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Abstract. We give an extension of the a priori estimate, obtained in
[8], for a solution of the inhomogeneous wave equation in Rn×R, where
n = 2 or n = 3. As an application, we study the asymptotic behavior
as t → ±∞ of solutions to systems of semilinear wave equations. The
discrepancy of the speeds of propagation may make a significant differ-
ence from the case of common propagation speeds. (See also Theorem
3.3 and 3.4). Whether such a phenomenon occurs or not depends on the
type of the interaction determined by the nonlinearities.

1. Introduction

In a previous paper [8], we have derived an a priori estimate for a solution
of the inhomogeneous wave equation in Rn × R with n = 2 or n = 3, and
studied the asymptotic behavior of solutions to the system

∂2
t u − Δu = |v|p in Rn × R,

∂2
t v − Δv = |u|q in Rn × R,

where ∂t = ∂/∂t and 1 < p ≤ q. The aim of this paper is to extend the
a priori estimate so that one can treat more general systems of semilinear
wave equations:

∂2
t ui − c2

i Δui = F i(u) in Rn × R, (1.1)
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where 1 ≤ i ≤ m, u(x, t) = (u1(x, t), · · · , um(x, t)) is an unknown Rm-valued
function, ci are positive numbers, and either n = 2 or n = 3. Besides, we
assume that F i ∈ C1(Rm) satisfies

F i(0) =
∂F i

∂uj
(0) = 0 for 1 ≤ i, j ≤ m.

We will require some other specific conditions on F i later on.
To show the global existence of solutions of the Cauchy problem for (1.1),

we need to evaluate an operator, associated with the inhomogeneous wave
equation, defined by

L+
c (F )(x, t) =

1
2π

∫ t

0
ds

∫ t−s

0

ρdρ√
(t − s)2 − ρ2

∫
|ω|=1

F (x+ cρω, s)dSω (1.2)

for (x, t) ∈ R2 × [0,∞), and by

L+
c (F )(x, t) =

1
4π

∫ t

0
(t − s)ds

∫
|ω|=1

F (x + c(t − s)ω, s)dSω (1.3)

for (x, t) ∈ R3 × [0,∞), where F ∈ C(Rn × [0,∞)) and c > 0. In fact,
L+

c (F )(x, t) satisfies the inhomogeneous wave equation

∂2
t u − c2Δu = F in Rn × (0,∞), (1.4)

together with the zero initial data, if ∂α
x F ∈ C(Rn × [0,∞)) for |α| ≤ 2. For

the operator, we obtain the following basic estimate.

Theorem 1.1. Let n = 2 or n = 3. Let F ∈ C(Rn × [0,∞)) and let c, a,
ν and μ be positive numbers. Then we have

|L+
c (F )(x, t)| ≤ CM+

ν,μ(F, a)(1 + r + t)−
n−1

2 Φn(r, ct; ν) (1.5)

for (x, t) ∈ Rn × [0,∞) with r = |x|, where C is a constant depending only
on c, a, ν and μ. In addition,

M+
ν,μ(F, a) = sup

(y,s)∈Rn×[0,∞)
{|y|n−1

2 (1 + |y| + s)1+ν(1 + ||y| − as|)1+μ|F (y, s)|}.

Moreover, Φn(r, t; ν) is defined by

Φ3(r, t; ν) = (1 + |r − t|)−ν (1.6)

and

Φ2(r, t; ν) =
{

(1 + |r − t|)−ν if −∞ < t ≤ r

(1 + t − r)−
1
2 (1 + t − r)[

1
2
−ν]+ if r < t

.

Here we have set [b]+ = max{b, 0} for b ∈ R with b �= 0,

A[0]+ = 1 + log A for A ≥ 1.
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Remark. If the system (1.1) has the common propagation speeds, i.e.,
c1 = · · · = cm, it suffices to show (1.5) for a = c. However, in general, we
need to derive the estimate for arbitrary a.

Next we turn our attention to the asymptotic behavior of solutions of (1.1).
In this paper, we call the following fact “small data nonlinear scattering”:
Let u−(x, t) = (u1

−(x, t), · · · , um
− (x, t)) be the classical solution of the Cauchy

problem for the homogeneous wave equation

∂2
t ui − c2

i Δui = 0 in Rn × R, (1.7)

satisfying

|∂α
x,tu

i
−(x, t)| ≤ ε(1 + |x| + |t|)−n−1

2 Φn(r, ci|t|; νi) (1.8)

for some ε > 0 and νi > 0, where |α| ≤ 1. Then for sufficiently small ε, there
is uniquely a C1-solution u(x, t) of (1.1) such that

|||(ui − ui
−)(t)|||

e,i
≤ Cε(1 + |t|)−ρi for t ≤ 0 (1.9)

for some ρi > 0 and a positive constant C. Here ||| · |||e,i stands for the energy
norm, namely

|||w(t)|||2e,i =
1
2

∫
Rn

(|∂tw(x, t)|2 + c2
i |∂xw(x, t)|2)dx for 1 ≤ i ≤ m. (1.10)

Furthermore, there exists uniquely a C1-solution u+(x, t) = (u1
+(x, t), . . . ,

um
+ (x, t)) of the homogeneous wave equations (1.7) satisfying

|||(ui − ui
+)(t)|||

e,i
≤ Cε(1 + t)−ρi for t ≥ 0. (1.11)

In other words, the scattering operator for the system (1.1):

(u−(0), ∂tu−(0)) �−→ (u+(0), ∂tu+(0)) (1.12)

is defined on a dense set of a neighborhood of 0 in the energy space.
To prove that “small data nonlinear scattering” happens for the system

(1.1) under sutable assumptions on F i, it is not enough to study L+
c (F )(x, t).

We need to modify the operator as follows:

Lc(F )(x, t)=
1
2π

∫ t

−∞
ds

∫ t−s

0

ρdρ√
(t − s)2 − ρ2

∫
|ω|=1

F (x + cρω, s)dSω (1.13)

for (x, t) ∈ R2 × R, and

Lc(F )(x, t) =
1
4π

∫ t

−∞
(t − s)ds

∫
|ω|=1

F (x + c(t − s)ω, s)dSω (1.14)

for (x, t) ∈ R3 × R.
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Since Lc(F )(x, t) includes integral over unbounded region, we are forced
to require that the solutions decay fast as |x|+ |t| → ∞. More precisely, we
have to consider such solutions behaves as in (1.8) with νi > 0. But it is not
the case for the Cauchy problem. (See e.g. [2]).

When n = 3, we can evaluate Lc(F )(x, t) by almost the same way as
L+

c (F )(x, t). On the other hand, when n = 2, we need to add an essentially
extra estimate (for J2 defined in (2.24) below) which is not appeared in the
Cauchy problem. This is due to the lack of the strong Huygens’ principle.
(See also the introductions in [12] and [15]).

The following a priori estimate is an extension of [8], Theorem 1.1.

Theorem 1.2. Let n = 2 or n = 3. Let F ∈ C(Rn ×R) and let c, a and ν
be positive numbers. Then we have

|Lc(F )(x, t)| ≤ CMν,μ(F, a)(1 + r + |t|)−n−1
2 Φn(r, ct; ν)(1 + |r − ct|)[−μ]+

(1.15)
for (x, t) ∈ Rn × R with r = |x|, provided either μ > 0 or t ≤ 0 and
μ > −(n − 1)/2, where C is a constant depending only on c, a, ν and μ.
Here

Mν,μ(F, a) = sup
(y,s)∈Rn×R

{|y|n−1
2 (1 + |y| + |s|)1+ν(1 + ||y| − a|s||)1+μ|F (y, s)|}.

(1.16)
Moreover, Φn(r, t; ν) is defined by (1.6).

Remark. When c = a = 1 and μ > 0, the estimate (1.15) coincides with
(1.4) in [8], since [−μ]+ = 0 for μ > 0.

The paper is organaized as follows. In Section 2 we prove Theorems 1.1
and 1.2 by strengthening a little the approach of [8]. In Section 3 we state
our results for the system of semilinear wave equations (1.1). Fianlly, in
Section 4 we prove theorems given in the previous section by making use of
Theorems 1.1 and 1.2.

The authors would like to thank the referee for stimulative comments. The
first author is greatfull to Dipartimento di Matematica Pura ed Applicata,
Università degli Studi dell’Aquila, where he was a visitor during the period
of this work was prepared.

2. Basic estimates

In this section we shall prove Theorems 1.1 and 1.2. We begin by showing
the following identity concerning the spherical mean.
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Lemma 2.1. Let b(λ) be a continuous function of λ ∈ [0,∞). Let n ≥ 2.
Then we have∫

|ω|=1

b(|x + ρω|)
|x + ρω|γ dSω =

23−nωn−1

(rρ)n−2

∫ ρ+r

|ρ−r|
λ1−γb(λ)h(λ, ρ, r)dλ (2.1)

for 0 ≤ γ ≤ 1, ρ > 0 and x ∈ Rn with r = |x| > 0, where ωk = 2πk/2/Γ(k/2),
Γ(s) being the Gamma function, and h(λ, ρ, r) is defined by

h(λ, ρ, r) = (λ2 − (ρ − r)2)
n−3

2 ((ρ + r)2 − λ2)
n−3

2 (2.2)

= (ρ2 − (λ − r)2)
n−3

2 ((λ + r)2 − ρ2)
n−3

2 .

Proof. It is well known that (2.1) holds when γ = 0. For the proof see [14]
(or [11], Lemma 2.3). Therefore, we have for any positive integer k∫

|ω|=1

b(|x + ρω|)
((1/k) + |x + ρω|)γ

dSω =
23−nωn−1

(rρ)n−2

∫ ρ+r

|ρ−r|

λb(λ)h(λ, ρ, r)
((1/k) + λ)γ

dλ. (2.3)

Notice that the right hand side of (2.3) is bounded with respct to k, so is the
left hand side. Now, applying Beppo Levi’s theorem, we obtain (2.1) and
the proof is complete. �

We are now in a position to estimate the operator Lc(F )(x, t) given by
(1.13) and (1.14). A scaling argument shows that it suffices to consider it for
c = 1. Indeed, since Lc(F )(x, t) = L1(Fc)(x, ct) with Fc(x, t) = c−2F (x, t/c),
(1.15) with c = 1 will give us

|Lc(F )(x, t)| ≤ CMν,μ(Fc, a/c)(1+ r + |ct|)−n−1
2 Φn(r, ct; ν)(1+ |r− ct|)[−μ]+ ,

(2.4)
hence, (1.15) holds for any c > 0. If we set

zν,μ(λ, s; a) = (1 + |s| + λ)1+ν(1 + |λ − a|s||)1+μ (2.5)

for a > 0, ν > 0 and μ > −(n − 1)/2, we have from (1.16)

Mν,μ(F, a) = sup
(y,s)∈Rn×R

{|y|n−1
2 zν,μ(|y|, s; a)|F (y, s)|},

hence,∫
|ω|=1

|F (x + ρω, s)|dSω ≤ Mν,μ(F, a)
∫
|ω|=1

dSω

λ
n−1

2 zν,μ(λ, s; a)
(2.6)

with λ = |x + ρω|. Applying Lemma 2.1 with γ = (n − 1)/2 to the integral
on the right hand side, we get∫

|ω|=1

dSω

λ
n−1

2 zν,μ(λ, s; a)
= 23−nωn−1(rρ)2−n

∫ ρ+r

|ρ−r|

λ
3−n

2 h(λ, ρ, r)
zν,μ(λ, s; a)

dλ. (2.7)
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Case 1: n = 2. If we set

I(r, t) =
2
π

∫ t

−∞
ds

∫ t−s

0

ρ√
(t − s)2 − ρ2

dρ

∫ ρ+r

|ρ−r|

λ1/2h(λ, ρ, r)
zν,μ(λ, s; a)

dλ, (2.8)

it follows from (1.13), (2.6) and (2.7) with n = 2 that

|L1(F )(x, t)| ≤ Mν,μ(F, a) × I(r, t). (2.9)

Changing the order of the integrals, we get

I(r, t) = I1(r, t) + I2(r, t), (2.10)

where we have set

I1(r, t) =
∫ t

−∞
ds

∫ t−s+r

|t−s−r|

1
zν,μ(λ, s; a)

K1(λ, r, t − s)dλ, (2.11)

I2(r, t) =
∫ t−r

−∞
ds

∫ t−s−r

0

1
zν,μ(λ, s; a)

K2(λ, r, t − s)dλ. (2.12)

Here

K1(λ, r, t) =
2
√

λ

π

∫ t

|λ−r|

ρh(λ, ρ, r)√
t2 − ρ2

dρ for |t − r| < λ < t + r, (2.13)

K2(λ, r, t) =
2
√

λ

π

∫ λ+r

|λ−r|

ρh(λ, ρ, r)√
t2 − ρ2

dρ for 0 < λ < t − r. (2.14)

We introduce new variables by

α = λ + s and β = λ − s. (2.15)

Then we have from (2.5)

zν,μ(λ, s; a) = (1 + α)1+ν(1 + |Ψ+(α, β)|)1+μ for s ≥ 0,

zν,μ(λ, s; a) = (1 + β)1+ν(1 + |Ψ−(α, β)|)1+μ for s ≤ 0,

where Ψ±(α, β) are defined by

Ψ+(α, β) =
1 − a

2
α +

1 + a

2
β (2.16)

Ψ−(α, β) =
1 + a

2
α +

1 − a

2
β. (2.17)

Therefore, if we denote by I±1 and I±2 the integrals over ±s ≥ 0 of I1 and I2,
respectively, then we have

I+
1 (r, t) = 1

2χ(t)
∫ t+r

|t−r|
(1 + α)−1−νdα

∫ α

r−t
(1 + |Ψ+(α, β)|)−1−μK1dβ,

(2.18)
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I−1 (r, t) = 1
2

∫ t+r

t−r
dα

∫ ∞

α∨|r−t|
(1 + β)−1−ν(1 + |Ψ−(α, β)|)−1−μK1dβ, (2.19)

I+
2 (r, t) = 1

2χ(t − r)
∫ t−r

0
(1 + α)−1−νdα

∫ α

−α
(1 + |Ψ+(α, β)|)−1−μK2dβ,

(2.20)

I−2 (r, t) = 1
2

∫ t−r

−∞
dα

∫ ∞

|α|
(1 + β)−1−ν(1 + |Ψ−(α, β)|)−1−μK2dβ, (2.21)

where χ(t) = 1 for t > 0, χ(t) = 0 for t ≤ 0, and we will use the following
notations in what follows repeatedly:

a ∨ b = max{a, b}, [c]+ = c ∨ 0, A[0]+ = 1 + log A, (2.22)

for a, b, c ∈ R with c �= 0 and A ≥ 1. Moreover we divide I−2 into two
integrals as follows. I−2 = J1 + J2, where

J1(r, t) = 1
2χ(t − r)

∫ t−r

0
(1 + β)−1−νdβ

∫ β

−β
(1 + |Ψ−(α, β)|)−1−μK2dα

(2.23)

J2(r, t) = 1
2

∫ ∞

|r−t|
(1 + β)−1−νdβ

∫ t−r

−β
(1 + |Ψ−(α, β)|)−1−μK2dα. (2.24)

Then we have

I1 = I+
1 + I−1 , I2 = I+

2 + J1 + J2. (2.25)

The following estimates for K1 and K2 are part of Lemma 4.1 in [8].

Lemma 2.2. Let t− r < α < t + r and β > r− t with (2.15). Then it holds
that

K1(λ, r, t − s) ≤
√

α√
β + r + t

√
α + r − t

for α ≥ β, (2.26)

K1(λ, r, t − s) ≤
√

β√
β + r + t

√
α + r − t

for α ≤ β (2.27)

K1(λ, r, t − s) ≤ 1√
α + r − t

. (2.28)

Let −β < α < t − r. Then it holds that

K2(λ, r, t − s) ≤
√

α√
t − r − α

√
t + r + β

for α ≥ β, (2.29)

K2(λ, r, t − s) ≤
√

β√
t − r − α

√
t + r + β

for α ≤ β (2.30)
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K2(λ, r, t − s) ≤ 1√
t − r − α

. (2.31)

The following elementary inequalities are the same ones as in Lemma 3.3
of [8].

Lemma 2.3. Let κ and γ be real numbers such that κ > 0, 0 ≤ γ < 1 and
κ + γ > 1. Then we have∫ ∞

|b|
(1 + σ)−κ(d + σ)−γdσ ≤ C(1 + |b|)−κ−γ+1 for d ≥ −|b|. (2.32)

Moreover, we have∫ ∞

b
(1+|σ|)−κ(d+σ)−γdσ ≤ C(1+|d|)−γ(1+|d|)[1−κ]+ for d ≥ −b, (2.33)

or equivalently,∫ b

−∞
(1+ |σ|)−κ(d−σ)−γdσ ≤ C(1+ |d|)−γ(1+ |d|)[1−κ]+ for d ≥ b, (2.34)

Here C are constants depending only on κ and γ.

From (2.33) and (2.34) we easily have the following.

Corollary 2.1. Let μ > −1/2. Then we have∫ ∞

t−r
(1 + |Ψ−(α, β)|)−1−μ(α + r − t)−

1
2 dα (2.35)

≤ C(1 + |Ψ−(t − r, β)|)− 1
2 (1 + |Ψ−(t − r, β)|)[−μ]+

and ∫ t−r

−∞
(1 + |Ψ−(α, β)|)−1−μ(t − r − α)−

1
2 dα (2.36)

≤ C(1 + |Ψ−(t − r, β)|)− 1
2 (1 + |Ψ−(t − r, β)|)[−μ]+

for r > 0, t ∈ R and β ≥ 0. Moreover,∫ ∞

−b
(1 + |Ψ+(α, β)|)−1−μ(t + r + β)−

1
2 dβ ≤ C(1 + r + t)−

1
2 (2.37)

for r > 0, t > 0, 0 ≤ α ≤ r + t and b ≤ r + t, provided μ > 0. Here C are
constants depending only on μ and a. Besides, Ψ± are given by (2.16) and
(2.17).
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Proof. First consider (2.35). By I we denote the integral. Changing the
variable α by σ = Ψ−(α, β), we have

I =
( 2
1 + a

) 1
2

∫ ∞

Ψ−(t−r,β)
(1 + |σ|)−1−μ(σ − Ψ−(t − r, β))−

1
2 dσ.

Therefore, we get (2.35), making use of (2.33). Analogously we obtain (2.36)
by (2.34) with b = d = Ψ−(t − r, β).

Next consider (2.37). By I we denote the integral. Then we have as above

I =
( 2
1 + a

) 1
2

∫ ∞

Ψ+(α,−b)
(1 + |σ|)−1−μ(σ + Ψ+(−α, t + r))−

1
2 dσ.

Since

Ψ+(α,−b) + Ψ+(−α, t + r) =
1 + a

2
(t + r − b) ≥ 0 for b ≤ t + r,

one can apply (2.33) to the integral on the right hand side. Hence, we get

I ≤ C(1 + Ψ+(−α, t + r))−
1
2 , if μ > 0.

Moreover,

Ψ+(−α, r + t) ≥ (min{1, a})(r + t) for 0 ≤ α ≤ r + t.

Therefore, we obtain (2.37). �
We will also make use of another elementary iniquality.

Lemma 2.4. Let κ and γ be positive numbers with κ+γ > 1. Then we have∫ ∞

|b|
(1 + σ)−κ(1 + |σ − d|)−γdσ ≤ C(1 + |b|)−κ(1 + |b| + |d|)[1−γ]+ (2.38)

for b, d ∈ R. Moreover, if μ ≤ 0 and κ + γ + μ > 1, we have∫ ∞

|b|
(1 + σ)−κ(1 + σ)[−μ]+(1 + |σ − d|)−γdσ (2.39)

≤ C(1 + |b|)−κ(1 + |b| + |d|)[−μ]+(1 + |b| + |d|)[1−γ]+

for b, d ∈ R. Here C are constants depending only on κ, γ and μ.

Proof. First we shall show (2.39). If we set

I1 =
∫ ∞

|b|
χ(|σ − d| − σ

2
)(1 + σ)−κ(1 + σ)[−μ]+(1 + |σ − d|)−γdσ,

I2 =
∫ ∞

|b|
(1 − χ(|σ − d| − σ

2
))(1 + σ)−κ(1 + σ)[−μ]+(1 + |σ − d|)−γdσ,
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we see that the left hand side is estimated by I1 + I2, where χ(t) = 1 for
t > 0, χ(t) = 0 for t ≤ 0. When μ < 0, it is easy to see that

I1 ≤ C

∫ ∞

|b|
(1 + σ)−κ−γ−μdσ ≤ C(1 + |b|)−κ−γ+1(1 + |b|)[−μ]+ . (2.40)

If μ = 0, then I1 is estimated by

C

∫ ∞

|b|
(1 + σ)−κ−γ(1 + log(1 + σ))dσ ≤ C(1 + |b|)−κ−γ+1(1 + log(1 + |b|)),

(2.41)
by integration by parts. Since |σ − d| ≤ σ/2 is equivalent to 2d/3 ≤ σ ≤ 2d,
we see that I2 = 0 if d ≤ 0 and that for d > 0

I2 ≤ C(1 + |b|)−κ(1 + |d|)[−μ]+

∫ 2d

2
3
d

(1 + |σ − d|)−γdσ

≤ C(1 + |b|)−κ(1 + |d|)[−μ]+(1 + |d|)[1−γ]+ ,

which gives (2.39) together with (2.40) and (2.41).
Analogously to the proof of (2.39) for the case when μ < 0, we can prove

(2.38). The proof is complete. �
We are now in a position to estimate the integrals in (2.25). The basic

estimate (1.15) for t ≤ 0 is implied by the following.

Proposition 2.1. Let ν > 0 and μ > −1/2. Then we have

I−1 (r, t) + J2(r, t) ≤ C(1 + |r − t|)− 1
2
−ν(1 + |r − t|)[−μ]+ (2.42)

for r > 0 and t ∈ R.

Proof. We first claim that

I−1 +J2 ≤ C

∫ ∞

|r−t|
(1+β)−1−ν(1+ |Ψ−(t−r, β)|)− 1

2 (1+ |Ψ−(t−r, β)|)[−μ]+dβ,

(2.43)
where Ψ−(α, β) is given by (2.17). Indeed, it follows from (2.19) and (2.28)
that

I−1 ≤ 1
2

∫ ∞

|r−t|
(1 + β)−1−νdβ

∫ ∞

t−r
(1 + |Ψ−(α, β)|)−1−μ(α + r − t)−

1
2 dα.

Hence, we have (2.43) for I−1 , making use of (2.35). Analogously we get the
estimate for J2 from (2.24) and (2.31), making use of (2.36) instead of (2.35).

If a = 1, we have easily (2.42) from (2.43), since (2.17) implies Ψ−(t −
r, β) = t − r. On the contrary, suppose that a �= 1. Then we set for
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convenience
d(r, t) =

1 + a

1 − a
(r − t), (2.44)

so that

|Ψ−(t − r, β)| =
|1 − a|

2
|β − d(r, t)|. (2.45)

Since d(r, t) is equivalent to |r − t|, we get by (2.43)

I−1 + J2 ≤ C

∫ ∞

|r−t|
(1 + β)−1−ν(1 + β)[−μ]+(1 + |β − d(r, t)|)− 1

2 dβ.

Since μ > −1/2, making use of Lemma 2.4 with b = r − t and d = d(r, t),
we arraive at (2.42). This completes the proof. �

In what follows we shall deal with the case where

ν > 0, μ > 0 and t > 0. (2.46)

First we shall prove the following.

Proposition 2.2. Suppose that (2.46) is satisfied. Then we have

I+
1 (r, t) + I−1 (r, t) + J2(r, t) ≤ C(1 + r + t)−

1
2 (1 + |r − t|)−ν . (2.47)

Proof. First consider I+
1 . It follows from (2.18) and (2.26) that

I+
1 ≤ 1

2

∫ t+r

|t−r|
(1+α)−

1
2
−ν(α+r−t)−

1
2 dα

∫ ∞

r−t
(1+|Ψ+(α, β)|)−1−μ(r+t+β)−

1
2 dβ.

Making use of (2.37) with b = t − r, we have

(1 + r + t)
1
2 I+

1 ≤ C

∫ ∞

|t−r|
(1 + α)−

1
2
−ν(α + r − t)−

1
2 dα.

Therefore, we get (2.47) for I+
1 by (2.32) with b = d = r − t.

Next we shall deal with I−1 and J2. If either 0 < r ≤ 1 or t ≥ 2r, then it
follows from Proposition 2.1 with μ > 0 that

I−1 + J2 ≤ C(1 + r + t)−
1
2
−ν , (2.48)

because 1 + r + t ≤ C(1 + |r − t|) for such (r, t). Hence, we assume in the
following that

r ≥ 1 and 0 < t ≤ 2r. (2.49)
If a = 1, then (2.47) with I+

1 = 0 follows from [8], Lemma 4.3. Therefore,
we also suppose that a �= 1. First we shall show that

I−1 +J2 ≤ C

∫ ∞

|r−t|
(1+β)−

1
2
−ν(β + r + t)−

1
2 (1+ |Ψ−(t− r, β)|)− 1

2 dβ. (2.50)



452 H. Kubo and K. Kubota

It follows from (2.19) and (2.27) that

I−1 ≤ 1
2

∫ ∞

|r−t|
(1+β)−

1
2
−ν(β+r+t)−

1
2 dβ

∫ ∞

t−r
(1+|Ψ−(α, β)|)−1−μ(α+r−t)−

1
2 dα.

Since μ > 0, we have (2.50) for I−1 , making use of (2.35). Analogusly we get
the estimate for J2 from (2.24) and (2.30), making use of (2.36) instead of
(2.35). By virtue of (2.45) and (2.49), we see from (2.50) that

I−1 + J2 ≤ C(1 + r + t)−
1
2

∫ ∞

|r−t|
(1 + β)−

1
2
−ν(1 + |β − d(r, t)|)− 1

2 dβ.

Making use of (2.38), we obtain (2.47) with I+
1 = 0. The proof is complete.

�
Finally we deal with I+

2 and J1 which are involved to integrals over regions
near the origin.

Proposition 2.3. Suppose that μ > 0, ν > 0 and t > r. Then we have

I+
2 (r, t) + J1(r, t) ≤ C(1 + r + t)−

1
2 (1 + t − r)−

1
2 (1 + t − r)[

1
2
−ν]+ . (2.51)

Proof. First consider I+
2 . It follows from (2.20) and (2.29) that

I+
2 ≤ 1

2

∫ t−r

0
(1+α)−

1
2
−ν(t−r−α)−

1
2 dα

∫ ∞

−α
(1+|Ψ+(α, β)|)−1−μ(t+r+β)−

1
2 dβ.

Hence, by (2.37) we get

I+
2 ≤ C(1 + r + t)−

1
2

∫ t−r

−∞
(1 + |α|)− 1

2
−ν(t − r − α)−

1
2 dα.

Therefore, we obtain (2.51) for I+
2 , making use of (2.34).

Next consider J1. It follows from (2.23) and (2.30) that

J1 ≤ 1
2

∫ t−r

0
(1+|β|)− 1

2
−ν(t+r+β)−

1
2 dβ

∫ β

−β
(1+|Ψ−(α, β)|)−1−μ(t−r−α)−

1
2 dα.

Since ∫ ∞

−∞
(1 + |Ψ−(α, β)|)−1−μdα =

4
(1 + a)μ

, (2.52)

we have

J1 ≤ C

∫ t−r

0
(1 + |β|)− 1

2
−ν(t + r + β)−

1
2 (t − r − β)−

1
2 dβ.

If t + r ≤ 1, then

J1 ≤ C

∫ t−r

0
β− 1

2 (t − r − β)−
1
2 dβ = Cπ,
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which yields (2.51) for J1. If t + r ≥ 1, we have

(1 + r + t)
1
2 J1 ≤ C

∫ t−r

−∞
(1 + |β|)− 1

2
−ν(t − r − β)−

1
2 dβ.

Therefore, we obtain (2.51) for J1, making use of (2.35). The proof is com-
plete. �
Case 2: n = 3. If we set

I(r, t) =
1
2r

∫ t

−∞
ds

∫ t−s+r

|t−s−r|

1
zν,μ(λ, s; a)

dλ, (2.53)

it follows from (1.14), (2.6) and (2.7) with n = 3 and ρ = t − s that

|L1(F )(x, t)| ≤ Mν,μ(F, a) × I(r, t). (2.54)

By I±(r, t) we denote the integrals over ±s ≥ 0 of I(r, t), respectively, so
that I(r, t) = I+(r, t) + I−(r, t). Then we have

I+(r, t) =
1
4r

χ(t)
∫ t+r

|t−r|
(1 + α)−1−νdα

∫ α

r−t
(1 + |Ψ+(α, β)|)−1−μdβ (2.55)

I−(r, t) =
1
4r

∫ t+r

t−r
dα

∫ ∞

α∨|r−t|
(1 + β)−1−ν(1 + |Ψ−(α, β)|)−1−μdβ, (2.56)

where χ(t) = 1 for t > 0, χ(t) = 0 for t ≤ 0 and Ψ± are given by (2.16) and
(2.17).

The estimate (1.15) for t ≤ 0 is implied by the following.

Proposition 2.4. Let ν > 0 and μ > −1. Then we have

I+(r, t) + I−(r, t) ≤ C(1 + |r − t|)−1−ν(1 + |r − t|)[−μ]+ (2.57)

for r > 0 and t ∈ R, provided either μ > 0 or t ≤ 0.

Proof. First consider I+. We may suppose μ > 0 and t > 0. Then it follows
from (2.16) that ∫ ∞

−∞
(1 + |Ψ+(α, β)|)−1−μdβ =

4
(1 + a)μ

. (2.58)

Hence, by (2.55) we get

I+ ≤ C(1 + |r − t|)−1−ν 1
r

∫ t+r

t−r
dα,

which yields (2.57) for I+.
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Next consider I−. If a = 1, since Ψ−(α, β) = α, it follows from (2.56)
that

I− ≤ 1
4r

∫ t+r

t−r
(1 + |α|)−1−μdα

∫ ∞

|r−t|
(1 + β)−1−νdβ.

Moreover, we see from the proof of [8], Lemma 4.4 that

1
r

∫ t+r

t−r
(1 + |α|)−1−μdα ≤ C(1 + r + |t|)−1(1 + r + |t|)[−μ]+ (2.59)

for r > 0, t ∈ R and μ > −1. Therefore, we obtain (2.57) for I−.
In what follows we suppose that a �= 1. Set d(α) = a+1

a−1α, so that

|Ψ−(α, β)| =
|1 − a|

2
|β − d(α)|. (2.60)

Then it follows from (2.56) that

I− ≤ C
1
r

∫ t+r

t−r
dα

∫ ∞

|r−t|
(1 + β)−1−ν(1 + |β − d(α)|)−1−μdβ. (2.61)

If μ > 0, we easily obtain (2.57) for I−.
Suppose that −1 < μ ≤ 0 and t ≤ 0, so that |r − t| = r + |t|. Then we

have |d(α)| ≤ C|r − t| for t − r ≤ α ≤ t + r. Therefore, for such α, making
use of (2.38), we get∫ ∞

|r−t|
(1+β)−1−ν(1+ |β−d(α)|)−1−μdβ ≤ C(1+ |r− t|)−1−ν(1+ |r− t|)[−μ]+

Therefore, by (2.61) we obtain (2.57) for I−. The proof is complete. �
Finally we shall prove the following.

Proposition 2.5. Let ν > 0 and μ > 0. Suppsoe that (2.49) is satisfied.
Then we have

I+(r, t) + I−(r, t) ≤ C(1 + r + t)−1(1 + |r − t|)−ν . (2.62)

Proof. First consider I+. Let t > 0. Then it follows from (2.55) and (2.58)
that

I+ ≤ C
1
r

∫ ∞

|r−t|
(1 + α)−1−νdα.

Hence, by (2.49) we easily obtain (2.62) for I+.
Next consider I−. It follows from (2.56) and (2.52) that

I− ≤ C
1
r

∫ ∞

|r−t|
(1 + β)−1−νdβ,

which gives (2.62) for I− as above. The proof is complete. �
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End of proof of Theorem 1.2. Case 1: n = 2. If t ≤ 0 and μ > −1/2,
we have (1.15) with c = 1 from (2.9), (2.10), (2.25) and Proposition 2.1. Let
(2.46) hold. Then we obtain the estimate from Propositions 2.2 and 2.3.

Case 2: n = 3. If t ≤ 0 and μ > −1, we have (1.15) with c = 1 from
(2.54) and Proposition 2.4. If (2.46) holds, we obtain the estimate from
Propositions 2.4 and 2.5, because the former implies (1.15) with c = 1 when
0 < r ≤ 1 or t ≥ 2r. Thus we have proved Theorem 1.2. �
End of proof of Theorem 1.1. Since L+

c (x, t) is part of Lc(x, t), we easily
see that Theorem 1.1 holds. �

3. An Application

As we have mentioned in section 1, we shall consider the system (1.1) as
an application of Theorems 1.1 and 1.2. Since one can deal with the general
case analogously to the case of m = 2, we restrict ourselves to the following
system:

∂2
t u − c2

1Δu = F (u, v) in Rn × R, (3.1)
∂2

t v − c2
2Δv = G(u, v) in Rn × R, (3.2)

where n = 2 or n = 3 and c1, c2 are positive constants. We divied the
argument into three cases, according to the nonlinearity F (u, v) and G(u, v).
But in each case, we have to asume that F and G have at least thier first
order derivatives.
Case 1 (Weakly coupled case): Let the function F (u, v) (resp. G(u, v))
depends only on v (resp. u). Namely, we consider

∂2
t u − c2

1Δu = F (v) in Rn × R, (3.3)
∂2

t v − c2
2Δv = G(u) in Rn × R. (3.4)

We suppose that F (v) ∈ C2(R) and G(u) ∈ C2(R) satisfy

F (0) = F
′
(0) = F

′′
(0) = 0, G(0) = G

′
(0) = G

′′
(0) = 0, (3.5)

and that there are p > 2, q > 2 and A > 0 such that for |ui| ≤ 2, |vi| ≤ 2
(i = 1, 2)

|F ′′
(v1) − F

′′
(v2)| ≤

{
Ap(p − 1)|v1 − v2|p−2 if 2 < p ≤ 3,

Ap(p − 1)|v1 − v2|(|v1| + |v2|)p−3 if p > 3,

(3.6)

|G′′
(u1) − G

′′
(u2)| ≤

{
Aq(q − 1)|u1 − u2|q−2 if 2 < q ≤ 3,

Aq(q − 1)|u1 − u2|(|u1| + |u2|)q−3 if q > 3.

(3.7)
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Remark. Typical examples of F and G are

F (v) = |v|p−1v or F (v) = |v|p, (3.8)
G(u) = |u|q−1u or G(u) = |u|q. (3.9)

For convenience, we set

p∗ =
n − 1

2
p − n + 1

2
, q∗ =

n − 1
2

q − n + 1
2

(3.10)

and
α = pq∗ − 1, β = qp∗ − 1, Γ = α + pβ. (3.11)

When c1 = c2, D. Del Santo, V. Georgiev and E. Mitidieri [4] proved, among
other things, that there is a global solution of the Cauchy problem (3.3)–(3.4)
in Rn × (0,∞) with the data given at t = 0 as

u(x, 0) = f1(x), ∂tu(x, 0) = g1(x), (3.12)
v(x, 0) = f2(x), ∂tv(x, 0) = g2(x), (3.13)

provided that the data fj , gj are sufficiently small in a suitable sense and
are compactly supported, and that

0 < p∗ ≤ q∗, i.e., (n + 1)/(n − 1) < p ≤ q, (3.14)

Γ = Γ(p, q, n) > 0. (3.15)

However, in order to study the asymptotic behavior, we need to solve the
Cauchy problrm with the data given at t = −∞. Therefore, the assumption
that the data have compact support is not adequet for the purpouse. Having
this in mind, we assume that fj ∈ C3(Rn) and gj ∈ C2(Rn) (j = 1, 2) satisfy

|||(f1, g1)|||ν + |||(f2, g2)|||κ ≤ ε (3.16)

for positive numbers ν, κ and ε. Here we have set

|||(f, g)|||ν = ‖〈·〉n−1
2

+νf‖L∞(Rn) +
∑

1≤|α|≤3

‖〈·〉n+1
2

+ν∂α
x f‖L∞(Rn) (3.17)

+
∑

0≤|α|≤2

‖〈·〉n+1
2

+ν∂α
x g‖L∞(Rn).

For the initial data satisfying (3.16), the existence theorem is still true even
for the case where c1 and c2 are arbitrary positive constants. Morever, we
are able to show that “small data nonlinear scattering” happens. The latter
is an extention of the results in the previous paper [8], where we assumed
c1 = c2 = 1.
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In order to state the result more precisely, we shall introduce some nota-
tions. For positive numbers ν and κ we set

Xν,κ = {(u, v) ∈ C(Rn ×R)×C(Rn ×R) : ‖u‖ν,1 +‖v‖κ,2 < +∞}, (3.18)

where the norms ‖w‖ν,i (i = 1, 2) are defined by

‖w‖ν,i = sup
(x,t)∈Rn×R

{|w(x, t)|(1 + r + |t|)n−1
2 /Φn(r, ci|t|; ν)} (3.19)

with r = |x|, where Φn(r, t; ν) is defined by (1.6). In addition, we set for
δ > 0

Xν,κ(δ) = {(u, v) ∈ Xν,κ : ‖u‖ν,1 + ‖v‖κ,2 ≤ δ}. (3.20)

In the same manner, we define X+
ν,κ, ‖w‖+

ν,i and X+
ν,κ(δ) by replacing Rn×R

by Rn × [0,∞), which are used for the Cauchy problem.
Moreover, let us denote by u−(x, t) and v−(x, t), respectively, the solutions

of the homogeneous wave equations

∂2
t u − c2

1Δu = 0 in Rn × R, (3.21)
∂2

t v − c2
2Δv = 0 in Rn × R (3.22)

satisfying initial conditions (3.12), (3.13).
If fj ∈ C3(Rn) and gj ∈ C2(Rn) (j = 1, 2) satisfy (3.16), then there is a

positive constant C0 = C0(c1, c2, ν, κ, n) such that

(u−, v−) ∈ Xν,κ(C0ε), (∂α
x u−, ∂α

x v−) ∈ Xν,κ for |α| ≤ 2. (3.23)

For the proof, see Lemma 2 in [13] for 3-dimensional case and Proposition
1.1 in [12] (or Proposition 2.1 in [11]) for 2-dimensional case. (See also those
proofs).

To apply the basic estimate (1.15), we take ν and κ as follows. (See also
Lemma 4.1 below).

Lemma 3.1. If (3.14) and (3.15) hold, then there are ν and κ satisfying

0 < ν ≤ p∗, (3.24)

0 < κ ≤ q∗, (3.25)

p∗ − ν + pκ > 1, q∗ − κ + qν > 1. (3.26)

Moreover, when n = 2, we can choose them so that

ν < 1/2, κ < 1/2. (3.27)
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Proof. To find κ satisfying (3.25) and (3.26) for some ν, we need to assure
that

(1 − p∗ + ν)/p < q∗ + qν − 1, (1 − p∗ + ν)/p < q∗, 0 < q∗ + qν − 1.

Equivalently,

ν > (1 − p∗ − pq∗ + p)/(pq − 1), ν < pq∗ + p∗ − 1, ν > (1 − q∗)/q. (3.28)

Note that (1 − q∗)/q ≤ 0 if q∗ ≥ 1, and
1 − q∗

q
− 1 − p∗ − pq∗ + p

pq − 1
=

q∗ − 1 + q(p∗ − 1)
q(pq − 1)

≤ 0

if q∗ ≤ 1. Therefore, to take ν satisfying (3.28) together with (3.24), it
suffices to assure

(1 − p∗ − pq∗ + p)/(pq − 1) < pq∗ + p∗ − 1,

(1 − p∗ − pq∗ + p)/(pq − 1) < p∗, 0 < pq∗ + p∗ − 1.

Simplifying the above relations with the aid of (3.11), we get

β + qα > 0, α + pβ > 0, α + p∗ > 0. (3.29)

Notice that
β ≤ Γ

p + 1
≤ α for 1 < p ≤ q. (3.30)

So β + qα ≥ α + pβ = Γ for 1 < p ≤ q. Therefore, (3.15) implies (3.29).
In addition, to choose ν and κ so that (3.27) holds, we need

(1 − p∗ + ν)/p < 1/2, i.e., ν < p∗ + (p − 2)/2,

hence,

(1 − p∗ − pq∗ + p)/(pq − 1) < p∗ + (p − 2)/2, (3.31)
(1 − p∗ − pq∗ + p)/(pq − 1) < 1/2. (3.32)

Since (1− p∗ − pq∗ + p)/(pq − 1) = −Γ/(pq − 1) + p∗, we easily have (3.31).
While (3.32) is equivalent to p∗ +3q∗ +2p∗q∗ > 0 when n = 2, which follows
from (3.14). Thus we finish the proof. �

We are now in a position to state the main results in this case.

Theorem 3.1. Let n = 2 or n = 3. Suppose that (3.5), (3.6), (3.7), (3.14),
(3.15) and (3.16) hold. Let ν and κ satisfy (3.24) through (3.26), and also
(3.27) when n = 2. Then there is a positive constant ε0 (depending only
on c1, c2, A, p, q, ν and κ) such that for any ε with 0 < ε ≤ ε0, there
exists uniquely a classical solution (u, v) ∈ X+

ν,κ(2C0ε) of the Cauchy prob-
lem (3.3)–(3.4) in Rn × [0,∞) with (3.12) and (3.13). Besides, we have
(∂α

x u, ∂α
x v) ∈ X+

ν,κ (|α| = 1, 2).
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Remark. The condition (3.15) seems to be optimal in the sense that there
is a solution of the problem which blows up in finite time, even if the initial
data are small enough, when c1 = c2 and (3.15) does not hold. (See [4], [3],
[6], [5], [1], [9]). Moreover, when c1 �= c2 and n = 3, if (3.15) does not hold,
the above blow-up occurs. (See [10]).

Theorem 3.2. We suppose the same assumptions as in Theorem 3.1.
(A) There is a positive number ε0 = ε0(c1, c2, A, p, q, ν, κ) such that for

any ε with 0 < ε ≤ ε0, there exists uniquely a classical solution (u, v) ∈
Xν,κ(2C0ε) of (3.3)–(3.4) verifying (∂α

x u, ∂α
x v) ∈ Xν,κ (|α| = 1, 2),

|||(u − u−)(t)|||e,1 ≤ C‖v‖p
κ,2(1 + |t|)−p∗{(1 + |t|)[1−2pκ]+

} 1
2 for t ≤ 0 (3.33)

|||(v − v−)(t)|||e,2 ≤ C‖u‖q
ν,1(1 + |t|)−q∗{(1 + |t|)[1−2qν]+

} 1
2 for t ≤ 0, (3.34)

where u− and v− are respectively the solutions of the homogeneous wave equa-
tions (3.21) and (3.22) satisfying (3.12) and (3.13). Moreover, for (x, t) ∈
Rn × R with r = |x| and |α| ≤ 2, we have

|∂α
x (u(x, t) − u−(x, t))| ≤ C[v]pκ,2(1 + r + |t|)−n−1

2 Φn(r, c1t; ν) (3.35)

|∂α
x (v(x, t) − v−(x, t))| ≤ C[u]qν,1(1 + r + |t|)−n−1

2 Φn(r, c2t;κ). (3.36)

In particular, if t ≤ 0, we have

|∂α
x (u(x, t) − u−(x, t))| ≤ C[v]pκ,2(1 + r + |t|)−n−1

2
−p∗(1 + r + |t|)[1−pκ]+

(3.37)

|∂α
x (v(x, t) − v−(x, t))| ≤ C[u]qν,1(1 + r + |t|)−n−1

2
−q∗(1 + r + |t|)[1−qν]+

(3.38)

for |α| ≤ 2. Here we have set for i = 1, 2

[u]ν,i = max
|γ|≤2

‖∂γ
xu‖ν,i, (3.39)

and C are constants depending only on c1, c2, ν, κ, p, q and A.
(B) Let (u, v) be as in the part (A) of the theorem. Then there exists

uniquely a classical solution (u+, v+) ∈ Xν,κ to the system of homogeneous
wave equations (3.21)–(3.22) such that (∂α

x u+, ∂α
x v+) ∈ Xν,κ (|α| = 1, 2),

|||(u − u+)(t)|||e,1 ≤ C‖v‖p
κ,2(1 + t)−p∗{(1 + t)[1−2pκ]+

} 1
2 for t ≥ 0 (3.40)

|||(v − v+)(t)|||e,2 ≤ C‖u‖q
ν,1(1 + t)−q∗{(1 + t)[1−2qν]+

} 1
2 for t ≥ 0. (3.41)

Moreover, we have

|∂α
x (u(x, t) − u+(x, t))| ≤ C[v]pκ,2(1 + r + |t|)−n−1

2 Φn(r,−c1t; ν) (3.42)
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|∂α
x (v(x, t) − v+(x, t))| ≤ C[u]qν,1(1 + r + |t|)−n−1

2 Φn(r,−c2t;κ) (3.43)

for (x, t) ∈ Rn ×R with r = |x| and |α| ≤ 2. In particular, if t ≥ 0, we have

|∂α
x (u(x, t) − u+(x, t))| ≤ C[v]pκ,2(1 + r + t)−

n−1
2

−p∗(1 + r + t)[1−pκ]+

(3.44)

|∂α
x (v(x, t) − v+(x, t))| ≤ C[u]qν,1(1 + r + t)−

n−1
2

−q∗(1 + r + t)[1−qν]+ .

(3.45)

Remarks. 1) The existence of such ν and κ as in the theorem is guaranteed
by Lemma 3.1. In particular, if we take ν as ν = p∗, we have κ > 1/p from
(3.26). Hence, we can drop the factors {(1 + |t|)[1−2pκ]+} 1

2 and (1 + r +
|t|)[1−pκ]+ in (3.33), (3.37), (3.40) and (3.44).

2) If p and q satisfy
β = qp∗ − 1 > 0, (3.46)

then α = pq∗ − 1 > 0 by (3.30), hence, p∗ > 1/q, q∗ > 1/p. We see that for
any ν and κ satisfying

1/q < ν ≤ p∗, 1/p < κ ≤ q∗, (3.47)

we have (3.24) through (3.26). Therefore, choosing ν and κ veryfing (3.47),
we can drop not only the same factors as in the item 1) but also the factors
{(1+ |t|)[1−2qν]+} 1

2 and (1+r+ |t|)[1−qν]+ in (3.34), (3.38), (3.41) and (3.45).
3) When pκ ≤ 1 or qν ≤ 1, the decay rate in (3.37) or (3.38) is better

than the one in (3.35) or (3.36) respectively, thanks to (3.26).
4) Even in the case where 2pκ ≤ 1 or 2qν ≤ 1, the right hand side of

(3.33) or (3.34) tends to zero as t → −∞, since (3.26) implies

−p∗ + 1
2 − pκ < −1

2 − ν, −q∗ + 1
2 − qν < −1

2 − κ. (3.48)

Case 2 (Strogly coupled case): First we take the functions F (u, v) and
G(u, v) as

F (u, v) = |v|p−1u, G(u, v) = |u|q−1v. (3.49)
Then we shall see that the discrepancy of the propagtion speeds c1 and c2

makes a difference from the case of common propagation speeds. Indeed, if
c1 �= c2, then it suffices to assume (3.14) on p and q. On the other hand,
when c1 = c2, we need to assume additionally

qp∗ − 1 + q∗ − p∗ > 0, i.e., Γ > pp∗ − 1 (3.50)

so that we can choose ν and κ satisfying (3.24), (3.25), (3.27) and

p∗ + (p − 1)κ > 1, q∗ + (q − 1)ν > 1. (3.51)
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Note that it can be realized if (3.14), (3.50) and

pq∗ − 1 + p∗ − q∗ > 0 (3.52)

hold. Since (3.52) follows from (3.50), we can do this.

Theorem 3.3. Let n = 2 or n = 3. If c1 �= c2, then we assume that (3.14)
and (3.16) hold, and we take positive numbers ν and κ such that

ν = κ, p∗ + (p − 1)ν > 1. (3.53)

In addition, we choose ν satisfying also ν < 1/2 when n = 2.
If c1 = c2, then we assume that (3.14), (3.50) and (3.16) hold, and we

take ν and κ to satisfy (3.24), (3.25), (3.51), and also (3.27) when n = 2.
(A) Then there is a positive constant ε0 (depending only on c1, c2, p, q,

ν and κ) such that for any ε with 0 < ε ≤ ε0, there exists uniquely a C1-
solution (u, v) ∈ X+

ν,κ(2C0ε) of the Cauchy problem (3.1)–(3.2) with (3.49)
in Rn × [0,∞) with (3.12) and (3.13). Besides, we have (∂xu, ∂xv) ∈ X+

ν,κ.
(B) There is a positive number ε0 = ε0(c1, c2, p, q, ν, κ) such that for any

ε with 0 < ε ≤ ε0, there exists uniquely a C1-solution (u, v) ∈ Xν,κ(2C0ε) of
(3.1)–(3.2) with (3.49) verifying (∂xu, ∂xv) ∈ Xν,κ, and (3.33), (3.34) with
‖v‖p

κ,2, ‖u‖
q
ν,1 replaced by

‖u‖p1
ν,1‖v‖

p2
κ,2, ‖u‖q1

ν,1‖v‖
q2
κ,2,

and [1−2pκ]+, [1−2qν]+ replaced by [1−2p1ν−2p2κ]+, [1−2q1ν−2q2κ]+.
Here p1 = 1, p2 = p − 1, q1 = q − 1 and q2 = 1.

Moreover, we have (3.35), (3.36) with [v]pκ,2, [u]qν,1 replaced by

max
|γ|≤1

{
‖∂γ

xu‖p
ν,1 + ‖∂γ

xv‖p
κ,2

}
, max

|γ|≤1

{
‖∂γ

xu‖q
ν,1 + ‖∂γ

xv‖q
κ,2

}
.

In particular, if t ≤ 0, we have (3.37), (3.38) with [v]pκ,2, [u]qν,1 replaced as
in the above, and also [1 − pκ]+, [1 − qν]+ replaced by [1 − p1ν − p2κ]+,
[1 − q1ν − q2κ]+.

(C) Let (u, v) be as in the part (B) of the theorem. Then there exists
uniquely a C1 solution (u+, v+) ∈ Xν,κ to the system of homogeneous wave
equations (3.21)–(3.22) such that (∂xu+, ∂xv+) ∈ Xν,κ. Moreover, we have
(3.40) through (3.45) with the same modification as in the part (B).

Secondly we take the functions F (u, v) and G(u, v) as

F (u, v) = |u|p−1v, G(u, v) = |v|q−1u, (3.54)

where p and q satisfy (3.14).
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Lemma 3.2. Suppose that (3.14) and

pp∗ − 1 + q∗ − p∗ > 0 (3.55)

hold. Besides, when n = 2, we further assume

pp∗ + (p − 2)p∗ > 1, i.e., p > 2 +
√

2. (3.56)

Then we can choose ν and κ satisfying (3.24), (3.25) and

p∗ + (p − 2)ν + κ > 1, q∗ + (q − 2)κ + ν > 1. (3.57)

Moreover, when n = 2, we can choose them so that (3.27) holds.

Proof. We consider only the case of n = 2. First suppose q∗ ≥ 1/2. Then
to find κ satisfying (3.25), (3.57) and (3.27), we need

1 − p∗ − (p − 2)ν < 1/2, (1 − q∗ − ν)/(q − 2) < 1/2.

Since the conditions can be reduced to the former inequality, in order to take
ν satisfying it together with (3.24) and (3.27), we need to have

(1/2 − p∗)/(p − 2) < p∗, (1/2 − p∗)/(p − 2) < 1/2.

Equivalently, (3.56) and p∗ > 0. Hence, we have done.
Next suppose q∗ < 1/2. Then to find κ satisfying (3.25), (3.57) and (3.27),

we need

1 − p∗ − (p − 2)ν < q∗, (1 − q∗ − ν)/(q − 2) < q∗.

Since p∗ ≤ q∗ < 1/2, to take ν satisfying them together with (3.24) and
(3.27), it suffices to assure

(1 − p∗ − q∗)/(p − 2) < p∗, 1 − q∗ − (q − 2)q∗ < p∗.

Equivalently, (3.55) and qq∗ − 1 + p∗ − q∗ > 0. But the foremer yields the
latter, since q ≥ p. This completes the proof. �
Theorem 3.4. Let n = 2 or n = 3. If c1 �= c2, then we assume that (3.14)
and (3.16) hold, and we take positive numbers ν and κ such that (3.53). In
addition, we choose ν satisfying also ν < 1/2 when n = 2.

If c1 = c2, then we assume that (3.14), (3.55) and (3.16) hold. In addition,
we assume (3.56) when n = 2. As for ν and κ, we take them so that they
satisfy (3.24), (3.25), (3.57), and also (3.27) when n = 2.

Then we have the same conclusion for (3.1)–(3.2) with (3.54) as in The-
orem 3.3 with p1 = p − 1, p2 = 1, q1 = 1 and q2 = q − 1.

Case 3 (Intermediate case): We take the functions F (u, v) and G(u, v) as

F (u, v) = |v|p−1u, G(u) = |u|q, (3.58)

where we assume that p and q satisfy (3.14).
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Lemma 3.3. If we suppose that (3.14) and (3.52) hold, then we can choose
ν satisfying (3.25) and

p∗ + (p − 1)ν > 1, q∗ + (q − 1)ν > 1. (3.59)

Moreover, when n = 2, we can choose it so that ν < 1/2 holds.
If we suppose that (3.14) and

α + (p − 1)β + p∗ − q∗ > 0 (3.60)

hold, then we can choose ν and κ satisfying (3.24), (3.25) and

p∗ + (p − 1)κ > 1, q∗ − κ + qν > 1. (3.61)

Moreover, when n = 2, we can choose them so that (3.27) holds.

Proof. We shall prove the second assertion for the case of n = 2. To find κ
satisfying (3.25), (3.61) and (3.27), we need (3.60), (3.14) and

ν > (1 − p∗ − (p − 1)(q∗ − 1))/(pq − q), ν > (1 − q∗)/q. (3.62)

Note that (1 − q∗)/q ≤ 0 if q∗ ≥ 1, and

1 − q∗

q
− 1 − p∗ − (p − 1)(q∗ − 1)

q(p − 1)
=

p∗ − 1
q(p − 1)

≤ 0

if q∗ ≤ 1. Therefore, to take ν satisfying (3.62) together with (3.24) and
(3.27), we need

(1−p∗−(p−1)(q∗−1))/(pq−q) < p∗, (1−p∗−(p−1)(q∗−1))/(pq−q) < 1/2.
(3.63)

Equivalently, α+(p−1)β+p∗−q∗ > 0, p∗+2q∗+2p∗q∗ > 0. Since the former
follows from (3.60) and the latter from (3.14), we finish the proof. �

Theorem 3.5. Let n = 2 or n = 3. If c1 �= c2, then we assume that (3.14),
(3.52) and (3.16) hold, and we take positive numbers ν and κ such that ν = κ,
(3.25) and (3.59). In addition, we choose ν satisfying also ν < 1/2 when
n = 2. If c1 = c2, then we assume that (3.14), (3.60) and (3.16) hold. As
for ν and κ, we take them so that they satisfy (3.24), (3.25), (3.61), and also
(3.27) when n = 2. Then we have the same conclusion for (3.1)–(3.2) with
(3.58) as in Theorem 3.3 with p1 = 1, p2 = p − 1, q1 = q and q2 = 0.

Remark. If β ≥ 0, then (3.60) follows from (3.52). Therefore, the effect of
the difference of the propagation speeds might appear only for the case of
β < 0.



464 H. Kubo and K. Kubota

4. Proof of theorems in section 3

First we prove Theorem 3.2. As is well known, a solution (u, v) of the sys-
tem (3.3)–(3.4) having the asymptotic behavior (3.33) and (3.34) is obtained
by solving the following system of integral equations:

u(x, t) = u−(x, t) + Lc1(F (v))(x, t) in Rn × R, (4.1)
v(x, t) = v−(x, t) + Lc2(G(u))(x, t) in Rn × R, (4.2)

where Lc(F )(x, t) is defined by (1.13) and (1.14).
In order to prove Theorem 3.2, the following lemma is crucial.

Lemma 4.1. Assume that (3.14) and (3.15) hold. Let (u, v) ∈ Xν,κ. If ν
and κ satisfy (3.24), (3.25) and the first inequality in (3.26), and also (3.27)
when n = 2, then we have

‖Lc1(|v|p)‖ν,1 ≤ K0‖v‖p
κ,2, (4.3)

where K0 is a constant depending only on c1, c2, p, q, ν and κ. Moreober,
if ν and κ satisfy (3.24), (3.25) and the second inequality in (3.26), and also
(3.27) when n = 2, then we have

‖Lc2(|u|q)‖κ,2 ≤ K0‖u‖q
ν,1. (4.4)

Proof. We shall prove only (4.3), since the other can be analogously han-
dled. We make use of Theorem 1.2 by taking c = c1, a = c2, μ > 0 and
F = |v|p. Then we get

‖Lc1(|v|p)‖ν,1 ≤ CMν,μ(|v|p, c2), (4.5)

since Φn(r, t; ν) ≤ Φn(r, |t|; ν), where Mν,μ(F, a) is given by (1.16) (recalling
also (3.19)). It follows from (3.10) and (3.24) that

|v(y, s)|p ≤ ‖v‖p
κ,2(1 + λ + |s|)−n+1

2
−p∗(1 + |λ − c2|s||)−pκ

≤ C‖v‖p
κ,2(1 + λ + |s|)−n+1

2
−ν(1 + |λ − c2|s||)−p∗+ν−pκ

for (y, s) ∈ Rn×R with λ = |y|, where C is a constant depending only on c2

and ν − p∗. Here we have used the fact that κ < 1/2 in (3.27), when n = 2.
Furthermore we see from the first inequality of (3.26) that one can take a
positive number μ satisfying 1 + μ − p∗ + ν − pκ ≤ 0. Therefore, we obtain

Mν,μ(|v|p, c2) ≤ C‖v‖p
κ,2 (4.6)

for such μ. Now the desired estimate (4.3) follows immediately from (4.5)
and (4.6), and the proof is complete. �
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By Lemma 4.1 one can prove the part (A) of the theorem except the
estimates (3.37) and (3.38), analogously to [8], Theorem 5.1, if we take the
positive number ε0 in such a way that 2C0ε0 ≤ 1 and

ApK0(4C0ε0)p−1 ≤ 1
2 , AqK0(4C0ε0)q−1 ≤ 1

2 .

Here C0 and K0 are the constants in (3.23) and Lemma 4.1 respectively. In
particular, we can get a unique solution (u, v) ∈ Xν,κ(2C0ε) with 0 < ε ≤ ε0

of the system (4.1)–(4.2) such that [u]ν,1 + [v]κ,2 < ∞. For completeness, we
remark that

|u(x, t)| + |v(x, t)| ≤ 2 for (x, t) ∈ Rn × R,

if (u, v) ∈ Xν,κ(1). In fact, it follows from (1.6) that

Φ2(|x|, ci|t|; 1/2) ≤ 2/
√

e for (x, t) ∈ R2 × R, ci > 0,

hence, we see from (1.6) and (3.19) that

|u(x, t)| ≤ 2‖u‖ν,i for (x, t) ∈ Rn × R, ν > 0, ci > 0, n = 2, 3.

Since ‖u‖ν,1 + ‖v‖κ,2 ≤ 1, we thus obtain the desired estimate.
It also follows from the proof of Theorem 5.1 in [8] that a solution (u, v) ∈

Xν,κ(1) of (3.3)–(3.4) verifying (3.33), (3.34) and [u]ν,1 + [v]κ,2 < ∞ satisfies
the system of integral equations (4.1)–(4.2). Therefore, we have only to show
that (u, v) considered in the above satisfies the estimates (3.37) and (3.38).

First we deal with (3.37). It follows from (4.1) and Theorem 1.2 with
c = c1, a = c2 and F = A|v|p that

|u(x, t)−u−(x, t)| ≤ CAMδ,μ(|v|p, c2)(1+r+|t|)−n−1
2

−δ(1+r+|t|)[−μ]+ (4.7)

for t ≤ 0 and x ∈ Rn with r = |x|, provided δ > 0 and μ > −(n−1)/2, since
(3.5) and (3.6) yield

|F (v)| ≤ A|v|p for |v| ≤ 2.

If n = 3, we take δ = p∗ and μ = pκ − 1. Then analogously to the proof of
(4.6) we have

Mp∗, pκ−1(|v|p, c2) ≤ C‖v‖p
κ,2, (4.8)

hence, we obtain (3.37) with |α| = 0 by (4.7). If n = 2 and pκ > 1/2, we
also get as above the same estimate.

Next suppose that n = 2 and pκ ≤ 1/2. Then we take μ in such a way as
−1/2 < μ < 0 and set δ = p∗+pκ−1−μ. Then we have 0 < δ < p∗. Indeed,
δ − p∗ = pκ− 1− μ < 0 and δ > ν − μ > 0, by pκ ≤ 1/2, −1/2 < μ < 0 and
(3.26). Therefore, we get similarly to (4.6)

Mp∗+pκ−1−μ, μ(|v|p, c2) ≤ C‖v‖p
κ,2.
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Now (4.7) gives

|u(x, t) − u−(x, t)| ≤ CA‖v‖p
κ,2(1 + r + |t|)− 1

2
−p∗+1−pκ,

hence, (3.37) for |α| = 0 holds. The case where 1 ≤ |α| ≤ 2 is also similar,
because ∂α

x Lc(F ) = Lc(∂α
x F ) according to (1.13) and (1.14). Hence, (3.37)

follows.
The proof of (3.38) is analogous to that of (3.37), if we use (3.7) instead

of (3.6). So we omit the details. This completes the proof of the part (A) of
Theorem 3.2.

Let (u, v) be the solution of the system (3.4)–(3.3) which is obtained by
the part (A). Set

u+(x, t) = u(x, t) − L̃c1(F (v))(x, t) in Rn × R,

v+(x, t) = v(x, t) − L̃c2(G(u))(x, t) in Rn × R,

where L̃c(F )(x, t) (c > 0) is defined by

L̃c(F )(x, t) =
1
2π

∫ ∞

t
ds

∫ s−t

0

ρdρ√
(s − t)2 − ρ2

∫
|ω|=1

F (x + cρω, s)dSω

for (x, t) ∈ R2 × R, and by

L̃c(F )(x, t) =
1
4π

∫ ∞

t
(s − t)ds

∫
|ω|=1

F (x + c(s − t)ω, s)dSω (4.9)

for (x, t) ∈ R3 × R. Then, since it follows from (1.13) and (1.14) that

L̃c(F )(x, t) = Lc(F̂ )(x,−t), with F̂ (x, t) = F (x,−t),

one can prove the part (B) of the theorem, by repeating exactly the same
procedure as in the proof the part (A). In particular, we see that (u+, v+) is
a solution to the system of homogeneous wave equations (3.21)–(3.22). Thus
we have proved Theorem 3.2. �

Next we prove Theorem 3.1.
The global solution of the Cauchy probelm is obtained from the inte-

gral equations (4.1)–(4.2) with Lc1(F (v))(x, t), Lc2(G(u))(x, t) replaced by
L+

c1(F (v))(x, t), L+
c2(G(u))(x, t). By Theorem 1.1, one can derive a variant

of Lemma 4.1 for L+
c1(|v|p)(x, t) and L+

c2(|u|q)(x, t). Then from the stanard
argument we see that Theorem 3.1 holds. (See e.g. [7]).

The proof of Theorems 3.3 and 3.4 can be done by using the following
lemma analogously to that of Theorems 3.1 and 3.2.
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Lemma 4.2. Let (u, v) ∈ Xν,κ and let p1, p2 ≥ 1. Put p = p1 + p2. If
c1 �= c2, then we assume that

p∗ > 0, ν = κ, p∗ + (p − 1)ν > 1. (4.10)

In addition, we suppose that ν satisfies also ν < 1/2 when n = 2.
If c1 = c2, then we assume that

0 < ν ≤ p∗, p∗ + (p1 − 1)ν + p2κ > 1. (4.11)

In addition, we suppose that ν and κ satisfy also ν < 1/2, κ < 1/2 when
n = 2. Then we have

‖Lc1(|u|p1 |v|p2)‖ν,1 ≤ K1‖u‖p1
ν,1‖v‖

p2
κ,2, (4.12)

where K1 is a constant depending only on c1, c2, p1, p2, ν and κ.

Proof. We use Theorem 1.2 with c = c1, a = c2, μ > 0 and F = |u|p1 |v|p2 .
Then

‖Lc1(|u|p1 |v|p2)‖ν,1 ≤ CMν,μ(|u|p1 |v|p2 , c2). (4.13)

When c1 = c2, analogously to the proof of (4.6) we obtain

Mν,μ(|u|p1 |v|p2 , c2) ≤ C‖u‖p1
ν,1‖v‖

p2
κ,2, (4.14)

by taking a positive number μ so that 1+μ−p∗−(p1−1)ν−p2κ ≤ 0, hence,
(4.12) holds.

Next suppose c1 �= c2. We take a positive number μ satisfying 1 + μ −
p∗ − (p − 1)ν ≤ 0 and set

Fi(y, s) = (1 + |y| + |s|)−n+1
2

−ν(1 + ||y| − ci|s|)−1−μ

for i = 1, 2. Then we have

|u(y, s)|p1 |v(y, s)|p2 ≤ C‖u‖p1
ν,1‖v‖

p2
κ,2 (F1(y, s) + F2(y, s))

for (y, s) ∈ Rn × R, since ν = κ and p1, p2 ≥ 1. Therefore,

‖Lc1(|u|p1 |v|p2)‖ν,1 ≤ C‖u‖p1
ν,1‖v‖

p2
κ,2 (‖Lc1(F1)‖ν,1 + ‖Lc1(F2)‖ν,1).

Since Mν,μ(Fi, ci) is bounded, using Theorem 1.2 with c = c1, a = ci, μ > 0
and F = Fi, we obtain (4.12) also in this case. The proof is complete. �

Finally we prove Theorem 3.5. Using both Lemmas 4.1 and 4.2, we can
carry out the proof of it, analogously to that of Theorems 3.1 and 3.2. This
completes the proof.



468 H. Kubo and K. Kubota

References

[1] R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for p-q systems of nonlinear
wave equations in three space dimensions, J. Differential Equations. 167 (2000), 87–
133.

[2] F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly
decreasing initial data in three space dimensions, Comm. Partial Differential Equa-
tions 11 (1986), 1459–1487.

[3] D. Del Santo, Global existence and blow-up for a hyperbolic system in three space
dimensions, Rend. Istit. Math. Univ. Trieste 26 (1997), 115-140.

[4] D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of the solutions and
formation of singularities for a class of hyperbolic systems, in “Geometric Optics and
Related topics” (F. Colombini and N. Lerner ed.), Progress in Nonlinear Differential
Equations and Their Applications, Vol. 32, 117–140, Birkhäuser, Boston, 1997.
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