the term H is handled via Gronwall’s Lemma.
c. Since

u̇(x, 0) = O(ε2), ∂t u̇(x, 0) = O(ε2)

and J I
a = O(ε2), the inequality (3.1.1) is certainly true for small ε and

finite T > 0. We use now (3.1.2) for Pa to get a control of ∂u̇. For
0 < |α| ≤ s0, we use (3.1.2) for P and the properties of Ja to get finally

Σ|α|≤2s0−1|Zα∂u̇(., t)|L2 ≤ Cε2| log ε|.
This implies, if s0 ≥ 3,

Σ|γ |≤s0 |Zγ ∂u̇(., t)|L∞ ≤ Cε2| log ε|(1 + t)−1/2(1 + |σ |)−1/2,

which implies (3.1.1) with 1
2ε

3/2 instead of ε3/2 if ε is small enough. ♦
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4.2. Theorem 4 (case I)

We have in fact proved above a quasi-global approximation theorem about
the approximate solution ua. We state it here for completeness.

Theorem 4.2.2. For any fixed 0 < τ0 < τ̄ , s0 ≥ 3, let ua be the approximate
solution constructed in Sect. 2. Then there exists ε0 > 0 such that for ε ≤ ε0,
the solution u exists for ε2 log(1 + t) ≤ τ0 and

Σ|α|≤2s0−1|Zα∂u̇(., t)|L2 ≤ Cε2| log ε|.
Remark. If one uses the better approximate solution ua constructed in [8],
one obtains exactly the same theorem with the corresponding improved
approximation, showing that ua is relevant.

5. Proof of Theorem 1′ (case II)

5.1. Proof of Theorem 1′

According to Theorem 2′, exactly the same proof as in 4.1 yields

Σ|α|≤2s0−1|Zα∂u̇(., t)|L2 ≤ Cε2(1 + t)Cε2
.(5.1.1)

We want to apply now Zβ to (4.1.1), for |β| ≤ 2s1 − 1, s1 ≤ s0. In order to
get a precise estimate, we have to make explicit the cubic terms. With

gij (ξ) = gk
ijξk + hkl

ij ξkξl + rij (ξ), rij(ξ) = O(|ξ|3),
we rewrite (4.1.1) in the form

−Ja = (
∂2

t − ∆
)
u̇ + Σ

[
gk

ij∂ku + hkl
ij ∂ku∂lu + rij (∂u)

]
∂2

ij u̇(5.1.2)

+ Σ
(
∂2

ijua
)[

gk
ij∂ku̇ + hkl

ij (∂ku∂l u̇ + ∂ku̇∂lua)

+ rij (∂ua + ∂u̇) − rij (∂ua)
]
.

Applying repeatedly Lemma 2.3.2, we denote by G various trilinear forms
analogous to

G(v,w, z) = Σhkl
ij ∂kv∂lw∂2

ij z,

satisfying the null condition. We obtain from (5.1.2), with

|γ | + |δ| ≤ |β|, |γ | + |δ| + |ν| ≤ |β|,(
∂2

t − ∆
)
Zβu̇ + ΣH(Zγ u, Zδu̇) + ΣH(Zγ u̇, Zδua)(5.1.3)

+ ΣG(Zγ u, Zδu, Zν u̇) + G
(
Zγ u, Zδu̇, Zνua

)
+ ΣG

(
Zγ u̇, Zδua, Zνua

) + Σ ∗ Zγrij (∂u)Zδ∂2
ij u̇

+ Σ ∗ Zγ ∂2
ijua Zδ[rij (∂u) − rij (∂ua)] = −Zβ Ja.
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a. Since |Zγ ′
ua| ≤ Cε(1 + t)−1/2, we get

∣∣H(
Zγ ua, Zδu̇

)∣∣
L2 ≤ Cε3(1 + t)−3/2+Cε2

if s1 ≤ s0 − 1.
b. Consider a term H(Zγ u̇, Zδu̇) from the first sum of the left-hand side of

(5.1.3). It is bounded according to (2.3.1). If |γ | ≤ s0 − 1,

|Zγ+1u̇| ≤ Cε3/2(1 + t)−1/2(1 + |σ |)1/2,

while

|∂2 Zδu̇| ≤ C(1 + |σ |)−1|Zδ+1∂u̇|.(5.1.4)

Provided s1 ≤ s0 − 1, the L2 norm of the product is bounded by

Cε7/2(1 + t)−1/2+Cε2
.

The other type of terms in the estimate (2.3.1) of H is easily bounded by
the same number, hence

|H|L2 ≤ Cε7/2(1 + t)−3/2+Cε2
.

If |δ| ≤ s0 − 1, terms bounded by (1 + t)−1|∂Zγ u̇||Zδ+1∂u̇| are easily
handled as before. Finally, using (5.1.1) again and Lemma (4.1.1), we
obtain

|Zγ+1u̇||∂2 Zδu̇|L2 ≤ Cε3/2(1 + t)−1/2|(1 + |σ |)−3/2 Zγ+1u̇|L2

≤ Cε7/2(1 + t)−1/2+Cε2
.

In conclusion,

|H|L2 ≤ Cε7/2(1 + t)−3/2+Cε2
.

c. The terms of the second sum are handled exactly as in 4.1.
d. We use now Lemma 2.3.1 to handle the trilinear terms. A typical term

would be for instance one bounded by

(1 + t)−1|Zγ ∂u̇||Zδ+1u̇||∂2 Zνu̇|.
Proceeding as before, we can bound the L2 norm by

Cε5(1 + t)−2+Cε2
.

All similar terms are at least as easy to handle, u̇ being replaced by ua in
some factors.

e. Finally, the terms involving rij are handled exactly as the cubic terms in
4.1. They are all bounded in L2 norm by

Cε5(1 + t)−3/2+Cε2
.
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f. Applying the usual energy inequality for the wave equation to (5.1.3),
we get, for |β| ≤ 2s0 − 3 and small ε,

|Zβ∂u̇(., t)|L2 ≤ Cε2.

If s0 ≥ 5, this implies (3.1.1) with 1
2ε

3/2 instead of ε3/2 for ε small enough
and completes the proof of Theorem 1′. ♦

5.2. Theorem 4′

We have in fact proved above a global approximation theorem. We state it
here for completeness.

Theorem 4′ (case II). For any fixed s0 ≥ 5, let ua be the approximate
solution contructed in Sect. 2. Then there exists ε0 > 0 such that for ε ≤ ε0,
the solution u exists globally and

Σ|α|≤2s0−3|Zα∂u̇(., t)|L2 ≤ Cε2.

Remark. As for Theorem 4, one can prove that the better approximation ua
contructed in [8] is relevant, with corresponding estimates of the remain-
der u̇.

6. Proof of Theorem 3

We go back to the proof in Sect. 3.3, where formally we take ua ≡ 0, and
briefly discuss the minor changes to make. We use the notations

ḡij = Σgk
ijωk, ḡk = Σgk

ijωiω j,

and so on, the bar indicating “contraction” with respect to ω of the missing
indexes.

The first Step 1 is identical. In Step 2, we have to improve the estimate
on Dkgij . We write

(Dkgij)(∂w) = gk
ij − 2(∂tw)

(
Σhkl

ij ωl
) + 2Σhkl

ij (∂lw + ωl∂tw) + O((∂w)2).

Since

|∂kw + ωk∂tw| ≤ C(1 + t)−1(|Zw| + (1 + |σ |)|∂w|),
|Zw| ≤ C(1 + t)−η(1 + |σ |),
|∂2w| ≤ C(1 + t)−η(1 + |σ |)−1,

we have (
∂2

t w
)
Dkgij = (

∂2
t w

)
gk

ij − 2
(
∂2

t w
)
(∂tw)h̄k

ij + r,
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with

|r| ≤ C(1 + t)−3η + C(1 + t)−1−2η.

On the other hand, ∣∣∂2
ijw − ωiω j∂

2
t w

∣∣ ≤ C(1 + t)−1−η.

Hence we can simplify the coefficients of Q1 up to integrable terms. We
introduce the modified coefficients

A0 = ḡ00 − ω1ḡ01 − ω2ḡ02 − 2(∂tw)(h̄00 − ω1h̄01 − ω2h̄02),

A1 = 1

2
ω2ḡ12 + ω1ḡ11 − 2(∂tw)

(
1

2
ω2h̄12 + ω1h̄11

)
,

and similarly for A2.
The computation in Step 3 is the same, and we obtain

e−p Q2 = X2
1

[
(b′ + θ ′)(1 − g11) − (

∂2
t w

)
(ḡ11 − 2wt h̄11)

]
+ X2

2

[
(b′ + θ ′)(1 − g22) − (

∂2
t w

)
(ḡ22 − 2wt h̄22)

]
− 2α1θ

′X1(∂tv) − 2α2θ
′ X2(∂tv)

+ 2X1 X2

[
−1

2
(b′ + θ ′)g12 − 1

2

(
∂2

t w
)
(ḡ12 − 2wt h̄12)

]
+ K̄(∂tv)

2,

with

α1 = ω1(1 − g11) − ω2

2
g12, α2 = ω2(1 − g22) − ω1

2
g12,

K̄ = b′[g00 − ω1g01 − ω2g02 + ω2
1g11 + ω2

2g22 + ω1ω2g12
]

+ (
∂2

t w
)[g(ω) − 2(∂tw)h(ω)] + (2 + A3)θ

′.

Just as before, we see that we can replace, in the coefficient of b′, gij (∂w)
by

−(∂tw)Σgk
ijωk + (∂tw)2Σhkl

ij ωkωl,

modulo integrable terms. Hence the assumption that g satisfies both null
conditions yields Q2 = Q3 + . . . , with K̄ = θ ′(2 + A3) in e−p Q3.

In Step 4, we write

e−p Q3 = (
∂2

t w
)
q(X) + b′[X2

1(1 − g11) + X2
2(1 − g22) − g12 X1 X2

]
+ θ ′[X2

1(1 − g11) + X2
2(1 − g22) − g12 X1 X2

− 2α1 X1wt − 2α2 X2wt + w2
t (2 + A3)

]
,

where q is a quadratic form with bounded coefficients. Since

α2
1 + α2

2 = 1 + O(|∂w|),
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the coefficient of θ ′ is a positive definite quadratic form for small ∂w. Using
now ∣∣∂2

t w
∣∣ ≤ C(1 + t)−η(1 + |σ |)−1 ≤ C(1 + t)−pη + C(1 + |σ |)−q

for conjugate indexes p, q, we can pick p < ∞ big enough to ensure
pη > 1. Choosing

b′ = B(1 + |σ |)−q, θ ′ = B(1 + t)−pη

for B big enough turns Q3 into a positive quantity, and this completes the
proof. ♦
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