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Chapter 1

Week 1: The basics

1.1 The wave equation on R1+n

We consider the equation
�u = 0,

where u = u(t, x) is a function on R× Rn = R1+n and � is the wave operator :

� = ∂2
t −∆.

Here ∆ = ∂2
1 + · · ·+ ∂2

n is the Laplacian in x = (x1, . . . , xn). Thus, we write

∂t =
∂

∂t
, ∂i =

∂

∂xi
.

We also write
∇u = (∂1u, . . . , ∂nu), ∂u = (∂tu,∇u).

Occasionally it is convenient to write t = x0, in which case ∂0 = ∂t.

Remark. For those familiar with Lorentizan geometry, −� is just the Laplace-
Beltrami operator relative to the Minkowski metric

ηµν = diag(−1, 1, . . . , 1)

on R1+n. If we apply the summation convention, and raise and lower indices
relative to this metric, then −� = ηµν∂µ∂ν = ∂µ∂µ, where the indices µ, ν run
from 0 to n.

1.2 The Cauchy problem

Given functions (initial data) f, g on Rn, we consider the Cauchy problem for
the initial hypersurface {t = 0} × Rn:

(1.1) �u = 0, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g.

We want to show that this problem is well-posed :
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4 CHAPTER 1. WEEK 1: THE BASICS

• The solution u exists for all t > 0;

• u is unique;

• u depends continuously on f and g.

This is not very precise; more rigorous statements of this type will be proved
later in the course.

In fact, one has explicit formulas for the solution u of (1.1) in terms of the
data f, g. Before deriving these formulas in dimensions n = 1, 2, 3, we will prove
uniqueness of the solution, using the energy method.

Theorem 1. Suppose u ∈ C2([0, T ] × Rn) solves �u = 0. Fix x0 ∈ R3 and
0 < t0 ≤ T , and suppose

u = ∂tu = 0 for t = 0, |x− x0| ≤ t0.

Then
u = 0 in Ω = {(t, x) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}.

(We call Ω the solid backward light cone with vertex at (t0, x0).)

Proof. Let Bt = {x : |x− x0| ≤ t0 − t} and define the energy

e(t) =
1
2

∫
Bt

|∂u(t, x)|2 dx.

(Recall ∂u is the space-time gradient.) Differentiate (see Exercise 1 below) to
get

e′(t) =
∫

Bt

(ututt +∇u · ∇ut) dx−
1
2

∫
∂Bt

|∂u|2 dσ(x).

Since
div(ut∇u) = ∇ut · ∇u+ ut∆u,

it follows from the divergence theorem that

e′(t) =
∫

Bt

div(ut∇u) dx−
1
2

∫
∂Bt

|∂u|2 dσ(x)

=
∫

∂Bt

ut∇u · n dσ(x)− 1
2

∫
∂Bt

|∂u|2 dσ(x),

where n is the outward unit normal of ∂Bt. But

|ut∇u · n| ≤ |ut| |∇u| ≤
1
2

(
|ut|2 + |∇u|2

)
,

and so we conclude that e′(t) ≤ 0 for 0 ≤ t ≤ t0. This implies e(t) ≤ e(0) = 0.
But certainly e(t) ≥ 0, so e(t) = 0. It follows that ∂u = 0 in Ω, and hence u = 0
in Ω.



1.3. SOLUTION OF THE CAUCHY PROBLEM 5

Exercise 1. Part (b) below was used in the proof of the uniqueness theorem.
Here Br(x) denotes the open ball in Rn centered at x with radius r, and Sr(x)
denotes its boundary, the sphere of radius r at x.

(a) If f is a continuous function on Rn and x ∈ Rn, then

d

dr

∫
Br(x)

f(y) dy =
∫

Sr(x)

f(y) dσ(y)

where dσ is surface measure. (Hint: Use polar coordinates to write∫
Br(x)

f(y) dy =
∫ r

0

∫
Sn−1 f(x + ρω) dσ(ω)ρn−1 dρ, where Sn−1 = S1(0)

is the unit sphere.)

(b) Now suppose f = f(r, x), where r ∈ R and x ∈ Rn. Fix x and set

φ(r) =
∫

Br(x)

f(r, y) dy.

Assuming f and ∂rf are continuous, show that

φ′(r) =
∫

Br(x)

∂rf(r, y) dy +
∫

Sr(x)

f(r, y) dσ(y).

(Hint: Write

φ(r + h)− φ(r)
h

=
∫

Br+h(x)

f(r + h, y)− f(r, y)
h

dy

+
1
h

{∫
Br+h(x)

f(r, y) dy −
∫

Br(x)

f(r, y) dy

}
.

On the first term use the dominated convergence theorem, and on the
second term use part (a).)

1.3 Solution of the Cauchy problem

1.4 Dimension n = 1: D’Alembert’s formula

The solution of (1.1) in dimension n = 1 is given by D’Alembert’s formula:

u(t, x) =
1
2

[f(x+ t) + f(x− t)] +
1
2

∫ x+t

x−t

g.

Theorem 2. If f ∈ C2(R) and g ∈ C1(R), then u defined as above is C2 and
solves the Cauchy problem (1.1).

The proof is a simple calculation.
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1.4.1 Dimension n = 3: Spherical mean

Define the spherical mean of a function φ : R3 → R by

Mφ(x, r) =
1
4π

∫
S2
φ(x+ ry) dσ(y) for x ∈ R3, r ∈ R.

Observe that

(1.2) Mφ(x, 0) = φ(x)

and that Mφ is an even function of r:

(1.3) Mφ(x,−r) = Mφ(x, r).

We showed that (see Sogge or Folland) Mφ satisfies the Darboux equation

∆xMφ =
(
∂2

r + (2/r)∂r

)
Mφ,

provided φ ∈ C2(R3).
Next, we set

Mu(t, x, r) = Mu(t,·)(x, r).

Then an easy calculation shows

�u = 0 ⇐⇒ ∂2
tMu =

(
∂2

r + (2/r)∂r

)
Mu.

If we then fix x and set
v(t, r) = rMu(t, x, r),

it follows that u solves �u = 0 on R1+3 if and only if, for each fixed x, v solves
the wave equation on R1+1:

∂2
t v = ∂2

rv.

Thus, D’Alembert’s formula expresses v(t, r) in terms of the data

v(0, r) = rMf (x, r), ∂tv(0, r) = rMg(x, r),

and we then obtain a formula for u(t, x) by noting that

u(t, x) = Mu(t, x, 0) = lim
r→0

v(t, r)
r

.

Calculating the right hand side, we finally get

u(t, x) = ∂t (tMf (t, x)) + tMg(x, t)

=
1
4π

∫
S2

[f(x+ ty) +∇f(x+ ty) · ty + tg(x+ ty)] dσ(y)

=
1

4πt2

∫
|y−x|=t

[f(y) +∇f(y) · (y − x) + tg(y)] dσ(y)

where the last equality is valid for t > 0 by a change of variables.
We then have:

Theorem 3. If f ∈ C3(R3) and g ∈ C2(R3), then u as defined above is C2 and
solves (1.1) on R1+3.
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1.4.2 Dimension n = 2: Method of descent

We use Hadamard’s method of descent to get the solution of the case n = 2
from the case n = 3.

Assume
u = u(t, x1, x2)

solves (1.1) on R1+2. Define

v(t, x) = u(t, x′) where x = (x1, x2, x3), x′ = (x1, x2).

Then v solves a Cauchy problem on R1+3

�v = 0, v(0, x) = f(x′), ∂tv(0, x) = g(x′).

By the formula derived for n = 3, it then follows that

v(t, x) = ∂t

(
t

4π

∫
S2
f(x′ + ty′) dσ(y)

)
+

t

4π

∫
S2
g(x′ + ty′) dσ(y).

But since the integrands are independent of y3, we get (see Exercise 2 below),

u(t, x) = ∂t

 t

2π

∫
|y|<1

f(x+ ty)
dy√

1− |y|2

+
t

2π

∫
|y|<1

g(x+ ty)
dy√

1− |y|2

where we dropped the primes on x and y (so now x, y ∈ R2).

Exercise 2. Prove that∫
S2
h(y′) dσ(y) = 2

∫
|y′|<1

h(y′)
dy′√

1− |y′|2
,

where y′ = (y1, y2) and y = (y′, y3) ∈ S2. (Hint: Parametrize the two
hemispheres over the y1y2-plane by (y′,±φ(y′)) for |y′| < 1, where φ(y′) =√

1− |y′|2.)

1.4.3 Higher dimensions

See Folland. The formulas are as follows.

Theorem 4. Suppose n ≥ 3 is odd. If

f ∈ C(n+3)/2(Rn), g ∈ C(n+1)/2(Rn),

then

u(t, x) = γn

[
∂t(t−1∂t)(n−3)/2

(
tn−2

∫
y∈Sn−1

f(x+ ty) dσ(y)
)

+ (t−1∂t)(n−3)/2

(
tn−2

∫
y∈Sn−1

g(x+ ty) dσ(y)
)]

is C2 and solves the Cauchy problem (1.1) on R1+n. Here γn is a constant.
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By the method of descent one then obtains:

Theorem 5. Suppose n ≥ 2 is even. If

f ∈ C(n+4)/2(Rn), g ∈ C(n+2)/2(Rn),

then

u(t, x) = γn

[
∂t(t−1∂t)(n−2)/2

(
tn−1

∫
|y|<1

f(x+ ty)
dy√

1− |y|2

)

+ (t−1∂t)(n−2)/2

(
tn−1

∫
|y|<1

g(x+ ty)
dy√

1− |y|2

)]
is C2 and solves the Cauchy problem (1.1) on R1+n, where γn is a constant.

1.5 Huygens’ principle

It is evident from the formula we derived, that in dimension n = 3 (and in higher
odd dimensions as well), the value of u at a point (t, x) (t > 0) only depends on
the values of the data f, g on the set {y : |y − x| = t} (or more precisely in an
infinitesimal neighborhood of this sphere, since the formula involves ∇f).

As a consequence, an initial disturbance at the origin, say a flash of light,
propagates with unit speed and can only be seen on the forward light cone with
vertex at the origin, namely the set {(t, x) : t = |x|}. This is known as the
(strong) Hyugens principle.

In dimensions n = 1, 2 (and in any even dimension n ≥ 2) a weaker version
of Huygens’ principle holds. Then u at (t, x) depends on the values of f, g in
the ball {y : |y − x| ≤ t}. Consequently, a flash of light at the origin will be
visible to an observer at a point x0 in space, at times t ≥ |x0|, and not just at
t = |x0| as in dimensions n = 3, 5, . . . , although the intensity of the light will
decay (except in dimension n = 1; see the next section).

Exercise 3. (Finite speed of propagation.) Suppose f, g are smooth and com-
pactly supported, say

f(x) = g(x) = 0 for |x| > R

for some R > 0. Prove that u(t, ·) is compactly supported for each t > 0, and
that in fact

u(t, x) = 0 for |x| > t+R.

Moreover, if n is odd and n ≥ 3, then

u(t, x) = 0 unless t−R ≤ |x| ≤ t+R.

Show also that the energy

e(t) =
1
2

∫
Rn

|∂u(t, x)|2 dx

is independent of t.



Chapter 2

Week 2: Weak and even
weaker solutions

2.1 Decay as t →∞
Consider the Cauchy problem on R1+n,

(2.1) �u = 0, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g,

and assume f, g are smooth and compactly supported:

f(x) = g(x) = 0 for |x| ≥ R,

for some R > 0. We then have:

Theorem 6. ‖u(t, ·)‖L∞ = O(t−(n−1)/2) as t→∞.

We will prove this in dimensions n = 1, 2, 3.

Proof for n = 1. By D’Alembert’s formula,

u(t, x) =
1
2
[f(x+ t) + f(x− t)] +

1
2

∫ x+t

x−t

g,

and so

‖u(t, ·)‖L∞ ≤ ‖f‖L∞+

1
2

∫ ∞

−∞
|g| .

Proof for n = 2. It suffices to consider the case f = 0. Then

u(t, x) =
t

2π

∫
|y|<1

g(x+ ty)
dy√

1− |y|2
.

9
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Since

(2.2) supp g ⊂ {|x| ≤ R},

we have

(2.3) suppu(t, ·) ⊂ {|x| ≤ R+ t}.

Now convert to polar coordinates y = ρeiθ, 0 < ρ < 1, 0 < θ < 2π. Then

u(t, x) =
t

2π

∫ 1

0

(∫ 2π

0

g(x+ tρeiθ) dθ
)

ρ dρ√
1− ρ2

.

But in view of (2.2),

ρmin ≤ ρ ≤ ρmax, ρmin =
|x| −R

t
, ρmax =

|x|+R

t
,

and the angle θ is restricted to an interval of length ≤ C
1+|x| .

We conclude that

(2.4) |u(t, x)| ≤ ‖g‖L∞
Ct

1 + |x|

∫ b

a

ρ dρ√
1− ρ

where

(2.5) a = max(0, ρmin), b = min(1, ρmax).

(Observe that by (2.3) we may assume |x| ≤ t+R, and so ρmin ≤ 1 and therefore
a ≤ b.)

Since
b− a ≤ ρmax − ρmin =

2R
t
,

we can now appeal to the following estimate, which we leave as an exercise.

Exercise 1. Assume 0 ≤ a < b ≤ 1 and b− a ≤ 1
4 . Then∫ b

a

ρ dρ√
1− ρ

≤

{
(b− a)2 if a ≤ 1

2√
b− a if a ≥ 1

2 .

(Hint: If a ≤ 1
2 , then 1− ρ ≥ 1

4 . If a ≥ 1
2 , bound the integrand by 1√

b−ρ
.)

To apply this, note that (with a, b defined by (2.5)):

(i) If ρmin ≤ 1
2 , then a ≤ 1

2 , and so |u(t, x)| = O(1/t) in this case, using (2.4)
and the exercise.

(ii) If ρmin ≥ 1
2 , then a ≥ 1

2 and |x| ∼ t, so |u(t, x)| = O(1/
√
t) by (2.4) and

the exercise.
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Proof for n = 3. Again we may assume f = 0, in which case

u(t, x) =
t

4π

∫
S2
g(x+ ty) dσ(y).

From (2.2) it is clear that u vanishes unless

|x| −R ≤ t ≤ |x|+R,

so t ∼ |x| on the support of u. Moreover, it is clear that the integrand g(x+ ty)
(y ∈ S2) vanishes unless y makes an angle . 1/ |x| with ω0 = −x/ |x| ∈ S2.
The corresponding region on S2 has area . |x|−2 ∼ t−2, and we conclude
|u(t, x)| ≤ CR ‖g‖L∞ t−1.

Notation. The symbol . stands for ≤ up to a positive, multiplicative constant,
which may depend on parameters that are considered fixed. (For example, in the
above the constant depends on R.) The notation r ∼ s means that r . s . r.

2.2 The equation �u = F and Duhamel’s princi-
ple

Consider the Cauchy problem for the inhomogeneous wave equation:

(2.6) �u = F, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g,

which represents waves influenced by a driving force F = F (t, x). By linearity,
the solution is

u = v + w,

where v is the solution of the corresponding homogeneous problem (F = 0),
and w is the solution of (2.6) with zero data (f = g = 0). The idea is that w
is a continuous superposition (integral) of solutions of the homogeneous wave
equation. This is expressed by Duhamel’s principle:

Theorem 7. Suppose F ∈ C(n+2)/2(R1+n) if n is even, or F ∈ C(n+1)/2(R1+n)
if n is odd. For each s ∈ R, let v(t, x; s) be the solution of the Cauchy problem

�v = 0, v(0, x; s) = 0, ∂tv(0, x; s) = F (s, x).

Then u(t, x) =
∫ t

0
v(t− s, x; s) ds is in C2 and solves the Cauchy problem (2.6)

with f = g = 0.

Exercise 2. Prove this. (Observe that if φ(t) =
∫ t

0
ψ(t, s) dt, where ψ and ∂tψ

are continuous, then φ′(t) = ψ(t, t) +
∫ t

0
∂tψ(t, s) ds.)
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2.3 Weak solutions

So far we only considered classical solutions—that is, solutions which are at least
C2—of the Cauchy problem (2.6). However, the solution formulas make sense for
data f, g and F with very little regularity. For example, D’Alembert’s formula
for the solution of the homogeneous equation in dimension n = 1 makes perfectly
good sense for any f, g ∈ L1

loc(R)—the only question is whether the resulting
function u can be said to “solve” the Cauchy problem in some reasonable sense.
The answer is affirmative, as we now demonstrate.

To motivate our definition of “weak solution”, let us start with a classical
solution u ∈ C2 of the Cauchy problem on a time-strip

ST = [0, T ]× Rn.

Thus, we assume

(2.7) �u = F on ST , u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g.

Let φ be a test function compactly supported in (−∞, T )× Rn. Now multiply
the equation by φ, and integrate by parts, using the fact that φ vanishes near
t = T , to get∫

ST

Fφdt dx =
∫

ST

(�u)φdt dx

=
∫

Rn

(
−
∫ T

0

∂tu∂tφdt− g(x)φ(0, x)

)
dx−

∫
ST

u∆φdt dx

=
∫

ST

u�φdt dx+
∫

Rn

f(x)∂tφ(0, x) dx−
∫

Rn

g(x)φ(0, x) dx.

This leads us to make the following

Definition. Let f, g ∈ L1
loc(Rn) and F ∈ L1

loc(ST ). We say u ∈ L1
loc(ST ) is a

weak solution of (2.7) if

(2.8)
∫

ST

u�φdt dx =
∫

ST

Fφdt dx−
∫

Rn

f(x)∂tφ(0, x) dx+
∫

Rn

g(x)φ(0, x) dx

for all φ ∈ C∞c supported in (−∞, T )× Rn.

The next result shows that this definition is reasonable.

Theorem 8. A weak solution belonging to C2(ST ) is a classical solution.

Proof. If φ is supported in (0, T )× Rn, then (2.8) says that∫
u�φdt dx =

∫
Fφdt dx
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and integration by parts shows that
∫
u�φ =

∫
(�u)φ. Thus,1∫

(�u− F )φdt dx = 0,

and since φ was arbitrary, we conclude that �u = F on ST . (After redefining
F on a set of measure zero.)

It remains to prove that u takes the initial data f, g. Let us prove that

(2.9) ∂tu(0, x) = g(x),

leaving the verification of u(0, x) = f(x) as an exercise (see below). First, (2.9)
is equivalent to

(2.10)
∫

Rn

∂tu(0, x)ψ(x) dx =
∫

Rn

g(x)ψ(x) dx for all ψ ∈ C∞c (Rn).

Fix such a ψ. Let a be a smooth function such that

a(t) =

{
1 for t ≤ 0,
0 for t ≥ 1.

Then set θk(t) = a(kt) for k ∈ N and t ∈ R. Observe that

θ′k(0) = 0, θk(t) = 0 for t ≥ 1/k.

Now take φ = φk in (2.8), where

φk(t, x) = θk(t)ψ(x).

Then the right hand side of (2.8) reads (we take k so large that 1/k < T )

(2.11)
∫

Rn

(∫ 1/k

0

F (t, x)a(kt) dt

)
ψ(x) dx+

∫
Rn

g(x)ψ(x) dx.

Since F ∈ C(ST ) (we showed �u = F ), the first term is O(1/k) as k →∞.
We claim that the left hand side of (2.8) equals

(2.12)
∫

Rn

∂tu(0, x)ψ(x) dx+O(1/k).

Equating (2.12) with (2.11) and passing to the limit k →∞ then gives (2.10).
It remains to prove the claim. But the left hand side of (2.8) is∫

ST

u(t, x)θ′′k(t)ψ(x) dt dx−
∫

Rn

(∫ 1/k

0

u(t, x)a(kt) dt

)
∆ψ(x) dx.

1We use the fact that if h ∈ L1
loc and

R
hψ = 0 for all ψ ∈ C∞c , then h = 0. (We identify

functions in L1
loc which are equal almost everywhere.)
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The second term is O(1/k), and after an integration by parts, the first term
becomes

−
∫

ST

∂tu(t, x)θ′k(t)ψ(x) dt dx.

(There are no boundary terms, since θ′k(t) = 0 for t = 0, T .) A second integra-
tion by parts transforms this into∫

Rn

(∫ 1/k

0

∂2
t u(t, x)a(kt) dt

)
ψ(x) dx+

∫
Rn

∂tu(0, x)ψ(x) dx.

Again, the first term is O(1/k), proving the claim.

Exercise 3. Complete the proof of the theorem by showing that u(0, x) = f(x).
Proceed as in the proof of (2.10), but now choose θk(t) = 1

k b(kt), where b is
some smooth, compactly supported function such that

b(0) = 0, b′(0) = 1.

Thus θk(0) = 0 and θ′k(0) = 1 for all k, and the support of θk shrinks to the
origin as k →∞. (You should find that the “error terms” are now O(1/k2).)

Example. Recall D’Alembert’s formula for the solution of the Cauchy problem

(2.13) �u = 0, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g

on R1+1:

(2.14) u(t, x) =
1
2

[f(x+ t) + f(x− t)] +
1
2

∫ x+t

x−t

g.

Clearly, this defines a function u ∈ L1
loc(R2) if f, g ∈ L1

loc(R), and we claim that
u is a weak solution of (2.13) on [0,∞)× R.

There are two ways to do this: by direct calculation or approximation by
smooth function. Let us briefly outline both procedures.

First method: Direct calculation. The key is to show, for all A ∈ L1
loc(R)

and φ ∈ C∞c (R2),∫
R

∫ ∞

0

A(x+ t)�φ(t, x) dt dx = −
∫

R
A(x) [∂tφ(0, x) + ∂xφ(0, x)] dx,(2.15) ∫

R

∫ ∞

0

A(x− t)�φ(t, x) dt dx =
∫

R
A(x) [−∂tφ(0, x) + ∂xφ(0, x)] dx(2.16)

Exercise 4. Prove these formulas by changing variables (t, x) → (ξ, η), where

ξ = x+ t, η = x− t.

Thus,

t =
ξ − η

2
, x =

ξ + η

2
, 2dt dx = dξ dη,
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and the region t > 0 is transformed into ξ > η. Moreover, if we set

ψ(ξ, η) = φ(t, x),

then �φ = −4∂ξ∂ηψ.

Applying (2.15) and (2.16), we obtain∫
R

∫ ∞

0

1
2

[f(x+ t) + f(x− t)]�φ(t, x) dt dx = −
∫

R
f(x)∂tφ(0, x) dx.

Similarly, since
∫ x+t

x−t
g =

∫ x+t

0
g −

∫ x−t

0
g, we find that∫

R

∫ ∞

0

1
2

(∫ x+t

x−t

g

)
�φ(t, x) dt dx = −

∫
R

(∫ x

0

g

)
∂xφ(0, x) dx,

and an integration by parts shows that the right hand side equals∫
R
g(x)φ(0, x) dx.

This proves that u solves (2.13) in the weak sense.
Second method: Smooth approximation. Here we employ an approximation

technique to prove that u is a weak solution. Recall that C∞c is dense in L1.
Therefore, if we fix a compact interval [−a, a], we can find sequences fj , gj in
C∞c such that

(2.17)
∫ a

−a

|f − fj | dx,
∫ a

−a

|g − gj | dx −→ 0 as j →∞.

Let uj be given by (2.14) with f, g replaced by fj , gj . Then uj solves the
corresponding Cauchy problem in the classical sense, and hence also in the
weak sense:

(2.18)
∫

R

∫ ∞

0

uj�φdt dx = −
∫

R
fj(x)∂tφ(0, x) dx+

∫
R
gj(x)φ(0, x) dx

Fix φ ∈ C∞c (R2). We want to pass to the limit and conclude that u solves (2.13)
in the weak sense:

(2.19)
∫

R

∫ ∞

0

u�φdt dx = −
∫

R
f(x)∂tφ(0, x) dx+

∫
R
g(x)φ(0, x) dx

Clearly, RHS(2.18) converges to RHS(2.19), if we choose a in (2.17) so large that
the support of φ is contained in [−a, a]×R. But since u is given by D’Alembert’s
formula (2.14), it follows from (2.17) that uj → u in the L1 norm on the support
of φ, if we take a sufficiently large. In fact, we have to take a so large that for
any backward light cone with vertex at a point (t, x) ∈ suppφ, t > 0, its base
in the plane t = 0 is contained in [−a, a]. (Draw a picture). It then follows that
also LHS(2.18) converges to LHS(2.19).
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2.4 Even weaker solutions

In the previous section we defined the concept of weak solution of the Cauchy
problem for locally integrable initial data. Now we weaken the regularity as-
sumptions on then data f and g even further: we merely assume they are
distributions on Rn. We consider the case n = 1 in detail, and leave the higher
dimensional cases as exercises.

Let us start by recalling some basic properties of distributions.

2.4.1 Distributions

A good reference for this material is Folland’s book on real analysis.
Let Ω be an open set in Rn. Let C∞c (Ω) be the set of smooth functions

φ : Rn → C compactly supported in Ω. Such functions are called test functions.
Convergence in the space of test functions is defined as follows:

φj → φ in C∞c (Ω)

means that (i) there is a compact K ⊂ Ω such that suppφj ⊂ K for all j, and
(ii) ∂αφj → ∂αφ uniformly for all multi-indices α.

Exercise 5. Let ej be the j-th standard basis vector on Rn, let φ ∈ C∞c (Ω),
and define the difference quotient

∆j
hφ(x) =

φ(x+ hej)− φ(x)
h

.

Prove that ∆j
hφ → ∂jφ as h → 0 in the sense of C∞c (Ω). (That is, ∂α∆j

hφ →
∂α∂jφ uniformly as h→ 0, for all multi-indices α. Note that since ∂αφ is again
a test function, you may without loss of generality take α = 0. Now use the
mean value theorem.)

A distribution on Ω is a linear functional u on C∞c (Ω) which is continuous,
in the sense that

φj → φ in C∞c (Ω) =⇒ 〈u, φj 〉 → 〈u, φ 〉 .

Note that one writes 〈u, φ 〉 rather than u(φ) for the value of u at a test function
φ. We denote by D′(Ω) the set of distributions u on Ω, and we equip it with
the topology of pointwise convergence. Thus, sequential convergence in D′(Ω)
has the following meaning:

(2.20) uj → u in D′(Ω) ⇐⇒ 〈uj , φ 〉 → 〈u, φ 〉 for all φ ∈ C∞c (Ω).

Exercise 6. Show that any u ∈ L1
loc(Ω) defines a distribution by setting

〈u, φ 〉 =
∫
u(x)φ(x) dx.

(The linearity is obvious; the point is to check that u is continuous.) Show also
that u, v ∈ L1

loc(Ω) define the same distribution iff u = v (almost everywhere).
Thus we may consider L1

loc(Ω) as a subset of D′(Ω).
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It is customary to write

(2.21) 〈u, φ 〉 =
∫
u(x)φ(x) dx

even when u is not a function. This convenient abuse of notation clarifies many
operations on distributions (translation for example).

Exercise 7. For any x0 ∈ Ω and multi-index α, show that the map φ→ ∂αφ(x0)
is a distribution on Ω and that it is not given by a locally integrable function.

If we take Ω = Rn, α = 0 and x0 = 0 in the previous exercise, we get the
famous delta function

〈 δ, φ 〉 = φ(0),

which of course is not a function (it is a measure).
The following characterization of distributions is sometimes useful.

Theorem 9. Let u : C∞c (Ω) → C be linear. Then u ∈ D′(Ω) iff for every
compact set K ⊂ Ω there exist CK > 0 and NK ∈ N such that

(2.22) |〈u, φ 〉| ≤ CK

∑
|α|≤NK

‖∂αφ‖L∞

for all test functions φ supported in K.

Proof. Clearly (2.22) implies that 〈u, φj 〉 → 〈u, φ 〉 whenever φj → φ in C∞c (Ω).
Conversely, assume the condition in the theorem fails to hold. Then there exists
a compact set K ⊂ Ω and a sequence φj in C∞c (K) such that

|〈u, φj 〉| > j
∑
|α|≤j

‖∂αφj‖L∞ .

By homogeneity we may assume 〈u, φj 〉 = 1 for all j. But then ‖∂αφj‖L∞ → 0
as j → ∞ for all α, so φj → 0 in C∞c (Ω). But 〈u, φj 〉 does not converge to 0,
so u /∈ D′(Ω).

2.4.2 Operations on distributions

Many of the usual operations on functions carry over to distributions. For
example, to motivate the definition of differentiation of a distribution, consider
smooth functions u, v on Ω, and let α be any multi-index. Then

v = ∂αu ⇐⇒
∫
vφ dx = (−1)|α|

∫
u∂αφdx,

as follows from repeated integration by parts. Consequently, for any u ∈ D′(Ω),
we define its partial derivative ∂αu as a distribution by

〈 ∂αu, φ 〉 =
〈
u, (−1)|α|∂αφ

〉
.
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Exercise 8. Show that ∂αu as defined above is actually a distribution on Ω,
and that

uj → u in D′(Ω) =⇒ ∂αuj → ∂αu in D′(Ω).

(See the definition (2.20).)

Multiplication of u ∈ D′(Ω) with a function ψ ∈ C∞(Ω) (note that ψ is not
required to be compactly supported) is defined by

〈ψu, φ 〉 = 〈u, ψφ 〉 .

To see that this defines a distribution, we have to check that

φj → φ in C∞c (Ω) =⇒ ψφj → ψφ in C∞c (Ω).

This is immediate from the product rule:

(2.23) ∂α(ψφ) =
∑

β+γ=α

α

β!γ!
∂βψ∂γφ.

(Here α! = α1!α2! · · ·αn! for a multi-index α = (α1, . . . , αn).)

Exercise 9. Prove that the product rule holds for the product of a distribution
u with a smooth function ψ.

Next, we recall the definitions of reflection, translation and convolution with
a smooth function. For simplicity, we take Ω = Rn from now on. Also, we write
C∞c instead of C∞c (Rn) and D′ instead of D′(Rn).

The reflection of a test function φ is the function φ (̃x) = φ(−x). Note that∫
u(−x)φ(x) dx =

∫
u(x)φ(−x) dx.

This holds for any locally integrable function, and we take it as the definition
of u˜ for any u ∈ D′:

〈u ,̃ φ 〉 = 〈u, φ˜〉 .

Let y ∈ Rn, and define the translation of φ ∈ C∞c by φy(x) = φ(x+y). Since∫
u(x+ y)φ(x) dx =

∫
u(x)φ(x− y) dx

when u is locally integrable, we define uy for u ∈ D′ by

〈uy, φ 〉 = 〈u, φ−y 〉 .

Finally, we consider the convolution of a distribution with a test function.
If u is locally integrable and ψ is a test function, then

u ∗ ψ(x) =
∫
u(y)ψ(x− y) dx,



2.4. EVEN WEAKER SOLUTIONS 19

and since ψ(x− y) = ψ (̃y − x) = (ψ )̃−x(y), this leads us to define

u ∗ ψ(x) = 〈u, (ψ )̃−x 〉

for u ∈ D′, ψ ∈ C∞c . A more suggestive notation is

u ∗ ψ(x) = 〈u, ψ(x− ·) 〉 .

Exercise 10. Show that u ∗ ψ is C∞ on Rn and that

∂α(u ∗ ψ) = u ∗ ∂αψ = (∂αu) ∗ ψ

for all multi-indices α. (Hints: The second equality is trivial. To prove the
first equality, note that by induction, it suffices to prove ∂j(u ∗ψ) = u ∗ ∂jψ for
j = 1, . . . , n; use exercise 5.)

There is another, equivalent, definition of the convolution. It is suggested
by the fact that ∫

u ∗ ψ(x)φ(x) dx =
∫
u(y)ψ˜∗ φ(y) dy

for sufficiently regular functions. It is therefore natural to try to define ψ ∗ u as
a distribution by

〈ψ ∗ u, φ 〉 = 〈u, ψ˜∗ φ 〉

for any ψ ∈ C∞c and u ∈ D′. It is not hard to show that this definition agrees
with our previous definition. In other words,

〈u, ψ˜∗ φ 〉 =
∫
〈u, ψ(x− ·) 〉φ(x) dx

for all φ ∈ C∞c . That is to say,〈
u,

∫
ψ(x− ·)φ(x) dx

〉
=
∫
〈u, ψ(x− ·) 〉φ(x) dx.

We leave it as an exercise to prove this using Riemann sums (see Folland).

2.4.3 Compactly supported distributions

We denote by ~E′(Ω) the set of compactly supported distributions on Ω. Recall
that u ∈ D′(Ω) is compactly supported if there is a compact K ⊂ Ω such that
u = 0 on the complement of K, in the sense that

〈u, φ 〉 = 0 for all φ ∈ C∞c (Ω \K).

The intersection of all such K is suppu. (The smallest closed set outside of
which u vanishes.)
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We remark that u can be extended to a linear functional on C∞(Rn): Choose
ζ ∈ C∞c (Ω) such that ζ = 1 on a neighborhood of suppu. Then evidently

〈u, φ 〉 = 〈u, ζφ 〉

for all φ ∈ C∞(Ω), and we can take this identity as the definition of u for all
φ ∈ C∞(Rn). It is easy to check that this extension is independent of the choice
of ζ. In particular, u can be regarded as an element of ~E′(Rn). We often write
~E′ instead of ~E′(Rn).

Let u and ζ be as above. Applying Theorem 9 on the compact set supp ζ ⊂ Ω,
we see that there exist C > 0 and N ∈ N such that

|〈u, φ 〉| ≤ C
∑
|α|≤N

‖∂α(ζφ)‖L∞

for all φ ∈ C∞(Rn). By the product rule we then get

(2.24) |〈u, φ 〉| ≤ C ′
∑
|α|≤N

‖∂αφ‖L∞(K)

for all φ ∈ C∞(Rn), where K = supp ζ. Thus, every compactly supported
distribution is of finite order.

Given u ∈ ~E′, extended to C∞(Rn) as above, choose a compact set K which
contains the support of u in its interior. Then it follows from

Next, observe that if ψ ∈ C∞c and v ∈ ~E′, then ψ ∗ v ∈ ~E′. But we know
ψ ∗ v ∈ C∞, whence ψ ∗ v ∈ C∞c . We can therefore define the convolution u ∗ v
of any u ∈ D′ with any v ∈ ~E′ by (cf. our second definition of the convolution)

〈u ∗ v, φ 〉 = 〈u, v˜∗ φ 〉 .

Exercise 11. With notation as above, prove that:

(a) u ∗ v ∈ D′ (Hint: You have to check that if φj → φ in C∞c and w ∈ ~E′,
then w ∗ φj → w ∗ φ in C∞c . Recall that w is of finite order, so we have
an estimate of the type (2.24).)

(b) ∂α(u ∗ v) = u ∗ ∂αv = (∂αu) ∗ v for all multi-indices α.

2.4.4 Smooth approximation

It is an important fact that the test functions are dense in D′(Ω).

Theorem 10. C∞c (Ω) is dense in D′(Ω).

See Folland for a complete proof. The idea is write Ω as a union of an
increasing sequence of compact subsets Kj , and to choose ζj ∈ C∞c (Ω such that
ζj = 1 on Kj . Also let χε be a smooth and compactly supported approximation
of the identity. Given u ∈ D′(Ω), one then defines

(2.25) uj = χεj ∗ (ζju),
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where εj → 0. Clearly uj ∈ C∞c (Ω) if one chooses εj sufficiently small, and it is
not hard to check that uj → u in D′(Ω).

It is not hard to check that for the particular sequence uj constructed above,
one has estimates (2.22) with constants CK and NK independent of j. This
turns out to be true for any convergent sequence of distributions however; see
the next section.
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Chapter 3

Week 3: Some facts about
distributions

3.1 Continuity properties of D′(Ω)

Recall that for a linear functional u : C∞c (Ω) → C, the following statements are
equivalent:

(a) u ∈ D′(Ω).

(b) 〈u, φj 〉 → 〈u, φ 〉 whenever φj → φ in C∞c (Ω).

(c) For every compact K ⊂ Ω, there exist Ck > 0 and NK ∈ N such that

(3.1) |〈u, φ 〉| ≤ CK

∑
|α|≤NK

‖∂αφ‖L∞ for all φ ∈ C∞c (K).

It is natural to pose the following

Question. Suppose

uj → u in D′(Ω),
φj → φ in C∞c (Ω).

Then is it true that

(3.2) 〈uj , φj 〉 → 〈u, φ 〉 ?

The answer is yes, but this is far from obvious.
When trying to prove (3.2), the natural course of action is to exploit the

bilinearity of the pairing 〈 ·, · 〉 and write

〈uj , φj 〉 − 〈u, φ 〉 = 〈uj , φj − φ 〉+ 〈uj − u, φ 〉 .

23
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Since uj → u, the second term on the right hand side converges to 0, but it is not
at all clear that the first term does. Notice, however, that if the estimate (3.1)
were to hold for all the uj , with constants CK and NK independent of j, then
also the first term on the right hand side of the above equation would converge
to 0, since φj → φ. This turns out to be true, which is quite remarkable,
considering the fact that D′(Ω) has the topology of pointwise convergence.

Theorem 11. If uj → u in D′(Ω), then for every compact K ⊂ Ω, there exist
CK and NK , independent of j, such that (3.1) holds for all the uj.

This striking result comes out of the Uniform Boundedness Principle, which
in fact implies a stronger statement (we will need this later):

Theorem 12. Consider an indexed family {uλ}λ∈I ⊂ D′(Ω). If

sup
λ∈I

|〈uλ, φ 〉| <∞ for all φ ∈ C∞c (Ω),

then for every compact K ⊂ Ω, there exist CK and NK such that

sup
λ∈I

|〈uλ, φ 〉| ≤ CK

∑
|α|≤NK

‖∂αφ‖L∞ for all φ ∈ C∞c (K).

The proof is relegated to an appendix.
Let us note the following interesting corollary.

Corollary. Let {uj} be a sequence in D′(Ω). Suppose

lim
j→∞

〈uj , φ 〉

exists for every φ ∈ C∞c (Ω), and denote the limit by 〈u, φ 〉. Then the map
u : C∞c → C so defined belongs to D′(Ω).

Proof. Obviously, u is a linear functional on C∞c (Ω), and the continuity follows
immediately from Theorem 12.

This further implies:

Corollary. D′(Ω) is complete.

In other words, every Cauchy sequence {uj} in D′(Ω) has a limit in D′(Ω).
Indeed, since uj − uk → 0 as j, k →∞, then 〈uj , φ 〉 is a Cauchy sequence in C
for every fixed test function φ; hence it converges in C, and we can apply the
previous corollary.

3.2 Time-dependent distributions

Consider a map
R → D′(Rn), t→ u(t).
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Since D′(Rn) has a topology—namely the topology of pointwise convergence—it
makes sense to talk about continuity or differentiability of u as a function of
t. Thus, u is continuous at t0 iff t → 〈u(t), φ 〉 is continuous at t0 for every
φ ∈ C∞c (Rn), and u is differentiable at t0 iff there exists a v ∈ D′(Rn) such that
for every φ ∈ C∞c ,

d

dt
〈u(t), φ 〉 |t=t0 = 〈 v, φ 〉 .

We then write u′(t) = v. If u, u′, . . . , u(k) exist and are continuous on R, we say
that u is of class Ck and write u ∈ Ck(R,D′) or just u ∈ Ck. If u ∈ Ck for all
k, we say u ∈ C∞.

Proposition 1. Every u ∈ C(R,D′(Rn)) defines a distribution on R1+n by

〈u, ψ 〉 =
∫

R
〈u(t), ψ(t, ·) 〉 dt for ψ ∈ C∞c (R1+n).

Proof. First observe that the integrand is a continuous and compactly supported
function of t, so the integral exists. The functional u thus defined belongs to
D′(R1+n) iff (3.1) holds for every compact K ⊂ R1+n. It suffices to take K of
the form I ×K ′ where I ⊂ R and K ′ ⊂ Rn are compact. But by Theorem 12
there exist CI,K′ > 0 and NI,K′ ∈ N such that

sup
t∈I

|〈u(t), φ 〉| ≤ CI,K′

∑
|α|≤NI,K′

‖∂αφ‖L∞ for all φ ∈ C∞c (K ′),

Apply this for each t ∈ I with φ = ψ(t, ·) and then integrate in t to get the
desired estimate.

Now assume u ∈ C1(R,D′(Rn)). Then u and u′ can both be interpreted as
elements of D′(R1+n), and the question naturally arises whether

(3.3) ∂tu = u′

in the sense of D′(R1+n). The answer is yes. Indeed, (3.3) is equivalent to the
condition that, for every ψ ∈ C∞c (R1+n),∫

R
〈u(t), (−1)∂tψ(t, ·) 〉 dt =

∫
R
〈u′(t), ψ(t, ·) 〉 dt.

But since u is C1, we have

(3.4)
d

dt
〈u(t), ψ(t, ·) 〉 = 〈u′(t), ψ(t, ·) 〉+ 〈u(t), ∂tψ(t, ·) 〉 ,

and integration in t gives the desired identity.

Exercise 12. Prove (3.4). Note that if f(t) = 〈u(t), ψ(t, ·) 〉, then

1
h

{
f(t+ h)− f(t)

}
=
〈

1
h

{
u(t+ h)− u(t)

}
, ψ(t, ·)

〉
+
〈
u(t+ h),

1
h

{
ψ(t+ h, ·)− ψ(t, ·)

}〉
.

Use Theorem 12 on the last term (cf. the discussion in section 1).
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3.3 Distributional solutions of �u = 0.

We consider again the Cauchy problem on R1+n,

(3.5) �u = 0, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g.

First observe that the equation �u = 0 makes sense for u ∈ D′(R1+n). In fact,

�u = 0 ⇐⇒ 〈u,�φ 〉 = 0 for all φ ∈ C∞c (R1+n).

We could also replace R1+n by any open subset. However, it does not make sense
to say that u satisfies the initial conditions, since in general we cannot restrict
u to the plane t = 0. But if u is a time-dependent distribution of class C1 as
defined in the previous section, then the initial condition is clearly meaningful
(cf. also (3.3)).

Theorem 13. For all f, g ∈ D′(Rn) there exists a time-dependent distribution
u ∈ C∞(R,D′(Rn)) which solves the Cauchy problem (3.5).

The solution is also unique; we leave this as an exercise for next week.
To prove the theorem, one simply takes the representation formulas for

smooth initial data, and see that they make sense also when f and g are distri-
butions. In fact, in every dimension n, the solution formulas can be written

(3.6) u(t) = W ′(t) ∗ f +W (t) ∗ g,

where

(3.7) W ∈ C∞
(
R, ~E′(Rn)

)
, W (0) = W ′′(0) = 0, W ′(0) = δ.

(Here δ is the point mass at the origin in Rn.) Recall that ~E′(Rn) is the space
of compactly supported distributions. In fact, we shall see that

suppW (t) ⊂ {x : |x| ≤ |t|},

and, moreover,

suppW (t) ⊂ {x : |x| = |t|} if n is odd, n ≥ 3,

which is merely a statement of Huygens’ principle.
Let us for the moment simply assume the existence of W (t) with the stated

properties, and show that (3.6) defines a solution of (3.5) for arbitrary f, g ∈
D′(Rn).

First, since W (t) is compactly supported for each t, the convolutions in
(3.6) are well-defined for all f, g ∈ D′(Rn). Thus, (3.6) defines a smooth time-
dependent distribution (see Exercise 2 below).

Secondly, the initial conditions are satisfied, since

u(0) = W ′(0) ∗ f +W (0) ∗ g = δ ∗ f = f

u′(0) = W ′′(0) ∗ f +W ′(0) ∗ g = δ ∗ g = g.
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Finally, to see that �u = 0 in the sense of distributions, we use a simple
approximation argument. Choose sequences fj , gj ∈ C∞c (Rn) such that fj → f
and gj → g in D′(Rn). Let uj be the solution of (3.5) with initial data fj , gj .
Then

uj(t) = W ′(t) ∗ fj +W (t) ∗ gj ,

whence (see Exercise 2)

uj → u in D′(R1+n).

But then
�uj → �u in D′(R1+n),

and since �uj = 0 for all j, we must have �u = 0.

Exercise 13. Given v ∈ C∞
(
R, ~E′(Rn)

)
and f ∈ D′(Rn), define

u(t) = v(t) ∗ f

and prove:

(a) u ∈ C∞
(
R,D′(Rn)

)
.

(b) If fj → f in D′(Rn), and we set uj(t) = v(t)∗fj , then uj → u in the sense
of D′(R1+n).

(Hint: Use the fact [see the next exercise] that the convolution product of two
distributions is continuous in both arguments. For part (b), use the Dominated
Convergence Theorem, recalling that Theorem 12 furnishes estimates of the type
(3.1) which are uniform on compact intervals in t.)

Exercise 14. Recall that for u ∈ D′ and v ∈ ~E′, we defined u ∗ v ∈ D′ by

(3.8) 〈u ∗ v, φ 〉 = 〈u, v˜∗ φ 〉 for φ ∈ C∞c .

Recall also that if v ∈ C∞c , then u ∗ v agrees with the C∞ function u ∗ v(x) =
〈u, v(x− ·) 〉. In other words, we have the identity

(3.9)
∫
〈u, v(x− ·) 〉φ(x) dx = 〈u, v˜∗ φ 〉 .

The purpose of this exercise is to extend the convolution product to

(D′ × ~E′) ∪ ( ~E′ ×D′)

and prove that it is commutative, so that u ∗ v = v ∗ u. Moreover, we want to
prove that the product is continuous in both arguments.

We break this into a number of steps. At the outset, let us record some facts
that will be used:

(i) Any u ∈ ~E′ can be extended to a functional on C∞ by 〈u, φ 〉 = 〈u, ζφ 〉
where ζ ∈ C∞c and ζ = 1 on suppu.
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(ii) Assume uj , u ∈ ~E′. The statement uj → u in ~E′ means that 〈uj , φ 〉 →
〈u, φ 〉 for all φ ∈ C∞. Note that if the uj are all supported in a fixed
compact set K, then this is equivalent to saying that 〈uj , φ 〉 → 〈u, φ 〉 for
all φ ∈ C∞c . (Choose a cut-off ζ ∈ C∞c such that ζ = 1 on K.)

(iii) If u ∈ ~E′ and φ ∈ C∞, then u ∗ φ is a C∞ function, given by u ∗ φ(x) =
〈u, φ(x− ·) 〉.

(iv) Assume χ ∈ C∞c and
∫

Rn χ(x) dx = 1. Set χε = ε−nχ(x/ε). If u ∈ ~E′,
then u ∗ χε → u in ~E′ as ε→ 0.

Now prove the following:

(a) Equation (3.8) defines a distribution u ∗ v whenever u ∈ ~E′ and v ∈ D′.
Thus, the convolution product is extended from D′ × ~E′ to (D′ × ~E′) ∪
( ~E′ ×D′)
(Hint: In view of facts (i) and (iii) above, the right hand side of (3.8) makes
sense. Proving that the linear functional u ∗ v so defined is a distribution,
boils down to the following: If w ∈ D′ and φj → φ in C∞c , then w ∗ φj

converges uniformly on compact sets to w ∗ φ.)

(b) Prove that if u ∈ ~E′, φ ∈ C∞ and ψ ∈ C∞c , then

(u ∗ φ) ∗ ψ = u ∗ (φ ∗ ψ).

Note that both sides are C∞ functions. (Hint: This can be reduced to
the identity (3.9).)

(c) If u, v ∈ D′ and at least one of them has compact support, then

(3.10) 〈u, v˜∗ φ 〉 = 〈 v, u˜∗ φ 〉 for φ ∈ C∞c .

(Hint: By symmetry, we may assume u ∈ D′ and v ∈ ~E′. Show first that
(3.10) holds when v ∈ C∞c ; this can be reduced to the identity (3.9), since
v˜∗ φ = φ ∗ v .̃ For general v ∈ ~E′, use fact (iv) and part (b).)

(d) Convolution is commutative. That is, u ∗ v = v ∗ u whenever u, v ∈ D′
and at least one of them has compact support. (Hint: Show that this is
equivalent to (3.10).)

(e) The convolution product is continuous in both arguments. (Hint: By
commutativity, it suffices to prove two things. First, if uj → u in D′ and
v ∈ ~E′, then uj ∗ v → u ∗ v in D′. This follows easily from (3.8). Secondly,
one has to show the same thing if uj → u in ~E′ and v ∈ D′. Again this
follows from (3.8), since the assumption uj → u in ~E′ means that [see fact
(ii)] 〈uj − u, φ 〉 → 0 as j →∞ for all φ ∈ C∞.)
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3.4 What is W (t)?

It remains to find W (t) satisfying (3.7) and such that the solution of (3.5) is
given by (3.6) for all f, g ∈ C∞c (Rn). Of course, W (t) depends on the space
dimension n. We only consider n = 1, 2, 3, leaving the higher dimensional cases
as an exercise.

Dimension n = 1. In this case we have d’Alembert’s formula:

u(t, x) =
1
2
[f(x+ t) + f(x− t)] +

1
2

∫ x+t

x−t

g.

Define W (t) ∈ D′(R) by

〈W (t), φ 〉 =
1
2

∫ t

−t

φ for φ ∈ C∞c (R).

It is easy to check that [W (t) ∗ g](x) = 1
2

∫ x+t

x−t
g for g ∈ C∞c .

Since
d

dt

(∫ t

−t

φ

)
= φ(t) + φ(−t),

we have
W ′(t) =

1
2
[δ(·+ t) + δ(· − t)].

In particular, this implies

[W ′(t) ∗ f ](x) =
1
2
[f(x+ t) + f(x− t)]

for f ∈ C∞c . The higher derivatives are given by〈
W (k)(t), φ

〉
=

1
2
[
φ(k−1)(t) + (−1)k−1φ(k−1)(−t)

]
.

We conclude that W (t) has all the required properties.

Dimension n = 3. In this case the solution of (3.5) for f, g ∈ C∞c is

u(t, x) = ∂t

(
t

4π

∫
y∈S2

f(x− ty) dσ(y)
)

+
t

4π

∫
y∈S2

g(x− ty) dσ(y).

(Here we have changed variables y → −y, which does not affect the value of the
integral.) The solution is therefore of the form (3.6), if we take

W (t) = tΣ(t),

where Σ ∈ C∞(R, ~E′(R3)) is defined by

〈Σ(t), φ 〉 =
1
4π

∫
y∈S2

φ(ty) dσ(y).
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Then
〈Σ′(t), φ 〉 =

1
4π

∫
y∈S2

∇φ(ty) · y dσ(y),

and the higher derivatives are given by〈
Σ(k)(t), φ

〉
=

1
4π

∫
y∈S2

Dkφ(ty)(y, . . . , y) dσ(y),

where

Dkφ(ty)(y, . . . , y) =
n∑

j1,...,jk=1

∂j1 · · · ∂jk
φ(ty) yj1 · · · yjk

.

Observe that
Σ(0) = δ, Σ′(0) = 0.

(The latter holds by the Divergence Theorem.)
Since Σ ∈ C∞(R, ~E′(R3)), it follows that W ∈ C∞(R, ~E′(R3)), and we have

W ′(t) = Σ(t) + tΣ′(t) =⇒ W ′(0) = δ,

W ′(t) = 2Σ′(t) + tΣ′′(t) =⇒ W ′′(0) = 0.

Thus (3.7) is satisfied.

Dimension n = 2. The solution is now given by

u(t, x) = ∂t

 t

2π

∫
|y|<1

f(x− ty)
dy√

1− |y|2

+
t

2π

∫
|y|<1

g(x− ty)
dy√

1− |y|2
,

which is of the form (3.6) if we set

W (t) = tΘ(t),

where Θ ∈ C∞(R, ~E′(R2)) is given by

〈Θ(t), φ 〉 =
1
2π

∫
|y|<1

φ(ty)
dy√

1− |y|2
.

Remark. If we consider φ as a function on R3 which is independent of y3, then
〈Θ(t), φ 〉 is just 〈Σ(t), φ 〉.

For k ≥ 1,〈
Θ(k)(t), φ

〉
=

1
2π

∫
|y|<1

Dkφ(ty)(y, . . . , y)
dy√

1− |y|2
.

Moreover,
Θ(0) = δ, Θ′(0) = 0.
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(The latter follows by the above remark, since Σ′(0) = 0.)
Since Θ ∈ C∞(R, ~E′(R2)), it follows that W ∈ C∞(R, ~E′(R2)), and we have

W ′(t) = Θ(t) + tΘ′(t) =⇒ W ′(0) = δ,

W ′(t) = 2Θ′(t) + tΘ′′(t) =⇒ W ′′(0) = 0.

so (3.7) holds.

Exercise 15. Find W (t) for n = 5, 7, . . . and n = 4, 6, . . . .

3.5 Proof of Theorem 2

We are given an indexed family {uλ}λ∈I ⊂ D′(Ω) such that

sup
λ∈I

|〈uλ, φ 〉| <∞ for all φ ∈ C∞c (Ω),

and we want to prove that for every compact K ⊂ Ω, there exist CK > 0 and
NK ∈ N such that

sup
λ∈I

|〈uλ, φ 〉| ≤ CK

∑
|α|≤NK

‖∂αφ‖L∞ for all φ ∈ C∞c (K).

To prove this, fix the setK. The space C∞c (K) is a Fréchet space: a complete
Hausdorff topological vector space whose topology is induced by a countable
family of seminorms. In this case the seminorms are

‖φ‖(α) = ‖∂αφ‖L∞ ,

where α runs over the set of multi-indices. (See Folland’s Real Analysis, section
5.4, for a brief discussion of topological vector spaces.) In fact, every Fréchet
space is a complete metric space. Convergence in this topology on C∞c (K)
means the following:

φj → φ in C∞c ⇐⇒ ‖φj − φ‖(α) → 0 for all α.

As a consequence, we see that a linear functional u : C∞c (Ω) → C belongs to
D′(Ω) iff u|C∞c (K) is continuous for every compact K ⊂ Ω.

Returning to the proof of the theorem, then, we have that uλ|C∞c (K) is
continuous for every λ ∈ I. But the conclusion of the theorem then follows
immediately from

Theorem. (Uniform Boundedness Principle.) Assume that

• X is a Fréchet space whose topology is given by a countable family of
seminorms {pn}∞1 ;

• Y is a normed vector space;
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• {Tλ}λ∈I is a family of continuous linear operators from X into Y which
is pointwise bounded, in the sense that

sup
λ∈I

‖Tλx‖ <∞ for all x ∈ X .

Then there exist C > 0 and N ∈ N such that

sup
λ∈I

‖Tλx‖ ≤ C
N∑
1

pn(x) for all x ∈ X .

The theorem is usually stated for the special case where X is a Banach space.
The proof is based on the Baire Category Theorem, which states that if X

is a complete metric space and X =
⋃∞

1 Ej where each Ej is closed in X, then
at least one Ej has a nonempty interior. Recall that every Fréchet space is a
complete metric space.

In the present situation, one defines the sets Ej by

Ej =
{
x ∈ X : sup

λ∈I
‖Tλx‖ ≤ j

}
.

Since the Tλ are continuous, each Ej is closed, and since the family {Tλ} is
pointwise bounded, we see that X =

⋃∞
1 Ej . Therefore, some Ej has nonempty

interior, by the Baire Category Theorem.
One can show that for every x0 ∈ X , the finite intersections of the sets

Ux0nε = {x ∈ X : pn(x− x0) < ε} , n ∈ N , ε > 0,

form a neighborhood base at x0. (See Folland.)
Since Ej has nonempty interior, it then follows that there exist x0 ∈ X ,

N ∈ N and ε > 0 such that

N⋂
n=1

Ux0nε ⊂ Ej .

But this implies that E2j contains an open neighborhood of the origin in X ,
essentially by translation.

In fact, if

x ∈
N⋂

n=1

U0nε,

that is to say, if pn(x) < ε for n = 1, . . . , N , then obviously

x0 + x ∈
N⋂

n=1

Ux0nε,

whence
‖Tλx‖ ≤ ‖Tλ(x0 + x)‖+ ‖Tλx0‖ ≤ 2j
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for all λ. Thus x ∈ E2j .
Fix δ > 0 and x ∈ X . Then

z = ε

(
δ +

N∑
1

pn(x)

)−1

x ∈
N⋂

n=1

U0nε,

because pn(z) < ε for n = 1, . . . , N . Therefore,

sup
λ
‖Tλz‖ ≤ 2j,

which by linearity and homogeneity implies

sup
λ
‖Tλx‖ ≤

2j
ε

(
δ +

N∑
1

pn(x)

)
.

Since δ > 0 was arbitrary, we get the desired conclusion.
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Chapter 4

Week 4: More on
distributional solutions

4.1 Uniqueness of distributional solutions

Fix T > 0, and assume that u ∈ C1([0, T ],D′(Rn)) solves

(4.1)

{
�u = F on ST = (0, T )× Rn,

u
∣∣
t=0

= f, ∂tu = g,

where F ∈ D′(ST ) and f, g ∈ D′(Rn). (The equation �u = F is understood in
the sense of distributions on ST .)

Theorem 14. The solution of (4.1) is unique in the class C1([0, T ],D′(Rn)).

Since � is a linear operator, it suffices to prove that if f = g = 0 and F = 0,
then u must vanish on ST . We leave the proof as an exercise:

Exercise 16. Prove the following statements.

(a) If u ∈ C2([0, T ],D′(Rn)), then for any φ ∈ C∞(R1+n) such that

φ(t, ·) ∈ C∞c (Rn) for all t

we have∫ T

0

〈u(t),�φ(t, ·) 〉 dt =
∫ T

0

〈�u(t), φ(t, ·) 〉 dt

+ 〈u(t), ∂tφ(t, ·) 〉 |T0 − 〈u′(t), φ(t, ·) 〉 |T0 ,

where we write a(t)|T0 = a(T )− a(t).

35
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Hint: Since �u(t) = u′′(t)−∆u(t), it suffices to show∫ T

0

〈
u(t), ∂2

t φ(t, ·)
〉
dt =

∫ T

0

〈u′′(t), φ(t, ·) 〉 dt

+ 〈u(t), ∂tφ(t, ·) 〉 |T0 − 〈u′(t), φ(t, ·) 〉 |T0 .

Integrate by parts twice to prove this (see equation (4) in the notes from
last week).

(b) If u ∈ C1([0, T ],D′(Rn)) and �u = 0 on ST , then u ∈ C2([0, T ],D′(Rn)).
[In fact, u ∈ C∞([0, T ],D′(Rn)).]

Hint: ∂2
t u = ∆u, and the right hand side belongs to C1([0, T ],D′(Rn)). By

equation (3) from last week we have ∂2
t u = ∂t(u′). Now apply Proposition

2 below.

(c) Assume that u ∈ C1([0, T ],D′(Rn)) solves (4.1) with f = g = 0 and F = 0.
Prove that u vanishes on ST .

Hint: By part (b), u ∈ C2(R,D′), so we can apply part (a), with φ the
solution of the following Cauchy problem with initial data at t = T :{

�φ = 0 on R1+n

φ(T, ·) = φ0, ∂tφ(T, ·) = φ1,

for arbitrary φ0, φ1 ∈ C∞c . Conclude that u(T ) = u′(T ) = 0.

Proposition 2. Let u, v ∈ C([0, T ],D′(Rn)) and set ST = (0, T )× Rn. If

∂tu = v in the sense of D′(ST ),

then u ∈ C1([0, T ],D′(Rn)) and u′ = v.

Proof. We are given that∫
〈u, (−1)∂tψ(t, ·) 〉 dt =

∫
〈 v, ψ(t, ·) 〉 dt

for all ψ ∈ C∞c (ST ). Now take

ψ(t, x) = θ(t)φ(x)

where θ ∈ C∞c ((0, T )) and φ ∈ C∞c (Rn). Considering φ to be fixed, the above
equation then reads∫

{f(t)θ′(t) + g(t)θ(t)} dt = 0 for all θ ∈ C∞c
(
(0, T )

)
,

where f, g ∈ C([0, T ]) are given by

f(t) = 〈u(t), φ 〉 , g(t) = 〈 v(t), φ 〉 .
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But this means that

f ′ = g in the sense of D′
(
(0, T )

)
,

and since f and g are both continuous, it follows from Proposition 3 below that
f ′ = g in the classical sense, that is,

d

dt
〈u(t), φ 〉 = 〈 v(t), φ 〉 .

Since φ ∈ C∞c (Rn) was arbitrary, this finishes the proof.

Proposition 3. Let Ω ⊂ Rn be open. If u ∈ C(Ω) and the distributional
derivatives ∂αu are also in C(Ω) for all |α| ≤ k, then u ∈ Ck(Ω).

Proof. By induction, it suffices to consider k = 1. The problem is then to prove
that ∂1u, . . . , ∂nu exist in the classical sense at every point of Ω, and agree
with the distributional derivatives, which are assumed to be continuous. Since
we only consider partial derivatives in the coordinate directions and at a given
point, it suffices to take n = 1 and assume that u is a function in C([a, b]) whose
distributional derivative on (a, b) agrees with a function v ∈ C([a, b]). Thus,∫

u(x)(−1)φ′(x) dx =
∫
v(x)φ(x) dx for all φ ∈ C∞c

(
(a, b)

)
.

Now define U : [a, b] → C by

U(x) =
∫ x

a

v(t) dt+ u(a).

Note that U ′ = v in the classical sense. Thus (U − u)′ = 0 in the sense
of distributions, so by Proposition 4 below, U − u is a constant, and since
U(a) = u(a) it follows that u = U ∈ C1.

Proposition 4. If u ∈ D′(I), where I ⊂ R is an open interval. Then

u′ = 0 =⇒ u = const.

Proof. Fix φ ∈ C∞c (I) with
∫
φ = 1. If u were a constant, that constant would

necessarily be 〈u, φ 〉. Thus, we want to prove that

〈u− 〈u, φ 〉 , ψ 〉 = 0 for all ψ ∈ C∞c (I).

First note that the left hand side equals 〈u, θ 〉, where

θ = ψ −
(∫

ψ

)
φ.

But
∫
θ = 0, so if we set

η(x) =
∫ x

−∞
θ,

then η ∈ C∞c (I) and η′ = θ. Finally, then,

〈u− 〈u, φ 〉 , ψ 〉 = 〈u, η′ 〉 = −〈u′, η 〉 = 0,

since u′ = 0. This concludes the proof.
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4.2 A fundamental solution for �

Recall that a fundamental solution for a constant-coefficient linear differential
operator

L =
∑
|α|≤N

aα∂
α

is a distribution w such that Lw = δ, where δ is the point-mass at the origin.
Observe that if f ∈ C∞c , then

L(w ∗ f) = (Lw) ∗ f = δ ∗ f = f.

Conversely, if w is a distribution such that L(w ∗f) = f for every f ∈ C∞c , then
(Lw) ∗ f = f for all f ∈ C∞c , and this implies Lw = δ.

Now consider � on R1+n. Define W+ ∈ C(R,D′(Rn)) by

W+(t) =

{
W (t) t ≥ 0,
0 t < 0,

where W (t) is the “wave propagator” defined last week. Thus W+ ∈ D′(R1+n)
with action

〈W+, ψ 〉 =
∫ ∞

0

〈W (t), ψ(t, ·) 〉 dt

on a test function ψ ∈ C∞c (R1+n).

Theorem 15. W+ is a fundamental solution for �.

Equivalently,

(4.2) �(W+ ∗ F ) = F for all F ∈ C∞c (R1+n).

(Convolution product in R1+n.)

Exercise 17. Prove (4.2) and hence the theorem. (Hint: Fix F ∈ C∞c (R1+n)
and choose t0 so that F (t, x) vanishes for t ≤ t0. Now use Duhamel’s principle
with initial time t = t0 instead of t = 0. That is, show that

u(t, x) =
∫ t

t0

W (t− s) ∗ F (s, x) ds

solves �u = F . Then show that u = W+ ∗ F .)

4.3 Loss of classical derivatives

In space dimensions n > 1, the solution of

�u = 0, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g
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loses up to n/2 degrees of differentiability from time t = 0 to any time t > 0.
More precisely, to ensure

u(t) ∈ C2(Rn) for t > 0,

we must assume, in general,

f ∈ C2+n/2, g ∈ C1+n/2 (n even),

f ∈ C2+(n−1)/2, g ∈ C1+(n−1)/2 (n odd).

Intuitively, this is because “weak” singularities at t = 0 propagate on forward
light cones, thus interacting at times t > 0 to create “stronger” singularities.
We will not try to make this precise.

In contrast, there is no loss of L2-differentiability from t = 0 to t > 0. That
is, if the initial data have weak derivatives in L2 up to some order k, then so does
the solution u(t, ·) for all times t > 0. The energy identity, which we consider
next, illustrates this principle.

4.4 Energy identity

Recall that ∂u denotes the spacetime gradient:

∂u = (ut,∇xu).

Theorem 16. Suppose u ∈ C2([0, T ] × Rn) solves �u = 0 and that u(t, ·) is
compactly supported for every t. Then

‖∂u(t, ·)‖L2 = ‖∂u(0, ·)‖L2

for all 0 ≤ t ≤ T .

Proof. Consider the energy

e(t) =
1
2

∫
Rn

|∂u(t, x)|2 dx =
1
2
‖∂u(t, ·)‖2L2 .

Differentiate e(t), and integrate by parts, to get

(4.3) e′(t) =
∫

Rn

ut�u dx.

Since �u = 0, we get e′(t) = 0, hence e(t) is constant.

With a little more work we can prove the following energy inequality for a
solution of the inhomogeneous wave equation. (The assumptions of compact
support and smoothness of u in these theorems can be removed by approxima-
tion arguments similar to ones we will encounter later on.)
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Theorem 17. Suppose u ∈ C2([0, T ] × Rn) and u(t, ·) is compactly supported
for every t. Then

‖∂u(t, ·)‖L2 ≤ ‖∂u(0, ·)‖L2 +
∫ t

0

‖�u(s, ·)‖L2 ds

for all 0 ≤ t ≤ T .

Proof. Define the energy as in the proof of the previous theorem. Applying the
Cauchy-Schwarz inequality to (4.3), we have

e′(t) ≤ ‖∂u(t, ·)‖L2 ‖�u(t, ·)‖L2 =
√

2e(t) ‖�u(t, ·)‖L2 .

Thus, whenever e′(t) 6= 0,

d

dt

√
e(t) =

e′(t)
2
√
e(t)

≤ 1√
2
‖�u(t, ·)‖L2 .

It follows that √
e(t) ≤

√
e(0) +

1√
2

∫ t

0

‖�u(s, ·)‖L2 ds,

which is exactly what we want.

4.5 The L2 theory

4.5.1 The Fourier transform

The Fourier transform of f ∈ L1(Rn) is

(4.4) Ff(ξ) = f̂(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξf(x) dx.

We let S(Rn) be the class of Schwartz functions:

S(Rn) =
{
f ∈ C∞(Rn) : ‖f‖(N,α) <∞ for all N , α

}
,

where
‖f‖(N,α) = sup

x∈Rn

(1 + |x|)N |∂αf(x)|

is a seminorm for every N ∈ N and every multi-index α. When equipped with
the topology induced by this countable family of seminorms, S is a Fréchet
space, and in particular a complete metric space. The topology is characterized
by the notion of sequential convergence:

fj → f in S ⇐⇒ ‖fj − f‖(N,α) → 0 for all N,α.

Recall the following basic facts concerning the Fourier transform on S:



4.5. THE L2 THEORY 41

(i)
∫
f̂g =

∫
fĝ.

(ii) F(f ∗ g) = (2π)n/2f̂ ĝ.

(iii) F(∂αf)(ξ) = (iξ)αf̂(ξ).

(iv) ∂αf̂(ξ) = F [(−ix)αf ].

(v) F maps S isomorphically onto itself, with inverse F−1 : S → S given by

F−1g(x) =
1

(2π)n/2

∫
Rn

eix·ξg(ξ) dξ.

(vi) (Plancherel’s Theorem.) F : S → S extends to a unitary isomorphism
F : L2 → L2. Thus,

‖f‖L2 =
∥∥f̂∥∥

L2 .

Also, if f ∈ L1 ∩ L2, the f̂ is given by the integral (4.4).

The dual of S, denoted S ′, consists of all continuous linear maps u : S → C.
Clearly,

φj → φ in C∞c =⇒ φj → φ in S,

and since C∞c is dense in S, we may consider S ′ to be a subset of D′. It is then
easy to see that S ′ in turn contains the set of compactly supported distributions.
We summarize:

~E′ ⊂ S ′ ⊂ D′.

The elements of S ′ are called tempered distributions. The main advantage of
tempered distributions is that they have a Fourier transform: In view of (i) and
(v) above, the Fourier transform extends to an isomorphism of S ′ onto itself,
given by

〈 û, φ 〉 =
〈
u, φ̂

〉
.

Recall also that if u ∈ ~E′, then û is a C∞ function, given by

û(ξ) = (2π)−n/2 〈u,Eξ 〉 ,

where Eξ ∈ C∞(Rn) is the function Eξ(x) = e−ix·ξ.
We say that a function ψ ∈ C∞(Rn) is slowly increasing if ψ and all its

partial derivatives have at most polynomial growth at infinity:

|∂αψ(x)| ≤ Cα(1 + |x|)N(α) for all α.

Then ψφ ∈ S whenever φ ∈ S, and this gives a continuous map from S into
itself. Therefore, if u ∈ S ′ and ψ is slowly increasing, we can define their product
ψu ∈ S ′ by

〈ψu, φ 〉 = 〈u, ψφ 〉 for φ ∈ S.
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4.5.2 Solution of wave equation by Fourier analysis

Let u be the solution of

�u = 0 on R1+n, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g,

where f, g ∈ S(Rn). Now apply the Fourier transform in the space variable:

û(t, ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξu(t, x) dx.

Then �u = 0 transforms to, using property (iii) above,

∂tû(t, ξ) + |ξ|2 û(t, ξ) = 0, û(0, ξ) = f̂(ξ), ∂tû(0, ξ) = ĝ(ξ).

But for fixed ξ, this is an initial value problem for a second order ODE in time,
whose solution is

(4.5) û(t, ξ) = cos(t |ξ|)f̂(ξ) +
sin(t |ξ|)
|ξ|

ĝ(ξ).

On the other hand, we know that

u(t, ·) = W ′(t) ∗ f +W (t) ∗ g.

Since W (t) ∈ ~E′, we can apply the Fourier transform to the last equation, which
gives

û(t, ξ) = (2π)n/2Ŵ ′(t)(ξ)f̂(ξ) + (2π)n/2Ŵ (t)(ξ)ĝ(ξ).

Comparing this equation with (4.5), we conclude:

(4.6) Ŵ (t)(ξ) = (2π)−n/2 sin(t |ξ|)
|ξ|

, Ŵ ′(t)(ξ) = (2π)−n/2 cos(t |ξ|).

Now recall Duhamel’s formula for the solution of �u = F with vanishing initial
data at t = 0:

u(t, x) =
∫ t

0

W (t− s) ∗ F (s, x) ds.

Applying the Fourier transform and using (4.6) we then have

û(t, ξ) =
∫ t

0

sin(t− s) |ξ|
|ξ|

F̂ (s, ξ) ds.

Thus, the solution of the full inhomogeneous Cauchy problem

�u = F on R1+n, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g,

is given in Fourier space by

û(t, ξ) = cos(t |ξ|)f̂(ξ) +
sin(t |ξ|)
|ξ|

ĝ(ξ) +
∫ t

0

sin(t− s) |ξ|
|ξ|

F̂ (s, ξ) ds.
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4.5.3 The Sobolev spaces Hs

Fix s ∈ R. Observe that the function ξ → (1 + |ξ|2)s/2 is C∞ and slowly
increasing. We can therefore define Λs : S ′ → S ′ by

Λsf = F−1(1 + |ξ|2)s/2Ff.

Thus Λs is a composition of three continouous maps, so it is itself continouous.
Moreover, it is an isomorphism, since its inverse is just Λ−s.

By the same reasoning, Λs restricted to S is an isomorphism S onto itself.
Now set Hs(Rn) = Λ−s

(
L2(Rn)

)
with norm

‖f‖Hs = ‖Λsf‖L2 .

In other words, Hs = {f ∈ S ′ : Λsf ∈ L2}. By Plancherel’s theorem,

‖f‖Hs =
∥∥(1 + |ξ|2)s/2f̂

∥∥
L2 .

Of course, H0 is just L2. Observe that s < t =⇒ Ht ⊂ Hs.
Thus, Λs : Hs → L2 is an isometric isomorphism (in particular, Hs is a

Hilbert space) and since S is dense in L2 and Λs(S) = S, it follows that S is
dense in Hs. Note also that Λs : Ht → Ht−s is an isometric isomorphism for
all s, t ∈ R.

If s ∈ N , then

Hs =
{
f ∈ L2 : ∂αf ∈ L2 for |α| ≤ s

}
,

and the norm ‖f‖Hs is equivalent to(∑
|α|≤s

‖∂αf‖2L2

)1/2

These assertions follow easily from Plancherel’s theorem.
We will study these spaces in more detail later on.

4.5.4 L2 estimates for solutions of �u = 0

Recall that by the energy identity, if �u = 0, then the L2 norm of the spacetime
gradient, ‖∂u(t, ·)‖L2 , is a conserved quantity. The estimates for the L2 norm
of u itself are less favorable. In fact,

‖u(t, ·)‖L2 = O(t) as t→∞,

and this is essentially sharp, since in general ‖u(t, ·)‖L2 fails to be O(tθ) for any
θ < 1 (see Exercise 3 below).

The key estimates are contained in the following

Lemma 1. For any s ∈ R,
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(i) ‖W ′(t) ∗ f‖Hs ≤ ‖f‖Hs ,

(ii) ‖W (t) ∗ g‖Hs ≤
√

2(1 + |t|) ‖g‖Hs−1 .

Proof. Without loss of generality we may assume s = 0. Using (4.6), we have

‖W ′(t) ∗ f‖L2 =
∥∥cos(t |ξ|)f̂

∥∥
L2 ≤

∥∥f̂∥∥
L2 = ‖f‖L2 .

To prove (b), write

‖W (t) ∗ g‖2L2 =
∫ ∣∣∣∣ sin(t |ξ|)

|ξ|
ĝ(ξ)

∣∣∣∣2 dξ =
∫
|ξ|<1

+
∫
|ξ|≥1

.

Since
sin(t |ξ|)
|ξ|

≤

{
t (use when |ξ| < 1)
1
|ξ| (use when |ξ| ≥ 1)

and
|ξ| < 1 =⇒ 1 <

2
1 + |ξ|2

, |ξ| ≥ 1 =⇒ 1
|ξ|2

≤ 2
1 + |ξ|2

,

we obtain

‖W (t) ∗ g‖2L2 ≤ 2(1 + t2)
∫

|ĝ(ξ)|2

1 + |ξ|2
dξ = 2(1 + t2) ‖g‖2H−1 .

Exercise 18. Construct a function g such that u(t, ·) = W (t) ∗ g satisfies

‖u(t, ·)‖L2 ≥
Ct

log t
as t→∞,

for some C > 0. Conclude that ‖u(t, ·)‖L2 fails to be O(tθ) for any θ < 1.
Extended hint: Let ĝ(ξ) = h(|ξ|), where

h(r) =

{
r−n/2(− log r)−1 0 < r < 1

2 ,

0 r ≥ 1
2 .

Now show

‖u(t, ·)‖2L2 = cnt
2

∫ 1
2

0

sin2(tr)
(tr)2

· dr

r log2 r
≥ c′nt

2

∫ 1
2t

0

dr

r log2 r

and change variables to y = − log r.



Chapter 5

Week 5: The L2 theory

5.1 Existence and uniqueness in Hs

Consider the Cauchy problem on R1+n for the linear wave equation:

�u = F,(5.1a)

u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g.(5.1b)

We shall prove:

Theorem 18. Let s ∈ R. Let f ∈ Hs, g ∈ Hs−1 and F ∈ L1([0, T ],Hs−1).
Then for every T > 0, there is a unique u which belongs to

(5.2) C([0, T ],Hs) ∩ C1([0, T ],Hs−1)

and solves (5.1) on ST = (0, T )× Rn. Moreover, u satisfies
(5.3)

‖u(t)‖Hs + ‖∂tu(t)‖Hs−1 ≤ CT

(
‖f‖Hs + ‖g‖Hs−1 +

∫ t

0

‖F (t′)‖Hs−1 dt
′
)

for all 0 ≤ t ≤ T , where CT = C(1 + T ) and C only depends on s.

Remarks. (i) F ∈ L1([0, T ],Hs−1) means that the function

[0, T ] → R, t→ ‖F (t)‖Hs−1

is in L1([0, T ]). Any such F defines a distribution on ST by

(5.4) 〈F,ψ 〉 =
∫ T

0

〈F (t), ψ(t, ·) 〉 dt for ψ ∈ C∞c (ST ).

The key facts needed to prove that this integral converges, and defines an ele-
ment of D′(ST ), are as follows. First, we have the inequality

(5.5) |〈u, φ 〉| ≤ ‖u‖Hs ‖φ‖H−s for all s ∈ R, u ∈ Hs, φ ∈ S.

45
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Secondly, the inclusions

(5.6) C∞c ⊂ S ⊂ Hs ⊂ S ′ ⊂ D′

are all sequentially continuous. We leave the details as good exercises.

(ii) By (5.6) one has, for every interval I ⊂ R, continuous inclusions

C(I,Hs) ⊂ C(I,S ′) ⊂ C(I,D′),

and the same holds for every Ck. Thus, if u is in (5.2), then u ∈ C1([0, T ],D′).
(iii) The equation (5.1a) is of course understood in the sense of D′(ST ),

which makes sense in view of the previous remarks.

(iv) It is interesting to note that if the theorem holds for some s0 ∈ R, then
it follows immediately that it holds for every s ∈ R. This is easy to see, since
we have isometric isomorphisms

Λs0−s : Hs0 → Hs, Λs−s0 : Hs → Hs0

which commute with the wave operator �. That is,

�Λsu = Λs�u

for any s. To see this, apply the Fourier transform in the space variable.

(v) We know that the solution of (5.1) is given by

(5.7) u(t) = W ′(t) ∗ f +W (t) ∗ g +
∫ t

0

W (t− t′) ∗ F (t′) dt′,

at least if F is smooth. In fact, this formula makes sense for any F in the space
L1([0, T ],Hs−1) if the last term is interpreted as a Hilbert space-valued integral,
the Hilbert space being Hs−1, which is separable. Equivalently, the integral can
be understood in the weak sense, that is to say, as a distribution whose action
on a test function φ ∈ S is∫ t

0

〈W (t− t′) ∗ F (t′), φ 〉 dt′.

We leave it as an exercise to show that this defines a time-dependent distribution
t→ w(t) which belongs to (5.2) and solves �w = F on ST with vanishing initial
data. (Use the inequality (5.5), Lemma 1 from last week, and the result in
Exercise 1(c).)

Let us now prove Theorem 18.

Uniqueness. In view of remark (ii) above, uniqueness follows from Theorem
1 in last week’s lecture notes. Alternatively, we can use remark (iv) to conclude
that it suffices to prove uniqueness in the space (5.2) for some s ∈ R. If we take
s very large, then by Sobolev embedding, any solution of (5.1) with f = g = 0
and F = 0, and belonging to the space (5.2), must be C2, so we can appeal to
the uniqueness theorem for smooth solutions proved in the first week.
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Existence. We use a standard approximation argument. (Alternatively, one
could work out the details in remark (v) above.) We first check that (5.3) holds
when f, g and F are smooth, specifically f, g ∈ S and F ∈ C∞([0, T ],S). Then
the solution is given by (5.7), and in view of Lemma 1 from last week,

‖u(t)‖Hs ≤ ‖f‖Hs + C(1 + t) ‖g‖Hs−1 +
∫ t

0

‖W (t− t′) ∗ F (t′, ·)‖Hs−1 dt
′

(5.8)

≤ ‖f‖Hs + C(1 + t) ‖g‖Hs−1 + C(1 + t)
∫ t

0

‖F (t′, ·)‖Hs−1 dt
′.

Moreover, by Theorem 4 from last week (cf. also remark (iv) above),

(5.9) ‖∂tu(t)‖Hs−1 ≤ C

(
‖f‖Hs + ‖g‖Hs−1 +

∫ t

0

‖F (t′)‖Hs−1 dt
′
)
.

Combining (5.8) and (5.9) gives (5.3).
Now assume f ∈ Hs, g ∈ Hs−1 and F ∈ L1([0, T ],Hs−1), and choose

sequences fj , gj ∈ S and Fj ∈ C∞([0, T ],S) (cf. Exercise 4) such that

‖fj − f‖Hs → 0, ‖gj − g‖Hs−1 → 0,
∫ T

0

‖Fj(t′)− F (t′)‖Hs−1 dt
′ → 0.

Let uj be the corresponding solutions, given by (5.7) with fj , gj , Fj replacing
f, g, F . Denote by XT the space (5.2). Then XT is a Banach space with norm

‖u‖XT
= sup

0≤t≤T

(
‖u(t)‖Hs + ‖∂tu(t)‖Hs−1

)
.

Since (5.3) holds for smooth solutions, we have

‖uj − uk‖XT
. ‖fj − f‖Hs + ‖gj − g‖Hs−1 +

∫ T

0

‖Fj(t′)− F (t′)‖Hs−1 dt
′,

so uj is Cauchy in XT and hence converges in that space to a limit u. But then
uj also converges to u in the sense of D′(ST ), whence �uj → �u in D′(ST ). On
the other hand, �uj = Fj → F in D′(ST ) [cf. Exercise 3(b)], so u solves (5.1).
This completes the proof.

5.1.1 Exercises

Exercise 19. (i) Show that, for any u ∈ Hs and φ ∈ S,

〈u, φ 〉 =
∫
û(ξ)φ̂(−ξ) dξ =

∫
(1 + |ξ|2)s/2û(ξ)(1 + |ξ|2)−s/2φ̂(−ξ) dξ.

(ii) Prove (5.5).
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(iii) Prove that ‖u‖Hs = sup
{
|〈u, φ 〉| : φ ∈ S, ‖φ‖H−s = 1

}
. (Hint: Recall

that L2 is self-dual.)

Exercise 20. Prove that the inclusions in (5.6) are sequentially continuous.

Exercise 21. Let s ∈ R, T > 0. Set ST = (0, T )× Rn.

(i) Prove that (5.4) defines an element of D′(ST ) for every F ∈ L1([0, T ],Hs).

(ii) Prove that the inclusion

L1([0, T ],Hs) ⊂ D′(ST )

is sequentially continuous.

Exercise 22. Prove that

(5.10) C∞([0, T ],S) is dense in L1([0, T ],Hs)

by completing the following steps.

(i) Show that if C∞c (ST ) is dense in L1([0, T ], L2), then (5.10) follows. (Hint:
Use the isomorphism Λs : Hs → L2 and its inverse Λ−s.)

(ii) Cc(ST ) is dense in L1([0, T ], L2). (Hint: First approximate by simple
functions.)

(iii) If F ∈ Cc(ST ), φ ∈ C∞c (R1+n) and
∫
φ = 1, then∫ T

0

‖Fε(t, ·)− F (t, ·)‖L2 dt→ 0 as ε→ 0,

where Fε(t, x) ∈ C∞c is given by

Fε(t, x) =
∫

R1+n

F (t− εt′, x− εx′)φ(t′, x′) dt′ dx′ = F ∗ φε(t, x),

and φε(t, x) = ε−1−nφ(t/ε, x/ε).

5.2 Nonlinear equations

5.2.1 An example of blow-up in finite time

We look at the nonlinear Cauchy problem

�u = (∂tu)2,(5.11a)

u
∣∣
t=0

= 0, ∂tu
∣∣
t=0

= g.(5.11b)

Theorem 19. For any T > 0, there exists g ∈ C∞c (Rn) such that (5.11) does
not admit a C2 solution past time T .
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Step 1. Take g in (5.11b) to be a constant c > 0. Then (5.11a) reduces to an
ODE in time, utt = u2

t , or in terms of y = ut,

y′ = y2, y(0) = c.

The solution of this initial value problem is

y(t) =
c

1− ct
,

which blows up as t → 1/c. Thus u(t, x) = − log(1 − ct) solves (5.11) and
u→∞ as t→ 1/c.

Step 2. We prove a uniqueness theorem for the equation (5.11a).

Theorem. If u ∈ C2(Ω) solves �u = (∂tu)2 in the solid backward light cone

(5.12) Ω = {(t, x) : 0 ≤ t < T, |x− x0| < T − t},

with base B0 = {x : |x− x0| < T − t}, then u is uniquely determined by its data

u|B0 , ∂tu|B0 .

In other words, if u, v ∈ C2(Ω) are two solutions of (5.11a) in Ω, with the
same data in B0, then u = v in Ω. To see this, observe that u − v solves the
linear equation

�(u− v) = a(t, x)∂t(u− v) in Ω,

where a = ∂tu+ ∂tv ∈ C1(Ω), and that u− v and ∂t(u− v) vanish in B0. Then
by uniqueness of solutions of the linear equation �w = a(t, x)∂tw (see Theorem
21 below) we conclude that u = v in Ω.

Step 3. By applying Step 2 to the solution obtained in Step 1, we conclude
that if u ∈ C2(Ω) solves (5.11a) in Ω, with initial data u = 0 and ∂tu = 1/T in
B0, where Ω is given by (5.12) and B0 is its base, then

u(t, x) = − log(1− t/T ) for (t, x) ∈ Ω.

To finish the proof of Theorem 19, we only have to cut off the constant 1/T
smoothly outside a sufficiently large ball to produce g ∈ C∞c with the claimed
property.

5.3 A uniqueness theorem for nonlinear equa-
tions

We generalize the argument used in Step 2 above to prove uniqueness of smooth
solutions of an equation

(5.13) �u = F (u, ∂u),

where F : Rn+2 → R is a given C∞ function.
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Theorem 20. If u ∈ C2(Ω) solves (5.13) in the solid backward light cone

Ω = {(t, x) : 0 ≤ t < T, |x− x0| < T − t},

with base B0 = {x : |x− x0| < T − t}, then u is uniquely determined by its data

u|B0 , ∂tu|B0 .

Proof. Suppose u, v ∈ C2(Ω) both solve the equation, and with identical data
in B0. Then

�(u− v) = F (u, ∂u)− F (v, ∂v).

But if w, z ∈ Rn+2, then

F (w)− F (z) =
∫ t

0

d

dt
F
(
[1− t]z + tw

)
dt

=
∫ t

0

∇F
(
[1− t]z + tw

)
· (w − z) dt

= G(w, z) · (w − z),

where G : R2(n+2) → R is C∞. Thus

F (u, ∂u)− F (v, ∂v) = G(u, ∂u, v, ∂v) · (u− v, ∂u− ∂v)
= a(t, x)(u− v) + b(t, x) · ∂(u− v),

where a, b ∈ C1(Ω), so w = u− v solves the linear equation

�w = a(t, x)w + b(t, x) · ∂w in Ω

with vanishing initial data in B0. The next theorem shows that u = v in Ω.

Using the energy method, we now prove a uniqueness theorem for linear
equations of the form

(5.14) �u = a(t, x)u+ b(t, x) · ∂u

with continuous coefficents a and b (the latter is of course R1+n-valued).

Theorem 21. Let a, b ∈ C(Ω), where Ω as before is the solid cone

Ω = {(t, x) : 0 ≤ t < T, |x− x0| < T − t},

with base B0 = {x : |x− x0| < T − t}. If u ∈ C2(Ω) solves (5.14) in Ω and

u|B0 = ∂tu|B0 = 0,

then u = 0 in Ω.
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Proof. Fix ε > 0. We will show that u = 0 in

K = {(t, x) : 0 ≤ t ≤ T − ε, |x− x0| ≤ T − ε− t}.

We use a slight modification of the energy method employed to prove uniqueness
for �u = 0 in the first week (see Theorem 1 in the lecture notes for that week).
Let Bt be the time-slices of K:

Bt = {x : |x− x0| ≤ T − ε− t}.

Set

E(t) =
1
2

∫
Bt

(
|u(t, x)|2 + |∂u(t, x)|2

)
dx.

Then

E′(t) =
∫

Bt

(uut + ututt +∇u · ∇ut) dx

− 1
2

∫
∂Bt

(
|u(t, x)|2 + |∂u(t, x)|2

)
dσ(x).

Since
utt = ∆u+ au+ b · ∂u, div(ut∇u) = ∇ut · ∇u+ ut∆u,

we get E′(t) = I(t) + II(t), where

I(t) =
∫

Bt

ut [(1 + a)u+ b · ∂u] dx,

II(t) =
∫

Bt

div(ut∇u) dx−
1
2

∫
∂Bt

(
|u(t, x)|2 + |∂u(t, x)|2

)
dσ(x).

By the divergence theorem (cf. proof of Theorem 1, week 1),

II(t) ≤ −1
2

∫
∂Bt

|u(t, x)|2 dσ(x) ≤ 0,

so E′(t) ≤ I(t). Since a and b are uniformly bounded on K, and since

|uut| ≤
1
2

(
|u|2 + |ut|2

)
,

we finally get
E′(t) ≤ I(t) ≤ CE(t).

This implies d
dt

[
E(t)e−Ct

]
≤ 0, so E(t) ≤ E(0)eCt for 0 ≤ t ≤ T − ε. Since

E(0) = 0, we conclude that u = 0 in K.
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5.3.1 Exercises

Exercise 23. Show that the proof of Theorem 21 works for a system of equa-
tions, of the form

�uI =
∑

J

aIJ(t, x)uJ +
∑

J

bIJ(t, x) · ∂uJ , 1 ≤ I ≤ N,

where u = (u1, . . . , uN ) takes values in RN and the aIJ and bIJ are continuous.
In this case, set

E(t) =
1
2

∫
Bt

(
|u(t, x)|2 + |∂u(t, x)|2

)
dx,

where
|u|2 =

∑
I

(uI)2, |∂u|2 =
∑

I

∣∣∂uI
∣∣2 .

Then check that the argument used to prove the nonlinear uniqueness result
(Theorem 20) generalizes to a nonlinear system

�uI = F I(u, ∂u), 1 ≤ I ≤ N,

where the F I are given smooth functions (real-valued).

5.4 Local existence and uniqueness

We consider a nonlinear Cauchy problem

�u = F (u, ∂u),(5.15a)

u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g.(5.15b)

Here F is a given smooth function satisfying F (0) = 0. For simplicity we think of
u and F as being real-valued, but the theorems that follow are true for systems
as well (that is, for RN -valued u and F ), with identical proofs.

Theorem 22. (Local Existence and Uniqueness.) Let s > n
2 + 1. Then

for all (f, g) ∈ Hs ×Hs−1, there exist T > 0 and a unique

(5.16) u ∈ C([0, T ],Hs) ∩ C1([0, T ],Hs−1)

solving (5.15) on ST = (0, T ) × Rn. Moreover, the time T can be chosen to
depend continuously on ‖f‖Hs + ‖g‖Hs−1 .

We emphasize that uniqueness holds for solutions in the space (5.16) for any
T > 0, as is clear from the proof below.

The next theorem says that a solution u on ST belonging to (5.16) can be
extended to a time T ′ > T provided ∂u ∈ L∞(ST ).
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Theorem 23. (Continuation.) Let s > n
2 + 1. Fix f, g as in Theorem 22.

Let T ∗ = T ∗(f, g) be the supremum of all T > 0 such that (5.15) has a solution
on ST satisfying (5.16). Then either T ∗ = ∞ or

∂u /∈ L∞(ST∗).

From the two previous theorems we will deduce the following.

Theorem 24. (Smooth Solutions.) If f, g ∈ C∞c (Rn), then there exist T > 0
and a unique

u ∈ C∞([0, T ]× Rn)

solving (5.15) on ST .

Using the uniqueness of smooth solutions in backward solid light cones, we
obtain the following corollary.

Corollary. If f, g ∈ C∞(Rn), there exists a set

A = {(t, x) : 0 ≤ t ≤ T (x)},

where T is a continuous and strictly positive function on Rn, and a unique
solution u ∈ C∞(A) of (5.15).

Proof of Corollary. Pick a smooth cutoff function χ ∈ C∞c (Rn) such that χ = 1
on the unit ball centered at the origin, and set

fj(x) = χ

(
x

j

)
f(x), gj(x) = χ

(
x

j

)
g(x), j = 1, 2, . . . ,

so that f = fj and g = gj in the unit ball at the origin with radius j. By
Theorem 24 there exist Tj > 0 and uj ∈ C∞([0, Tj ] × Rn) solving (5.15) with
data fj , gj . We may of course assume Tj+1 ≤ Tj . Now let Kj be the truncated
backward solid light cone

Kj = {(t, x) : 0 ≤ t ≤ Tj , |x| ≤ j − t}.

Define

u :
∞⋃
1

Kj → R

by
u = uj in Kj .

To see that this is well-defined and solves (5.15), it is enough to check that
uj = uk on Kj∩Kk. But if (t, x) ∈ Kj∩Kk, then the base of the backward solid
light cone with vertex at (t, x) will be contained in the intersection of the bases
ofKj andKk, where fj = fk = f and gj = gk = g. Therefore, uj(t, x) = uk(t, x)
by Theorem 20. Finally, it is easy to see that

⋃∞
1 Kj contains a set of the form

A = {(t, x) : 0 ≤ t ≤ T (x)} where T > 0 is continuous.
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5.5 The model equation �u = (∂tu)2

For simplicity, we shall first prove Theorems 22, 23 and 24 for the equation

(5.17) �u = (∂tu)2.

Here are the key facts we shall make use of:

(i) The energy inequality (5.3).

(ii) Sobolev’s Lemma on Rn, and in particular the inequality

(5.18) ‖f‖L∞ ≤ Cs ‖f‖Hs for all f ∈ Hs, s >
n

2
.

(iii) The following calculus inequality ,

(5.19) ‖fg‖Hs ≤ Cs

(
‖f‖L∞ ‖g‖Hs + ‖f‖Hs ‖g‖L∞

)
,

valid for all s ≥ 0 and all f, g ∈ Hs ∩ L∞.

(iv) A special case of Gronwall’s Lemma : If C1, C2 ≥ 0 are given constants,
and A is a continuous, non-negative function on [0, T ] such that

A(t) ≤ C1 + C2

∫ t

0

A(τ) dτ for 0 ≤ t ≤ T,

then
A(t) ≤ C1e

C2t for 0 ≤ t ≤ T.

Sobolev’s Lemma is stated and proved below. The Calculus inequality and
Gronwall’s Lemma will be proved later in the course. Note, however, that (5.19)
is elementary for s = 1, since for f, g ∈ S,

‖fg‖H1 ≈ ‖fg‖L2 +
n∑
1

‖∂j(fg)‖L2

≤ ‖f‖L∞ ‖g‖L2 +
n∑
1

(
‖(∂jf)g‖L2 + ‖f∂jg‖L2

)
≤ ‖f‖L∞ ‖g‖L2 +

n∑
1

(
‖∂jf‖L2 ‖g‖L∞ + ‖f‖L∞ ‖∂jg‖L2

)
≤ C

(
‖f‖L∞ ‖g‖H1 + ‖f‖H1 ‖g‖L∞

)
.

To prove Theorems 22, 23 and 24 for a general nonlinearity F (u, ∂u), we
shall need to replace (5.19) by the more general Moser inequality , but aside
from this technicality the arguments are really identical. Thus, in studying first
the model equation �u = (∂tu)2, we gain transparency without any real loss of
generality.

Before we start the proofs of the main theorems, let us prove Sobolev’s
Lemma.
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Theorem 25. (Sobolev’s Lemma.) If s > k + n
2 , where k is a non-negative

integer, then
Hs(Rn) ⊂ Ck(Rn) ∩ L∞(Rn),

where the inclusion is continuous. In fact,∑
|α|≤k

‖∂αf‖L∞ ≤ Cs ‖f‖Hs ,

where Cs is independent of f .

Proof. The key observation is that if f ∈ Hs, where s > n
2 , then by the Cauchy-

Scwharz inequality,∫ ∣∣f̂(ξ)
∣∣ dξ =

∫
(1 + |ξ|2)−s/2(1 + |ξ|2)s/2

∣∣f̂(ξ)
∣∣ dξ ≤ Cs ‖f‖Hs ,

where

C2
s =

∫
(1 + |ξ|2)−s dξ <∞.

Thus f ∈ C0 ∩ L∞ by Fourier inversion and the Riemann-Lebesgue Lemma,
and

‖f‖L∞ ≤
∫ ∣∣f̂(ξ)

∣∣ dξ ≤ Cs ‖f‖Hs .

This establishes the theorem for k = 0. Now suppose f ∈ Hs, s > k+ n
2 , k ∈ N .

Apply the special case just proved to

∂αf ∈ Hs−|α| for |α| ≤ k

to see that ∂αf ∈ C0 ∩ L∞ and

‖∂αf‖L∞ ≤ Cs−|α| ‖∂αf‖Hs−|α| ≤ Cs ‖f‖Hs .

It now follows from Proposition 2 in last week’s notes that f ∈ Ck.

5.5.1 Proof of Theorem 22 (Will be covered on March 5)

Let s > n
2 + 1. The problem under consideration is

�u = (∂tu)2,(5.20a)

u
∣∣
t=0

= f ∈ Hs, ∂tu
∣∣
t=0

= g ∈ Hs−1(5.20b)

Existence

We use the following iteration scheme. First set

u−1 = 0.
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Then define u0, u1, . . . inductively by

(5.21) �uj = (∂tuj−1)2, uj

∣∣
t=0

= f, ∂tuj

∣∣
t=0

= g.

For T > 0 we denote by XT the space (5.16). Then XT is a Banach space with
norm

‖u‖XT
= sup

0≤t≤T
(‖u(t)‖Hs + ‖∂tu(t)‖Hs−1) .

Now observe that
uj−1 ∈ XT =⇒ uj ∈ XT .

Indeed, by Sobolev’s Lemma and the calculus inequality (5.19) we have, since
s− 1 > n

2 ,

(5.22) ‖vw‖Hs−1 ≤ Cs ‖v‖Hs−1 ‖w‖Hs−1

for all v, w ∈ Hs−1(Rn). Thus

uj−1 ∈ XT =⇒ (∂tuj−1)2 ∈ C([0, T ],Hs−1),

and it follows from Theorem 1 that (5.21) has a unique solution in XT .
The sequence of iterates is therefore well-defined in XT for any T > 0. Our

aim is to prove that this sequence is Cauchy provided T > 0 is taken sufficiently
small. Then the limit u ∈ XT will be a solution of (5.20a) on ST = (0, T )×Rn,
since

uj → u in XT =⇒ uj → u in D′(ST )
=⇒ �uj → �u in D′(ST ),

and since, by (5.22),

uj → u in XT =⇒ (∂tuj)2 → (∂tu)2 in C([0, T ],Hs−1)

=⇒ (∂tuj)2 → (∂tu)2 in D′(ST ).

The initial condition (5.20b) is evidently satisfied, so u solves the Cauchy prob-
lem.

We now prove that {uj} is Cauchy in XT for T > 0 sufficiently small. This
is done in two steps.

Step 1. The sequence is bounded:

(5.23) ‖uj‖XT
≤ 2CEs for j = 0, 1, . . .

provided 0 < T ≤ 1 is so small that

(5.24) T ≤ 1
8C2Es

,

where
Es = ‖f‖Hs + ‖g‖Hs−1
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and C > 0 is a constant which only depends on s and n. If (5.23) holds for
j−1, then applying the energy inequality (5.3) to equation (5.21) and using the
estimate (5.22), we get

‖uj‖XT
≤ CEs + CT ‖uj−1‖2XT

≤ CEs + CT (2CEs)2

where C only depends on s and n if T ≤ 1 [C comes from the energy inequality
and the estimate (5.22)]. If (5.24) holds, then the right hand side is bounded
by 2CEs, so we obtain (5.23) for all j by induction, since the case j = −1 holds
trivially.

Step 2. The sequence satisfies

‖uj+1 − uj‖XT
≤ 1

2
‖uj − uj−1‖XT

,

and is therefore Cauchy. To prove this inequality, note that

�(uj+1 − uj) = ∂t(uj − uj−1)∂t(uj + uj−1)

with vanishing initial data at t = 0. Thus, if we apply the energy inequality
and use (5.22) as well as the uniform bound (5.23), we get

‖uj+1 − uj‖XT
≤ CT

(
‖uj‖XT

+ ‖uj−1‖XT

)
‖uj − uj−1‖XT

≤ CT4CEs ‖uj − uj−1‖XT
.

Thus we get the desired bound using (5.24), and this completes the proof of
existence.

Uniqueness

Suppose u, v ∈ XT for some T > 0 and solve (5.20a) on ST = (0, T )× Rn with
identical initial data at t = 0. Then

�(u− v) = ∂t(u+ v)∂t(u− v)

and setting
A(t) = ‖(u− v)(t)‖Hs−1 + ‖∂t(u− v)(t)‖Hs−1 ,

we have by the energy inequality and (5.22),

A(t) ≤ C

∫ t

0

A(t′) dt′ for 0 ≤ t ≤ T

for some constant C independent of t. (Note that C depends on the norms
‖u‖XT

and ‖v‖XT
, but this is not a problem since u and v are considered fixed

for this argument.) By Gronwall’s Lemma, E(t) = 0 for 0 ≤ t ≤ T , whence
u = v in ST .
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5.5.2 Proof of Theorem 23

Let s > n
2 + 1. Let f ∈ Hs, g ∈ Hs−1. It suffices to prove that if 0 < T < ∞

and
u ∈ C([0, T ),Hs) ∩ C1([0, T ),Hs−1)

solves (5.20) on ST = (0, T )× Rn and satisfies

∂u ∈ L∞(ST ),

then

(5.25) sup
0≤t<T

(‖u(t)‖Hs + ‖∂tu(t)‖Hs−1) <∞.

For we can then extend the solution to a time strip [0, T + ε] × Rn, for some
ε > 0, in view of Theorem 22.

To prove (5.25), set

A(t) = ‖u(t)‖Hs + ‖∂tu(t)‖Hs−1 .

By the energy inequality and (5.19), we have

A(t) ≤ Cs,T

(
‖f‖Hs + ‖g‖Hs−1 +

∫ t

0

‖∂tu(t′)‖L∞ ‖∂tu(t′)‖Hs−1 dt
′
)

≤ Cs,T

(
‖f‖Hs + ‖g‖Hs−1 + ‖∂u‖L∞(ST )

∫ t

0

A(t′) dt′
)
,

and Gronwall’s Lemma gives (5.25).

5.5.3 Proof of Theorem 24

Let f, g ∈ C∞c (Rn). Then f, g ∈ Hs for every s ∈ R. Fix s0 > n
2 + 1. By

Theorem 22, there exist T > 0 and a unique solution

(5.26) u ∈ C([0, T ],Hs0) ∩ C1([0, T ],Hs0−1)

of (5.15) on ST = (0, T ) × Rn. By the same theorem, for every s > s0 there
exists Ts > 0 such that

u ∈ C([0, Ts],Hs) ∩ C1([0, Ts],Hs−1).

We claim that we can take Ts = T . Indeed, this follows from Theorem 23, since

∂u ∈ L∞(ST )

by Sobolev’s Lemma and (5.26). Thus

u ∈ C([0, T ],Hs) ∩ C1([0, T ],Hs−1)
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for every s ≥ s0, so by Sobolev’s Lemma,

(5.27) ∂j
t ∂

α
x u ∈ C([0, T ]× Rn)

for j = 0, 1 and all α. But u solves (5.15a), so

(5.28) ∂2
t u = ∆u+ (∂tu)2

From this and (5.27) it follows that

∂2
t ∂

α
x u ∈ C([0, T ]× Rn),

so (5.27) holds for j = 0, 1, 2 and all α. Applying ∂t to both sides of (5.28)
yields

∂3
t u = ∆∂tu+ 2∂tu∂

2
t u,

and from this we see that (5.27) holds for j = 0, 1, 2, 3. If we keep taking succes-
sive time derivatives of the equation, we obtain (5.27) for all j by induction. It
then follows from Proposition 2 in last week’s notes that u ∈ C∞([0, T ]× Rn).

5.5.4 Exercises

Exercise 24. Prove analogues of the main theorems in section 4 for the equation
�u = u2. Show that the condition on s can now be weakened to s > n

2 and that
the condition ∂u ∈ L∞(ST ) in the continuation argument (Theorem 23) can be
replaced by u ∈ L∞(ST ).
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Chapter 6

Week 6: Littlewood-Paley
theory

Throughout, all functions and distributions are understood to be defined on Rn

unless otherwise stated.

6.1 Littlewood-Paley decomposition

Fix a radial cut-off function χ ∈ C∞c (Rn) such that

(6.1) 0 ≤ χ ≤ 1, χ(ξ) =

{
1 if |ξ| ≤ 1

2 ,

0 if |ξ| ≥ 1.

Define Sj : S ′ → S ′ by
Ŝjf = χ(2−jξ)f̂

for j ∈ N0. In other words,

Sj = F−1χ(2−j ·)F .

Lemma 2. For every φ ∈ S, χ(2−j ·)φ→ φ in S as j →∞.

We leave the proof as an easy exercise. Since F is an isomorphism of S onto
itself, we obtain immediately:

Sjf → f in S

for every f ∈ S. This, in turn, implies that Sjf → f in S ′ for every f ∈ S ′.
Next, define

∆0 = S0, ∆j = Sj − Sj−1 for j ∈ N .

Thus f =
∑∞

0 ∆jf in S (resp. S ′) for every f ∈ S (resp. f ∈ S ′).

61
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Definition. {∆jf}∞0 is called the Littlewood-Paley decomposition of f .

Observe that ∆̂jf = βj(ξ)f̂ , where

β0(ξ) = χ(ξ), βj(ξ) = χ(2−jξ)− χ(21−jξ) for j ∈ N .

From (6.1) it is evident that 0 ≤ βj ≤ 1 for all j, whence

(6.2)
∞∑
0

β2
j ≤

∞∑
0

βj = 1.

For later use we record some elementary properties of the Littlewood-Paley
decomposition:

(i) supp Ŝjf ⊂ {|ξ| ≤ 2j}.

(ii) supp ∆̂jf ⊂ {2j−2 ≤ |ξ| ≤ 2j}.

(iii) Sjf = 2jnψ(2j ·) ∗ f where ψ̂ = χ.

(iv) ∆jf = 2jnφ(2j ·) ∗ f where φ̂ = χ(ξ)− χ(2ξ).

(v) ‖Sjf‖Lp ≤ C ‖f‖Lp where C = ‖ψ‖L1 .

(vi) ‖∆jf‖Lp ≤ C ‖f‖Lp where C = ‖φ‖L1 .

(vii) Sjf ∈ C∞ if f ∈ Lp, 1 ≤ p ≤ ∞.

(viii) ∆jf ∈ C∞ if f ∈ Lp, 1 ≤ p ≤ ∞.

Property (v) [resp. (vi)] follows from (iii) [resp. (iv)] and Young’s Inequality :

(6.3) ‖f ∗ g‖Lp ≤ ‖f‖L1 ‖g‖Lp , 1 ≤ p ≤ ∞.

6.2 Littlewood-Paley decomposition of Hs

Recall that
Hs =

{
f ∈ S ′ : Λsf ∈ L2

}
,

where Λs = (I −∆)s/2. Thus Hs is a Hilbert space with inner product

(6.4) 〈 f, g 〉Hs = 〈Λsf,Λsg 〉L2 =
∫

(1 + |ξ|2)sf̂(ξ)ĝ(ξ) dξ

and norm ‖f‖Hs = ‖Λsf‖L2 , and Λs : Hs → L2 is a unitary isomorphism.
Observe that if the supports of f̂ and ĝ are almost disjoint, then f ⊥ g in Hs.

Being a Hilbert space, Hs is self-dual via the map g 7→ 〈 ·, g 〉Hs . A more
interesting fact is that the dual of Hs can be identified with H−s via the pairing
〈 ·, · 〉 : S ′ × S → C. Indeed,

(6.5) |〈 f, g 〉| =
∣∣〈Λsf,Λ−sg

〉∣∣ = ∣∣∣∣∫ ΛsfΛ−sg

∣∣∣∣ ≤ ‖f‖Hs ‖g‖H−s
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for all f ∈ Hs and g ∈ S. Thus, the map g 7→ 〈 ·, g 〉 extends to a linear map
from H−s into (Hs)∗, which is a surjective isometry in view of the self-duality
of L2.

6.2.1 Characterization of Hs

We want to characterize Hs in terms of the Littlewood-Paley decomposition.
We begin with some elementary observations.

Observation 1. Sjf → f in Hs for every f ∈ Hs. Indeed,

‖Sjf − f‖2Hs =
∫ [

1− χ(2−jξ)
]2

(1 + |ξ|2)s
∣∣f̂(ξ)

∣∣2 dξ → 0

by the Dominated Convergence Theorem.

Observation 2. If 2j−2 ≤ |ξ| ≤ 2j , then

(1 + |ξ|2)s/2 ≈ 2js

in the sense that there is a constant Cs > 0, independent of j, such that

C−1
s 2js ≤ (1 + |ξ|2)s/2 ≤ Cs2js.

It then follows that

(6.6) ‖∆jf‖Hs ≈ 2js ‖∆jf‖L2 .

Observation 3. In view of (ii) in the previous section,

(6.7) ∆jf ⊥ ∆kf if |j − k| ≥ 2,

relative to the inner product on Hs.

We can now prove the following:

Proposition 5. Let s ∈ R. Then for every f ∈ Hs,

‖f‖2Hs ≈
∞∑
0

22js ‖∆jf‖2L2 .

Proof. In view of (6.6), it suffices to show that

‖f‖2Hs ≈
∞∑
0

‖∆jf‖2Hs .
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Using the orthogonality property (6.7) and the Cauchy-Schwarz inequality,

‖f‖2Hs = 〈 f, f 〉Hs =
〈∑

∆jf,
∑

∆kf
〉

Hs

=
∑∑

〈∆jf,∆kf 〉Hs =
1∑

l=−1

∞∑
j=0

〈∆jf,∆j+lf 〉Hs

≤
1∑

l=−1

∞∑
j=0

‖∆jf‖Hs ‖∆j+lf‖Hs

≤
1∑

l=−1

( ∞∑
j=0

‖∆jf‖2Hs

) 1
2
( ∞∑

j=0

‖∆j+lf‖2Hs

) 1
2

≤ 3
∞∑

j=0

‖∆jf‖2Hs .

On the other hand, we have by (6.2),

∞∑
0

‖∆jf‖2Hs =
∞∑
0

∫
(1 + |ξ|)s

∣∣βj(ξ)f̂(ξ)
∣∣2 dξ

=
∫ [ ∞∑

0

β2
j (ξ)

]
(1 + |ξ|)s

∣∣f̂(ξ)
∣∣2 dξ

≤
∫

(1 + |ξ|)s
∣∣f̂(ξ)

∣∣2 dξ = ‖f‖2Hs ,

and the proof is complete.

Using the ideas in the proof above, it is easy to show that if {fj} is a sequence
in L2 such that for some R > 0,

supp f̂j ⊂ {R−12j ≤ |ξ| ≤ R2j}

and
∑

22js ‖fj‖2L2 <∞, then f =
∑
fj converges in Hs, and

‖f‖2Hs ≈
∑

22js ‖fj‖2L2 .

It is interesting that when s > 0, we can get essentially the same result if we
only assume

(6.8) supp f̂j ⊂ {|ξ| ≤ R2j}.

Proposition 6. Let s > 0. Suppose fj ∈ L2 satisfies (6.8), for some R ≥ 1
and that

∞∑
0

22js ‖fj‖2L2 <∞.

Then f =
∑
fj converges in Hs, and

(6.9) ‖f‖2Hs ≤ Cs,R

∞∑
0

22js ‖fj‖2L2 .
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Remark. If R = 2q, then the constant Cs,R is of the form Cs22qs. We shall
need this remark in the proof of the Moser inequality.

To prove this proposition, we shall need the following elementary estimate:

Lemma 3. Let s < 0 and R ≥ 1. If f ∈ Hs and

supp f̂ ⊂ {|ξ| ≤ R},

then
‖f‖Hs ≤ 2sRs ‖f‖L2 .

Proof. We only have to observe that

|ξ| ≤ R =⇒ (1 + |ξ|2)s ≤ (2R2)s.

We now turn to the proof of Proposition 6. It suffices to show that

(6.10)

〈
N∑
M

fj ,
N∑
M

fk

〉
Hs

≤ Cs,R

∞∑
M

22js ‖fj‖2L2

whenever M < N . For then it follows that the sequence of partial sums is
Cauchy in Hs, and hence the series converges to some f ∈ Hs. Then, taking
M = 1 and letting N →∞, we obtain (6.9).

The left hand side of (6.10) equals

N∑
M

N∑
M

〈 fj , fk 〉Hs =
∑
j<k

+
∑
j=k

+
∑
j>k

.

It suffices to estimate the first two sums on the right hand side. For the second
sum we have, using Lemma 3,

∑
j=k

=
N∑
M

〈 fj , fj 〉Hs =
N∑
M

‖fj‖2Hs ≤ CsR
s

N∑
M

22js ‖fj‖2L2 .

Next we consider ∑
j<k

=
N−1∑
j=M

N∑
k=j+1

〈 fj , fk 〉Hs .

Let q ∈ N be the smallest number satisfying R ≤ 2q. In view of (6.8) and
property (i) in the previous section, we then have fj = Sj+q+1fj . Thus [cf.
(6.4)]

〈 fj , fk 〉Hs = 〈Sj+q+1fj , fk 〉Hs = 〈 fj , Sj+q+1fk 〉Hs .
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Using Lemma 3, we then obtain

∑
j<k

=
N−1∑
j=M

N∑
k=j+1

〈 fj , Sj+q+1fk 〉Hs ≤
∑∑

‖fj‖Hs ‖Sj+q+1fk‖Hs

≤ Cs

∑∑
Rs2js ‖fj‖L2 2(j+q+1)s ‖fk‖L2

= Cs,R

N−1∑
j=M

N∑
k=j+1

2js ‖fj‖L2 2js ‖fk‖L2

≤ Cs,R

∞∑
l=1

2−ls
∞∑

j=M

2js ‖fj‖L2 2(j+l)s ‖fj+l‖L2

≤ Cs,R

∞∑
l=1

2−ls

( ∞∑
j=M

22js ‖fj‖2L2

) 1
2
( ∞∑

j=M

22(j+l)s ‖fj+l‖2L2

) 1
2

≤ Cs,R

∞∑
l=1

2−ls
∞∑

j=M

22js ‖fj‖2L2 .

This concludes the proof since
∑∞

l=1 2−ls <∞.

6.2.2 The Calculus Inequality

Here we employ the machinery just developed to prove the inequality

(6.11) ‖fg‖Hs ≤ Cs (‖f‖Hs ‖g‖L∞ + ‖f‖L∞ ‖g‖Hs) ,

where s ≥ 0 and f, g ∈ Hs∩L∞. Observe that if s = 0 this follows from Hölder’s
inequality, so we assume s > 0 from now on. The proof is split into three steps.

Step 1. Write

fg =
∑∑

∆jf∆kg =
∑

j≤k−3

+
∑

|j−k|≤2

+
∑

j≥k+3

=
∑

1
+
∑

2
+
∑

3
.

By symmetry it suffices to estimate
∑

1 and
∑

2.

Remark. The above equation holds in the sense of L1, since f =
∑

∆jf and
g =

∑
∆kg in the sense of L2. Observe also that ∆jf and ∆kg are smooth and

bounded functions, by properties (vi) and (viii) from the previous section.

Step 2. We estimate ‖
∑

2‖Hs . By property (ii), we see that if |j − k| ≤ 2,
then

suppF(∆jf∆kg) ⊂ {|ξ| ≤ 2j+3}.

In view of Proposition 6, it therefore suffices to check that

(6.12)
∑

22js ‖∆jf∆j+lg‖2L2 ≤ Cs ‖f‖2Hs ‖g‖2L∞
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for l = −2, . . . , 2. But

‖∆jf∆j+lg‖L2 ≤ ‖∆jf‖L2 ‖∆j+lg‖L∞ ≤ ‖∆jf‖L2 ‖g‖L∞ ,

so the left hand side of (6.12) is bounded by(∑
22js ‖∆jf‖2L2

)
‖g‖2L∞ ≈ ‖f‖2Hs ‖g‖2L∞ .

Step 3. We estimate ‖
∑

1‖Hs . Write

∑
1

=
∞∑

k=3

k−3∑
j=0

∆jf∆kg =
∞∑

k=3

Sk−3f∆kg.

Observe that
suppF(Sk−3f∆kg) ⊂ {2k−3 ≤ |ξ| ≤ 2k+1}.

Thus
Sj−3f∆jg ⊥ Sk−3f∆kg if |j − k| ≥ 4.

Consequently, with the convention that Sj = 0 for j = −1,−2, . . . , we have∥∥∥∑
1

∥∥∥2

Hs
=
〈∑

Sj−3f∆jg,
∑

Sk−3f∆kg
〉

=
∑

|j−k|≤3

〈Sj−3f∆jg, Sk−3f∆kg 〉

≤
∑

|j−k|≤3

‖Sj−3f∆jg‖Hs ‖Sk−3f∆kg‖Hs

=
3∑

l=−3

∞∑
j=0

‖Sj−3f∆jg‖Hs ‖Sj+l−3f∆j+lg‖Hs

≤
3∑

l=−3

( ∞∑
j=0

‖Sj−3f∆jg‖2Hs

) 1
2
( ∞∑

j=0

‖Sj+l−3f∆j+lg‖2Hs

) 1
2

≤ 7
∑

‖Sj−3f∆jg‖2Hs

≤ Cs

∑
22js ‖Sj−3f∆jg‖2L2

≤ Cs

∑
22js ‖Sj−3f‖2L∞ ‖∆jg‖2L2

≤ Cs ‖f‖2L∞
∑

22js ‖∆jg‖2L2 ,

which completes the proof of the inequality (6.11).

6.3 Moser’s inequality

The following is known as the Moser inequality.
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Theorem 26. Assume that F : RN → R is C∞ and F (0) = 0. Then for all
s ≥ 0 there is a continuous function γ = γs : R → R such that

‖F (f)‖Hs ≤ γ(‖f‖L∞) ‖f‖Hs

for all RN -valued f ∈ Hs ∩ L∞.

It is then relatively easy to prove:

Corollary. If s > n
2 , the map f 7→ F (f), Hs → Hs is C∞.

To prove the Moser inequality we shall need the following generalization of
Lemma 3. Recall that the spectrum of f is the support of its Fourier transform.

Lemma 4. (Bernstein’s Lemma.) Assume that the spectrum of f ∈ Lp,
1 ≤ p ≤ ∞, is contained in the ball |ξ| ≤ 2j. Then

‖∂αf‖Lp ≤ Cα2j|α| ‖f‖Lp

for any multi-index α. Moreover, if the spectrum is contained in 2j−2 ≤ |ξ| ≤ 2j,
then

C−1
k 2jk ‖f‖Lp ≤ sup

|α|=k

‖∂αf‖Lp ≤ Ck2jk ‖f‖Lp

for any k ∈ N0.

We omit the proof (essentially an application of Young’s inequality).
We now have the necessary tools to prove the Moser inequality. For s = 0,

the proof is trivial, so we assume s > 0. We shall in fact prove that

(6.13) ‖F (Spf)− F (Sqf)‖Hs ≤ γ(‖f‖L∞) ‖Spf − Sqf‖Hs

for all p > q ≥ −1, where it is understood that S−1 ≡ 0, and where γ depends
on the partial derivatives of F of order 1, . . . ,M , with M is the smallest integer
greater than s. (Observe that Spf is smooth and bounded for f ∈ Hs ∩ L∞.)

Assuming this, since Sjf → f in Hs, it follows that F (Sjf) is Cauchy in
Hs, and

‖F (Sjf)‖Hs ≤ γ(‖f‖L∞) ‖f‖Hs

for all j. But the limit of F (Sjf) in Hs must necessarily be F (f), by an a.e.
argument. Thus we obtain Moser’s inequality.

To prove (6.13), we write

F (Spf)− F (Sqf) =
p∑

q+1

[F (Sjf)− F (Sj−1f)] =
p∑

q+1

mj∆jf,

where

mj =
∫ 1

0

F ′(Sj−1f + λ∆jf) dλ.
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We claim that for all j, k,M ∈ N0,

(6.14) ‖∆j+kmj‖L∞ ≤ cM (‖f‖L∞)2−Mk

where cM is continuous.
Indeed, by the chain rule, ∂αmj is a linear combination of terms∫ 1

0

F (l+1)(gλ)(∂α1gλ, . . . , ∂
αlgλ) dλ,

where l ≤ |α|, α1 + · · · + αl = α and gλ = Sj−1f + λ∆jf , so by Bernstein’s
Lemma,

(6.15) ‖∂αmj‖L∞ ≤ cα(‖f‖L∞)2j|α|,

where cα is a continuous function which depends on α and on the derivatives of
F ′ up to order |α|. But by Bernstein’s Lemma again,

‖∆j+kmj‖L∞ ≤ CM2−M(j+k) sup
|α|=M

‖∂α∆j+kmj‖L∞ ,

which combined with (6.15) proves (6.14).
Writing mj = Sjmj +

∑∞
1 ∆j+kmj , we have

F (Spf)− F (Sqf) = A+
∞∑
1

Bk,

where A =
∑p

j=q+1 Sjmj∆jf and Bk =
∑p

j=q+1 ∆j+kmj∆jf . Using Proposi-
tion 6 and the remark following it, the decay estimates (6.14) and (6.15), and
the fact that

‖Spf − Sqf‖2Hs =
∥∥∥ p∑

q+1

∆jf
∥∥∥2

Hs
∼

p∑
q+1

‖∆jf‖2Hs ,

it then follows that

‖A‖Hs ≤ Csc0(‖f‖L∞) ‖Spf − Sqf‖Hs ,

‖Bk‖Hs ≤ CscM (‖f‖L∞)2−Mk2ks ‖Spf − Sqf‖Hs

for any M ∈ N . By taking M > s and summing over k, we obtain the desired
inequality.

Remark. Observe that if the partial derivatives of F of order 1, . . . ,M + 1 are
all bounded on RN , where M is the smallest integer strictly greater than s, then
there is in fact no dependence on ‖f‖L∞ in (6.15), and ditto in (6.14). Under
this assumption, we therefore have the inequality, for all f ∈ Hs, s ≥ 0,

‖F (f)‖Hs ≤ Cs ‖f‖Hs .

As an example, one may consider F (y) = eiy − 1 for y ∈ R.
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6.4 Further applications of the Littlewood-Paley
theory

We state without proof the following theorem.

Theorem 27. If 2 ≤ p <∞, then

‖f‖2Lp ≤ C
∞∑
0

‖∆jf‖2Lp ,

and if 1 < p ≤ 2, then
∞∑
0

‖∆jf‖2Lp ≤ C ‖f‖2Lp .

Using this result one can easily prove the Sobolev embeddings for Hs.

Embeddings and non-embeddings for Hs

Recall that

Hs ↪→ L
2n

n−2s , 0 ≤ s <
n

2
,(6.16)

Hs ↪→ L∞, s >
n

2
.(6.17)

Observe that the point mass δ belongs to H−s when s > n/2. Thus

|f(x)| = |〈 δ(· − x), f 〉| ≤ ‖δ(· − x)‖H−s ‖f‖Hs = ‖δ‖H−s ‖f‖Hs ,

which proves (6.17). To prove (6.16), first note that by Young’s inequality,

‖∆jf‖
L

2n
n−2s

≤ C2js ‖f‖L2 .

Since ∆jf = ∆j

(∑j+1
k=j−1 ∆kf

)
, it follows that

‖∆jf‖
L

2n
n−2s

≤ C

j+1∑
k=j−1

2ks ‖∆kf‖L2 .

Now square both sides, sum over j, and use Theorem 27 on the left hand side.
Next, we show that the embedding (6.17) fails unless s > n

2 .

Proposition 7. Hn/2 is not a subset of L∞.

Proof. Assume Hn/2 ⊆ L∞. Then by the Closed Graph Theorem, we actually
have Hn/2 ↪→ L∞, so

‖f‖L∞ ≤ C ‖f‖Hn/2 .

But this implies that δ ∈ (Hn/2)∗ = H−n/2, which is false.
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Corollary. Hn/2 is not an algebra.

Proof. Assume that it is. Then
∥∥fk

∥∥
Hn/2 ≤ Ck ‖f‖k

Hn/2 for all k ∈ N . Hence,
if ‖f‖Hn/2 < 1/C, then fk → 0 in Hn/2 as k →∞. But this implies that some
subsequence converges to zero a.e on Rn, so we must have |f | < 1 a.e. But this
means that the ball of radius 1/C in Hn/2 is contained in L∞, which implies
that Hs is a subset of L∞, contradicting Proposition 7.
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Chapter 7

Week 7: Global existence
results

7.1 Statement of main theorem

Consider the nonlinear Cauchy problem on R1+n,

�u = F (∂u),(7.1)

u
∣∣
t=0

= εf, ∂tu
∣∣
t=0

= εg,(7.2)

where F : R1+n → R is a given C∞ function which vanishes to second order at
the origin:

(7.3) F (0) = 0, DF (0) = 0.

We shall prove:

Theorem 28. Let n ≥ 4. Let f, g ∈ C∞c (Rn). Then there exists ε0 > 0 such
that (7.1), (7.2) has a solution

u ∈ C∞
(
[0,∞)× Rn

)
provided ε ≤ ε0.

Note carefully that ε0 depends on f and g, which are considered fixed. Recall
also that the solution is unique, by the theory from week 5.

In dimensions n = 1, 2, 3 we will obtain (from the proof of the above theorem)
asymptotic lower bounds on the lifespan

Tε = T ∗(εf, εg)

as ε → 0. Recall that the lifespan is the supremum of T > 0 such that (7.1),
(7.2) has a solution u ∈ C∞([0, T ] × Rn). Specifically, we shall see that there

73



74 CHAPTER 7. WEEK 7: GLOBAL EXISTENCE RESULTS

exists c > 0 such that

Tε ≥ ec/ε, (n = 3)

Tε ≥ c/ε2, (n = 2)
Tε ≥ c/ε, (n = 1)

for ε sufficiently small. Again, c depends on f, g.

7.2 The invariant vector fields

Recall that the proof of the local existence theorem for nonlinear equations
relied in part on the Sobolev inequality

|f(x)| ≤ Cs ‖f‖Hs , s >
n

2
,

which in particular implies

(7.4) |f(x)| ≤ C
∑

|α|≤n+2
2

‖∂αf‖L2 .

To prove Theorem 28 we shall need a similar estimate for |u(t, x)| in terms of
L2 norms in space of certain spacetime derivatives of u, multiplied by a decay
factor in t. The spacetime derivatives involve the invariant vector fields:

∂t, ∂1, . . . , ∂n,(7.5)
Ωij = xj∂i − xi∂j ,(7.6)
Ω0i = t∂i + xi∂t,(7.7)

L0 = t∂t +
∑n

1
xi∂i,(7.8)

where 1 ≤ i, j ≤ n. To obtain symmetrical notation we sometimes write t = x0

and ∂t = ∂0. Note that in (7.6) we can restrict to 1 ≤ i < j ≤ n by skew-
symmetry. Thus we have a total of

n+ 1 +
n(n− 1)

2
+ n+ 1 =

(n+ 1)(n+ 2)
2

+ 1

different vector fields, which we enumerate

Γ = (Γ0, . . . ,Γm), m =
(n+ 1)(n+ 2)

2
.

We use multi-index notation:

Γα = Γα0
0 · · ·Γαm

m , α = (α0, . . . , αm).

The above vector fields are the generators of the transformations of the
Minkowski space R1+n which preserve the equation �u = 0. In fact, (7.5)



7.3. THE KLAINERMAN-SOBOLEV INEQUALITY 75

correspond to translations in the coordinate directions; (7.6) correspond to ro-
tations in the space variable x; (7.6) and (7.7) taken together correspond to a
basis for the Lorentz transformations; finally, (7.8) corresponds to dilations.

Recall that the Lorentz transformations are the invertible linear transforma-
tions of R1+n which are isometries with respect to the Lorentz metric

diag(−1, 1, . . . , 1).

One can then show that � is the unique 2nd order differential operator on R1+n

which commutes with all translations and Lorentz transformations.1 Accord-
ingly, for the vector fields (7.5), (7.6) and (7.7) we have, as one can also check
directly,

[�, ∂i] = 0, (0 ≤ i ≤ n)(7.9)
[�,Ωij ] = 0, (0 ≤ i < j ≤ n)(7.10)

where [P,Q] = PQ − QP . Although � does not commute with dilations, the
equation �u = 0 is certainly preserved. For the corresponding vector field (7.8)
we have the simple commutation relation

(7.11) [�, L0] = 2�.

We shall also need the fact that for all i, j,

(7.12) [Γi, ∂j ] =
n∑

k=0

aijk∂k,

as one can check by calculating the left hand side for each of the vector fields
(7.6), (7.7) and (7.8).

7.3 The Klainerman-Sobolev inequality

We need the following replacement for (7.4).

Theorem 29. (Klainerman-Sobolev inequality.) There is a constant C
such that

(1 + t+ |x|)
n−1

2 |u(t, x)| ≤ C
∑

|α|≤n+2
2

‖Γαu(t, ·)‖L2 for t > 0, x ∈ Rn,

whenever u ∈ C∞([0,∞)× Rn) and suppu(t, ·) is compact for every t.

Clearly this implies the same estimate locally, that is, the estimate holds for
0 < t < T , with the same constant C, if u ∈ C∞([0, T )× Rn).

For the proof we shall require some lemmas which we now state.
1This parallels the fact that on Rn, the unique 2nd order operator commuting with all

translations and rotations is the Laplacian ∆.
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The first of these expresses the fact that at any point outside the light cone

Λ = {(t, x) : |t| = |x|},

the homogeneous vector fields (7.6), (7.7) and (7.8) span the tangent space of
R1+n.

Lemma 5. For any multi-index α 6= 0 and (t, x) /∈ Λ,

∂α =
∑

1≤|β|≤|α|

cαβ(t, x)Γβ ,

where cαβ are C∞ and homogeneous of degree − |α| outside the light cone Λ. In
fact, the sum on the right hand side only involves the homogeneous vector fields.

Proof. We claim that(
t2 − |x|2

)
∂j = −εjxjL0 + εj

n∑
i=0

xiΩij ,

(
|x|2 =

n∑
1

x2
i

)
where ε0 = −1, ε1 = · · · = εn = 1 and by convention Ω0i = Ωi0. Recall also
that Ωij = −Ωji for 1 ≤ i, j ≤ n. To prove the claim, note that when j = 0,

n∑
1

xiΩi0 =
n∑
1

(
x2

i ∂t + txi∂i

)
= |x|2 ∂t − t2∂t + t

(
t∂t +

n∑
1

xi∂i

)
=
(
|x|2 − t2

)
∂t + tL0,

while for 1 ≤ j ≤ n,
n∑
0

xiΩij = t2∂j + txj∂t +
n∑
1

(
xixj∂i − x2

i ∂j

)
= t2∂j + xjL0 − |x|2 ∂j .

Thus we have the result for |α| = 1, and the general case follows by induction;
the key observation is that if a(t, x) is C∞ and homogeneous of degree −k
outside Λ, then so are L0a and Ωija for 0 ≤ i < j ≤ n.

The next result is just a localized Sobolev inequality.

Lemma 6. Given δ > 0, there is a constant Cδ such that

|f(0)|2 ≤ Cδ

∑
|α|≤n+2

2

∫
|y|<δ

|∂αf(y)|2 dy

for all f ∈ C∞(Rn). Moreover,

sup
δ≥δ0

Cδ <∞

for every δ0 > 0.
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Proof. Fix a cutoff χ ∈ C∞c (Rn) which equals 1 in the unit ball at the origin.
Applying (7.4) to the function

χ(y/δ)f(y),

yields the desired inequality with Cδ ≤ C(1 + δ−n−2), and the final statement
of the Lemma is then evident.

Finally, we need a Sobolev inequality for a smooth function v(q, ω) where
q ∈ R and ω ∈ Sn−1. Observe that the vector fields Ωij , 1 ≤ i < j ≤ n can be
regarded as vector fields on the sphere Sn−1 = {x ∈ Rn : |x| = 1}. Accordingly,
we write

∂α
ω = Ωα1

12 · · ·Ω
αm
n−1,n; α = (α1, . . . , αm), m = n(n− 1)/2,

at any point ω ∈ Sn−1.

Lemma 7. Given δ > 0, there is a constant Cδ such that

|v(q, ω)|2 ≤ Cδ

∑
j+|α|≤n+2

2

∫
|p|<δ

∫
η∈Sn−1

∣∣∂j
q∂

α
ωv(q + p, η)

∣∣2 dσ(η) dp

for all v ∈ C∞(R× Sn−1). Moreover,

sup
δ≥δ0

Cδ <∞

for every δ0 > 0.

Proof. This follows from Lemma 6 if we cover the sphere Sn−1 by finitely many
coordinate charts and choose a subordinate partition of unity, the key observa-
tion being that the vector fields

Ω12, . . . ,Ωn−1,n

span TωS
n−1 for all ω ∈ Sn−1.

7.3.1 Proof of the Klainerman-Sobolev inequality

If t+ |x| ≤ 1, the inequality follows from the standard Sobolev inequality (7.4),
so in what follows we assume t+ |x| > 1. We use different arguments depending
on whether (t, x) is close to the light cone or not.

Case 1. Assume

(7.13) |x| ≤ t

2
or |x| ≥ 3t

2

and of course

(7.14) R = t+ |x| > 1,
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which defines R. We then claim that the coefficents in Lemma 5 satisfy

(7.15) |y| ≤ R

8
=⇒ |cαβ(t, x+ y)| ≤ CR−|α| for 1 ≤ |β| ≤ |α| ≤ n+ 2

2
.

Assuming this, it follows by applying Lemma 6 to the function z → u(t, x+Rz)
that

|u(t, x)|2 ≤ C
∑

|α|≤n+2
2

∫
|z|≤ 1

8

∣∣∣R|α|∂α
x u(t, x+Rz)

∣∣∣2 dz
= CR−n

∑
|α|≤n+2

2

∫
|y|≤R

8

∣∣∣R|α|∂α
x u(t, x+ y)

∣∣∣2 dy,
where we changed variables to y = Rz. Since, by Lemma 5,

α 6= 0 =⇒ ∂α
x u(t, x+ y) =

∑
1≤|β|≤|α|

cαβ(t, x+ y)(Γβu)(t, x+ y),

we conclude, using (7.15), that

Rn |u(t, x)|2 ≤ C
∑

|α|≤n+2
2

‖Γαu(t, ·)‖2L2 ,

which proves the inequality in the region (7.13), (7.14).
It only remains to prove the claimed property (7.15). In fact, it is easy to

check, using (7.13), that

|y| ≤ R

8
=⇒

∣∣t− |x+ y|
∣∣ ≥ cR for some c > 0.

Moreover, ∣∣∣∣ t+ |x+ y|
R

− 1
∣∣∣∣ ≤ 1

8
,

so the point (t/R, (x+ y)/R) is in a compact set disjoint from the light cone Λ.
Thus (7.15) follows by continuity and homogeneity of cαβ .

Case 2. Assume

(7.16)
t

2
≤ |x| ≤ 3t

2

as well as t+ |x| > 1. Introduce polar coordinates

x = rω where r > 0, ω ∈ Sn−1.

Then write
u(t, x) = u(t, rω) = v(t, q, ω),
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where

q = r − t.

In other words, we define v by

v(t, q, ω) = u
(
t, (t+ q)ω

)
.

Observe that

(7.17) ∂qv =
n∑
1

ωj∂ju = ∂ru,

and that

(7.18) Ωijv = Ωiju, (1 ≤ i < j ≤ n)

where on the left hand side we consider Ωij to act in ω, as a vector field on
Sn−1.

Thus, if we consider a point (t, x) satisfying (7.16), and apply Lemma 7 to
v(t, q, ω), we obtain

|u(t, x)|2 = |v(t, q, ω)|2(7.19)

≤ Ct

∑
j+|α|≤n+2

2

∫
|p|< t

4

∫
η∈Sn−1

∣∣∂j
q∂

α
ωv(t, q + p, η)

∣∣2 dσ(η) dp

≤ Ct

∑
j+|α|≤n+2

2

∫
|p|< t

4

∫
η∈Sn−1

∣∣∂j
rΓαu

(
t, (t+ q + p)η

)∣∣2 dσ(η) dp,

where we used (7.17) and (7.18) in the last step. Let us remark at this point
that Ct ≤ C where C is independent of t. In fact,

|x| ≤ 3t
2

=⇒ 1 < t+ |x| ≤ 5t
2

=⇒ t >
2
5
,

so that t is bounded away from 0. Thus Ct is bounded above in view of the last
statement in Lemma 7.

Next observe that by (7.16), |q| = |r − t| ≤ t/2, and |p| ≤ t/4 then implies

t

4
≤ t+ p+ q ≤ 2t.

Therefore, by changing variables to r = t+ p+ q in (7.19), and noting that

∂ru =
n∑
1

ηi∂iu,
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we conclude that

|u(t, x)|2 ≤ C
∑

|β|≤n+2
2

∫
t
4≤r≤2t

∫
η∈Sn−1

∣∣Γβu(t, rη)
∣∣2 dσ(η) dr

≤ Ct1−n
∑

|β|≤n+2
2

∫ ∞

0

∫
η∈Sn−1

∣∣Γβu(t, rη)
∣∣2 dσ(η)rn−1 dr

= Ct1−n
∑

|β|≤n+2
2

∥∥Γβu(t, ·)
∥∥2

L2 .

Since t ≈ |x| and t+ |x| > 1, this proves the Klainerman-Sobolev inequality in
the region (7.16), thus finishing the proof of Theorem 29.

7.4 Proof of the main theorem

We begin by making some observations to aid us in the proof.

Observation 1. Since F vanishes to second order at the origin [cf. (7.3)],

|F (z)| ≤ G2(|z|) |z|2 ,(7.20)
|DF (z)| ≤ G2(|z|) |z| ,(7.21)

|DmF (z)| ≤ Gm(|z|), (m ≥ 2)(7.22)

for all z ∈ R1+n, where G2, G3, . . . are continuous, increasing functions and
DmF stands for any ∂αF with |α| = m.

Proof. Set
Gm(r) = sup

|z|≤r

|DmF (z)| .

Then Gm is continuous and increasing, and (7.22) holds. Now write

∂jF (z) = ∂jF (z)− ∂jF (0) =
∫ 1

0

d

dt

[
∂jF (tz)

]
dt =

[∫ 1

0

∇∂jF (tz) dt
]
· z.

Taking absolute values, we get (7.21). Applying the same argument to F (z)
then gives

|F (z)| ≤ sup
0≤t≤1

|DF (tz)| |z| ≤ G2(|z|) |z|2 .

Observation 2. �Γα =
∑

|β|≤|α| cαβΓβ� where cαβ are constants.

Proof. This follows from (7.9), (7.10) and (7.11).
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Observation 3. For α 6= 0, Γα[F (∂u)] is a linear combination of terms

(7.23) [DmF ](∂u)Γβ1∂u · · ·Γβm∂u where 1 ≤ m ≤ |α| ,
m∑
1

|βi| = |α| .

Proof. This is a simple induction.

Observation 4. In (7.23), at most one βi can have order |βi| > |α| /2. Let us
order the βi so that

(7.24) |βm| = max
1≤i≤m

|βi| .

Then we have |βi| ≤ |α| /2 for 1 ≤ i ≤ m− 1.

Observation 5. Let N = n+ 4. If |α| ≤ N and |βj | ≤ |α| /2, then

|βj |+ 1 +
n+ 2

2
≤ N.

Proof. N/2 + 1 + (n+ 2)/2 ≤ N iff n+ 4 ≤ N .

We now turn to the proof of Theorem 28.

Step 1. Some initial reductions. Set N = n+ 4. Define

A(t) =
∑
|α|≤N

‖Γα∂u(t, ·)‖L2 , 0 ≤ t < T

whenever u ∈ C∞([0, T )×Rn) solves (7.1), (7.2) on [0, T )×Rn for some T > 0.
Observe that by (7.2),

(7.25) A(0) ≤ Aε

2
,

where A depends only on f and g (and their derivatives).

Claim. There exists ε0 > 0 such that if T > 0 and u ∈ C∞([0, T )×Rn) solves
(7.1), (7.2) on [0, T )× Rn with ε ≤ ε0, then A(t) ≤ Aε for all 0 ≤ t < T .

Observe that by the Sobolev inequality (7.4),

‖∂u‖L∞([0,T )×Rn) ≤ C sup
0≤t<T

A(t).

Therefore, if the claim holds, it follows from Theorem 6, Week 5, that the
lifespan Tε = ∞ when ε ≤ ε0, and Theorem 28 will then be proved.
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Step 2. Further reductions. To prove the claim we set

E = {t ∈ [0, T ) : A(s) ≤ Aε for all 0 ≤ s ≤ t}.

By (7.25), E is nonempty. Since A(t) is continuous in t, E is relatively closed
in [0, T ). Thus, if we can show that E is also relatively open in [0, T ), it will
follow that E = [0, T ), and the claim is then proved.

To prove that E is open, we fix t0 ∈ E with t0 < T . Since A(t) is continuous,
there exists t1 > t0 such that

(7.26) A(t) ≤ 2Aε for 0 ≤ t ≤ t1.

We shall prove that this implies

(7.27) A(t) ≤ Aε for 0 ≤ t ≤ t1,

if ε is sufficiently small. It suffices to prove that

(7.28) A(t) ≤ Aε/2 + CAε

∫ t

0

A(s)
(1 + s)(n−1)/2

ds.

For then it follows by Gronwall’s Lemma that

(7.29) A(t) ≤ Aε

2
exp

[
CAε

∫ t

0

ds

(1 + s)(n−1)/2

]
,

and since
∫∞
0

ds
(1+s)(n−1)/2 < ∞ when n ≥ 4, we only have to choose ε > 0 so

small that

exp
[
CAε

∫ ∞

0

ds

(1 + s)(n−1)/2

]
≤ 2,

and the proof is complete.

Step 3. Proof of (7.28). In view of (7.12), we can apply the energy inequality
(10.13), obtaining

A(t) ≤ A(0) + CN

∫ t

0

∑
|α|≤N

‖�Γαu(s, ·)‖L2 ds

≤ Aε/2 + CN

∫ t

0

∑
|α|≤N

‖Γα�u(s, ·)‖L2 ds

= Aε/2 + CN

∫ t

0

∑
|α|≤N

‖Γα[F (∂u)](s, ·)‖L2 ds,

where we used (7.25) and Observation 2 to get the next to last inequality. Here
CN denotes a generic constant which can change from line to line. We now
estimate

(7.30) ‖Γα[F (∂u)](t, ·)‖L2 , |α| ≤ N.
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If α = 0, we use (7.20) to get

(7.31) ‖F (∂u)(t, ·)‖L2 ≤ G2 (‖∂u(t, ·)‖L∞) ‖∂u(t, ·)‖L∞ ‖∂u(t, ·)‖L2 .

The first factor on the right hand side is bounded by a continuous function of
A, since

(7.32) ‖∂u(t, ·)‖L∞ ≤ CA(t) ≤ 2CAε

by the Sobolev inequality and (7.26), and since we of course can assume that
ε ≤ 1. By the Klainerman-Sobolev inequality, the second factor in (7.31) is
bounded by

C
A(t)

(1 + t)(n−1)/2
,

and by (7.26), the third factor in (7.31) is bounded by 2Aε.
If α 6= 0, we use Observation 3 to write Γαu(t, ·) as a sum of terms of the

form (7.23), whose L2 norms in space we bound by

(7.33)
∥∥[DmF ]

(
∂u(t, ·)

)∥∥
L∞

m−1∏
i=1

∥∥Γβi∂u(t, ·)
∥∥

L∞

∥∥Γβm∂u(t, ·)
∥∥

L2 .

Let us first consider the case m ≥ 2. Then the first factor is bounded by a
continuous function of A, in view of (7.22) and (7.32). Using (7.26) and the
fact that |βm| ≤ |α| ≤ N , we see that the last factor is bounded by 2Aε.
Since we may assume that (7.24) holds, we have |βi| + 1 + (n + 2)/2 ≤ N for
1 ≤ i ≤ m− 1, in view of Observations 4 and 5. Hence the Klainerman-Sobolev
inequality and (7.26) imply

m−1∏
i=1

∥∥Γβi∂u(t, ·)
∥∥

L∞
≤ C

[
A(t)

(1 + t)(n−1)/2

]m−1

≤ CAm−2 A(t)
(1 + t)(n−1)/2

.

We conclude that (7.33) is bounded by

CAεA(t)(1 + t)−(n−1)/2

when m ≥ 2. When m = 1 we get the same bound if we use (7.21) instead of
(7.22). This completes the proof.
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Chapter 8

Week 8: Low dimensions

We have proved existence of global smooth solutions in space dimensions n ≥ 4
of the nonlinear Cauchy problem, on R1+n,

�u = F (∂u),(8.1)

u
∣∣
t=0

= εf, ∂tu
∣∣
t=0

= εg,(8.2)

for ε > 0 sufficiently small. Here F : R1+n → R is a given C∞ function which
vanishes to second order at the origin:

(8.3) F (0) = 0, DF (0) = 0.

Next we want to see what happens in dimensions n = 1, 2, 3. Then global
existence fails in general (we will give an example later on in the course), but
the proof used for n ≥ 4 gives asymptotic lower bounds on the lifespan1

Tε = T ∗(εf, εg)

as ε→ 0. Specifically, we shall see that there exists c > 0 such that

(8.4) Tε ≥


ec/ε, if n = 3,
c/ε2, if n = 2,
c/ε, if n = 1,

for ε sufficiently small. Again, c depends on f, g.

8.1 Proof of the lower bounds for Tε

Suppose u ∈ C∞([0, T )×Rn) solves (8.1), (8.2) on [0, T )×Rn for some T > 0.
Recall from the proof of global existence for n ≥ 4 that if we set N = n+ 4 and

A(t) =
∑
|α|≤N

‖Γα∂u(t, ·)‖L2 , 0 ≤ t < T,

1Recall that the lifespan is the supremum of T > 0 such that (8.1), (8.2) has a solution
u ∈ C∞([0, T ] × Rn). By uniqueness, the totality of such solutions assemble to a smooth
solution on [0, Tε)× Rn.

85
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then there is a constant A = A(f, g) such that the boot-strap assumption

A(t) ≤ 2Aε, 0 ≤ t ≤ T ′ < T

implies

(8.5) A(t) ≤ Aε/2 + CAε

∫ t

0

A(s)
(1 + s)(n−1)/2

ds, 0 ≤ t ≤ T ′.

Then by Gronwall’s Lemma,

(8.6) A(t) ≤ Aε

2
exp

[
CAε

∫ t

0

ds

(1 + s)(n−1)/2

]
, 0 ≤ t ≤ T ′.

When n ≥ 4,
∫∞
0

ds
(1+s)(n−1)/2 <∞, and so we obtain the stronger bound A(t) ≤

Aε on [0, T ′], provided that 0 < ε < ε0, where ε0 is determined by the condition

exp
[
CAε0

∫ ∞

0

ds

(1 + s)(n−1)/2

]
= 2.

[So ε0 depends on A, hence on (f, g), but not on T .] Combining this boot-strap
argument with the continuity method then gives the a priori bound

(8.7) A(t) ≤ Aε, 0 ≤ t < T,

Once we have this a priori bound, we can control ‖∂u‖L∞([0,T )×Rn) using
Sobolev’s Lemma. Since T > 0 was arbitrary, it follows from the local exis-
tence theory of week 5 (see Theorem 6), that Tε = ∞.

When n = 1, 2 or 3, the function (1 + s)−(n−1)/2 is no longer integrable at
infinity, but we still get the bound (8.7), provided ε is sufficiently small and T
satisfies

(8.8) T ≤


ec/ε, if n = 3,
c/ε2, if n = 2,
c/ε, if n = 1.

From this we get the statement (8.4) about the lifespan, reasoning as above.
We consider the cases n = 1, 2, 3 one by one.

Case 1: n = 3.
∫ t

0
ds

(1+s) = log(1 + t), so (8.6) becomes

A(t) ≤ Aε

2
(1 + t)CAε,

which implies (8.7) if (1 + T )CAε ≤ 2. This is true for T < 1 if CAε ≤ 1. If on
the other hand T ≥ 1, and we assume CAε ≤ 1

2 , then

(1 + T )CAε ≤
√

2TCAε ≤ 2

provided TCAε ≤
√

2, that is, T ≤ 21/2CAε.
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Case 2: n = 2.
∫ t

0
ds

(1+s)1/2 = 2
√

1 + t− 2 ≤ C
√
t, so (8.6) gives

A(t) ≤ Aε

2
eCAε

√
t,

and (8.7) follows if

eCAε
√

T ≤ 2 ⇐⇒
√
T ≤ log 2

CAε
.

Case 3: n = 1.
∫ t

0
ds = t, so (8.6) gives

A(t) ≤ Aε

2
eCAεt,

and (8.7) follows if

eCAεT ≤ 2 ⇐⇒ T ≤ log 2
CAε

.

Remark. If F vanishes to higher order than 2 at 0, we can get global results
also for n = 2, 3 by obvious modifications of the proof of the main theorem from
week 7. In fact, if F vanishes to third order at 0, then referring to the notes of
week 6, the estimates in Observation 1 are improved to

|F (z)| ≤ G3(|z|) |z|3 ,

|DF (z)| ≤ G3(|z|) |z|2 ,∣∣D2F (z)
∣∣ ≤ G3(|z|) |z| ,

|DmF (z)| ≤ G3(|z|), m ≥ 3,

and so in Step 3 of the proof we see that we always get one extra power of
‖∂u(t, ·)‖L∞ . After estimating these L∞ norms using the Klainerman-Sobolev
inequality, we will then have the integrand

(8.9)
[

1
(1 + t)(n−1)/2

]2
=

1
(1 + t)n−1

in equation (30) of week 5, instead of (1 + t)−(n−1)/2. Since (8.9) is integrable
when n = 3, we get global existence. Similarly, if F vanishes to fourth order at
0, then we get the integrand [

1
(1 + t)(n−1)/2

]3
.

Thus the integral converges for n = 2, so we get a global result also in this case.
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8.2 The null condition and global existence for
space dimension n = 3

In general, existence of global smooth solutions for small data fails in dimension
n = 3, for equations of the type �u = F (∂u).

Example. F. John proved that every smooth solution of

(8.10) �u = (∂tu)2, t ≥ 0, x ∈ R3

with nonzero data in C∞c (R3) blows up in finite time.

Example. (Due to Nirenberg.) In sharp contrast to the previous example, for
the superficially similar equation

(8.11) �u = (∂tu)2 −
3∑
1

(∂ju)2, t ≥ 0, x ∈ R3

we have global smooth solutions for small data:

(8.12) u
∣∣
t=0

= εf, ∂tu
∣∣
t=0

= εg,

where f, g ∈ C∞c (R3) and ε > 0 is sufficiently small. The key observation is
that if we set

v(t, x) = 1− e−u(t,x),

then v solves the linear Cauchy problem

(8.13) �v = 0, v
∣∣
t=0

= 1− e−εf , ∂tv
∣∣
t=0

= εge−εf ,

which of course has a global smooth solution. The inverse of the transformation
u→ v is

u(t, x) = − log[1− v(t, x)].

This is well-defined as long as |v| < 1, and u then solves (8.11), (8.12). To
ensure that v is globally small,

‖v(t, ·)‖L∞ < 1 for all t ≥ 0,

we only have to take ε > 0 sufficiently small, depending on f and g. Indeed,
recall from week 2 that when n = 3 we have the decay estimate

‖v(t, ·)‖L∞ ≤ A

1 + t
for all t ≥ 0,

where A is a constant which depends linearly on the L∞ norms of v
∣∣
t=0

, ∇xv
∣∣
t=0

and ∂tv
∣∣
t=0

. In view of (8.13), therefore, A < 1 if ε > 0 is sufficiently small.
Then the transformation v → u is globally defined, giving a global smooth
solution of (8.11),(8.12).
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These examples suggest that in dimension n = 3, the question of global
existence of smooth solutions of systems of the type �u = B(∂u, ∂u), where
each vector component of B is a bilinear form in ∂u, depends strongly on the
algebraic structure of B. More generally, for a system of the form �u = F (∂u),
where F vanishes to second order at the origin, it is the quadratic part of F that
determines the global regularity properties of the equation. The higher order
terms are not important. [Recall from the remark at the end of the previous
section that we always have global existence for nonlinearities F (∂u) which
vanish to third order at 0.]

8.2.1 Statement of null condition

We now consider a system of N equations

(8.14) �uI = F I(u, ∂u), (t, x) ∈ R1+3,

where the unknown u and the given C∞ function F are RN -valued:

u = (u1, . . . , uN ), F = (F 1, . . . , FN ).

Definition. A vector ξ = (ξ0, . . . , ξ4) ∈ R1+3 is null if ξ 6= 0 and ξ20 = ξ21 +
ξ22 + ξ23 . In other words, ξ lies on the light cone (or null cone) in Minkowski
space R1+3.

Definition. The quadratic part of F I is

F I
(2)(z) =

∑
|α|=2

1
α!
∂αF I(0)zα,

where z ∈ RN+(n+1)N corresponds to (u, ∂u).

As motivated above, we have to impose some condition on the quadratic part
of F in order to ensure the existence of global smooth solutions of (8.14) for
small data. The relevant principle is the so-called null condition of Klainerman
and Christodoulou.

Definition. F in (8.14) satisfies the null condition if:

(i) F vanishes to second order at the origin:

F (0) = 0, DF (0) = 0.

Thus, by Taylor’s theorem, F (z) = F(2)(z) + R(z), where R is C∞ and
vanishes to third order at 0.

(ii) The quadratic part of F is of the form

F I
(2)(u, ∂u) =

N∑
J,K=1

3∑
µ,ν=0

aIµν
JK ∂µu

J∂νu
K ,
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where the a’s are real constants satisfying, for all I, J,K = 1, . . . , N ,

3∑
µ,ν=0

aIµν
JK ξµξν = 0 for all null vectors ξ.

Observe that F(2) is only allowed to depend on ∂u, not on u.

Example. The equation (8.11) satisfies the null condition, while (8.10) does
not.

Lemma 8. If B is a real bilinear form on R4 × R4 such that

B(ξ, ξ) = 0 for all null vectors ξ,

then B is a linear combination, with real coefficients, of the so-called null forms

Q0(ξ, η) = ξ0η0 −
3∑
1

ξiηi,(8.15a)

Qµν(ξ, η) = ξµην − ξνηµ, 0 ≤ µ < ν ≤ 3.(8.15b)

Proof. B(ξ, ξ) = ξTAξ =
∑
aµνξµξν , where A = (aµν) is a real 4 × 4 matrix

and we consider ξ as a column vector with transpose ξT = (ξ0, . . . , ξ3). Now
decompose A into its symmetric and skew-symmetric parts:

A =
A+AT

2
+
A−AT

2
= As +Aa.

Since ξTAξ = (ξTAξ)T = ξTAT ξ, we see that

ξTAsξ = ξTAξ = 0

for null ξ. Using this condition with the null vectors

ξT = (±1, 1, 0, 0), (±1, 0, 1, 0), (±1, 0, 0, 1),

and then with

ξT = (
√

2, 1, 1, 0), (
√

2, 1, 0, 1), (
√

2, 0, 1, 1),

it is not hard to see that As must be of the form

As = a00diag(1,−1,−1,−1),

which of course corresponds to Q0. On the other hand, the skew-symmetric
part Aa gives a combination of the Qµν in an obvious way. Summing up, we
have B = a00Q0 +

∑
0≤µ<ν≤3

1
2 (aµν − aνµ)Qµν .

That the converse of the above lemma holds is obvious.
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Corollary. F in (8.14) satisfies the null condition iff each component F I(u, ∂u)
is of the form∑

J,K

aI
JKQ0(∂uJ , ∂uK) +

∑
J,K

∑
0≤µ<ν≤3

bIµν
JKQµν(∂uJ , ∂uK) +RI(u, ∂u),

where the a’s and b’s are real constants and RI is C∞ and vanishes to third
order at 0.

We can now state the main theorem.
Consider the system (8.14) with initial data

(8.16) u
∣∣
t=0

= εf, ∂tu
∣∣
t=0

= εg,

where f = (f1, . . . , fN ) and g = (g1, . . . , gN ) belong to C∞c (R3) and ε > 0.

Theorem 30. Assume that F in (8.14) satisfies the null condition. Then there
exists ε0 = ε0(f, g) > 0 such that (8.14),(8.16) has a smooth global solution
provided ε < ε0.

8.2.2 Improved decay

The next lemma is of key importance. It quantifies the fact that the null forms
have better decay properties, due to cancellations, than generic bilinear forms.
To state this result, we need some more notation.

For the invariant vector fields Γ0, . . . ,Γm, let Γj(t, x; ξ) denote the symbol
of Γj , obtained by replacing ∂u by the vector ξ ∈ R4. Thus, the symbol of ∂µ

is just ξµ, while

Ω0j(t, x; ξ) = tξj + xjξ0,

Ωij(t, x; ξ) = xjξi − xiξj , (1 ≤ i < j ≤ 3)

L(t, x; ξ) = tξ0 +
3∑
1

xiξi.

We denote by Γ(t, x; ξ) the vector
(
Γ0(t, x; ξ), . . . ,Γm(t, x; ξ)

)
. Thus,

|Γ(t, x; ξ)|2 =
∑

|Γj(t, x; ξ)|2 .

Lemma 9. Let B be a bilinear form on R4. Then there exists a constant C
such that

(8.17) |B(ξ, η)| ≤ C

1 + |t|+ |x|
|Γ(t, x; ξ)| |Γ(t, x; η)|

for all (t, x), ξ, η ∈ R1+3, if and only if B satisfies

(8.18) B(ξ, ξ) = 0 for all null vectors ξ.
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The proof actually shows that if (8.18) is not satisfied, then there is no
estimate

|B(ξ, η)| ≤ c(t) |Γ(t, x; ξ)| |Γ(t, x; η)|
where c(t) → 0 as t→∞. Thus, the best one can say is that the trivial estimate
|B(ξ, η)| ≤ C |ξ| |η| holds.

Corollary. For each of the null forms Q defined in (8.15a),

|Q(∂v, ∂w)| ≤ C

1 + |t|+ |x|
|Γv(t, x)| |Γw(t, x)|

for all (t, x) and all smooth functions v, w. This estimate does not hold for any
other bilinear form Q.

Proof of Lemma 9. We first prove that (8.17) implies (8.18). Fix a null vector
ξ. Set (t, x) = λ(ξ0,−ξ1,−ξ2,−ξ3), where λ > 0. Then all the homogeneous
symbols vanish at (t, x; ξ). In fact,

L0(t, x; ξ) = λ(ξ20 − ξ21 − ξ22 − ξ23) = 0

since ξ is null, and it is also easy to check that Ωµν(t, x; ξ) = 0 for 0 ≤ µ < ν ≤ 3.
Thus, |Γ(t, x; ξ)| = |ξ|, and since |(t, x)| = λ |ξ|, it follows from (8.17) that
|B(ξ, ξ)| = O(1/λ) as λ→∞, so (8.18) holds.

Conversely, assume (8.18) holds. Then by Lemma 8, B is a linear combina-
tion of the null forms Q0 and Qµν , so it suffices to verify (8.17) for these. Since
(8.17) holds trivially when |t|+ |x| ≤ 1, we will assume |t|+ |x| > 1.

First consider Qij with 1 ≤ i < j ≤ 3. If |t| ≥ |x|, then (8.17) follows from
the identity

Qij(ξ, η) =
1
t

[ξ0Ωij(t, x; η) + Ω0i(t, x; ξ)ηj − Ω0j(t, x; ξ)ηi] .

If on the other hand |t| ≤ |x|, then we use the identity

(8.19) ξi =
3∑

k=1

xixk

|x|2
ξk +

3∑
k=1

xkΩik(t, x; ξ)
|x|2

.

Thus Qij(ξ, η) = ξiηj − ξjηi equals, if we express ξi and ξj using this identity,

1
|x|

3∑
k=1

xk

|x|
[ξkΩij(t, x; η) + Ωik(t, x; ξ)ηj − Ωjk(t, x; ξ)ηi] .

For Q0j we have

Q0j(ξ, η) =
1
t

[ξ0Ω0j(t, x; η)− η0Ω0j(t, x; ξ)] ,

which takes care of the case |t| ≥ |x|. For |t| ≤ |x| we use (8.19) as well as

(8.20) ξ0 = −
3∑

k=1

txk

|x|2
ξk +

3∑
k=1

xkΩ0k(t, x; ξ)
|x|2



8.2. THE NULL CONDITION AND GLOBAL EXISTENCE FOR SPACE DIMENSIONN = 393

to express Q0j(ξ, η) = ξ0ηj − ξjηi.
Finally, for Q0 we have

Q0(ξ, η) =
1
t

[
ξ0L0(t, x; η)−

3∑
i=1

Ω0i(t, x; ξ)ηi

]
,

which covers |t| ≥ |x|. In the other case we substitute (8.19) and (8.20) for the
components of ξ in Q0(ξ, η) = ξ0η0 −

∑3
1 ξiηi, which then equals

1
|x|

3∑
k=1

xk

|x|

[
−tξkη0 −

3∑
i=1

xiξkηi + · · ·

]
=

1
|x|

3∑
k=1

xk

|x|
[−ξkL0(t, x; η) + · · · ]

where · · · indicate terms involving Ω(t, x; ξ) and η, which are OK.

We will need to use energy norms involving Γ, so we have to calculcate
Γα[F I(u, ∂u)]. We therefore need to calculate ΓQ(∂v, ∂w) for any null form Q.
By the product rule for derivatives it is easy to see that

(8.21) ΓQ(∂v, ∂w) = Q(Γ∂v, ∂w) +Q(∂v,Γ∂w),

but in order to apply Lemma 9 we need to commute ∂ with Γ in the right
hand side. This introduces some error terms, but fortunately these are again
combinations of null forms, and are therefore estimable by Lemma 9. It is
convenient then to introduce the “commutator”

[Γ, Q](∂v, ∂w) = ΓQ(∂v, ∂w)−Q(∂Γv, ∂w)−Q(∂v, ∂Γw).

The commutation relations we need are easily checked, and we list them in the
following lemma.

Lemma 10. We have

[Ωij , Q0] = 0,
[Ωij , Qab] = δiaQjb − δjaQib − δibQja + δjbQia,

[L0, Q] = −2Q,

where Q stands for any null form and 0 ≤ i, j, a, b ≤ 3.

Proof. The idea is to use (8.21) and commute Γ with ∂. To this end, one uses
the easily checked commutation relations

[L0, ∂k] = −∂k,

[Ω0j , ∂k] = −δ0k∂j − δjk∂0,

[Ωij , ∂k] = δik∂j − δjk∂i,

where 0 ≤ k ≤ 3 and 1 ≤ i, j ≤ 3. We omit the details.

From Lemmas 9 and 10 one immediately obtains the following key estimate:
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Proposition 8. For any null form Q, and any integer M ≥ 0, we have

(1 + |t|+ |x|)
∑
|α|≤M

|ΓαQ(∂v, ∂w)|

≤ CM

 ∑
1≤|α|≤M+1

|Γαv(t, x)|

 ∑
1≤|α|≤M

2 +1

|Γαw(t, x)|


+ CM

 ∑
1≤|α|≤M

2 +1

|Γαv(t, x)|

 ∑
1≤|α|≤M+1

|Γαw(t, x)|

 .

8.2.3 An energy inequality and Hörmander’s estimate

We need two more ingredients for the proof. The first is a generalization of the
energy inequality

(8.22) ‖∂u(t, ·)‖L2 ≤ ‖∂u(0, ·)‖L2 +
∫ t

0

‖�u(s, ·)‖L2 ds.

Recall that this is proved by noticing that ut�u is a spacetime divergence:

(8.23) ut�u = divt,x(e0, e′),

where e0 = 1
2 |∂u|

2 and e′ = −ut∇xu. Integrating this identity for fixed t gives∫
ut�u dx =

d

dt

∫
e0 dx−

∫
divx(ut∇xu) dx,

and the last term vanishes by the divergence theorem, if we assume that u
decays sufficiently fast as |x| → ∞. For the energy E(t) =

∫
e0(t, x) dx one then

obtains, after applying the Cauchy-Schwarz inequality to the left hand side of
the above identity,

E′(t) ≤
√
E(t) ‖�u(t, ·)‖L2 ,

and (8.22) follows readily.
We now want to generalize this method by replacing (8.23) with

(8.24) X(∂)u ·�u = divt,x(e0, e′)

whereX(∂) is some first order differential operator and (e0, e′) is some spacetime
vector involving u, such that the associated energy is non-negative:

E(t) =
∫
e0(t, x) dx ≥ 0.

Then by integrating (8.24) one obtains a generalized energy inequality. Set

X(∂) = ~X · ∂ + 2t,
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where as usual ∂ is the spacetime gradient and
~X = (1 + t2 + |x|2 , 2tx1, 2tx2, 2tx3).

Let m be the matrix diag(1,−1,−1,−1) (the Minkowski metric), and let 1 =
(1, 0, 0, 0). It then turns out that (8.24) holds with (here we consider ∂u as a
column vector for the purposes of matrix multiplication)

(e0, e′) = X(∂)u ·m(∂u)− 1
2
(∂u)Tm(∂u) ~X − v21.

Integration of (8.24) then yields the identity

d

dt
E(t) =

∫
X(∂)u ·�u dx

for the energy E(t) =
∫
e0 dx, and the right hand side is bounded by∥∥(1 + t+ |·|)−1X(∂)u(t, ·)

∥∥
L2 ‖(1 + t+ |·|)�u(t, ·)‖L2 .

One then shows that
∥∥(1 + t+ |·|)−1X(∂)u(t, ·)

∥∥
L2 ≤ C

√
E(t). Putting all this

together, one obtains√
E(t) ≤ C

√
E(0) + C

∫ t

0

‖(1 + s+ |·|)�u(s, ·)‖L2 ds.

Moreover, it turns out that

E(t) ≈
∑
|α|≤1

‖Γαu(t, ·)‖2L2 ,

and recalling the commutation relations between � and the invariant vector
fields, one finally obtains:

Proposition 9. For any integer M ≥ 0, there is a constant C such that∑
|α|≤M+1

‖Γαu(t, ·)‖L2 ≤ C
∑

|α|≤M+1

‖Γαu(0, ·)‖L2

+ C
∑
|α|≤M

∫ t

0

‖(1 + s+ |·|)Γα�u(s, ·)‖L2 ds

for all t > 0 and all u ∈ C∞([0,∞)×R3) with compact support in x for each t.

See Sogge’s book for the details.
We need one more ingredient for the proof of the main theorem:

Theorem 31. (Hörmander.) There exists C such that if F ∈ C2([0,∞)× R3)
and �u = F with vanishing initial data at t = 0, then

(1 + t+ |x|) ≤ C
∑
|α|≤2

∫ t

0

∫
R3
|ΓαF (s, y)| dy ds

1 + s+ |y|
.

See Sogge’s book or the lecture notes of Hörmander for the proof, which is
based on the special form of the fundamental solution for the wave operator in
space dimension three.
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8.2.4 Proof of the main theorem

Since F is assumed to satsify the null condition, we know that the system (8.14)
takes the form

(8.25) �uI =
∑
J,K

aI
JKQ0(∂uJ , ∂uK) +

∑
J,K,µ,ν

bIµν
JKQµν(∂uJ , ∂uK) +RI(u, ∂u),

where RI vanishes to third order at 0. We specify initial data

(8.26) u
∣∣
t=0

= εf, ∂tu
∣∣
t=0

= εg.

For simplicity we will ignore the higher order term RI .
We shall want to apply Theorem 31 to Γαu, where u solves the above

Cauchy problem, but in order to do this we must subtract off the solution
wα = (w1

α, . . . , w
N
α ) of the linear Cauchy problem

(8.27) �wα = 0, wα

∣∣
t=0

= (Γαu)
∣∣
t=0

, ∂twα

∣∣
t=0

= (∂tΓαu)
∣∣
t=0

.

Thus Γαu − wα has vanishing initial data, so we may apply Theorem 31 to it.
But then we also need to estimate |wα|.

Observation 1. If u solves (8.25),(8.26) and wα solves (8.27), then

(8.28) |wα(t, x)| ≤ Cαε

1 + t
for all t ≥ 0, x ∈ R3

where Cα is independent of t and ε.

Proof. Let u0 solve �u0 = 0 with initial data (8.26). Then �Γαu = 0, and so
by the decay estimate for solutions of the homogeneous wave equation (week 2),

(8.29) |Γαu0(t, x)| ≤
Cαε

1 + t
for all t ≥ 0, x ∈ R3.

Thus, to get (8.28), it is enough to show that

|wα(t, x)− Γαu0(t, x)| ≤
Cαε

2

1 + t
for all t ≥ 0, x ∈ R3.

But �(wα − Γαu0) = 0, so this estimate again follows from the decay property
used above, if we just observe that the initial data are O(ε2). In fact, the data
are

Γαu(0, x)− Γαu0(0, x), ∂tΓαu(0, x)− ∂tΓαu0(0, x).

To express Γαu(0, x) in terms of ε, f, g we just use (8.25) and (8.26) (whenever
there are two or more time derivatives we need to use the equation). If we do
the same for Γαu(0, x) and subtract, all terms which are linear in ε cancel out,
and we are left with terms arising from the nonlinearity in (8.25), and which
therefore are at least quadratic in ε.

We split the proof of the main theorem into a number of steps.
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Step 1. Let 0 < T0 < ∞ and set ST0 = [0, T0) × R3. Suppose u ∈ C∞(ST0)
solves (8.25), (8.26) (setting RI = 0 for simplicity). We shall prove the existence
of ε0 > 0, independent of T0, such that

(8.30) 0 < ε < ε0 =⇒ u, ∂u ∈ L∞(ST0).

Once we know this, it follows from the local existence theory of week 5 that the
lifespan Tε = ∞.

Step 2. (8.30) will follow if we can prove the a priori estimate

(8.31)
∑
|α|≤k

‖Γαu(t, ·)‖L∞ ≤ Aε

1 + t

for 0 ≤ t < T0, provided ε < ε0. Here A is a constant independent of T0 and ε
(A will depend on f and g), and k is a sufficiently large integer (k = 4 will do).

Step 3. The plan is to prove (8.31) using the continuity method. Thus, we
define

E = {T ∈ [0, T0) : (8.31) holds for all 0 ≤ t ≤ T} .

Clearly 0 ∈ E if we take A sufficently large, and E is evidently closed. If we can
show that E is open in [0, T0), it will therefore follow that E = [0, T0), finishing
the proof.

To this end, fix T ∈ E. By continuity of the left hand side of (8.31) (Γαu
is C∞ and compactly supported in x on [0, T ′], by Huygens’ principle), there
certainly exists T ′ > T such that

(8.32)
∑
|α|≤k

‖Γαu(t, ·)‖L∞ ≤ 2Aε
1 + t

for 0 ≤ t ≤ T ′.

The idea is then to use a boot-strap argument to show that we have the stronger
estimate (8.31) on [0, T ′]. It then follows that T ′ ∈ E, proving that E is open.

To prove that (8.32) implies (8.31) when ε is sufficiently small, we first show
that (8.32) implies

(8.33)
∑

|α|≤k+3

‖Γαu(t, ·)‖L2 ≤ C0(1 + t)C1ε
∑

|α|≤k+3

‖Γαu(0, ·)‖L2

for 0 ≤ t ≤ T ′, where C0 and C1 are absolute constants. Then we prove that
(8.33) implies (8.31), if ε is sufficiently small.

Step 4. We prove (8.32) =⇒ (8.33). Define A(t) to be the left hand side of
(8.33). Then by Proposition 9,

A(t) ≤ CA(0) + C
∑

|α|≤k+2

∫ t

0

‖(1 + s+ |·|)Γα�u(s, ·)‖L2 ds.
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If we ignore RI , then �uI is just a linear combination ofQ(∂uJ , ∂uK) for the null
forms Q, and so from Proposition 8 we get, taking the highest order derivatives
in L2, and the lowest order in L∞,

A(t) ≤ CA(0) + C

∫ t

0

A(s)

 ∑
|α|≤ k+2

2 +1

‖Γαu(s, ·)‖L∞

 ds.

Since k+2
2 +1 = k

2 +2 ≤ k if k ≥ 4, the second factor in the integrand is bounded
by 2Aε/(1 + s) according to (8.32), and so we get

A(t) ≤ CA(0) + C ′ε

∫ t

0

A(s)
1 + s

ds, 0 ≤ t ≤ T ′.

Then by Gronwall’s Lemma,

A(t) ≤ CA(0) exp
[
C ′ε

∫ t

0

(1 + s)−1 ds

]
= CA(0)(1 + t)C′ε,

proving (8.33).

Step 5. We prove (8.33) =⇒ (8.31). We can of course choose A so large that
(8.28) implies ∑

|α|≤k

‖wα(t, ·)‖L∞ ≤ Aε/2
1 + t

for all t ≥ 0. Thus (8.31) follows if we can show that

(8.34)
∑
|α|≤k

‖Γαu(t, ·)− wα(t, ·)‖L∞ ≤ Aε/2
1 + t

for 0 ≤ t ≤ T ′. To prove this we apply Theorem 31, which gives

(1+t)
∑
|α|≤k

‖Γαu(t, ·)− wα(t, ·)‖L∞ ≤ C
∑
|β|≤2

∫ t

0

∫
R3

∑
|α|≤k

∣∣Γβ�Γαu(s, y)
∣∣ dy ds
1 + s

.

Using the commutation relations between � and the invariant vector fields, we
may bound the right hand side by

C
∑

|α|≤k+2

∫ t

0

∫
R3
|Γα�u(s, y)| dy ds

1 + s
,

and ignoring again the RI it suffices to estimate this with �u replaced by
Q(∂uJ , ∂uK) for each of the null forms Q. Then if we apply Proposition 8
we can bound the last expression by

C
∑

|α|≤k+3

∫ t

0

∫
R3
|Γαu(s, y)|2 dy ds

(1 + s)2
.
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This equals

C
∑

|α|≤k+3

∫ t

0

‖Γαu(s, ·)‖2L2

ds

(1 + s)2
,

and using (8.33) we bound this by

CA(0)2
∫ t

0

(1 + s)2C1ε−2 ds.

If 2C1ε < 1, the integral is uniformly bounded in t, and since A(0) = O(ε), we
finally obtain the bound

(1 + t)
∑
|α|≤k

‖Γαu(t, ·)− wα(t, ·)‖L∞ ≤ Cε2

for 0 ≤ t ≤ T ′, where C is an absolute constant. If Cε ≤ A/2, then (8.34)
follows, and the proof is now complete.
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Chapter 9

Week 10: Well-posedness

9.1 Local well-posedness

9.1.1 Introduction and definitions

Consider again a system

(9.1) �uI = F I(u, ∂u), (t, x) ∈ R1+n,

where the unknown u and the given C∞ function F are RN -valued:

u = (u1, . . . , uN ), F = (F 1, . . . , FN ).

Moreover, we assume that F (0) = 0. Now specify initial data

(9.2) u
∣∣
t=0

= f ∈ Hs, ∂tu
∣∣
t=0

= g ∈ Hs−1.

Here f = (f1, . . . , fN ) with each f I ∈ Hs, and similarly for g. The norm on
Hs ×Hs−1 is denoted

‖(f, g)‖(s) = ‖f‖Hs + ‖g‖Hs−1 .

Recall that we have the following local existence and uniqueness result.

Theorem 32. (Classical Local Existence Theorem.) The Cauchy problem
(9.1), (9.2) is locally well-posed for initial data in Hs ×Hs−1 for all s > n

2 + 1.

Here, locally well-posed (abbreviated LWP henceforth) means:

(i) (Local existence.) Given (f, g) ∈ Hs ×Hs−1, there exist:

• T = T (f, g) > 0, depending continuously on ‖(f, g)‖(s);

• u = u(f, g) ∈ Xs
T = C([0, T ],Hs) ∩ C1([0, T ],Hs−1) solving (9.1),

(9.2) on ST = (0, T )×Rn. [Here (9.1) holds in the sense of D′(ST ).]

101
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(ii) (Uniqueness.) Solutions are unique in Xs
T , for any T > 0.

(iii) (Continuous dependence on data.) The solution u = u(f, g) depends
continuously on the data (f, g), in the following sense: If u(f, g) exists up
to some time T > 0, then there are constants C, δ > 0 such that whenever

‖(f − f ′, g − g′)‖(s) ≤ δ,

the solution u(f ′, g′) exists up to time T also, and

‖u(f ′, g′)− u(f, g)‖Xs
T
≤ C ‖(f − f ′, g − g′)‖(s) .

(iv) (Persistence of higher regularity.) If the data have some additional
Sobolev regularity (f, g) ∈ Hσ ×Hσ−1, where σ > s, then the solution in
part (a) is in the space C([0, T ],Hσ) ∩ C1([0, T ],Hσ−1). In particular, if
the data are in C∞c , then the solution is smooth. (One obtains smoothness
in time by using the equation to express time derivatives of order two and
higher.)

Remark. Since F (0) = 0, the unique solution in Xs
T (any T > 0) with data

f = g = 0 is u = 0. Then (c) says that for any T > 0, u(f, g) exists up to time
T if ‖(f, g)‖(s) is sufficiently small (possibly depending on T ).

Notation. We often write u(t) instead of u(t, ·). This is natural since u solves
a time evolution problem. In fact, Xs

T as defined above is just the space of
continuous curves from [0, T ] into Hs ×Hs−1.

Recall that the proof of Theorem 32 relies on:

(i) The energy inequality for the linear wave equation.

(ii) Sobolev’s Lemma (the special case Hr ⊂ L∞ iff r > n
2 ).

(iii) The Moser inequality, which for F as in (9.1) says that there is a contin-
uous function φs : [0,∞) → [0,∞) such that

‖F (u, ∂u)(t)‖Hs−1 ≤ φs

(
‖(u, ∂u)(t)‖L∞

)
‖(u, ∂tu)(t)‖(s) ,

provided s ≥ 1.

The reason for the lower bound on s in Theorem 32 is then clear: After applying
(i) and (iii) we need to control

‖(u, ∂u)(t)‖L∞ ,

and by (ii) this norm is dominated by

‖u‖Xs
T

= sup
0≤t≤T

‖(u, ∂tu)(t)‖(s)

precisely when s > n
2 + 1.
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This lower bound on s is sharp in general. In fact we shall see later that
the scalar equation �u = (∂tu)k (k ≥ 2) is not well-posed (thus we say it is
ill-posed) for data in Hs ×Hs−1 with

s <
n

2
+ 1− 1

k − 1
,

and this approaches n/2 + 1 as k →∞.
On the other hand, one can show that the equation �u = (∂tu)2 is LWP for

s > 2 in dimension n = 3, whereas Theorem 32 requires s > 5/2, so there is a
gap.

We shall be interested in improving the lower bound in Theorem 32 for
certain equations. Thus we ask the following:

Question. For a given F in (9.1), what is the minimal s for which the conclu-
sion of Theorem 32 holds for data in Hs ×Hs−1?

Remark. We may have to replace the “energy space” Xs
T by some subspace

(still a Banach space) in the definition of LWP above. This will be clear from
examples to follow.

9.1.2 Scaling

For all the equations we are interested in (namely [models for] classical field
equations from physics), there is a natural lower bound for s imposed by scaling
properties (homogeneity) of F and the data space Ḣs, given by the norm

‖f‖Ḣs =
∥∥|ξ|s f̂ ∥∥

L2 .

This lower bound we call the critical well-posedness exponent and denote sc;
it is the unique s ∈ R such that the homogeneous data space Ḣs × Ḣs−1 is
invariant (dimensionless) under the natural scaling of the equation (9.1). This
is best illustrated by some simple examples.

We shall use the easily proved fact that

(9.3) ‖f(λx)‖Ḣs = λs−n/2 ‖f‖Ḣs for λ > 0.

Examples. (A) Consider �u = (∂tu)2 on R1+n. If u is a solution, then so is
uλ (λ > 0) given by

uλ(t, x) = u(λt, λx).

Since by (9.3) we have

‖uλ(0)‖Ḣs = λs−n/2 ‖u(0)‖Ḣs ,

we conclude that sc = n/2.

(B) For �u = u∂tu the scaling is

uλ(t, x) = λu(λt, λx).
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Thus ‖uλ(0)‖Ḣs = λ1+s−n/2 ‖u(0)‖Ḣs , and sc = n/2− 1.

(C) For �u = u2 we find similarly sc = n/2− 2.

We now formulate:

General WP Conjecture. (i) For all classical field theories the Cauchy
problem is LWP for data in Hs ×Hs−1, s > sc.

(ii) For smooth data with small Hsc×Hsc−1 norm, there exists a global smooth
solution.

(iii) The Cauchy problem is ill-posed for data in Hs ×Hs−1, s < sc.

Part (i) has been verified for several important equations in the last few
years. Very recently, part (ii) was verified for so-called Wave Maps (analogue
of the wave equation for functions with values in a sphere) through the work of
T. Tao.

We will content ourselves with looking at some simple examples which give
at least some motivation for this conjecture. Let us start with item (iii).

Some terminology: the regimes s > sc, s = sc and s < sc are called subcrit-
ical, critical and supercritical, respectively.

9.1.3 Blowup and nonexistence in the supercritical range

According to item (iii) of the WP Conjecture, we expect ill-posedness in the
supercritical range s < sc. The following result gives some motivation for this.

Theorem 33. If there exist data f, g ∈ C∞c (Rn) such that the solution of
�u = F (u, ∂u) with data (f, g) blows up at finite time in some open ball, then
there is nonexistence in the supercritical range.

Remark. The above applies to Wave Maps in dimensions n ≥ 3 (Shatah).

For simplicity let us assume f = 0. The idea is that when we scale u (and
hence g) in the natural way with a parameter λ→∞, then the blowup time goes
to zero, and the size of the Ḣs−1 norm of g also goes to zero by supercriticality.
Moreover, the support of g shrinks to a point, so by letting λ→∞ through an
appropriate sequence, and adding up the scaled g’s, translated so as to make the
supports well separated, we get a series converging in Hs−1 to some g̃. Then by
a domain of dependence argument, there is no local existence for �u = F (u, ∂u)
with initial data (0, g̃). Furthermore, g̃ can be made to have arbitrarily small
norm and arbitrarily small support.

Let us see how this works for a concrete example.

Example. Consider again �u = (∂tu)k with k ≥ 2 an integer. To determine
the scaling, we set

uλ(t, x) = λβu(λt, λx),
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where β must be determined. It is easily seen that if both u and uλ are solutions
of the equation, then

β + 2 = (β + 1)k =⇒ β =
2− k

k − 1
.

We conclude that sc = n/2− β = n/2 + 1− 1/(k − 1).
Using the fact that the ODE

y′ = yk, y(0) = y0 > 0

blows up in finite time, we conclude that there exists g ∈ C∞c so that the
solution of �u = (∂tu)k with data (0, g) blows up in the unit ball |x| ≤ 1 at
time t = 1, say. In fact, we can just start with g constant and then cut it off
smoothly outside a sufficiently large ball. The blowup then follows by domain
of dependence (uniqueness in backwards light cones).

Given such g, let us see how to construct g̃ with the properties described
above. Corresponding to the scaling u → uλ found above, the initial datum
scales as follows:

g → gλ, gλ(x) = λ1+βg(λx).

Now fix 1 ≤ s < sc and observe the following:

(i) Since u blows up at time T = 1 in |x| ≤ 1 and g vanishes outside some
ball |x| ≤ R, it follows that uλ blows up at time 1/λ in |x| ≤ 1/λ and gλ

vanishes outside |x| ≤ R/λ.

(ii) By supercriticality, ‖gλ‖Hs−1 → 0 as λ→ 0. In fact, it is easy to see that

‖gλ‖Hs−1 ≤ Cλs−sc ‖g‖Hs−1 .

It is easy to choose a sequence λj → ∞ and a convergent sequence of disjoint
points xj in Rn such that

∑∞
0 λs−sc

j <∞ and the supports of

hj(x) = gλj
(x− xj) = λ1+β

j g(λj [x− xj ])

are mutually disjoint. Then set

g̃ =
∞∑
0

hj(x).

This converges absolutely in Hs−1 in view of the above. Now let ũ be a solution
with data (0, g̃). Then by a domain of dependence argument, ũ must blow up
in the ball |x− xj | ≤ 1/λj at time T = 1/λj , for every j. Hence there is no
local existence near limxj . Finally, by replacing the sequences by their N -tails
for N large, we can make the norm and support of g̃ as small as we like. Note
that g̃ is smooth except at limxj . This concludes the example.
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9.1.4 LWP implies domain of dependence valid

Observe that the proof of nonexistence in the previous section relied on a domain
of dependence argument, that is, the data in a ball uniquely determine the
solution in the backwards light cone over that ball. So what we really showed is
that there is no local solution obeying this principle. A key fact, proved below, is
that any solution obtained in a LWP framework satisfies domain of dependence.

Thus, under the hypotheses of Theorem 33 there is ill-posedness in the su-
percritical range, verifying item (iii) of the General WP Conjecture for equations
with blowup for smooth data.

Assume �u = F (u, ∂u) is LWP for data in Hs × Hs−1. Suppose u and v
both solve the equation up to time T with data (f, g) and (f ′, g′) respectively,
and assume that

f = f ′ and g = g′ in the ball |x− x0| ≤ r.

Let Ω be the cone over this ball:

Ω = {(t, x) : t > 0, t+ |x− x0| < r}.

Then
u = v in Ω ∩ ST ,

where ST = (0, T ) × Rn. It suffices to prove this in a smaller cone Ω′ defined
as Ω but with r replaced by a slightly smaller r′. Using cutoffs and a smooth
approximation of the identity, we can find sequences fj , gj , f

′
j , g

′
j ∈ C∞c such

that (fj , gj) → (f, g) and (f ′j , g
′
j) → (f ′, g′) in Hs ×Hs−1 and

fj = f ′j and gj = g′j in the ball |x− x0| ≤ r′

for all j. Let uj and u′j be the solutions corresponding to the data (fj , gj)
and (f ′j , g

′
j), respectively. It follows by continuous dependence on the data that

uj → u and u′j → u′ in D′(ST ).
Moreover, both uj and u′j are C∞ by persistence of higher regularity. From

the uniqueness theorem for smooth solutions in backwards light cones (week 5,
Theorem 3) it then follows that uj = u′j in Ω′ ∩ ST . Passing to the limit we
conclude that u = u′ in Ω′ ∩ ST , and this completes the proof, since r′ < r was
arbitrary.

9.1.5 Nonuniqueness in the supercritical case

Here we give an example due to Hans Lindblad of nonuniqueness of a nonlinear
wave equation in the supercritical range. In particular, domain of dependence
fails.

Example. Consider �u = u3 on R1+3
+ = (0,∞)× R3. Then sc = 1/2, and one

can show (we will do this later using Strichartz’ inequality) that the equation
is globally well-posed for data in Ḣ1/2 × Ḣ−1/2 with small norm.
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We want to show that uniqueness fails in the space

C([0,∞), Ḣs) ∩ C1([0,∞), Ḣs−1)

when the regularity is supercritical, that is, s < 1/2. In fact, we give an example
of a nonzero solution of �u = u3 in the above space, with initial data

(9.4) u
∣∣
t=0

= ∂tu
∣∣
t=0

= 0.

Since u ≡ 0 also is a solution (the only reasonable one), we have nonuniqueness.
Define

u(t, x) =
√

2H(t− |x|)
t

, (t, x) ∈ R1+3
+ .

Here H is the Heaviside function. Thus, H(t − |x|) is just the characteristic
function of the solid light cone {(t, x) : t > 0, |x| < t}. Recall that H ′ = δ.
Using the Chain Rule (this is justified; see section 6.1 in Hörmander’s Linear
Partial Differential Operators Vol. I, 2nd ed.) it is easy to calculate the first and
second order partial derivatives of u in D′, and one finds that u solves �u = u3.

It only remains to check that

lim
t→0+

‖u(t)‖Ḣs = lim
t→0+

‖∂tu(t)‖Ḣs−1 = 0

when s < 1/2. It then follows that (u, ∂tu) extends continuously to t = 0 in
Ḣs × Ḣs−1 and (9.4) holds.

It suffices to prove that ‖u(t = 1)‖Ḣs < ∞. Then we can exploit the su-
percritical scaling to conclude that the limit as t → 0 is 0. Thus, we have to
show ‖χB‖Ḣs < ∞, where χB is the characteristic function of the unit ball
B = {x : |x| < 1} in R3. We have to calculate the Fourier transform. Using
polar coordinates x = rω we have

χ̂B(ξ) =
∫ 1

0

∫
S2
e−irω·ξ dσ(ω) r2 dr =

∫ 1

0

σ̂(rξ)r2 dr,

where σ is surface measure on S2. So we need to calculate σ̂(ξ).
By rotational symmetry it suffices to take ξ = (0, 0, ρ), ρ = |ξ|. Then using

spherical coordinates on S2 = {(x, y, z) : x2 + y2 + z2 = 1},

ω =


x = sinφ cos θ
y = sinφ sin θ
z = cosφ

0 < φ < π, 0 < θ < 2π,

we have∫
S2
f(ω) dσ(ω) =

∫ π

0

∫ 2π

0

f |ωφ × ωθ| dθ dφ =
∫ π

0

∫ 2π

0

f sinφdθ dφ,

and we conclude that

σ̂(0, 0, ρ) =
∫ π

0

∫ 2π

0

e−iρ cos φ sinφdθ dφ = 2φ
∫ 1

−1

eiρr dr = 4π
sin ρ
ρ

.
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Therefore

χ̂B(ξ) = 4π
∫ 1

0

sin(r |ξ|)
r |ξ|

r2 dr =
4π
|ξ|3

∫ |ξ|

0

λ sinλ dλ =
4π
|ξ|3

(sin |ξ| − |ξ| cos |ξ|) ,

whence |χ̂B(ξ)| ≤ C
1+|ξ|2 . Thus

∫
R3 |ξ|2s |χ̂B(ξ)|2 dξ <∞ iff s < 1/2.

It remains to work out the scaling of ‖u(t)‖Ḣs with respect to t > 0. In fact
it is easy to see, by using the Fourier transform, that

‖u(t)‖2Ḣs = t1−2s ‖u(1)‖2Ḣs ,

so the limit as t→ is 0 iff s < 1/2. This concludes the example.



Chapter 10

Week 11: Strichartz type
estimates

10.1 Introduction

Our next topic is Strichartz estimates. These are certain spacetime integrability
properties of solutions to the linear Cauchy problem

(10.1) �u = F, (u, ∂tu)
∣∣
t=0

= (f, g),

and are intimately connected with a well-known problem in harmonic analysis,
namely the (Lp, L2) restriction problem for the Fourier transform: Consider
the Fourier transform f → f̂ on Rn, and let S ⊂ Rn be a hypersurface. The
question is then for which exponents 1 ≤ p < 2 the map

f → f̂
∣∣
S

(f ∈ S)

extends to a bounded map from Lp(Rn) to L2(S).
For p = 1 the map is bounded by the Riemann-Lebesgue lemma, while if

p = 2, then f̂ can be any L2 function on Rn, so f̂
∣∣
S

is meaningless, since S has
measure zero in Rn. Hence the restriction to 1 ≤ p < 2.

The solution to the restriction problem depends on the curvature of S. If S
is a plane, then no p > 1 is allowed, while if S is the unit sphere Sn−1, then the
admissible range of p is

1 ≤ p ≤ 2(n+ 1)
n+ 3

.

This is due to Stein and Tomas. subsequently, Strichartz realized that restriction
theorems of this type imply—via a duality argument—estimates for the wave
and Schrödinger equations (with the hypersurface being a cone or a paraboloid,
respectively). His estimates have been extensively generalized by many people,
but still go under the name of Strichartz estimates.

109
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As an initial example, let us consider the following estimate for the solution
of (10.1) on R1+3, proved by Strichartz in his original paper:

(10.2) ‖u‖L4(R1+3
+ ) + ‖u(t)‖

Ḣ
1
2

+ ‖∂tu(t)‖
Ḣ− 1

2

≤ C

(
‖f‖

Ḣ
1
2

+ ‖g‖
Ḣ− 1

2
+ ‖F‖

L
4
3 (R1+3

+ )

)
,

for all t ≥ 0. We shall see later that this inequality is equivalent to a restriction
theorem for the light cone in R1+3

+ .

Example. Let us apply the above inequality to prove global existence for �u =
u3 on R1+3

+ with data (u, ∂tu)
∣∣
t=0

= (f, g) ∈ Ḣ 1
2 × Ḣ− 1

2 , provided

E0 = ‖f‖
Ḣ

1
2

+ ‖g‖
Ḣ− 1

2

is sufficiently small. To see this, denote by X(u) the left hand side of (10.2),
with supremum over all t ≥ 0. We now iterate in this norm. As usual, the
iterates are defined inductively by u−1 ≡ 0 and

�uj = u3
j−1,

with data (f, g), for j ≥ 0. Then by (10.2), using the fact that

‖uvw‖L4/3 ≤ ‖u‖L4 ‖v‖L4 ‖w‖L4 ,

we have
X(uj) ≤ CE0 + CX(uj−1)3.

So if X(uj−1) ≤ 2CE0, then so is X(uj), provided C(2CE0)2 ≤ 1
2 .

Then, since

�(uj+1 − uj) = u3
j − u3

j−1 = (uj − uj−1)u2
j + uj−1(uj + uj−1)(uj − uj−1)

with vanishing initial data, we have

X(uj+1−uj) ≤ C ′[X(uj)+X(uj−1)]2X(uj −uj−1) ≤ C ′(4CE0)2X(uj −uj−1),

so {uj} is Cauchy provided C ′16C2E2
0 ≤ 1

2 .

10.2 Proof of the estimates for �u = 0

Here we prove the Strichartz type estimates for solutions of

(10.3) �u = 0 on R1+n, u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g.

We assume n ≥ 2 throughout. The estimates are of the form

(10.4) ‖u‖Lq
t (Lr

x) ≤ C
(
‖f‖Ḣs + ‖g‖Ḣs−1

)
,
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where

‖u‖Lq
t (Lr

x) =

(∫
R

(∫
Rn

|u(t, x)|r dx
)q/r

dt

)1/q

,

with the obvious modifications if q or r = ∞.
By scaling, we must have

(10.5) s =
n

2
− n

r
− 1
q

Definition. We say that a pair (q, r) is wave admissible if

2 ≤ q ≤ ∞, 2 ≤ r <∞ and
2
q
≤ n− 1

2

(
1− 2

r

)
.

Theorem 34. The estimate (10.4) holds for all solutions of (10.3) if and only
if (q, r) is wave admissible and s is given by (10.5).

Remark. There are counterexamples which show that the conditions are opti-
mal, but we will not discuss these. Also, we will not prove the so-called endpoint
estimate, where

1 =
2
q
≤ n− 1

2

(
1− 2

r

)
.

In other words, q = 2 and r = 2(n − 1)/(n − 3). Since we require r < ∞, the
endpoint is only allowed when n > 3.

10.3 The truncated cone operator

Instead of (10.4), it suffices to prove

(10.6)
∥∥∥eit

√
−∆f

∥∥∥
Lq

t (Lr
x)
≤ C ‖f‖Ḣs .

This is because û(t, ξ) is a linear combination of e±it|ξ|f̂(ξ) and e±it|ξ|ĝ(ξ)/ |ξ|.
By a density argument, it suffices to prove the estimate for f ∈ S.

We first prove (10.6) for frequency-localized f , and then obtain the general
case using Littlewood-Paley theory. Thus, we fix a radial cutoff function β ∈ C∞c
supported away from zero, and consider the truncated cone operator

(10.7) Tf(t, x) =
∫

Rn

eix·ξeit|ξ|β(ξ)f̂(ξ) dξ (f ∈ S)

Now that the frequency has been localized, the Ḣs norm behaves like an L2

norm, and the problem is then to prove

(10.8) ‖Tf‖Lq
t (Lr

x) ≤ C ‖f‖L2

for wave admissible (q, r).
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10.4 The formal adjoint

The formal adjoint of T is the operator F (t, x) → T ∗F (x) determined by

〈Tf, F 〉 = 〈 f, T ∗F 〉 for f ∈ S(Rn), F ∈ S(R1+n)

where 〈 ·, · 〉 denotes the L2 inner product. In other words, the condition is that∫
Tf · F dt dx =

∫
f · T ∗F dx.

Let us calculate T ∗F . Using the definition of Tf we have∫
Tf · F dt dx =

∫
T̂ f(t, ξ)F̂ (t, ξ) dξ dt

=
∫
eit|ξ|β(ξ)f̂(ξ)F̂ (t, ξ) dξ dt

=
∫
f(x)

(∫
e−ix·ξeit|ξ|β(ξ)F̂ (t, ξ) dξ dt

)
dx.

We conclude that

(10.9) T ∗F (x) =
∫
ei(x·ξ−t|ξ|)β(ξ)F̂ (t, ξ) dξ dt =

∫
eix·ξβ(ξ)F̃ (|ξ| , ξ) dξ,

where F̃ is the spacetime Fourier transform.

Remark. The above gives the connection with the Fourier restriction problem
for the forward light cone Λ = {(τ, ξ) : τ = |ξ| > 0} in R1+n. In fact, from
(10.9) we see that

(10.10) T̂ ∗F (ξ) ' β(ξ)F̃ (|ξ| , ξ) = RF (ξ)

is just the restriction of the spacetime Fourier transform of F to Λ, multiplied
by a smooth cutoff. The cone is the graph of ξ → (|ξ| , ξ), and with respect to
this parametrization, surface measure dσ on the cone is just dξ up to a constant.
Thus, in view of Plancherel’s theorem, ‖T ∗F‖L2 ' ‖RF‖L2(Λ,dσ). Consequently,
the estimate (10.8) is equivalent to the following restriction theorem:

Theorem. R : Lq′

t (Lr′

x ) → L2(Λ, dσ) is bounded if (q, r) is wave admissible.

10.5 Duality and the TT ∗ principle

Recall that for all 1 ≤ p ≤ ∞,

‖f‖Lp = sup {|〈 f, g 〉| : g ∈ S, ‖g‖Lp′ ≤ 1} ,

where p′ denotes the conjugate exponent. Similarly one has for the mixed norms,
for all 1 ≤ q, r ≤ ∞,

(10.11) ‖F‖Lq
t (Lr

x) = sup
{
|〈F,G 〉| : G ∈ S, ‖G‖

Lq′
t (Lr′

x )
≤ 1
}
.

Using this fact we prove:
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Lemma 11. The following statements are equivalent:

(i) T : L2(Rn) → Lq
t (Lr

x) is bounded,

(ii) T ∗ : Lq′

t (Lr′

x ) → L2(Rn) is bounded,

(iii) TT ∗ : Lq′

t (Lr′

x ) → Lq
t (Lr

x) is bounded.

Proof. Since
|〈Tf, F 〉| = |〈 f, T ∗F 〉| ≤ ‖f‖L2 ‖T ∗F‖L2 ,

it follows from (10.11) that (ii) implies (i), and the converse follows from

|〈 f, T ∗F 〉| = |〈Tf, F 〉| ≤ ‖Tf‖Lq
t (Lr

x) ‖F‖Lq′
t (Lr′

x )
.

Obviously, (i) and (ii) together imply (iii), so it remains to prove that (iii)
implies (ii). To see this, observe that

‖T ∗F‖2L2 = 〈T ∗F, T ∗F 〉 = 〈F, TT ∗F 〉 ≤ ‖F‖
Lq′

t (Lr′
x )
‖TT ∗F‖Lq

t (Lr
x) .

It turns out that TT ∗ is a convolution operator. In fact, using (10.7) and
(10.10) we see that

T̂ T ∗F (t, ξ) ' eit|ξ|β(ξ)T̂ ∗F (ξ) '
∫
ei(t−s)|ξ| |β(ξ)|2 F̂ (s, ξ) ds

and we conclude that TT ∗F = K ∗ F , where

(10.12) K(t, x) =
∫
ei(x·ξ+t|ξ|) |β(ξ)|2 dξ.

We also define Kt(x) = K(t, x). Observe that f(x) → Kt ∗ f(x) is essentially
the operator T . The only difference is that in the latter we have β and not |β|2.

10.6 Estimates for the kernel

We shall prove two estimates at fixed t for the operator f → Kt ∗ f , which we
recall is essentially the same as T . We then interpolate between these two fixed-
time estimates, and finally we apply either the Hardy-Littlewood inequality or
Young’s inequality to get a spacetime estimate.

We first prove

‖Kt ∗ f‖L2 ≤ C ‖f‖L2 ,(10.13)

‖Kt ∗ f‖L∞ ≤ C

(1 + |t|)(n−1)/2
‖f‖L1 .(10.14)
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Observe that Riesz-Thorin interpolation between these two estimates gives

(10.15) ‖Kt ∗ f‖Lr ≤
C

(1 + |t|)γ(r)
‖f‖Lr′

for all 2 ≤ r ≤ ∞, where

(10.16) γ(r) =
n− 1

2

(
1− 2

r

)
.

The estimate (10.13) is just an energy inequality, and is a trivial consequence
of Plancherel’s theorem, since K̂t(ξ) ' eit|ξ| |β(ξ)|2. Inequality (10.14) is called
the dispersive inequality. To prove it, note that by Young’s inequality,

‖Kt ∗ f‖L∞ ≤ ‖Kt‖L∞ ‖f‖L1 ,

so it suffices to show that

(10.17) |K(t, x)| ≤ C

(1 + |t|)(n−1)/2

holds uniformly on R1+n. This is an instance of the following general fact:

Theorem. Suppose S ⊂ R1+n is a hypersurface with at least k nonvanishing
principal curvatures at each point. Then the Fourier transform of the surface
measure dσ on S multiplied by a function φ ∈ C∞c (S) satisfies the decay estimate

φ̂dσ(ξ) = O(|ξ|−k/2)

as |ξ| → ∞.

Now observe that the forward light cone Λ in R1+n has exactly n − 1 non-
vanishing principal curvatures at each point, and from (10.12) we have

K(t, x) =
∫
ei(t,x)·(τ,ξ) |β(ξ)|2 δ(τ − |ξ|) dτ dξ

But δ(τ − |ξ|) dτ dξ is surface measure on Λ, up to a constant, so the above
theorem applies, and gives (10.17).

However, instead of relying on this general argument, we will prove (10.17)
using a very special case of the above theorem, namely for surface measure σ
on the sphere Sn−1 in Rn. We then have

(10.18) |σ̂(ξ)| ≤ C(1 + |ξ|)−(n−1)/2.

In fact, we proved this for n = 3, which is the dimension we shall be concerned
with in applications, last week.

Armed with this fact we prove (10.17). Recall that β is assumed to be radial
and supported away from zero. Using polar coordinates ξ = ρω we then have

K(t, x) =
∫ ∞

0

∫
Sn−1

eiρ(x·ω+t)a(ρ) dσ(ω) dρ =
∫ ∞

0

σ̂(ρx)eitρa(ρ) dρ,

where a(ρ) is smooth and compactly supported away from zero.
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Case 1: |t| ≥ 2 |x|. Integrate by parts N times in I =
∫∞
0
eiρ(x·ω+t)a(ρ) dρ,

using the fact that

eiρ(x·ω+t) =
(d/dρ)eiρ(x·ω+t)

i(t+ x · ω)
,

to get |I| ≤ CN |t+ x · ω|−N ≤ CN2N |t|−N uniformly.

Case 2: |t| < 2 |x|. Using (10.18) we have

|K(t, x)| ≤
∫ ∞

0

|σ̂(ρx)| |a(ρ)| dρ

≤ C

∫ ∞

0

|ρx|−(n−1)/2 |a(ρ)| dρ ≤ C |x|−(n−1)/2 ≤ C |t|−(n−1)/2
,

where C as usual can change from line to line. This concludes the proof of
(10.17).

10.7 Conclusion of the frequency localized case

We now finish the proof of (10.8). According to Lemma 11 it suffices to prove
boundedness of TT ∗,

(10.19) ‖K ∗ F‖Lq
t (Lr

x) ≤ C ‖F‖
Lq′

t (Lr′
x )
,

for (q, r) wave admissible. Since we ignore the endpoint case, this means that
2 ≤ q ≤ ∞, 2 ≤ r <∞, 2/q ≤ γ(r) and

(
2/q, γ(r)

)
6= (1, 1).

By Minkowski’s integral inequality and (10.15),

(10.20) ‖K ∗ F (t)‖Lr ≤
∫
‖K(t− s) ∗ F (s)‖Lr ds ≤ C

∫ ‖F (s)‖Lr′

(1 + |t− s|)γ(r)
ds.

We claim that this implies (10.19). To see this, we consider separately the cases
2/q < γ(r) and 2/q = γ(r).

Case 1: 2/q < γ(r). Then (1 + |t|)−γ(r) belongs to Lq/2(R), so in this case
(10.19) follows from Young’s inequality, applied to (10.20). Recall that Young’s
inequality says that

‖f ∗ g‖Lq ≤ ‖f‖La ‖g‖Lb ,

provided 1 ≤ a, b, q ≤ ∞ and 1 + 1/q = 1/a+ 1/b. In this case we take a = q/2
and b = q′.

Case 2: 2/q = γ(r). Since we exclude the endpoint case, we must have
2/q = γ(r) < 1. Now (1 + |t|)−γ(r) just fails to belong to Lq/2(R), so we cannot
apply Young’s inequality. However, recall the Hardy-Littlewood inequality:
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Theorem. (Hardy-Littlewood inequality) Let 0 < α < 1. Assume that
1 < p < q <∞ and 1 + 1/q = 1/p+ α. Set

Tf(t) =
∫

R

f(s)
|t− s|α

ds.

Then T is bounded from Lq(R) into Lp(R).

Remark. Note that T is convolution with the kernel |t|−α, which just fails to
belong to L1/α; if it did belong to L1/α, the boundedness of T would follow
from Young’s inequality.

Apply this theorem to (10.20) with 0 < α = γ(r) = 2/q < 1. (If α = 0, we
have q = ∞ and r = 2, so we just have the energy inequality, which is trivial.)
Since

1 +
1
q

= 1− 1
q

+ γ(r) =
1
q′

+ α,

we then obtain (10.19), and this concludes the proof of (10.8).

10.8 Littlewood-Paley decomposition and con-
clusion of proof

Having obtained (10.8), we now scale to put the Ḣs norm back in the right
hand side, and apply Littlewood-Paley theory to obtain (10.6). Let us write
W (t)f = eit

√
−∆f , so that

Ŵ (t)f(ξ) = eit|ξ|f̂(ξ).

Choose a radial β ∈ C∞c (Rn) supported away from zero such that1∑
j∈Z

β(ξ/2j) = 1 for all ξ 6= 0.

Define the frequency projections ∆j by ∆̂jf(ξ) = β(ξ/2j)f̂(ξ). Then

f =
∑

∆jf and W (t)f =
∑

W (t)∆jf.

It is readily checked that W (t)∆jf ' T [f(·/2j)](2jt, 2jx), so by (10.8),

‖W (t)∆jf‖Lq
t (Lr

x) ' 2j(−n/r−1/q)
∥∥T [f(·/2j)]

∥∥
Lq

t (Lr
x)

(10.21)

. 2j(−n/r−1/q)
∥∥f(·/2j)

∥∥
L2 = 2j(n/2−n/r−1/q) ‖f‖L2 .

1Start with a radial bump function χ such that χ(0) = 1 and suppχ ⊂ {|ξ| ≤ 2}. Set

β(ξ) = χ(ξ)− χ(2ξ). Then
PN
−M β(ξ/2j) = χ(ξ/2N )− χ(2M+1ξ) → 1 as M,N →∞.
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Now ∆j∆k = 0 unless |j − k| ≤ 3, so

∆jf = ∆j(
∑

∆kf) =
∑

|k−j|≤3

∆j∆kf.

Applying (10.21) then gives

‖W (t)∆jf‖Lq
t (Lr

x) .
∑

|k−j|≤3

‖W (t)∆j∆kf‖Lq
t (Lr

x)(10.22)

.
∑

|k−j|≤3

2js ‖∆kf‖L2 .
∑

|k−j|≤3

‖∆kf‖Ḣa

where s = n/2 − n/r − 1/q. Now apply the following result from Littlewood-
Paley theory:

Theorem 35. For 2 ≤ p <∞, we have

‖f‖Lp .
√∑

j∈Z
‖∆jf‖2Lp .

Thus,

‖W (t)f‖Lq
t (Lr

x) .

∥∥∥∥√∑ ‖W (t)∆jf‖2Lr
x

∥∥∥∥
Lq

t

.
√∑

‖W (t)∆jf‖2Lq
t (Lr

x),

where the last inequality follows by Minkowski’s integral inequality, since q ≥ 2.
Combining this with (10.22), we conclude that (10.6) holds, since

‖f‖Ḣs ≈
√∑

‖∆jf‖2Ḣs .

To conclude, let us remark that Theorem 35 is an immediate corollary of
Minkowski’s inequality (this is where we need the condition p ≥ 2) and the
following fundamental fact:

Theorem 36. If 1 < p <∞, then

‖f‖Lp ≈
∥∥∥∥√∑ |∆jf |2

∥∥∥∥
Lp

.

Remark. We conclude with the remark that if 0 < T <∞ and ST = (0, T )×
Rn, then we have the following variant of (10.4) with inhomogeneous data
norms:

(10.23) ‖u‖Lq
t Lr

x(ST ) ≤ CT

(
‖f‖Hs + ‖g‖Hs−1

)
,

where CT . 1 + T 2. This is obvious if g = 0, since s ≥ 0. It is also obvious if
ĝ is supported in |ξ| ≥ 1. Thus, we may assume f = 0 and supp ĝ ⊂ {|ξ| ≤ 1}.
Then

|û(t, ξ)| = |sin(t |ξ|)|
|ξ|

|ĝ(ξ)| ≤ |t| |ĝ(ξ)| ,
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and by Hölder’s inequality and Sobolev embedding, we have

‖u‖Lq
t Lr

x(ST ) ≤ T 1/q sup
0≤t≤T

‖u(t)‖Lr ≤ CT 1/q sup
0≤t≤T

‖u(t)‖Ḣn(1/2−1/r)

≤ CT 1+1/q ‖g‖L2 ≤ CT 1+1/q ‖g‖Hs−1 ,

proving our claim.



Chapter 11

Week 12: Application to
Maxwell-Klein-Gordon

Our final objective is to prove global existence of smooth solutions to the
Maxwell-Klein-Gordon equations (abbreviated MKG henceforth) on R1+3. This
is a nonlinear system of equations resulting from a coupling of Maxwell’s equa-
tions with a Klein-Gordon equation.

The main new tool will be bilinear generalizations of Strichartz’ L4 spacetime
estimate for solutions of �u = 0 on R1+3. Once again the null condition surfaces.

11.1 Presentation of the equations

The usual conventions apply:

• Coordinates on R1+3 are denoted (t, x) or (xα)α=0,1,2,3. We write ∂α =
∂/∂xα.

• Indices are raised and lowered using the Minkowski metric diag(−1, 1, 1, 1).

• The summation convention is in effect. Roman indices run over 1, 2, 3 and
Greek indices over 0, 1, 2, 3.

Example. With the above conventions, ∆ = ∂i∂i and � = ∂α∂α.

The MKG system is a classical field theory, derived from a variational principle.
The fields involved are:

• The electromagnetic field F = dA, an exact two-form on R1+3. Here
A = Aαdx

α is a one-form, the gauge potential, whose components are
real-valued functions Aα : R1+3 → R. Note that

Fαβ = ∂αAβ − ∂βAα.

• A scalar field φ. This is just a function φ : R1+3 → C.

119
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Associated to these fields we have the Lagrangian density

L = −1
4
FαβFαβ −

1
2
DµφDµφ,

whereDµ = ∂µ+
√
−1Aµ is the covariant derivative. Integrating over spacetime,

we get the action integral

L[A,φ] =
∫
Ldt dx.

Now consider smooth, compactly supported variations (Aε, φε) of (A,φ). By
this we mean that (Aε, φε) depends smoothly on ε ∈ R and equals (A,φ) if
ε = 0 or if (t, x) is outside some compact set. If (A,φ) is a stationary point for
L, that is, if

d

dε
L[Aε, φε]

∣∣
ε=0

= 0

for all variations, then (A,φ) must satisfy the PDE

∂αFαβ = −=
(
φDβφ

)
,

DµDµφ = 0.
(MKG)

We use the notation <z and =z for the real and imaginary parts of a complex
number z.

Let us derive (MKG). We use the notation ḟ = d
dεf

ε
∣∣
ε=0

. Note that

(Dµφ)˙ = Dµφ̇+
√
−1Ȧµφ.

We calculate

L ˙= −1
2

∫ {
FαβḞαβ + (Dµφ)˙Dµφ+Dµφ(Dµφ)˙

}
dt dx

=
∫ {

−1
2
Fαβ

(
∂αȦβ − ∂βȦα

)
−<

[
(Dµφ)˙Dµφ

]}
dt dx

=
∫ {

−Fαβ∂αȦβ −<
[(
Dµφ̇+

√
−1Ȧµφ

)
Dµφ

]}
dt dx

=
∫ {

−Fαβ∂αȦβ + =
(
φDβφ

)
Ȧµ −<

(
Dµφ̇Dµφ

)}
dt dx

=
∫ {[

∂αF
αβ + =

(
φDβφ

)]
Ȧβ + <

(
φ̇DµDµφ

)}
dt dx,

where the last equality follows after an integration by parts. Varying A and φ
separately then gives (MKG). In fact, given arbitrary C∞c functions Ȧα (real-
valued) and φ̇ on R1+3, we can construct compactly supported variations simply
by setting

Aε = A+ εȦ, φε = φ+ εφ̇.
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The electric field ~E and magnetic field ~H are three-vectors given by the
matrix identity

0 F01 F02 F03

0 F12 F13

0 F23

0

 =


0 E1 E2 E3

0 H3 −H2

0 H1

0

 .

Splitting A into its temporal and spatial components,

A = (A0, ~A), ~A = (A1, A2, A3),

we thus have
~E = ∂t

~A−∇A0, ~H = curl ~A.

Associated to the Lagrangian is an energy-momentum tensor Tαβ satisfying
∂αT

αβ = 0. In particular,

∂0T
00 + ∂iT

i0 = 0.

Integrating this over R3 for fixed t and using the divergence theorem, we obtain,
assuming sufficient decay as |x| → ∞,

d

dt

∫
R3
T 00(t, x) dx = 0.

It turns out that

T 00 =
1
2

(∣∣ ~E∣∣2 +
∣∣ ~H∣∣2 + |D0φ|2 +

3∑
1

|Diφ|2
)
,

and we define the energy E(t) =
∫
T 00(t, x) dx. Then by the above we have

conservation of energy:
E(t) = E(0)

for all t > 0, provided the solution is smooth and decays sufficently fast as
|x| → ∞.

11.2 Gauge ambiguity

The gauge potential A is not uniquely determined, which is a problem since we
have a PDE involving A. Suppose χ : R1+n → R is smooth, and consider the
gauge transformation

A→ Ã = A+ dχ,

φ→ φ̃ = e−
√
−1χφ.
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Clearly, F is invariant under this transformation, since d2χ = 0. It is also not
hard to check that if (A,φ) solves (MKG), then so does (Ã, φ̃). (Observe that
the covariant derivative changes when A changes!)

Because of this gauge ambiguity, we must understand a solution of (MKG)
as an equivalence class of gauge equivalent pairs.

To fix the potential A, we stipulate an additional gauge condition. The
traditional ones are:

• temporal: A0 = 0,

• Lorentz: ∂αAα = 0,

• Coulomb: ∂iAi = 0.

11.3 MKG in Lorentz gauge

Under the Lorentz condition,

∂αFαβ = ∂α (∂αAβ − ∂βAα) = �Aβ .

Also, ∂µ(Aµφ) = Aµ∂
µφ, whence

DµDµφ = �φ+
√
−1∂µ(Aµφ) +

√
−1Aµ∂µφ−AµAµφ

= �φ+ 2
√
−1∂µ(Aµφ)−AµAµφ.

Since, moreover,
φDβφ = φ∂βφ−

√
−1Aβ |φ|2 ,

we conclude that (MKG) under the Lorentz condition reduces to the following
system of nonlinear wave equations:

�Aα = −=
(
φ∂βφ

)
+Aα |φ|2 ,

�φ = −2
√
−1Aµ∂

µφ+AµAµφ.
(MKGL)

Schematically, this is of the form, setting Φ = (A,φ),

�Φ = Φ∂Φ + Φ3.

This equation has a simple structure, but there is a problem: In order to exploit
conservation of energy and get a global existence result, we need to prove local
well-posedness in the data norm H1 × L2, but this fails to be true for generic
equations of the form �u = u∂u on R1+3, as proved by Lindblad.

The cubic term Φ3 is not a problem. It is easy to prove local well-posedness
for �u = u3 in H1 × L2 by just using the energy inequality and the following
Sobolev inequality:

(11.1) ‖f‖L6(R3) ≤ C ‖∇f‖L2(R3) .
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11.4 MKG in Coulomb gauge

Splitting A into its temporal part A0 and its spatial part ~A as before, the
Coulomb condition says that

div ~A = 0.

Assuming this, we have

∂αFα0 = ∂i (∂iA0 − ∂tAi) = ∆A0,

∂αFαi = ∂α (∂αAi − ∂iAα) = �Ai + ∂i∂tA0.

The (MKG) system then becomes a mixed hyperbolic/elliptic system

div ~A = 0,

∆A0 = −=
(
φ∂tφ

)
+ |φ|2A0,

� ~A+ ∂t∇A0 = −=
(
φ∇φ

)
+ |φ|2 ~A,

�φ = −2
√
−1 ~A · ∇φ+ 2

√
−1A0∂tφ

+
√
−1(∂tA0)φ+

∣∣ ~A∣∣2φ−A2
0φ.

(MKGC)

We study the Cauchy problem with initial data

~A
∣∣
t=0

= ~a, ∂t
~A
∣∣
t=0

= ~b,(11.2a)

φ
∣∣
t=0

= φ0, ∂tφ
∣∣
t=0

= φ1,(11.2b)

for the dynamical variables ( ~A, φ). (Then the nondynamical variable A0 at t = 0
is uniquely determined by solving the elliptic equation in (MKGC).) In view of
the Coulomb condition div ~A = 0, we must require

(11.3) div~a = div~b = 0.

Observe that the equations for the dynamical variables are of the form

� ~A = −=
(
φ∇φ

)
+ C + E,

�φ = −2
√
−1 ~A · ∇φ+ C + E,

where E denotes terms involving A0 or ∂tA0, and C denotes cubic terms involving
~A and φ.

The terms in C and E will be relatively easy to handle. The most important
terms are φ∇φ and ~A·∇φ. Recall that this type of expression is what caused the
problems in the Lorentz gauge, so it seems we have gained nothing by going from
Lorentz to Coulomb (we have only made the system a lot more complicated, it
would seem).

The remarkable fact, however, is that the terms φ∇φ and ~A · ∇φ can be
expressed, due the Coulomb condition div ~A = 0, in terms of the null forms

Qij(∂u, ∂v) = ∂iu∂jv − ∂ju∂iv, 1 ≤ i, j ≤ 3.

This is discussed next.
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11.5 The null structure

Let P be the projection onto the divergence-free vector fields on R3:

P = (−∆)−1 curl curl .

To motivate this, recall the vector identity

(11.4) curl curl ~X = grad div ~X −∆ ~X.

Thus
~X = (−∆)−1 curl curl ~X − (−∆)−1 grad div ~X.

Since div curl = 0 and curl grad = 0, this expresses ~X as the sum of its
divergence-free and curl-free parts. It also shows that

div ~X = 0 =⇒ P ~X = ~X.

Thus, if we apply P to the equation for � ~A in (MKGC), we get

� ~A = −=P
(
φ∇φ

)
+ P

(
|φ|2 ~A

)
.

The term ∂t∇ ~A disappears because curl grad = 0.
To state the key lemma, we need some definitions. We write |D|γ = (−∆)γ/2.

The Riesz transforms are defined by Ri = |D|−1
∂i. Note that the Fourier

symbol of Ri is ξi/ |ξ|, modulo a multiplicative constant. Thus, Ri is bounded
on every Hs. In fact, Ri is bounded on every Lp, 1 < p < ∞, but this is a
much deeper fact. From the identity (11.4) and the fact that RjRj = −Id, we
see that

(11.5) (P ~X)i = Xi +RiRjX
j = Rj(RiXj −RjXi).

In view of the above remarks about the boundedness of Ri, this implies, in
particular, that P is bounded on every Hs (and on every Lp with 1 < p <∞).

We now state the main result of this section.

Lemma 12. We have the identities

(i) P(u∇v)i = Rj |D|−1
Qij(∂u, ∂v).

(ii) 2∇u · P ~X = Qij

(
∂u, |D|−1 [Ri∂Xj −Rj∂Xi]

)
.

Proof. (i) says that

curl curl(u∇v)i = ∂j(∂iu∂jv − ∂ju∂iv).

To prove this, recall the vector identities

curl(u∇v) = ∇u×∇v,

curl( ~X × ~Y ) = −( ~X · ∇)~Y + (~Y · ∇) ~X + (div ~Y ) ~X − (div ~X)~Y .



11.6. REFORMULATION OF MKG IN COULOMB GAUGE 125

Thus

curl curl(u∇v)i = curl(∇u×∇v)i

= −∂ju∂j∂iv + ∂jv∂j∂iu+ ∆v∂iu−∆u∂iv

= ∂j(∂iu∂jv − ∂ju∂iv),

as desired.
To prove (ii), we use (11.5) to write

(11.6) 2∇u · P ~X = 2∂iuRj(RiXj −RjXi).

But expanding the right hand side of (ii) gives

∂iuRj(RiXj −RjXi)− ∂juRi(RiXj −RjXi)

which is seen to equal (11.6) after relabeling.

From this lemma we immediately obtain:

Corollary. (i) P
(
φ∇φ

)
i
= 2Rj |D|−1

Qij(∂<φ, ∂=φ).

(ii) If div ~A = 0, and hence P ~A = ~A, then

2 ~A · ∇φ = Qij

(
∂φ, |D|−1 [Ri∂Aj −Rj∂Ai]

)
.

11.6 Reformulation of MKG in Coulomb gauge

Using the corollary to Lemma 12, we obtain the following equivalent formulation
of (MKGC):

∆A0 = −=
(
φ∂tφ

)
+ |φ|2A0,(11.7a)

∆∂tA0 = −=div
(
φ∇φ

)
+ div

(
|φ|2 ~A

)
(11.7b)

�Ai = 2Rj |D|−1
Qij(∂<φ, ∂=φ) + P

(
|φ|2Ai

)
(11.7c)

�φ = −
√
−1Qij

(
φ, |D|−1 [

Ri∂Aj −Rj∂Ai
])

(11.7d)

+ 2
√
−1A0∂tφ+

√
−1(∂tA0)φ+

∣∣ ~A∣∣2φ−A2
0φ.

In fact, as noted already, applying P to the equation for � ~A in (MKGC) gives
(11.7c). To get (11.7b), apply div to the same equation, using the Coulomb
condition div ~A = 0. This proves one half of the following:

Lemma 13. The systems (MKGC) and (11.7) are equivalent for initial data
(11.2) satisfying (11.3).
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Conversely, to prove that (11.7) implies (MKGC), first observe that by for-
mula (a) in the corollary to Lemma 12, (11.7c) just says that

(11.7c′) � ~A = P
(
φ∇φ+ |φ|2 ~A

)
.

Thus �div ~A = 0, and since the initial data of ~A are divergence free, it follows by
uniqueness for solutions of the homogeneous wave equation that the Coulomb
condition div ~A = 0 holds for all time. Then, in view of formula (b) in the
corollary to Lemma 12, we see that (11.7d) is equivalent to the equation for �φ
in (MKGC). Finally, from (11.7c′) we have

P
(
� ~A+ ∂t∇A0 + =

(
φ∇φ

)
− |φ|2 ~A

)
= 0.

But in view of (11.7b),

div
(
� ~A+ ∂t∇A0 + =

(
φ∇φ

)
− |φ|2 ~A

)
= 0,

and we conclude that

� ~A+ ∂t∇A0 + =
(
φ∇φ

)
− |φ|2 ~A = 0,

which is exactly the equation for � ~A in (MKGC).

11.7 The main result

Our aim is to prove the following:

Theorem 37. If the data (11.2) belong to C∞c (R3) and satisfy (11.3), then
(MKGC), or equivalently (11.7), has a unique smooth solution

(A0, ~A, φ) ∈ C∞(R1+3
+ ).

The strategy for proving this is as follows:

• Prove local well-posedness for data in H1 × L2.

• Use conservation of energy to deduce that the lifespan = +∞.

We would like to obtain a local solution of (11.7) by iterating in the energy
space

ET = C([0, T ],H1) ∩ C1([0, T ], L2).

To do this, we first eliminate the nondynamical variables by solving the elliptic
equations (11.7a) and (11.7b).

Definition. We denote by A0(φ) and B0( ~A, φ) the solutions of (11.7a) and
(11.7b), respectively.
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Remark. One can show (in fact this essentially follows from estimates we prove
later) that (11.7a) [resp. (11.7b)] has a unique solution in Ḣ1 [resp. L2] for every
fixed time t, provided ~A, φ ∈ ET . The above definition therefore makes sense.

Replacing A0 and ∂tA0 by the nonlinear operators A0(φ) and B0( ~A, φ) in
equation (11.7d), we obtain a system of nonlinear wave equations for the dy-
namical variables:

� ~A = M( ~A, φ),

�φ = N ( ~A, φ),
(11.8)

where

M( ~A, φ)i = 2Rj |D|−1
Qij(∂<φ, ∂=φ) + P

(
|φ|2Ai

)
, 1 ≤ i ≤ 3,(11.9)

N ( ~A, φ) = −
√
−1Qij

(
φ, |D|−1 [

Ri∂Aj −Rj∂Ai
])

(11.10)

+ 2
√
−1A0(φ)∂tφ+

√
−1B0( ~A, φ)φ+

∣∣ ~A∣∣2φ−A0(φ)2φ.

We shall then prove:

Theorem 38. The system (11.8) is locally well-posed for data in H1 × L2.

In fact, we will only prove local existence, but with a little more work one
can show uniqueness, continuous dependence on data and persistence of higher
regularity; in particular, smooth data gives a smooth solution.

Corollary. The system (11.7), and hence also (MKGC), is LWP for data (11.2)
in H1 × L2 satisfying (11.3).

Let us merely sketch the proof of this corollary. Assuming ( ~A, φ) solves
(11.8), we define A0 = A0(φ). Then one shows that

∂tA0 = B0( ~A, φ)

in the sense of distributions, and the corollary follows. To prove the last identity,
one shows by a straightforward calculation that

∆(∂tA0 −B0) = |φ|2 (∂tA0 −B0),

and use the fact that the the unique solution in Ḣ1(R3) of the nonlinear elliptic
equation ∆u = |φ|2 u is u = 0. This argument works if the data are sufficiently
smooth, say C∞c , and for general data one chooses smooth approximating se-
quences and exploit persistence of higher regularity and continuous dependence
on the data to pass to the limit.

We postpone the proof of the local existence statement of Theorem 38 and
consider the next step, namely how to exploit energy conservation to see that
the lifespan is infinite.



128CHAPTER 11. WEEK 12: APPLICATION TO MAXWELL-KLEIN-GORDON

11.8 Data norm controlled by energy

Here we combine Theorem 38, or rather its corollary, with energy conservation,
to obtain global existence.

Suppose 0 < T <∞ and (A0, ~A, φ) ∈ C∞([0, T )×R3) solves (MKGC) with
C∞c data (11.2). We claim that

(11.11) sup
0≤t<T

(∥∥ ~A(t)
∥∥

H1 +
∥∥∂t

~A(t)
∥∥

L2 + ‖φ(t)‖H1 + ‖∂tφ(t)‖L2

)
<∞.

It then follows by the corollary to Theorem 38 that the solution extends beyond
time T , and we conclude that the lifespan = +∞.

Let us prove the claim. Recall that the energy

E(t) =
1
2

∫ (∣∣ ~E∣∣2 +
∣∣ ~H∣∣2 + |D0φ|2 +

3∑
1

|Diφ|2
)
dx

is conserved:

(11.12) E(t) = E(0) for 0 ≤ t < T.

We have to control the L2(R3) norms of ~A, ∇ ~A, ∂t
~A, φ, ∇φ and ∂tφ uniformly

in 0 ≤ t < T .

Estimate for
∥∥∇ ~A

∥∥
L2 . Since ~H = curl ~A and div ~A = 0, (11.4) implies

curl ~H = curl curl ~A = −∆ ~A.

Hence, using Plancherel’s theorem,

(11.13)
∥∥∇ ~A(t)

∥∥
L2 ≤ C

∥∥ ~H(t)
∥∥

L2 ≤ C
√
E(t) = C

√
E(0)

Estimate for
∥∥∂t

~A
∥∥

L2 . Since ~E = ∂t
~A−∇A0, we have

curl curl ~E = ∂t curl curl ~A = −∂t∆ ~A = −∆∂t
~A,

whence P ~E = ∂t
~A. Consequently,

(11.14)
∥∥∂t

~A(t)
∥∥

L2 ≤ C
∥∥ ~E(t)

∥∥
L2 ≤ C

√
E(0).

Estimate for
∥∥ ~A∥∥

L2 . Observe that

d

dt

∫
1
2

∣∣ ~A(t, x)
∣∣2 dx =

∫
~A · ∂t

~Adx ≤
∥∥ ~A(t)

∥∥
L2

∥∥∂t
~A(t)

∥∥
L2 .

Thus, (d/dt)
∥∥ ~A(t)

∥∥
L2 ≤

∥∥∂t
~A(t)

∥∥
L2 whenever ~A(t, ·) 6= 0, whence

(11.15)
∥∥ ~A(t)

∥∥
L2 ≤

∥∥ ~A(0)
∥∥

L2 +
∫ t

0

∥∥∂t
~A(t′)

∥∥
L2 dt

′ ≤ ‖~a‖L2 + Ct
√
E(0).
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Estimate for ‖φ‖L2 . Since

d

dt

∫
1
2
|φ|2 dx = <

∫
φ∂tφdx = <

∫
φD0φdx ≤ ‖φ‖L2

√
E(0),

we conclude that

(11.16) ‖φ(t)‖L2 ≤ ‖φ0‖L2 + Ct
√
E(0).

Estimate for ‖∂tφ‖L2 . Since ∂tφ = D0φ−
√
−1A0φ, we have

(11.17) ‖∂tφ‖L2 ≤ ‖D0φ‖L2 + ‖A0φ‖L2 ≤
√
E(0) + ‖A0‖L6 ‖φ‖L3 .

Taking the divergence of ~E = ∂t
~A−∇A0 gives div ~E = −∆A0, and using (11.1)

we conclude that

(11.18) ‖A0‖L6 ≤ C ‖∇A0‖L2 ≤ C
∥∥ ~E∥∥

L2 ≤ C
√
E(0).

It remains to estimate ‖φ‖L3 . By Hölder’s inequality,

(11.19) ‖φ‖L3 =
∥∥φ2

∥∥ 1
2

L3/2 ≤ ‖φ‖
1
2
L2 ‖φ‖

1
2
L6 ≤ C

(
‖φ0‖L2 + t

√
E(0)

) 1
2 ‖∇φ‖

1
2
L2 ,

where we used (11.16) and (11.1) to get the last inequality. Now

‖∂iφ‖L2 ≤ ‖Diφ‖L2 + C ‖∇Ai‖L2 ‖φ‖L3 ≤ C
√
E(0) (1 + ‖φ‖L3) ,

where we used (11.1) and (11.13). This together with (11.19) gives

‖φ‖L3 ≤ C
√

(1 + t)(1 + ‖φ‖L3),

where C depends on the initial data. Since the last inequality clearly continues
to hold if we add 1 to the left hand side, we conclude that√

1 + ‖φ‖L3 ≤ C
√

1 + t =⇒ ‖φ‖L3 ≤ C(1 + t).

Combining this with (11.17) and (11.18) we get

‖∂tφ‖L2 ≤ C(1 + t),

where again C depends on the data. Since the above also shows that the L2

norm of ∇φ is under control, the proof of (11.11) is complete.

11.9 Local existence

Here we prove that (11.8) has a local solution for initial data in H1 × L2. We
employ the usual iteration scheme: Set ~A−1, φ−1 ≡ 0 and define ~Aj and φj

inductively for j ≥ 0 by

� ~Aj = M( ~Aj−1, φj−1),

�φj+1 = N ( ~Aj−1, φj−1),
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with initial data (11.2).
We start by obtaining estimates for the iterates in the space

ET = C([0, T ],H1) ∩ C1([0, T ], L2)

with norm
ET (u) = sup

0≤t≤T
(‖u(t)‖H1 + ‖∂tu(t)‖L2) .

By the energy inequality, we have1

ET (u) ≤ CE0(u) + C

∫ T

0

‖�u(t)‖L2 dt,

so we need to control
∥∥M( ~Aj , φj)

∥∥
L1

t L2
x(ST )

and
∥∥N ( ~Aj , φj)

∥∥
L1

t L2
x(ST )

. We di-
vide the terms we need to estimate into three categories:

(i) Bilinear in ~A and φ. There are two terms of this type:

|D|−1
Q(<∂φ,=∂φ),(11.20)

Q(∂φ, |D|−1
∂ ~A).(11.21)

Here we ignore the Riesz operators, which is justified since these are
bounded on L2.

(i) Elliptic terms. That is, terms containing A0 or B0. There are three
terms of this type:

A0(φ)∂tφ,(11.22)

[A0(φ)]2φ,(11.23)

B0( ~A, φ)φ.(11.24)

(i) Cubic terms in ~A and φ. There are two terms of this type:

|φ|2 ~A,(11.25) ∣∣ ~A∣∣2φ.(11.26)

Here we ignore the projection P acting on (11.25). Again this is justified
because P is bounded on L2.

11.10 Estimates for cubic terms

By Hölder’s inequality,∥∥|φ|2 ~A∥∥
L1

t L2
x(ST )

≤ T
∥∥|φ|2 ~A∥∥

L∞t L2
x(ST )

≤ T ‖φ‖2L∞t L6
x(ST )

∥∥ ~A∥∥
L∞t L6

x(ST )
.

1Here the constant C grows linearly as T → ∞, but since we are interested in a local
existence result, we can assume T ≤ 1, say.
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Now apply the Sobolev inequality (11.1) to get

‖φ‖L∞t L6
x(ST ) ≤ C ‖∇φ‖L∞t L2

x(ST ) ≤ CET (φ),

and similarly for ~A. Thus

(11.27)
∥∥|φ|2 ~A∥∥

L1
t L2

x(ST )
≤ CTET ( ~A, φ)3.

The term (11.26) is treated in the same way, yielding

(11.28)
∥∥∣∣∣ ~A∣∣∣2 φ∥∥L1

t L2
x(ST )

≤ CTET ( ~A, φ)3.

11.11 Estimates for elliptic terms

We first prove some basic estimates for A0.

Definition. Let Ḣ1(R3) be the Hilbert space such that the Fourier transform
F maps Ḣ1 unitarily onto L2(|ξ|2 dξ).

In other words, we are using the fact that L2(|ξ|2 dξ) ⊂ L1
loc(R3) ⊂ S ′(R3),

and defining
Ḣ1 = F−1

[
L2(|ξ|2 dξ)

]
.

The norm on this space is ‖f‖Ḣ1 =
∥∥|ξ| f̂(ξ)

∥∥
L2 ' ‖∇f‖L2 . Observe that S is

dense in L2(|ξ|2 dξ), hence also in Ḣ1.
Now consider the elliptic equation

(11.29) ∆u− |φ|2 u = −=(φψ).

Lemma 14. If φ ∈ H1 and ψ ∈ L2, then (11.29) has a unique solution u ∈ Ḣ1.
Moreover, u is real valued and satisfies the estimates

(i) ‖∇u‖L2 + ‖uφ‖L2 ≤ C ‖ψ‖L2 ,

(ii) ‖u‖L∞ ≤ C ‖ψ‖L2 (1 + ‖φ‖L8) if φ ∈ L8.

Proof. Assume u ∈ Ḣ1 satisfies (11.29) in the sense of distributions. By defini-
tion, this means that

(11.30)
∫
∇u · ∇v + |φ|2 uv dx = =

∫
vφψ dx

for all v ∈ S. By density, this identity then holds for all v ∈ Ḣ1. Taking v = u,
we have ∫

|∇u|2 + |φu|2 dx = =
∫
uφψ dx

Applying Hölder’s inequality on the right hand side, we get

‖u‖2L2 + ‖uφ‖2L2 ≤ ‖uφ‖L2 ‖ψ‖L2 .
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Setting N = ‖u‖L2 + ‖uφ‖L2 , and using the fact that 2ab ≤ a2 + b2, and hence
(a+ b)2 ≤ 2(a2 + b2), we conclude that

N2 ≤ 2N ‖ψ‖L2 =⇒ N ≤ 2 ‖ψ‖L2 ,

which proves (a). The above argument also shows existence and uniqueness
in Ḣ1. In fact, the left hand side of (11.30) defines an inner product on Ḣ1

whose associated norm is equivalent to the one associated to the standard inner
product

∫
∇u · ∇v dx, since∫
|φ|2 uv dx ≤ ‖φ‖L2 ‖φ‖L6 ‖u‖L6 ‖v‖L6 ≤ C ‖φ‖2H1 ‖u‖Ḣ1 ‖v‖Ḣ1

where we used Hölder’s inequality and (11.1). Moreover, the right hand side of
(11.30) defines a bounded linear functional on Ḣ1, since∣∣∣∣=∫ vφψ dx

∣∣∣∣ ≤ ‖φ‖L3 ‖ψ‖L2 ‖v‖L6 ≤ C ‖v‖Ḣ1 ,

where
C = ‖φ‖

1
2
L2 ‖φ‖

1
2
L6 ‖ψ‖L2 ≤ C ‖φ‖2H1 ‖ψ‖L2 .

By Riesz’ Representation Theorem it follows that there is a unique u ∈ Ḣ1

satisfying (11.30) for all v ∈ Ḣ1. It follows from (11.29) that =u solves the
same equation with ψ = 0, so by the estimate in (a), we must have =u = 0.

We now prove (b). We apply the following estimate (see remark following
the proof) valid on R3 for any ε > 0,

(11.31) ‖u‖L∞ ≤ Cε (‖∆u‖L3/2+ε + ‖u‖L6) .

Taking ε = 1/10 and noting that 3/2 + 1/10 = 8/5 and 5/8 = 1/2 + 1/8,

‖∆u‖L3/2+ε ≤
∥∥|φ|2 u∥∥

L8/5 + ‖φψ‖L8/5 ≤ ‖φu‖L2 ‖φ‖L8 + ‖φ‖L8 ‖ψ‖L2 .

Combining this with (11.31), the Sobolev inequality (11.1) and estimate (a), we
conclude that

‖u‖L∞ ≤ C ‖ψ‖L2 (1 + ‖φ‖L8).

Remark. To prove (11.31), we can apply Sobolev’s Lemma, concluding that

‖u‖L∞ ≤ Cδ

∥∥∥(I −∆)1/4+δ/2u
∥∥∥

L6
(δ > 0).

Now use the following fact (see Stein, Singular integrals and diffentiability prop-
erties of functions, Lemma 2(ii) in Chapter V):

Lemma 15. For s > 0 and 1 ≤ p ≤ ∞,∥∥∥(I −∆)s/2u
∥∥∥

Lp
≤ Cs

(
‖u‖Lp +

∥∥(−∆)s/2u
∥∥

Lp

)
.

Thus, it only remains to see that∥∥∥(−∆)1/4+δ/2u
∥∥∥

L6
≤ Cε ‖∆u‖L3/2+ε ,

but this follows by Sobolev embedding, if we choose δ = 2− 6/(3 + 2ε).
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11.11.1 Estimate for (11.22).

Applying (b) of Lemma 14, we see that

(11.32) ‖A0∂tφ‖L1
t L2

x(ST ) ≤ ‖A0‖L1
t L∞x (ST ) ‖∂tφ‖L∞t L2

x(ST )

≤ CET (φ)2
(
T + ‖φ‖L1

t L8
x(ST )

)
≤ CET (φ)2

(
T + T 7/8 ‖φ‖L8(ST )

)
.

To estimate ‖φ‖L8(ST ), we apply the following corollary to the Strichartz esti-
mates:

Theorem 39. If (q, r) is wave admissible for n = 3, that is, if

2 ≤ q ≤ ∞, 2 ≤ r <∞,
2
q
≤ 1− 2

r
,

then setting s = 3/2− 3/r − 1/q, we have the estimate

‖u‖Lq
t Lr

x(ST ) ≤ C

(
‖u(0)‖Hs + ‖∂tu(0)‖Hs−1 +

∫ T

0

‖�u(t)‖Hs−1 dt

)
.

(Here C increases with T , but since we assume T ≤ 1, this is not an issue.)

Proof. Write u = u0 + v where �u0 = 0 with the same data as u at t = 0, and
�v = �u with vanishing data. Then by Duhamel’s principle,

v(t) = −
∫ t

0

W (t− t′)�u(t′) dt′,

and applying the Strichartz estimate

‖W (t− t0)g‖Lq
t Lr

x(ST ) ≤ C ‖g‖Hs−1 ,

where C is independent of t0, we obtain, using Minkowski’s integral inequality,

‖v‖Lq
t Lr

x(ST ) ≤
∫ ∥∥χ{0<t′<t<T}W (t− t′)�u(t′)

∥∥
Lq

t Lr
x(ST )

dt′

≤
∫ T

0

‖W (t− t′)�u(t′)‖Lq
t Lr

x(ST ) dt
′

≤ C

∫ T

0

‖�u(t′)‖Hs−1 dt
′,

which together with the Strichartz estimate for u0 proves the theorem.

Applying this theorem with q = r = 8, we have s = 1, hence

‖φ‖L8(ST ) ≤ CE0(φ) + C

∫ T

0

‖�φ(t)‖L2 dt.

Combining this with (11.32) gives

(11.33) ‖A0∂tφ‖L1
t L2

x(ST ) ≤ C
√
TET (φ)2

(
E0(φ) +

∫ T

0

‖�φ‖L2 dt

)
.
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11.11.2 Estimate for (11.23).

We have∥∥A2
0φ
∥∥

L1
t L2

x(ST )
≤ T

∥∥A2
0φ
∥∥

L∞t L2
x(ST )

≤ T ‖A0‖2L∞t L6
x(ST ) ‖φ‖L∞t L6

x(ST ) ≤ CT ‖∇A0‖2L∞t L2
x(ST ) ‖∇φ‖L∞t L2

x(ST ) ,

and since ‖∇A0‖L∞t L2
x(ST ) ≤ CET (φ) by Lemma 14(a), we conclude that

(11.34)
∥∥A2

0φ
∥∥

L1
t L2

x(ST )
≤ CTET (φ)2.

11.11.3 Estimate for (11.24).

Fix t. Recall that B0 is the solution of

∆B0 = −=div
(
φ∇φ

)
+ div

(
|φ|2 ~A

)
.

Applying the Sobolev embedding L6/5 ⊂ Ḣ−1, which is the dual of (11.1), we
get

(11.35) ‖B0‖L2 ≤ C
(
‖φ∇φ‖L6/5 +

∥∥φ2 ~A
∥∥

L6/5

)
.

Now ‖φ∇φ‖L6/5 ≤ ‖φ‖L3 ‖∇φ‖L2 , and

‖φ‖L3 ≤ ‖φ‖
1
2
L2 ‖φ‖

1
2
L6 ≤ C ‖φ‖

1
2
L2 ‖∇φ‖

1
2
L2 ,

whence

(11.36) ‖φ∇φ‖L6/5 ≤ CET (φ)2.

On the other hand,∥∥φ2 ~A
∥∥

L6/5 ≤ ‖φ‖2L6

∥∥ ~A∥∥
L2 ≤ C ‖∇φ‖2L2

∥∥ ~A∥∥
L2 .

Combining this with (11.35) and (11.36), and integrating in time, we get

(11.37) ‖B0‖L1
t L2

x(ST ) ≤ CTET (φ)2
(
1 + ET ( ~A)

)
.

11.12 Bilinear estimates

We shall prove the following estimates for the bilinear terms (11.20) and (11.21):∥∥∥|D|−1
Q(∂u, ∂v)

∥∥∥
L1

t L2
x(ST )

≤ C
√
T
(
E0(u) + ‖�u‖L1

t L2
x(ST )

)
(11.38)

×
(
E0(v) + ‖�v‖L1

t L2
x(ST )

)
,∥∥∥Q(|D|−1

∂u, ∂v)
∥∥∥

L1
t L2

x(ST )
≤ C

√
T
(
E0(u) + ‖�u‖L1

t L2
x(ST )

)
(11.39)

×
(
E0(v) + ‖�v‖L1

t L2
x(ST )

)
,
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where Q can be any of the null forms Qij , 1 ≤ i, j ≤ 3.
Let us postpone the proofs of these until the end, and finish the iteration

argument.

11.13 Modification of the iteration space

We were hoping to be able to iterate in the energy space ET , but in view of
(11.33) and the bilinear estimates stated above, we have to modify the space.
Thus, we define a new norm

(11.40) XT (u) = ET (u) + ‖�u‖L1
t L2

x(ST ) ,

and we let XT be the corresponding subspace of ET .
Applying the energy inequality and then using the estimates (11.27), (11.28),

(11.33), (11.34), (11.37), (11.38) and (11.39), we obtain

XT ( ~Aj+1, φj+1) ≤ CE0 + C

∫ T

0

(∥∥� ~Aj+1

∥∥
L2 + ‖�φj+1‖L2

)
dt

≤ CE0 + C

∫ T

0

(∥∥M( ~Aj , φj)
∥∥

L2 +
∥∥N ( ~Aj , φj)

∥∥
L2

)
dt

≤ CE0 + C
√
T
(
1 +XT ( ~Aj , φj)

)
XT ( ~Aj , φj)2,

(11.41)

where E0 is the norm of the initial data (11.2). We assume T ≤ 1 to avoid
having C dependent on T .

The rest of the argument is as usual:

• Assume XT ( ~Aj , φj) ≤ 2CE0 (induction hypothesis).

• Choose T = T (E0) ≤ 1 so small that C
√
T (1 + 2CE0)(2CE0) ≤ 1/2.

Then it follows from (11.41) and the induction hypothesis that also

XT ( ~Aj+1, φj+1) ≤ 2CE0.

Having obtained this bound, the next step is to estimate

XT ( ~Aj+1 − ~Aj , φj+1 − φj)

in order to show that the sequence of iterates is Cauchy in XT . However, by
multilinearity etc., these estimates can be reduced to the estimates we have
already proved (the only exception is for the equation (11.29), but for this it is
easy to prove estimates for differences), so we ignore this issue.
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11.14 Proof of the bilinear estimates

To wrap things up, we prove the estimates (11.38) and (11.39). By Duhamel’s
principle, it suffices to prove the estimates when �u = �v = 0. By Hölder’s
inequality,

‖F‖L1
t L2

x(ST ) ≤
√
T ‖F‖L2(ST ) ≤

√
T ‖F‖L2(R1+3) ,

so we can further reduce to proving the following:

Theorem 40. Suppose �u = �v = 0 on R1+3 with initial data

(u, ∂tu)
∣∣
t=0

= (u0, u1) and (v, ∂tv)
∣∣
t=0

= (v0, v1).

Then ∥∥∥|D|−1
Q(∂u, ∂v)

∥∥∥
L2(R1+3)

≤ C(‖u0‖Ḣ1 + ‖u1‖L2)(‖v0‖Ḣ1 + ‖v1‖L2)(11.42) ∥∥∥Q(|D|−1
∂u, ∂v)

∥∥∥
L2(R1+3)

≤ C(‖u0‖Ḣ1 + ‖u1‖L2)(‖v0‖Ḣ1 + ‖v1‖L2)(11.43)

where Q can be any of the null forms Qij, 1 ≤ i, j ≤ 3.

By the usual argument, it is enough to prove this with u1 = v1 = 0 and

u = eit|D|u0, û(t, ξ) = eit|ξ|û0(ξ),(11.44a)

v = e±it|D|v0, v̂(t, ξ) = e±it|ξ|v̂0(ξ).(11.44b)

The spacetime Fourier transforms are then

(11.45) û(τ, ξ) = δ(τ − |ξ|)û0(ξ), v̂(λ, η) = δ(λ∓ |η|)v̂0(η).

These Fourier transforms are distributions, in fact measures, supported on the
light cone:

√
2δ(τ −|ξ|) dτ dξ [respectively

√
2δ(τ + |ξ|) dτ dξ] is surface measure

on the forward [respectively backward] light cone. These statements are special
cases of the following useful fact:

Proposition 10. Let φ : Rm → R be smooth. Set S = {η : φ(x) = 0}. If
∇φ(x) 6= 0 for all x ∈ S, then

δ
(
φ(x)

)
=

dσ(x)
|∇φ(x)|

,

where dσ is surface measure on the hypersurface S.

Proof. The proof is a simple calculation. Let f ∈ C∞c (Rm). Since

δ = lim
ε→0+

(2ε)−1χ(−ε,ε),

we have ∫
f(η)δ(φ(x)) dx = lim

ε→0+
(2ε)−1

∫
|φ(x)|<ε

f(x) dx,
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so it suffices to show

lim
ε→0+

(2ε)−1

∫
|φ(x)|<ε

f(x) dx =
∫

S

f(x)
dσ(x)
|∇φ(x)|

.

Fix p ∈ S. Relabeling the axes, we may assume ∂mφ(p) 6= 0. Split the coordi-
nates x = (x′, xm), and change variables x→ y = F (x), where

F (x) = (x′, φ(x)).

Then

(11.46) |detDF (x)| = |∂mφ(x)| ,

so by the Inverse Function Theorem, F maps some neighbourhood U of p dif-
feomorphically onto an open set V . Denote by G : V → U the inverse map.
Then, using (11.46),∫

f(x)g(φ(x)) dx =
∫
f(G(y))g(ym)

dy

|∂mφ(G(y))|
.

Apply this with g = (2ε)−1χ(−ε,ε) and let ε→ 0, to obtain, for f ∈ C∞c (U),

∫
f(x)δ(φ(x)) dx = lim

ε→0

∫ [
1
2ε

∫ ε

−ε

f(G(y′, ym))
dym

|∂mφ(G(y′, ym))|

]
dy′

=
∫
f(G(y′, 0))

dy′

|∂mφ(G(y′, 0))|
.

(11.47)

To simplify the notation, we write z = y′. Then G(z, 0) = (z, h(z)), where

φ(z, h(z)) = 0.

Differentiating this, we get

∂iφ(z, h(z)) + ∂mφ(z, h(z))∂ih(z) = 0

for 1 ≤ i ≤ m− 1. It then follows easily that

(11.48)
√

1 + |∇h(z)|2 =
|∇φ(z, h(z))|
|∂mφ(z, h(z))|

.

But S ∩ U is the graph z → (z, h(z)), so surface measure is
√

1 + |∇h(z)|2 dz.
Thus, from (11.47) and (11.48) we get

∫
f(x)δ(φ(x)) dx =

∫
f(z, h(z))

√
1 + |∇h(z)|2

|∇φ(z, h(z))|
dz =

∫
S

f(x)
dσ(x)
|∇φ(x)|

.

This holds for all f ∈ C∞c (U), and since p ∈ S was arbitrary, it follows by a
partition of unity argument that it holds for all f ∈ C∞c (Rm).



138CHAPTER 11. WEEK 12: APPLICATION TO MAXWELL-KLEIN-GORDON

11.15 Proof of (11.42)

We shall prove (11.42) by reducing it to Strichartz’ estimate

(11.49) ‖u‖L4(R1+3) ≤ C ‖u0‖
Ḣ

1
2
.

First note that (∂jf∂jg)̂ = (ξj f̂ )∗ (ηj ĝ) for functions f and g on R3. Using this
fact, we see that the spacetime Fourier transform of |D|−1

Q(∂u, ∂v), Q = Qij ,
is

1
|ξ|

∫
Q(ξ − η, η)û(τ − λ, ξ − η)v̂(λ, η) dλ dη.

The absolute value is bounded by

1
|ξ|

∫
|Q(ξ − η, η)| Û(τ − λ, ξ − η)V̂ (λ, η) dλ dη,

where U and V are defined by

Û(t, ξ) = eit|ξ| |û0(ξ)| , V̂ (t, ξ) = e±it|ξ| |v̂0(ξ)| .

Next observe that |Q(ξ, η)| ≤ |ξ × η|. Since ξ × η = (ξ + η) × η = ξ × (ξ + η),
we have

|ξ × η| ≤

{
|ξ + η| |η| ,
|ξ| |ξ + η| ,

and hence |ξ + η| ≤ |ξ + η| |ξ|
1
2 |η|

1
2 . We conclude that∣∣∣[|D|−1

Q(∂u, ∂v)]̂ (τ, ξ)
∣∣∣ ≤ [|D|

1
2 U |D|

1
2 V ]̂ (τ, ξ).

Therefore,∥∥|D|−1
Q(∂u, ∂v)

∥∥
L2 ≤

∥∥|D| 12 U∥∥
L4

∥∥|D| 12 V ∥∥
L4 ≤ C ‖u0‖Ḣ1 ‖v0‖Ḣ1 ,

where we used (11.49).

11.16 Proof of (11.43)

First some motivational remarks.

Remark. Observe thatQ(|D|−1
∂u, ∂v) is schematically of the form u∇v. How-

ever, the estimate

(11.50) ‖u∇v‖L2 ≤ C ‖u0‖Ḣ1 ‖v0‖Ḣ1

is false (barely). This is related to the false endpoint case of the Strichartz
estimates for n = 3:

(11.51) ‖u‖L2
t (L∞x ) ≤ C ‖u0‖Ḣ1 .
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If this were true, we could write

‖u∇v‖L2 ≤ ‖u‖L2
t (L∞x ) ‖∇v‖L∞t (L2

x) ≤ ‖u0‖Ḣ1 ‖v0‖Ḣ1 ,

proving (11.50). (Incidentally, (11.51) is true for radially symmetric data, hence
so is (11.50).)

The bad case in (11.50) is when u is at low frequency relative to v. If not,
the estimate is true. Indeed, if |ξ| ≥ 1

2 |η| for ξ ∈ supp û0 and η ∈ supp v̂0, then

|η| ≤
√

2 |ξ|
1
2 |η|

1
2 , hence

‖u∇v‖L2 ≤
√

2
∥∥|D| 12 U |D| 12 V ∥∥

L2 ≤ C
∥∥|D| 12 U∥∥

L4

∥∥|D| 12 V ∥∥
L4 ,

and (11.50) follows after applying (11.49).

Let us now prove (11.43) with u1 = v1 = 0:∥∥∥Q(|D|−1
∂u, ∂v)

∥∥∥
L2(R1+3)

≤ C ‖u0‖Ḣ1 ‖v0‖Ḣ1 .

Denote by I(τ, ξ) the spacetime Fourier transform of Q(|D|−1
∂u, ∂v). In view

of (11.45) we have

I(τ, ξ) =
∫
Q(η, ξ − η)
|η|2 |ξ − η|

f(η)g(ξ − η)δ(τ − |η| ∓ |ξ − η|) dη,

where f(η) = |η| û0(η) and g(η) = |η| v̂0(η). Apply Cauchy-Schwarz with respect
to the measure δ(. . . ) dη:

(11.52) |I(τ, ξ)|2 ≤ J±(τ, ξ)
∫
|f(η)|2 |g(ξ − η)|2 δ(τ − |η| ∓ |ξ − η|) dη,

where

J±(τ, ξ) =
∫
|Q(η, ξ − η)|2

|η|4 |ξ − η|2
δ(τ − |η| ∓ |ξ − η|) dη.

Thus, it suffices to prove that

(11.53) sup
τ,ξ

J±(τ, ξ) <∞,

for then the estimate follows after integrating (11.52) with respect to dτ dξ.
Observe that it suffices to prove (11.53) for (τ, ξ) in the complement of the

light cone, which has measure zero in R1+3. Thus we assume |τ | 6= |ξ|.
Switching to polar coordinates η = ρω, where ρ > 0 and ω ∈ S2, and using

the fact that

|Q(η, ξ − η)| ≤ |η × (ξ − η)| = |η| |ξ − η| sin θ,
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where θ = θ(η, ξ − η) is the angle between η and ξ − η, we see that

J±(τ, ξ) ≤
∫

sin2 θ

|η|2
δ(τ − |η| ∓ |ξ − η|) dη

=
∫

S2

∫ ∞

0

sin2 θδ(τ − ρ∓ |ξ − ρω|) dρ dσ(ω),
(11.54)

so it suffices to show that the last integral is uniformly bounded for |τ | 6= |ξ|.
We consider two cases depending on the choice of sign in J±.

Case I. Estimate for J+. δ(τ −|η|− |ξ − η|) dη is a measure on the ellipsoid

E(τ, ξ) = {η : |η|+ |ξ − η| = τ}.

This is empty if |ξ| > τ , so we may assume

(11.55) |ξ| < τ.

Fix such τ , ξ, as well as ω ∈ S2. Then 2

(11.56) η = ρω ∈ E(τ, ξ) ⇐⇒ τ − ρ = |ξ − ρω|

⇐⇒ (τ − ρ)2 = |ξ − ρω|2 ⇐⇒ ρ =
τ2 − |ξ|2

2(τ − ξ · ω)
.

Thus, applying Proposition 10 to the function

ρ→ τ − ρ− |ξ − ρω|

(smooth near its zero set) we get after a simple calculation,

(11.57) δ(τ − ρ− |ξ − ρω|) dρ =
2ρ(τ − ρ)
τ2 − |ξ|2

δ

(
ρ− τ2 − |ξ|2

2(τ − ξ · ω)

)
dρ.

On the other hand,

sin2 θ = 1− cos2 θ ≤ 2(1− cos θ)

=
2

|η| |ξ − η|
[|η| |ξ − η| − η · (ξ − η)] =

τ2 − |ξ|2

|η| |ξ − η|
,

(11.58)

where we used the identity τ = |η|+ |ξ − η| to get the last equality.
Combining (11.54), (11.57) and (11.58) gives

J+(τ, ξ) ≤
∫

S2

∫ ∞

0

2δ

(
ρ− τ2 − |ξ|2

2(τ − ξ · ω)

)
dρ dσ(ω) = 2 Area(S2).

2Note that (τ − ρ)2 = |ξ − ρω|2 implies τ = ρ+ |ξ − ρω| or τ = ρ− |ξ − ρω|; however, the
second alternative can be discounted, since it implies |τ | ≤ |ξ|, contradicting (11.55).
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Case II. Estimate for J−. δ(τ − |η|+ |ξ − η|) dη is a measure on

H(τ, ξ) = {η : |η| − |ξ − η| = τ}

(one sheet of a hyperboloid). H(τ, ξ) is empty if |ξ| < |τ |, so we may assume

|τ | < |ξ| .

Fix such τ , ξ, as well as ω ∈ S2. Then reasoning as in the previous case,

(11.59) η = ρω ∈ H(τ, ξ) ⇐⇒ ρ− τ = |ξ − ρω| ⇐⇒ ρ =
τ2 − |ξ|2

2(τ − ξ · ω)
.

Applying Proposition 10 to the function

ρ→ τ − ρ+ |ξ − ρω|

then gives

(11.60) δ(τ − ρ+ |ξ − ρω|) dρ =
2ρ(ρ− τ)
|ξ|2 − |ξ|2

δ

(
ρ− τ2 − |ξ|2

2(τ − ξ · ω)

)
dρ.

On the other hand,

sin2 θ = 1− cos2 θ ≤ 2(1 + cos θ)

=
2

|η| |ξ − η|
[|η| |ξ − η|+ η · (ξ − η)] =

|ξ|2 − τ2

|η| |ξ − η|
,

(11.61)

where we used the identity τ = |η| − |ξ − η| to get the last equality.
Combining (11.54), (11.60) and (11.61) gives

J−(τ, ξ) ≤
∫

S2

∫ ∞

0

2δ

(
ρ− τ2 − |ξ|2

2(τ − ξ · ω)

)
dρ dσ(ω) ≤ 2 Area(S2).

This concludes the proof.


