
Journal of Functional Analysis 281 (2021) 109232
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Global solution to the wave and Klein-Gordon 

system under null condition in dimension two

Shijie Dong
Fudan University, School of Mathematical Sciences, 220 Handan Road, Shanghai, 
200433, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 September 2020
Accepted 25 August 2021
Available online 14 September 2021
Communicated by Camil Muscalu

MSC:
35L05
35L52

Keywords:
Semilinear wave and Klein-Gordon 
equations
Null condition
Global-in-time solutions
Ghost weight method

We are interested in studying the coupled wave and Klein-
Gordon equations with null quadratic nonlinearities in R2+1. 
We aim to establish the small data global existence result, and 
in addition, we also illustrate the sharp pointwise asymptotic 
behaviour of the solution to the coupled system. The initial 
data are not required to have compact support, and this is 
achieved by applying Alinhac’s ghost weight method to both 
the wave and the Klein-Gordon equations.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Model of interest We are interested in the following coupled wave and Klein-Gordon 
equations

−�u = Pαβ
1 Qαβ(u, v),

E-mail addresses: dongs@ljll.math.upmc.fr, shijiedong1991@hotmail.com.
https://doi.org/10.1016/j.jfa.2021.109232
0022-1236/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jfa.2021.109232
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2021.109232&domain=pdf
mailto:dongs@ljll.math.upmc.fr
mailto:shijiedong1991@hotmail.com
https://doi.org/10.1016/j.jfa.2021.109232


2 S. Dong / Journal of Functional Analysis 281 (2021) 109232
−�v + v = Pαβ
2 Qαβ(u, v), (1.1)

where

Qαβ(u, v) = ∂αu∂βv − ∂αv∂βu, Q0(u, v) = ∂αu∂
αv (to be used later)

represent the classical null forms, and Pαβ
1 , Pαβ

2 are constants.
The prescribed initial data are denoted by

(
u, ∂tu

)
(t0, ·) = (u0, u1),

(
v, ∂tv

)
(t0, ·) = (v0, v1). (1.2)

Our goal is to show the small data global existence result for the system (1.1) (without 
compactness assumption on the initial data), and to demonstrate the sharp pointwise 
asymptotic behaviour of the solution (u, v) in R2+1. This extends the study by Georgiev 
[22] in R3+1.

Throughout of the paper, we use A � B to denote A ≤ CB with C a generic con-
stant, and use the notation 〈s〉 =

√
1 + |s|2. The spacetime indices are represented by 

α, β, γ ∈ {0, 1, 2}, while the space indices are denoted by a, b, c ∈ {1, 2}, and the Einstein 
summation convention is adopted unless otherwise specified. As usual, we use Lp, W k,p

(with abbreviation Hk = W k,2) to denote the standard Sobolev spaces, and we might 
use the notation ‖ · ‖ = ‖ · ‖L2(R2) for simple illustration.

Brief history After the seminal work on nonlinear wave and nonlinear Klein-Gordon 
equations in R3+1, by Klainerman [32] and Christodoulou [6], and by Klainerman [33]
and Shatah [48], various exciting results on nonlinear wave equations, nonlinear Klein-
Gordon equations, and their coupled systems come out. In [4], Bachelot considered a 
Dirac-wave-Klein-Gordon system in R3+1, and then in [22], Georgiev studied the coupled 
wave and Klein-Gordon equations (1.1) with strong null nonlinearities (i.e. nonlinearities 
of type Qαβ) in dimension R3+1, where the initial data are assumed to be compactly 
supported. The study in [4,22] was generalised by [15,30,31,36] and many others in R3+1, 
where more general nonlinearities were studied.

On the other hand, the study of the coupled wave and Klein-Gordon equations 
is motivated by some important models from mathematical physics, for example the 
Einstein-Klein-Gordon model in [28,29,37,38,55], the electroweak standard model as well 
as their simplified models in [18,21,35,46,47,53,54], the Klein-Gordon-Zakharov equations 
in [13,20,45], and many others.

Due to the fact that the wave components and the Klein-Gordon components decay 
slower in lower dimensions, the study of coupled wave and Klein-Gordon systems has 
crucial difficulties in R2+1. Recently, Ma [43,44] has initialised, as far as we know, the 
study of coupled (quasilinear) wave and Klein-Gordon systems in R2+1 using the hy-
perboloidal foliation method [36,37], and obtained global existence results (under the 
compactness assumption on the initial data) for such systems, and then extended the 
study to more types of (semilinear) nonlinearities, including null forms, in [40–42]. The 
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hyperboloidal foliation method, dating back to Klainerman [33] and Hormander [25]
(see also the pioneering work using the hyperbolic space by Tataru [52]), turns out to 
be very powerful in studying coupled wave and Klein-Gordon systems in R2+1. On the 
other hand, the microlocal analysis method has also been used to investigate the quasi-
linear wave and Klein-Gordon systems under the null condition, and Stingo obtained a 
global existence result (first such result without compactness assumption) in [51] for a 
quasilinear system. The almost global existence result in [27] by Ifrim and Stingo is also 
relevant to our study. We also recall a very recent work [13] by the author on the Klein-
Gordon-Zakharov equations in R2+1, in which a class of coupled wave and Klein-Gordon 
equations violating the null condition was studied, see also [19]. Worth to mention, there 
also exist many results on nonlinear wave equations as well as nonlinear Klein-Gordon 
equations in R2+1, see for instance [1,2,5,11,24,26,56], see also some other related works 
[7–10].

Motivated by the existing results on coupled wave and Klein-Gordon systems, our 
prime goal is to show the global existence result for the semilinear wave and Klein-
Gordon equations under strong null conditions in dimension R2+1, where the decay of 
wave and Klein-Gordon components is slower, and which will be considered to be more 
difficult to handle, and by relying on new techniques we do not need the compactness 
assumption on the initial data. Our argument is also expected to have other applications 
to the coupled wave and Klein-Gordon systems, which for instance appears in the later 
work [12].

Major difficulties and key ideas We now revisit the major difficulties arising in study-
ing coupled wave and Klein-Gordon equations in R2+1 using Klainerman’s vector field 
method with non-compactly supported initial data. Besides the slow decay nature of 
linear wave and Klein-Gordon components as well as the non-commutation of the scal-
ing vector field and the Klein-Gordon operator, the difficulties also include: 1) obtaining 
good estimates of the undifferentiated wave components and the null forms; 2) obtaining 
〈t − r〉 decay for the differentiated wave components; 3) closing the bootstrap for the 
high order energy.

First, the L2–type norm of the undifferentiated wave components is required when 
estimating the null forms, see Lemma 2.2 and the explanations below. We recall that the 
L2–type norm of the wave components cannot be bounded by the natural wave energy, 
and the following Hardy–type inequality

∥∥u/|t− |x||
∥∥
L2(R2) �

∥∥∂u∥∥
L2(R2)

can be used to bound the L2–type norm for the wave components, see for instance [39], 
but the compactness assumption on the solution is required to use this type of Hardy 
inequality. So in order to obtain the L2–type norm bounds for the wave components with-
out the compactness assumption, we will rely on the hidden divergence form structure 
of the nonlinearities Qαβ(u, v) (see [30]), i.e.
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Qαβ(u, v) = ∂β
(
∂αuv

)
− ∂α

(
∂βuv

)
,

by which the L2–type norm estimates are decomposed into estimates for linear waves as 
well as differentiated waves. Combining this L2–type norm bounds and the Klainerman-
Sobolev inequality in [34] (see Proposition 2.3), we find that one can obtain the point-
wise decay for the undifferentiated wave components. However, due to the use of the 
Klainerman-Sobolev inequality in Proposition 2.3, an iteration procedure is expected.

Second, when treating the coupled wave and Klein-Gordon systems, the scaling vector 
field L0 = S = t∂t + xa∂

a is in general avoided to use, which is due to the fact that the 
scaling vector field does not commute with the Klein-Gordon operator. However, we find 
that the conformal energy (together with other observations) of the wave component 
allows us to bound the L2 norm of Su, which further allows us to treat the (hidden) 
null form Q0(u, v), see (2.4). Worth to mention, combined with the Klainerman-Sobolev 
inequality in Proposition 2.3 we are able to get the L∞ norm of Su. To be more precise, 
in order to estimate the (hidden) null form Q0(u, v), which appears in (4.15), we rely on 
the estimates in Lemma 2.2 to have

〈t + |x|〉|Q0(u, v)| �
(
|Γu| + |L0u|

)∑
a

(
|Lav| + |∂v|

)
,

in which Γ ∈ {La = t∂a +xa∂t, Ωab = xa∂b−xb∂a, ∂α}. The important thing here is that 
we can avoid acting the scaling vector field L0 on the Klein-Gordon component, which 
was a key observation in [15] when treating a coupled wave and Klein-Gordon system 
in R3+1 using the hyperboloidal foliation method and is now adapted to the R2+1 case. 
However, the new difficulty then lies in estimating (the L2 norm of) the term Su. Recall 
that the conformal energy for wave component in R2+1 is of the form

Econ(t, u) = ‖Su + u‖2
L2(R2) +

∑
a<b

‖Ωabu‖2
L2(R2) +

∑
a

‖Lau‖2
L2(R2),

which is not yet an upper bound of the term Su. But thanks to the hidden divergence 
form structure of the null forms Qαβ explained before, we can first obtain the L2 norm 
estimate of u, and then use the simple triangle inequality to get the L2 norm estimate 
on Su from the conformal energy estimate Econ(t, u)1/2.

Another difficulty lies in that when wave equations are coupled with the Klein-Gordon 
equations we might lose the 〈t −|x|〉 decay for the wave component (see the Klainerman-
Sobolev inequality in Proposition 2.3). However, we surprisingly find that the 〈t − |x|〉
decay can be retained by first obtaining the pointwise bound for L0u, and then by relying 
on the fact that

〈t− |x|〉|∂u| �
∣∣L0u

∣∣ +
∣∣Γu∣∣, Γ = ∂α, La,Ωab.
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Thus, we are allowed to gain the 〈t − |x|〉 decay for the wave components with partial 
derivatives ∂u. The reason why we need to retain the 〈t − |x|〉 decay is that this is 
necessary when applying Alinhac’s ghost weight method, which is explained right below.

In addition, it is not clear how to bound the highest order energy, which is because 
we cannot rely on the null estimates in Lemma 2.2 in the highest order cases (due to 
the presence of the Klein-Gordon component v). Fortunately, we find that the null forms 
can be alternatively bounded by

∣∣Q0(u, v)
∣∣ +

∣∣Qαβ(u, v)
∣∣ � ∑

a

∣∣∂au + xa∂tu/|x|
∣∣∣∣∂v∣∣ +

∑
a

∣∣∂av + xa∂tv/|x|
∣∣∣∣∂u∣∣,

and we also observe that Alinhac’s ghost weight method [1] can be applied to Klein-
Gordon equations (see also an earlier application to quasilinear Klein-Gordon equations 
in [27]), which is one key novelty of the paper, and hence we are able to close the 
bootstrap for the highest order energy by the aid of the ghost weight energy estimates 
adapted to Klein-Gordon equations. However one more problem arises: the application 
of the ghost weight method demands the estimate

∣∣∂u∣∣ � (
1 +

∣∣t− |x|
∣∣)−1/2−δ1(1 + t)−1/2, δ1 > 0

to be true. In order to achieve this, on one hand, we rely on the hidden divergence form 
structure of the null forms Qαβ(u, v) again and the estimates of type ∂∂u (see Lemma 3.4
or [43]) within the region {(t, x) : |x| ≤ 2t}, which roughly tells us that within this region 
∂∂u enjoys an extra 〈t −r〉−1 decay compared with ∂u. On the other hand we rely on the 
extra 〈t − |x|〉 decay in the region {(t, x) : |x| ≥ 2t}, which is equivalent to 〈t〉 decay in 
this region, from the pointwise decay of L0u, Γu as explained before. The way we obtain 
the 〈t − |x|〉 decay is another novelty of the paper. More details are demonstrated in the 
analysis in Section 4. Worth to mention, we find that the ghost weight method on the 
Klein-Gordon equations (see also [27]) has other applications [12].

Main theorem We are now ready to state the main result.

Theorem 1.1. [Global existence result for the coupled wave and Klein-Gordon equations] 
Consider the coupled wave and Klein-Gordon system (1.1), and let N ≥ 14 be an integer. 
There exits an ε0 > 0, such that for all ε < ε0, and all initial data satisfying the smallness 
condition

∑
k≤N+1

(∥∥〈|x|〉k∇ku0
∥∥
L1 ⋂

L2 +
∥∥〈|x|〉k+1∇kv0

∥∥
L2

)

+
∑
k≤N

(∥∥〈|x|〉k+1∇ku1
∥∥
L1 ⋂

L2 +
∥∥〈|x|〉k+2∇kv1

∥∥
L2

)
≤ ε,

(1.3)

with ∇ = (∂a) and 
⋂

the intersection notation, the Cauchy problem (1.1)–(1.2) admits a 
global-in-time solution (u, v), which satisfies the following sharp pointwise decay results
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|v(t, x)| � 〈t〉−1, |u(t, x)| � 〈t〉−1/2, |∂u(t, x)| � 〈t− |x|〉−3/4〈t〉−1/2. (1.4)

We note that the regularity required N ≥ 14 in Theorem 1.1 is quite high, but more or 
less the same regularity assumptions have also appeared in [26,27], where no compactness 
assumptions on the initial data are needed. The main reason why we make high regularity 
assumptions on the initial data is that this is needed in our analysis to obtain sufficient 
〈t − |x|〉 decay for the wave component, see Lemma 4.11. As a comparison, in a recent 
work [19] on a class of two dimensional wave and Klein-Gordon equations the regularity 
needed is quite low (N ≥ 3 suffices), but the compactness assumptions are required. We 
conclude that, using the current method, the price to pay for removing the compactness 
assumptions on the initial data is making higher regularity assumptions on the initial 
data. To reduce the regularity required on the (non-compactly supported) initial data 
will be considered in our future work.

It is worth to mention that in Theorem 1.1 we need the initial data to decay sufficiently 
fast at infinity, which is also the case of [26] on pure wave equations. However, in the 
global existence result of [51] and the almost global existence result of [27], they only 
need mild decay on the initial data.

In the current paper, which is mainly motivated by the pioneering study of Georgiev 
[22] in R3+1, we only consider nonlinearities of the type Qαβ(u, v) in (1.1). We note 
that v − v type interactions appearing in the u (wave) equation have been studied in 
[13,19,27,40,51], for instance. Instead of making an exhaustive discussion for other types 
of nonlinearities, we lead one to the discussion on this direction of [27,41]. One important 
goal in our future study is to treat more general quadratic nonlinearities for the coupled 
equations.

Nevertheless the slow decay nature of the wave and the Klein-Gordon components in 
R2+1, we can still get the global-in-time solution, as well as pointwise decay results of 
the solution, to the system (1.1) without compactness restrictions on the initial data, 
and this is the first such result. Together with the theorem in [30], we know the global 
existence result to the system (1.1) (with no compactness assumptions) is valid in all 
Rn+1, with n ≥ 2. To the best of our knowledge, whether such result to the system 
(1.1) holds in R1+1 is still unknown. But since, as far as we know, there does not exist 
any (nontrivial) blow-up result on the coupled wave and Klein-Gordon systems in any 
dimensions, we believe the answer to the R1+1 question is also positive.

Organisation The rest of the paper is planned as follows. In Section 2, we revisit some 
notations and some basic results on the wave and Klein-Gordon equations. Then in 
Section 3, we prepare some key results on estimating the L2 and the L∞ estimates for 
the linear wave equations. Finally, we provide the proof for Theorem 1.1 by relying on 
the fixed point theorem in Section 4.
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2. Preliminaries

2.1. Basic notations

In the (2 + 1) dimensional spacetime, we adopt the signature (−, +, +). We denote a 
point in R2+1 by (x0, x1, x2) = (t, x1, x2), and denote its spacial radius by r =

√
x2

1 + x2
2.

In order to apply Klainerman’s vector field method, we first introduce the vector 
fields:

• Translations: ∂α = ∂xα , α = 0, 1, 2.
• Rotations: Ωab = xa∂b − xb∂a, a, b = 1, 2.
• Lorentz boosts: La = xa∂t + t∂a, a = 1, 2.
• Scaling vector field: L0 = S = t∂t + r∂r.

We will use Γ to denote a general vector field (not the scaling vector field L0) in

V := {∂α,Ωab, La}.

In addition, we also introduce the notation of (the ghost derivative)

Ga := r−1(xa∂t + r∂a
)
,

which appears in Alinhac’s ghost weight method.
Given a sufficiently nice function w = w(t, x), we define its energy on the constant 

time slice t = constant by

Em(t, w) :=
∫
R2

(
|∂tw|2 +

∑
a

|∂aw|2 + m2|w|2
)
dx. (2.1)

For abbreviation, we use the notation

E(t, w) = E0(t, w).

2.2. Estimates for commutators and null forms

The following results for commutators will be frequently used, see [50].

Lemma 2.1. For any Γ′, Γ′′ ∈ V we have

[�,Γ′] = 0,
∣∣[Γ′,Γ′′]w

∣∣ � ∣∣Γw∣∣, ∣∣[Γ, ∂]w
∣∣ +

∣∣[L0, ∂]w
∣∣ � ∣∣∂w∣∣, (2.2)

in which w is sufficiently nice function. In addition, if we act the vector field Γ on the 
null forms, we further have



8 S. Dong / Journal of Functional Analysis 281 (2021) 109232
∣∣ΓQ0(u, v) −Q0(Γu, v) −Q0(u,Γv)
∣∣ = 0,∣∣ΓQαβ(u, v) −Qαβ(Γu, v) −Qαβ(u,Γv)
∣∣ ≤ ∑

α′,β′

∣∣Qα′β′(u, v)
∣∣. (2.3)

In order to estimate null forms, we need the following lemma which gives very detailed 
estimates on the null forms and can be found in [26,50] for example.

Lemma 2.2. It holds that

|Q0(u, v)| �〈t + |x|〉−1(∣∣L0uΓv
∣∣ +

∣∣ΓuΓv
∣∣),

|Qαβ(u, v)| �〈t + |x|〉−1(∣∣Γv∂u∣∣ +
∣∣Γu∂v∣∣).

|Q0(u, v)| + |Qαβ(u, v)| �
∑
a

(∣∣Gau
∣∣|∂v| + ∣∣Gav

∣∣|∂u|).
(2.4)

2.3. Sobolev–type inequalities

Now, in order to obtain the pointwise wave decay or Klein-Gordon decay estimates 
from the weighted energy bounds we recall the following inequalities. We note that the 
importance of the inequalities below to coupled wave and Klein-Gordon equations is that 
we do not need to rely on the scaling vector field L0 = t∂t + xa∂a.

We first revisit one special version of the Klainerman-Sobolev inequality in [34], see 
the inequalities (4), (5’), and (6) therein. We note that it is not required to use the 
scaling vector field L0 in the right hand side L2–type norms, so this version is very well 
adapted to the study of the coupled wave and Klein-Gordon systems. However, in the 
inequality (2.5), we need the future information till time 2t when deriving the pointwise 
bounds for the function at time t, and thus we rely on the fixed point iteration method 
to prove Theorem 1.1.

Proposition 2.3. Let u = u(t, x) be a sufficiently smooth function which decays sufficiently 
fast at space infinity for each fixed t ≥ 0. Then for any t ≥ 0, x ∈ R2, we have

|u(t, x)| � 〈t〉−1/2 sup
0≤s≤2t,|I|≤3

∥∥ΓIu(s)
∥∥
L2 , Γ ∈ V = {La, ∂α,Ωab = xa∂b − xb∂a}.

(2.5)

Before recalling the following inequality, which was proved by Georgiev in [23], we 
first introduce some notations. Denote {pj}∞0 a usual Paley-Littlewood partition of the 
unity

1 =
∑
j≥0

pj(s), s ≥ 0,

which also satisfies
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0 ≤ pj ≤ 1, pj ∈ C∞
0 (R), for all j ≥ 0,

as well as

supp p0 ⊂ (−∞, 2], supp pj ⊂ [2j−1, 2j+1], for all j ≥ 1.

Proposition 2.4. Let w solve the Klein-Gordon equation

−�w + w = f,

with f = f(t, x) a sufficiently nice function. Then for all t ≥ 0, it holds

〈t + |x|〉|w(t, x)|

�
∑

j≥0, |I|≤4

sup
0≤s≤t

pj(s)
∥∥〈s + |x|〉ΓIf(s, x)

∥∥
L2

+
∑

j≥0, |I|≤4

∥∥〈|x|〉pj(|x|)ΓIw(0, x)
∥∥
L2

(2.6)

As a consequence, we have the following simplified version of Proposition 2.4.

Proposition 2.5. With the same settings as Proposition 2.4, let δ′ > 0 and assume
∑
|I|≤4

∥∥〈s + |x|〉ΓIf(s, x)
∥∥
L2 ≤ Cf 〈s〉−δ′ ,

then we have

〈t + |x|〉|w(t, x)| � Cf +
∑
|I|≤4

∥∥〈|x|〉ΓIw(0, x)
∥∥
L2 . (2.7)

2.4. Energy estimates for wave and Klein-Gordon equations

We first recall the conformal energy estimates for wave equations in R2+1, which is 
rarely used but will play an important role in our analysis later. For its proof, one refers 
to [3].

Proposition 2.6. Let w be the solution to

−�w = f,
(
w, ∂tw

)
(0) = (w0, w1),

then it holds

Econ(t, w)1/2 � Econ(0, w)1/2 +
t∫ ∥∥〈t′ + |x|〉f

∥∥ dt′, (2.8)

0
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in which

Econ(t, w) = ‖Sw + w‖2 +
∑
a<b

‖Ωabw‖2 +
∑
a

‖Law‖2. (2.9)

We now extend a little bit Alinhac’s ghost weight method for wave equations, so that it 
can also be applied to Klein-Gordon equations (see also [27]). The following ghost weight 
energy estimates will be frequently used, which are valid for both wave and Klein-Gordon 
equations.

Proposition 2.7. Assume w is the solution to

−�w + m2w = f,

then we have

Egst1,m(t, w) ≤
∫
R2

eq
(
|∂tw|2 +

∑
a

|∂aw|2 + m2w2) dx(0) + 2
t∫

0

∫
R2

∣∣f∂tweq∣∣ dxdt′,
(2.10)

in which

q =
r−t∫

−∞

〈s〉−3/2 ds,

and

Egst1,m(t, w)

=
∫
R2

eq
(
|∂tw|2 +

∑
a

|∂aw|2 + m2w2) dx(t) + m2
t∫

0

∫
R2

eq

〈r − t′〉3/2w
2 dxdt′

+
∑
a

t∫
0

∫
R2

eq

〈r − t′〉3/2
∣∣Gaw

∣∣2 dxdt′.
(2.11)

Proof. The proof is almost the same as the proof for the case of m = 0.
We multiply on both sides of the w equation with eq∂tw to get

1
2∂t

(
eq(∂w)2 + m2eqw2)− ∂a

(
eq∂aw∂tw

)
+ 1

2
eq

〈t− r〉3/2
∑
a

(
Gaw

)2

+m2 eq

3/2w
2 = eqf∂tw.
2 〈t− r〉
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Integrating over the region [0, t] × R2 to arrive at the desired energy estimates. Hence 
the proof is done. �

Since −π/2 ≤ q ≤ π/2, we thus have the following version of the ghost weight energy 
estimates

Egst,m(t, w) � Em(0, w) +
t∫

0

∫
R2

|f∂tw| dxdt′, (2.12)

in which

Egst,m(t, w) =Em(t, w) + m2
t∫

0

∫
R2

w2

〈r − t′〉3/2 dxdt′

+
∑
a

t∫
0

∫
R2

|Gaw|2
〈r − t′〉3/2 dxdt′. (2.13)

We note that the ghost weight energy estimates imply the usual energy estimates

Em(t, w)1/2 � Em(0, w)1/2 +
t∫

0

‖f‖ dt′. (2.14)

Besides, we also have the following type of ghost weight energy estimates.

Proposition 2.8. With the same assumptions as in Proposition 2.7, we get

m2
t∫

0

〈t′〉−δ

∫
R2

w2

〈r − t′〉3/2 dxdt′ +
∑
a

t∫
0

〈t′〉−δ

∫
R2

∣∣Gaw
∣∣2

〈r − t′〉3/2 dxdt′

�Em(0, w) +
t∫

0

∫
R2

〈t′〉−δ|f∂tw| dxdt′.

(2.15)

Proof. We multiply on both sides of the w equation with 〈t〉−δeq∂tw to get

1
2∂t

(
〈t〉−δ

(
eq(∂w)2 + m2eqw2))

+δ

2 t〈t〉
−2−δ

(
eq(∂w)2 + m2eqw2)− ∂a

(
〈t〉−δeq∂aw∂tw

)
+1

2
〈t〉−δeq

〈t− r〉3/2
∑
a

(
Gaw

)2 + m2

2
〈t〉−δeq

〈t− r〉3/2w
2 = 〈t〉−δeqf∂tw.
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We integrate over the region [0, t] ×R2, and the facts t ≥ 0, 1 � eq � 1 imply the desired 
energy estimates. We thus complete the proof. �
3. L2 and L∞ estimates for wave equations

3.1. L2 estimates for homogeneous wave equations

We have the following lemmas which help bound the L2 norm of the solution (with 
no derivatives in front) to wave equations, which was used in [14,16,17].

Lemma 3.1. Let w be the solution to the linear wave equation

− �w = 0,

w(0, ·) =w0, ∂tw(0, ·) = w1.
(3.1)

We assume that (
⋂

is the notation for the intersection of two sets)

‖w0‖L2 + ‖w1‖L2 ⋂
L1 < +∞. (3.2)

Then the following L2 norm bound is valid

‖w‖L2 � ‖w0‖L2 + 〈t〉δ‖w1‖L2 ⋂
L1 (3.3)

for 0 < δ � 1.

Proof. Recall that the Fourier transform is defined by

ŵ(t, ξ) =
∫
R2

w(t, x)e−ixaξ
a

dx.

We express the equation of w in the Fourier space

∂ttŵ(t, ξ) + |ξ|2ŵ(t, ξ) = 0,

ŵ(0, ·) = ŵ0, ∂tŵ(0, ·) = ŵ1.

Then we obtain the solution w in Fourier space by solving the above ordinary differential 
equation

ŵ(t, ξ) = cos(t|ξ|)ŵ0 + sin(t|ξ|)
|ξ| ŵ1.

Thus we can bound the L2 norm of w as (recall the Plancherel’s identity)
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‖w‖L2 � ‖w0‖L2 +
∥∥∥ sin(t|ξ|)

|ξ| ŵ1

∥∥∥
L2
. (3.4)

We proceed by

∥∥∥ sin(t|ξ|)
|ξ| ŵ1

∥∥∥
L2

� tδ
∥∥∥ ŵ1

|ξ|1−δ

∥∥∥
L2

� tδ
∥∥∥ w1

Λ1−δ

∥∥∥
L2
,

in which Λ =
√
−∂a∂a and we used the simple relations | sin(t|ξ|)| ≤ t|ξ|, | sin(t|ξ|)| ≤ 1. 

The Sobolev embedding (δ1 below needs not be an integer)

∥∥∥ f

Λδ1

∥∥∥
Lq

� ‖f‖Lp , δ1 = 2
p
− 2

q
, 1 < p < q < +∞

further implies

∥∥∥ sin(t|ξ|)
|ξ| ŵ1

∥∥∥
L2

� tδ
∥∥∥ w1

Λ1−δ

∥∥∥
L2

� tδ‖w1‖L2/(2−δ) � tδ‖w1‖L1 ⋂
L2 ,

in which we used the fact δ � 1. Gathering the estimates finishes the proof. �
3.2. L∞ estimates for wave equations

Recall that we do not have any 〈t −|x|〉 decay when applying the Klainerman-Sobolev 
inequality of version (2.5). But the following result helps gain 〈t − |x|〉−1 decay for ∂u
components, which is of vital importance when using the ghost weight energy estimates 
(2.12). Its proof can be found in [26,50].

Lemma 3.2. We have
∣∣∂u∣∣ � 〈t− |x|〉−1(∣∣L0u

∣∣ +
∣∣Γu∣∣), ∣∣Gau

∣∣ � 〈t + |x|〉−1(∣∣L0u
∣∣ +

∣∣Γu∣∣). (3.5)

Next, we recall the pointwise estimates for homogeneous waves, see for instance [26,49]. 
We note that the regularity required for the initial data is much weaker in [49], where 
the Besov spaces are used, but due to some regularity loss in other places we will use 
the following version of estimates with proof.

Lemma 3.3. Let w be the solution to

− �w = 0,

w(0, ·) =w0, ∂tw(0, ·) = w1,
(3.6)

then we have

|w| � 〈t〉−1/2(‖w0‖W 2,1 ⋂
H3 + ‖w1‖W 1,1 ⋂

H2
)
. (3.7)
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Proof. We revisit the proof given in [26], and since the result we need is weaker, the 
analysis is simpler.

The solution can be represented by w = w0 + w1, with

w0(t, x) = 1
2π∂t

∫
|x−y|≤t

w0(y) dy√
t2 − |x− y|2

, w1(t, x) = 1
2π

∫
|x−y|≤t

w1(y) dy√
t2 − |x− y|2

.

We will only provide the proof for the estimate of w1(t, x) when t ≥ 2, since other 
cases are either similar or simpler. We note that (with p = y − x)

∣∣w1(t, x)
∣∣ �∣∣∣ ∫

|p|≤t

w1(x + p) dp√
t2 − |p|2

∣∣∣

=
∣∣∣ ∫
|p|≤t

w1(x + p) dp√
t− |p|

√
t + |p|

∣∣∣,

and the fact 〈t〉1/2 �
√
t + |p| for t ≥ 2 further implies

∣∣w1(t, x)
∣∣ �〈t〉−1/2

∫
|p|≤t−1

|w1(x + p)| dp√
t− |p|

+
∣∣∣ ∫
t−1≤|p|≤t

w1(x + p) dp√
t + |p|

√
t− |p|

∣∣∣

�〈t〉−1/2∥∥w1
∥∥
L1 +

∣∣∣ ∫
t−1≤|p|≤t

w1(x + p) dp√
t + |p|

√
t− |p|

∣∣∣.

We observe that

∣∣∣ ∫
t−1≤|p|≤t

w1(x + p) dp√
t + |p|

√
t− |p|

∣∣∣

�
∣∣∣ ∫
S1

t∫
t−1

w1(x + ω|p|)|p|√
t + |p|

d
√
t− |p|dω

∣∣∣
�〈t〉−1/2

∣∣∣ ∫
S1

w1(x + ω(t− 1))(t− 1) dω
∣∣∣

+〈t〉−1/2
∫
S1

t∫
t−1

(
|w1(x + ω|p|)| + |∂w1(x + ω|p|)||p|

)
d|p|dω,

in which we used integration by part in the last step. Recall that t ≥ 2, we thus have



S. Dong / Journal of Functional Analysis 281 (2021) 109232 15
∫
S1

t∫
t−1

(
|w1(x + ω|p|)| + |∂w1(x + ω|p|)||p|

)
d|p|dω

�
∫
S1

t∫
t−1

(
|w1(x + ω|p|)||p| + |∂w1(x + ω|p|)||p|

)
d|p|dω

�
∥∥w1

∥∥
L1 +

∥∥∂w1
∥∥
L1 .

To proceed, we get

〈t〉1/2
∣∣∣ ∫
t−1≤|p|≤t

w1(x + p) dp√
t + |p|

√
t− |p|

∣∣∣

�
∣∣∣ ∫
S1

w1(x + ω(t− 1))(t− 1) dω
∣∣∣ +

∥∥w1
∥∥
L1 +

∥∥∂w1
∥∥
L1

�
∫
S1

t−1∫
0

(
|∂w1(x + ω|p|)||p| + |w1(x + ω|p|)|

)
d|p|dω +

∥∥w1
∥∥
L1 +

∥∥∂w1
∥∥
L1

�
∫
S1

1∫
0

|w1(x + ω|p|)| d|p|dω +
∫
S1

t−1∫
1

|w1(x + ω|p|)||p| d|p|dω +
∥∥w1

∥∥
L1 +

∥∥∂w1
∥∥
L1 ⋂

L2

�
∥∥w1

∥∥
L∞ +

∥∥w1
∥∥
L1 +

∥∥∂w1
∥∥
L1 �

∥∥w1
∥∥
H2 +

∥∥w1
∥∥
L1 +

∥∥∂w1
∥∥
L1 ,

in which we used the fundamental theorem of calculus in the second step. We thus obtain
∣∣w1(t, x)

∣∣ � 〈t〉−1/2(∥∥w1
∥∥
H2 +

∥∥w1
∥∥
L1 +

∥∥∂w1
∥∥
L1

)
, t ≥ 2. �

Besides, the following key observation, see for instance [42,43], claims that ∂∂u has 
extra 〈t − |x|〉−1 decay than ∂u in the spacetime region {(t, x) : |x| ≤ 2t}, and this can 
be used to get the L∞ bound for ∂u thanks to the divergence form structure in the u
equation.

Lemma 3.4. Let w solve

−�w = f,

and we further assume
∣∣∂w∣∣ +

∣∣∂Γw
∣∣ � Cw〈t〉−1/2, |f | � Cf 〈t〉−3/2, (3.8)

with Cw, Cf constants, then we have
∣∣∂∂w∣∣ � (

Cw + Cf

)
〈t− |x|〉−1〈t〉−1/2, in {(t, x) : |x| ≤ 2t}. (3.9)
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Proof. For completeness we revisit the proof in [42,43]. Since it is easily seen that the 
results hold for t ≤ 1, so we will only consider the case t ≥ 1.

We first express the wave operator −� by ∂t, La to get

−� = (t− |x|)(t + |x|)
t2

∂tt + 2x
a

t2
∂tLa −

1
t2
LaLa + 2

t
∂t −

xa

t2
∂a. (3.10)

Then we find that

1 + |t− |x||
t

|∂ttw| �
1
t

(∣∣∂Γw
∣∣ +

∣∣∂w∣∣) + |f |,

in which we used the relation |x| ≤ 2t, and thus we are led to

|∂ttw| �
(
Cw + Cf

) 1
〈t− |x|〉〈t〉1/2 .

On the other hand, we note that the following relations hold true

∂a∂t = −xa

t
∂t∂t + 1

t
∂tLa + xa

t2
∂t −

1
t2
La,

∂a∂b = xaxb

t2
∂t∂t −

xa

t2
∂tLb + 1

t
∂bLa −

δab
t
∂t + xa

t2
∂b,

which, using again |x| ≤ 2t, means

∣∣∂α∂βw∣∣ � ∣∣∂t∂tw∣∣ + 1
t

(∣∣∂Γw
∣∣ +

∣∣∂w∣∣) � ∣∣∂t∂tw∣∣ + 1
〈t− |x|〉

(∣∣∂Γw
∣∣ +

∣∣∂w∣∣).
We thus complete the proof. �

4. Proof of the main theorem

4.1. Initialisation of the iteration method

As we explained in the introduction part that the utilisation of the Klainerman-
Sobolev inequality (2.5) requires us to rely on an iteration procedure in order to show 
the global existence result for the system (1.1), we thus first provide the basics for the 
fixed point iteration method.

We now introduce the solution space which is denoted by X, recalling N ≥ 14 in 
Theorem 1.1.

Definition 4.1. Let φ = φ(t, x), ψ = ψ(t, x) be sufficiently regular functions, and we say 
(φ, ψ) belongs to the function space X if
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• It satisfies

(
φ, ∂tφ, ψ, ∂tψ

)
(0, ·) =

(
u0, u1, v0, v1

)
. (4.1)

• It satisfies
∥∥(φ, ψ)

∥∥
X

≤ C1ε, (4.2)

in which C1  1 is a large constant to be determined, the size of the initial data 
ε � 1 is sufficiently small such that C1ε � δ, and the ‖ · ‖X norm is defined by
∥∥(u, v)

∥∥
X

:= sup
t≥0, |I|≤N

〈t〉−δ
(∥∥ΓIu

∥∥ + Egst(ΓIu, t)1/2 + Egst,1(ΓIv, t)1/2
)

+ sup
t≥0, |I|≤N

〈t〉−δ/2
( t∫

0

〈t′〉−δ
(∥∥∥ ΓIv

〈t′ − |x|〉3/4
∥∥∥2

+
∥∥∥ GaΓIv

〈t′ − |x|〉3/4
∥∥∥2)

dt′
)1/2

+ sup
t≥0, |I|≤N−1

(
Egst(ΓIu, t)1/2 + Egst,1(ΓIv, t)1/2

)
+ sup

t≥0,|I|≤N−1
〈t〉

(∥∥�ΓIu
∥∥ +

∥∥− �ΓIv + ΓIv
∥∥)

+ sup
t≥0, |I|≤N−2

〈t〉−1/2−δ
∥∥L0ΓIu

∥∥
+ sup

t≥0, |I|≤N−6
〈t〉−δ

∥∥L0ΓIu
∥∥ + sup

x, t≥0, |I|≤N−5
〈t + |x|〉

∣∣ΓIv
∣∣

+ sup
x, t≥0,|I|≤N−6

〈t〉2
(∣∣�ΓIu

∣∣ +
∣∣− �ΓIv + ΓIv

∣∣)
+ sup

x, t≥0, |I|≤N−9
〈t− |x|〉3/4〈t〉1/2

∣∣∂ΓIu
∣∣. (4.3)

We note that the function space X is complete with respect to the metric induced 
from the ‖ · ‖X norm.

4.2. The solution mapping

Definition 4.2. Given a pair of functions (m, n) ∈ X, we define

T (m,n) := (φ, ψ), (4.4)

in which (φ, ψ) is the solution to the following (linear) system

−�φ = Pαβ
1 Qαβ(m,n),

−�ψ + ψ = Pαβ
2 Qαβ(m,n),(

φ, ∂ φ, ψ, ∂ ψ
)
(0, ·) =

(
u , u , v , v

)
.

(4.5)
t t 0 1 0 1
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To track the components φ, ψ, m, n easily, we remind one that φ, m are wave compo-
nents while ψ, n represent Klein-Gordon components.

We have the following proposition about the solution mapping T .

Proposition 4.3. The images of the solution mapping T lie in X.

We need the following results to prove Proposition 4.3.

Lemma 4.4. We have
∣∣L0ΓIm

∣∣ � C1ε〈t〉−1/2+δ, |I| ≤ N − 9,∣∣ΓIm
∣∣ � C1ε〈t〉−1/2+δ, |I| ≤ N − 4,∣∣∂ΓIm
∣∣ � C1ε〈t〉−1/2, |I| ≤ N − 4,∣∣∂ΓIm
∣∣ � C1ε〈t− |x|〉−3/4〈t〉−1/2, |I| ≤ N − 9.

(4.6)

Proof. The first three estimates follow from the Klainerman-Sobolev inequality (2.5) and 
the commutator estimates, and the last one is from the definition of the function space 
X. �
Lemma 4.5. We have

Egst(ΓIψ, t)1/2 � ε + (C1ε)3/2, |I| ≤ N − 1,

Egst(ΓIψ, t)1/2 � ε + (C1ε)3/2〈t〉δ, |I| ≤ N,

( t∫
0

〈t′〉−δ
(∥∥∥ ΓIψ

〈t′ − |x|〉3/4
∥∥∥2

+
∥∥∥ GaΓIψ

〈t′ − |x|〉3/4
∥∥∥2)

dt′
)1/2

� ε + (C1ε)3/2〈t〉δ/2,

|I| ≤ N. (4.7)

Proof. We act the vector field ΓI on both sides of ψ equation in (4.5) to get

−�ΓIψ + ΓIψ = Pαβ
2 ΓIQαβ(m,n).

The usual energy estimates (2.14) give

E1(t,ΓIψ)1/2 � E1(0,ΓIψ)1/2 +
t∫

0

∥∥Pαβ
2 ΓIQαβ(m,n)

∥∥ dt′.
For the case |I| ≤ N − 1, we have (recall N ≥ 14)

∥∥Pαβ
2 ΓIQαβ(m,n)

∥∥ �
∑ ∥∥Qαβ(ΓI1m,ΓI2n)

∥∥

α,β,|I1|+|I2|≤|I|
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�
∑

|I1|+|I2|≤|I|

∥∥〈t′〉−1ΓΓI1mΓΓI2n
∥∥

�
∑

|I1|+|I2|≤|I|
|I2|≤N−6

〈t′〉−1∥∥ΓΓI1m
∥∥∥∥ΓΓI2n

∥∥
L∞

+
∑

|I1|+|I2|≤|I|
|I1|≤N−5

〈t′〉−1∥∥ΓΓI1m
∥∥
L∞

∥∥ΓΓI2n
∥∥

�(C1ε)2〈t′〉−3/2+2δ.

So we are led to

E1(t,ΓIψ)1/2 � ε + (C1ε)2
t∫

0

〈t′〉−3/2+2δ dt′ � ε + (C1ε)2.

Then, we apply the ghost weight energy estimates (2.12) to obtain

Egst,1(t,ΓIψ) � Egst,1(0,ΓIψ) +
t∫

0

∥∥Pαβ
2 ΓIQαβ(m,n)∂tΓIv

∥∥
L1 dt

′.

Similarly, we get

Egst,1(t,ΓIψ) � ε2 +
t∫

0

∥∥Pαβ
2 ΓIQαβ(m,n)

∥∥∥∥∂tΓIv
∥∥ dt′

� ε2 + (C1ε)3
t∫

0

〈t′〉−3/2+2δ dt′ � ε2 + (C1ε)3.

Next, we turn to the case of |I| ≤ N , and we start with estimating (recall N ≥ 14)

∥∥Pαβ
2 ΓIQαβ(m,n)

∥∥
�

∑
α,β,|I1|+|I2|≤|I|

∥∥Qαβ(ΓI1m,ΓI2n)
∥∥

�
∑

a,|I1|+|I2|≤|I|

(∥∥GaΓΓI1m∂ΓI2n
∥∥ +

∥∥∂ΓΓI1mGaΓI2n
∥∥)

�
∑

|I1|+|I2|≤|I|

(∥∥∥ GaΓI1n

〈t′ − |x|〉3/4
∥∥∥∥∥〈t′ − |x|〉3/4∂ΓI2m

∥∥
L∞ +

∥∥∂ΓI1n
∥∥∥∥GaΓI2m

∥∥
L∞

)

|I2|≤N−9
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+
∑

|I1|+|I2|≤|I|
|I1|≤N−6

∥∥∂ΓI1m
∥∥∥∥∂ΓI2n

∥∥
L∞ .

Recall the relation
∣∣Gam

∣∣ � 〈t + |x|〉−1(∣∣L0m
∣∣ +

∣∣Γm∣∣),
as well as the bounds

∣∣〈t− |x|〉3/4∂ΓI2m
∣∣ � C1ε〈t〉−1/2,

we thus arrive at

∥∥Pαβ
2 ΓIQαβ(m,n)

∥∥ � C1ε〈t〉−1/2
∑

|I|≤N

∥∥∥ GaΓIn

〈t− |x|〉3/4
∥∥∥ + (C1ε)2〈t〉−1+δ.

Then the energy estimates (2.14) yield

E1(t,ΓI)1/2 �ε +
t∫

0

∥∥Pαβ
2 ΓIQαβ(m,n)

∥∥ dt′

�ε +
t∫

0

(
(C1ε)2〈t′〉−1+δ + C1ε〈t′〉−1/2

∑
|I|≤N

∥∥∥ GaΓIn

〈t′ − |x|〉3/4
∥∥∥) dt′

�ε + (C1ε)2tδ

+ C1ε
∑

|I|≤N

( t∫
0

〈t′〉−1+δ dt′
)1/2( t∫

0

〈t′〉−δ/2
∥∥∥ GaΓIn

〈t′ − |x|〉3/4
∥∥∥2)

dt′
)1/2

,

which leads us to

E1(t,ΓI)1/2 � ε + (C1ε)2〈t〉δ.

In succession, we apply the ghost weight energy estimates (2.12) to get

Egst,1(t,ΓIψ)

�Egst,1(0,ΓIψ) +
t∫

0

∥∥Pαβ
2 ΓIQαβ(m,n)

∥∥∥∥∂tΓIv
∥∥ dt′

�ε2 +
t∫

0

(
(C1ε)3〈t′〉−1+2δ + (C1ε)2〈t′〉−1/2+δ

∑
|I|≤N

∥∥∥ GaΓIn

〈t′ − |x|〉3/4
∥∥∥) dt′

�ε2 + (C1ε)3t2δ.
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Finally, we use the ghost weight energy estimates (2.15) to proceed

∑
a

t∫
0

〈t′〉−δ
(∥∥∥ ΓIψ

〈t′ − |x|〉3/2
∥∥∥2

+
∥∥∥ GaΓIψ

〈t′ − |x|〉3/4
∥∥∥2)

dt′

�Em(0,ΓIψ) +
t∫

0

∫
R2

〈t′〉−δ|Pαβ
2 ΓIQαβ(m,n)∂tΓIψ| dxdt′

�ε2 +
t∫

0

(
(C1ε)3〈t′〉−1+δ + (C1ε)2〈t′〉−1/2

∑
|I|≤N

∥∥∥ GaΓIn

〈t′ − |x|〉3/4
∥∥∥) dt′ � ε2 + (C1ε)3tδ.

The proof is complete now. �
Lemma 4.6. We have

Egst(ΓIφ, t)1/2 � ε + (C1ε)3/2, |I| ≤ N − 1,

Egst(ΓIφ, t)1/2 � ε + (C1ε)3/2〈t〉δ, |I| ≤ N.
(4.8)

Proof. The same proof in Lemma 4.5 also applies here, so we omit the proof. �
Lemma 4.7. We have

∥∥�ΓIφ
∥∥ +

∥∥(−� + 1)ΓIψ
∥∥ �(C1ε)2〈t〉−1, |I| ≤ N − 1,∣∣�ΓIφ

∣∣ +
∣∣(−� + 1)ΓIψ

∣∣ �(C1ε)2〈t〉−2, |I| ≤ N − 6.
(4.9)

Proof. The proof of the L2–type norm estimates was covered in the proof of Lemma 4.5.
As for the sup-norm estimates for |I| ≤ N − 6, we observe that it suffices to show

∣∣Pαβ
a ΓIQαβ(m,n)

∣∣ � (C1ε)2〈t〉−2, |I| ≤ N − 6.

We indeed have for |I| ≤ N − 6 that

∣∣Pαβ
a ΓIQαβ(m,n)

∣∣ � 1
〈t〉

∑
|I1|,|I2|≤N−5

∣∣ΓI1m
∣∣∣∣ΓI2n

∣∣ � (C1ε)2〈t〉−5/2+δ � (C1ε)2〈t〉−2.

Hence we complete the proof. �
Lemma 4.8. We have

∣∣ΓIψ
∣∣ � ε + (C1ε)3/2〈t + |x|〉−1, |I| ≤ N − 5. (4.10)
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Proof. According to the result in Proposition 2.5, it suffices to show
∥∥〈t + |x|〉Pαβ

2 ΓIQαβ(m,n)
∥∥ � (C1ε)2〈t〉−δ, |I| ≤ N − 1.

But this was done (not exactly the same but very similar) in the proof of Lemma 4.5.
The proof is done. �
Before we proceed further, we now decompose the wave component φ as

φ = φ5 + ∂γφ
γ , (4.11)

in which φ5, φγ are solutions to the following (linear) equations:

−�φ5 = 0,
(
φ5, ∂tφ

5)(0) = (u0, u1), (4.12)

as well as

−�φγ = Pαγ
1 n∂αm− P γβ

1 n∂βm,
(
φγ , ∂tφ

γ
)
(0) = (0, 0). (4.13)

In addition, we reveal the hidden null structure in the equation of (4.13) with the new 
variables

Φγ := φγ + Pαγ
1 n∂αm− P γβ

1 n∂βm, (4.14)

which is the solution to

−�Φγ =Pαγ
1 (−� + 1)n∂αm + Pαγ

1 n(−�∂αm) − Pαγ
1 Q0(n, ∂αm)

− P γβ
1 (−� + 1)n∂βm− P γβ

1 n(−�∂βm) + P γβ
1 Q0(n, ∂βm),

(4.15)

and this is obtained by the product rule for derivatives. We observe that the nonlinearities 
decay very fast, and this decomposition will be used in the proof of Lemma 4.11 to obtain 
sharp time decay result of φ.

Lemma 4.9. We have
∥∥ΓIφ

∥∥
L2 �

(
ε + (C1ε)3/2

)
〈t〉δ, |I| ≤ N. (4.16)

Proof. First, the result in Lemma 3.1 implies

‖ΓIφ5‖ � ε〈t〉δ, |I| ≤ N. (4.17)

Taking into account the relation (4.11), it suffices to show
∑

E(t,ΓIφγ)1/2 � ε + (C1ε)2〈t〉δ, |I| ≤ N. (4.18)

γ
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Applying the usual energy estimates for the φγ equation, we get

E(t,ΓIφγ)1/2 � E(0,ΓIφγ)1/2 +
t∫

0

∥∥ΓI
(
Pαγ

1 n∂αm− P γβ
1 n∂βm

)∥∥ dt′.

Successively, we have (recall that N ≥ 14)

∥∥ΓI
(
Pαγ

1 n∂αm− P γβ
1 n∂βm

)∥∥
�

∑
|I1|+|I2|≤N

∥∥ΓI1n∂ΓI2m
∥∥

�
∑

|I1|≤N−5
|I2|≤N

∥∥ΓI1n
∥∥
L∞

∥∥∂ΓI2m
∥∥

+
∑

|I1|≤N
|I2|≤N−9

∥∥∥ ΓI1n

〈t〉δ/2〈t− |x|〉3/4
∥∥∥∥∥〈t〉δ/2〈t− |x|〉3/4∂ΓI2m

∥∥
L∞

�(C1ε)2〈t〉−1+δ + C1ε〈t〉−1/2+δ/2
∑

|I1|≤N

∥∥∥ ΓI1n

〈t〉δ/2〈t− |x|〉3/4
∥∥∥.

Thus we have

E(t,ΓIφγ)1/2

�ε + (C1ε)2〈t〉δ +
∑

|I1|≤N

( t∫
0

∥∥∥ ΓI1n

〈t′〉δ/2〈t′ − |x|〉3/4
∥∥∥2

dt′
)1/2( t∫

0

〈t′〉−1+δ dt′
)1/2

�ε + (C1ε)2〈t〉δ. �
Lemma 4.10. We have

∥∥L0ΓIφ
∥∥
L2 � ε + (C1ε)3/2tδ, |I| ≤ N − 6,∥∥L0ΓIφ

∥∥
L2 � ε + (C1ε)3/2t1/2+δ, |I| ≤ N − 2.

(4.19)

Proof. We only provide the proof for the case |I| ≤ N − 6, and the case of |I| ≤ N − 2
can be shown in the similar way.

We apply the conformal energy estimates (2.8) on the equation

−�ΓIφ = Pαβ
1 ΓIQαβ(m,n),

with |I| ≤ N − 6, to get
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Econ(t,ΓIφ)1/2 � Econ(0,ΓI)1/2 +
t∫

0

∥∥〈t′ + |x|〉Pαβ
1 ΓIQαβ(m,n)

∥∥ dt′.
We note that

∥∥〈t′ + |x|〉Pαβ
1 ΓIQαβ(m,n)

∥∥ �
∑

|I|≤N−6

∥∥ΓΓIm
∥∥ ∑

|I|≤N−6

∥∥ΓΓIn
∥∥
L∞ � (C1ε)2〈t′〉−1+δ,

which further yields

Econ(t,ΓIφ)1/2 � ε + (C1ε)2〈t〉δ.

Thus the proof is done after recalling the estimates in Lemma 4.9 as well as the triangle 
inequality. �
Lemma 4.11. We have

∣∣∂ΓIφ
∣∣ � (

ε + (C1ε)3/2
)
〈t− |x|〉−3/4〈t〉−1/2, |I| ≤ N − 9. (4.20)

Proof. It suffices to show the following two types of estimates

∣∣∂ΓIφ
∣∣ � (

ε + (C1ε)3/2
)
〈t− |x|〉−1〈t〉−1/2+δ, |I| ≤ N − 9, (4.21)

which implies that

∣∣∂ΓIφ
∣∣ � (

ε + (C1ε)3/2
)
〈t− |x|〉−3/4〈t〉−1/2, in {(t, x) : |x| ≥ 2t}, |I| ≤ N − 9,

and

∣∣ΓIφ
∣∣ � (

ε + (C1ε)3/2
)
〈t− |x|〉−1〈t〉−1/2, in {(t, x) : |x| ≤ 2t}, |I| ≤ N − 9.

(4.22)
For the first estimate (4.21), the estimates (4.16), (4.19), and the commutator esti-

mates imply
∑

|I1|≤3,|I2|≤N−9

(∥∥ΓI1L0ΓI2φ
∥∥ +

∥∥ΓI1ΓΓI2φ
∥∥) � (

ε + (C1ε)3/2
)
〈t〉δ.

Then we apply the Klainerman-Sobolev inequality (2.5) to get

∣∣L0ΓIφ
∣∣ +

∣∣ΓΓIφ
∣∣ � (

ε + (C1ε)3/2
)
〈t〉−1/2+δ, |I| ≤ N − 9.

In junction with the fact

|∂ΓIφ| � 〈t− |x|〉−1(∣∣L0ΓIφ
∣∣ +

∣∣ΓΓIφ
∣∣),
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we arrive at (4.21).
Next, we derive (4.22), and we only need to consider the case |x| ≤ 2t. Recall the 

decomposition (4.11) (and the commutator estimates), and we observe that it suffices to 
show

∣∣∂ΓIφ5∣∣ +
∑
γ

∣∣∂∂ΓIφγ
∣∣ � (

ε + (C1ε)3/2
)
〈t− |x|〉−1〈t〉−1/2, |I| ≤ N − 9.

Thanks to Lemma 3.3, we get

∣∣L0ΓIφ5∣∣ +
∣∣ΓΓIφ5∣∣ � ε〈t〉−1/2,

and hence

∣∣∂ΓIφ5∣∣ � ε〈t− |x|〉−1〈t〉−1/2, |I| ≤ N − 9.

On the other hand, consider the definition of Φγ and the equation (4.15)

Φγ =φγ + Pαγ
1 n∂αm− P γβ

1 n∂βm,

−�Φγ =Pαγ
1 (−� + 1)n∂αm + Pαγ

1 n(−�∂αm) − Pαγ
1 Q0(n, ∂αm)

− P γβ
1 (−� + 1)n∂βm− P γβ

1 n(−�∂βm) + P γβ
1 Q0(n, ∂βm).

We recall the estimates for null forms in Lemmae 2.2 that

|Q0(n, ∂αm)| � 〈t + |x|〉−1(∣∣L0∂αmΓn
∣∣ +

∣∣Γ∂αmΓn
∣∣),

in which we take advantage of that the scaling vector field L0 only acts on the wave 
component m. Then the usual energy estimates easily give

∑
γ

E(t,ΓJΦγ)1/2 � ε + (C1ε)3/2, |J | ≤ N − 4,

which further yields
∑
γ

∥∥∂ΓJφγ
∥∥ � ε + (C1ε)3/2, |J | ≤ N − 4.

Again, we apply the Klainerman-Sobolev inequality (2.5) (and the commutator esti-
mates) to obtain the sup-norm bounds

∑
γ

∣∣∂ΓJφγ
∣∣ � (

ε + (C1ε)3/2
)
〈t〉−1/2, |J | ≤ N − 7. (4.23)

Finally, Lemma 3.4 implies
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∑
γ

∣∣∂∂ΓIφγ
∣∣ � (

ε + (C1ε)3/2
)
〈t− |x|〉〈t〉−1/2, |I| ≤ N − 9.

Till now, the proof is complete. �
As a consequence of (4.23) and Lemma 3.3, together with the relation (4.11)

φ = φ5 + ∂γφ
γ ,

we obtain the sharp time decay result of φ, which reads

|φ| � 〈t〉−1/2, (4.24)

which proves the second inequality in (1.4) in Theorem 1.1.
We are now ready to show Proposition 4.3.

Proof of Proposition 4.3. By carefully choosing C1  1 large enough and ε � 1 suffi-
ciently small, we get from Lemmas 4.5–4.11 that

∥∥(φ, ψ)
∥∥
X

≤ 1
2C1ε, (4.25)

and hence (φ, ψ) ∈ X. �
4.3. Contraction mapping and the global existence result

We now want to show that the solution mapping T is also a contraction mapping.

Proposition 4.12. T is a contraction mapping from X to itself, i.e.

∥∥(φ− φ′, ψ − ψ′)
∥∥
X

≤ 1
2
∥∥(m−m′, n− n′)

∥∥
X
, (4.26)

in which (m, n), (m′, n′) ∈ X, and (φ, ψ) = T (m, n), (φ′, ψ′) = T (m′, n′).

Proof. The proof for Proposition 4.3 can also be applied here (we might further shrink 
the size of the initial data ε if needed), so we omit it. �
Proof of Theorem 1.1. By the Banach fixed point theorem, we know the mapping T has 
a unique fixed point, which is the solution to the system (1.1) As for the pointwise decay 
estimates (1.4), they can be obtained from the Definition 4.1, the inequality (4.24), and 
Lemma 4.4. �
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