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Preface

Nonlinear wave equations belong to a typical category of nonlinear evolutionary
equations that is of great theoretical significance and practical value. Research on
the global existence and the blow-up phenomenon of classical solutions to the
Cauchy problem with small initial data for nonlinear wave equations relates to the
asymptotic stability of the null solution or the stabilization of the corresponding
control system of such equations, and is a highly meaningful and challenging
subject of study. The research in this field was initiated by Prof. F. John in the late
1970s and early 1980s when he gave some examples to reveal the blow-up phe-
nomenon of solutions to nonlinear wave equations. Later on, Profs. S. Klainerman,
D. Christodoulou, and L. Hörmander together with Prof. F. John, as well as some
other Profs. like M. Kovalyov, H. Lindblad, G. Ponce, J. Shatah, T.C. Sideris, gave
various results about the global existence and the lower bound estimates of life-span
of classical solutions in different space dimensions and with different powers of
nonlinear terms on the right-hand side, which formed a frontier research direction of
great significance and attraction. Although the results obtained by these mathe-
maticians were profound, they did not cover all the possible important situations at
the time, and there remained a lack about the sharpness of the established lower
bound estimates of life-span for classical solutions. The whole research is still, so to
speak, in the initial stages of development. On the other hand, there is a great deal
of diversity in the methods adopted by these mathematicians, each having its own
characteristics and some being rather complex. So there does not seem to be a
unified and easy approach to tackling such type of problems.

During my stay in France, I visited Heriot-Watt University of Great Britain in
1980 and encountered Prof. F. John who at the time happened to visit that uni-
versity, too. So I got the chance to consult him face to face, which turned out to be a
most instructive experience. At the beginning of 1981 when I paid a visit to Courant
Institute of Mathematical Science in the USA, I met Prof. S. Klainerman and had
careful discussions with him. He presented me with the preprint of his long article
close to 60 pages. All these aroused my concern and interest in nonlinear wave
equations and prompted our studies in this field. Some of my doctor students in the
earlier years, including Yunmei Chen, Xin Yu, and Yi Zhou, chose this as the
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subject of their doctoral dissertations and made valuable contributions. Thanks to
their participation and efforts, especially Yi Zhou’s long persistent hard work, we
have managed to carry on with this research subject in Fudan University up to now
and obtained fruitful results. Our limited accomplishment in this area can be gen-
erally summarized into two aspects. One is to have established the complete lower
bound estimates of life-span (including the result of global existence) for classical
solutions to the Cauchy problem of nonlinear wave equations with small initial data
in all possible space dimensions and with all possible powers of nonlinear terms on
the right-hand side, and the estimates are the best ones that are unlikely to be
improved, that is to say, we in principle draw the conclusion for research in this
regard. The other is to have proposed the unified and straightforward approach to
handling such problems, that is, the global iteration method, which applies the
simple contraction mapping principle and requires roughly the same amount of
work done to prove the local existence of classical solutions.

In the book Nonlinear Evolution Equations (in Chinese) coauthored by Yunmei
Chen and me and published by Science Press (Beijing) in 1989, we proved the
global existence of classical solutions to the Cauchy problem with small initial data
for nonlinear wave equations by the global iteration method. Later, in another book
Global Classical Solutions for Nonlinear Evolution Equations coauthored also by
Yunmei Chen and me and published by Longman Scientific & Technical Press in
1992, the method was further employed to make some lower bound estimates of
life-span for classical solutions. However, restricted by the progress of scientific
research at that time, we did not touch upon or get the best results about the
important situations of space dimensions n ¼ 2 and n ¼ 4, etc. Besides, we failed to
deal with theories related to the null condition and the sharpness of some lower
bound estimates of life-span. Since the two books both mentioned nonlinear evo-
lution equations including also nonlinear heat equations and nonlinear wave
equations are only a part of them, the length of the discussion was inevitably
limited, which to a certain extent caused the deficiency mentioned above. Around
1995, we basically finished work on the global existence and the lower bound
estimates of life-span of classical solutions to the Cauchy problem with small initial
data for nonlinear wave equations, so Yi Zhou and I began to think about a
monograph on nonlinear wave equations. In fact, the Shanghai Scientific and
Technical Publishers had invited us to write on this long before, but with too many
errands to go, we wrote on and off or sometimes even put off for quite a long period.
Another important reason that hindered us from finishing the book soon was that
some of the lower bound estimates of life-span we got then had not been proved to
be the best ones immune to further improvement, so if we wrapped up the book in
haste and delivered it for publication, it might never be consummate, which is a fact
we would not be content with. In the recent years, the sharpness of all the lower
bound estimates of the life-span has been obtained, and thus we felt the urgency of
finishing the book as quickly as possible. Meanwhile, throughout the years we have
found that some of the previous proofs can be simplified or improved so as to be
presented in a relatively new form, which can be seen as an additional achievement.
Although we were determined to pull our forces together and start afresh, it took yet
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another two to three years for us to complete the final version of the book in 2014,
as many proofs needed to be rewritten. Seeing the book finally come out after such
a long track of time, the gratification of the authors can well be imagined.

The whole book has got fifteen chapters in all. The first seven serve as a prelude
for later discussions, but still have their own meanings and values. Among the later
eight chapters, five discuss the global existence and the lower bound estimates of
life-span for classical solutions in all possible situations by adopting the global
iteration method, including the proof of global existence of classical solutions under
the hypothesis of the null condition; two focus on demonstrating the sharpness
of the obtained lower bound estimates of life-span; and the last chapter entails
relevant applications and extensions. Most of the references listed in the bibliog-
raphy are cited in the body part of the book, while a few of them, though not
formally quoted, are more or less related to the content, from which we hope
readers can get some necessary information. Dr. Ke Wang has been responsible for
the typewriting and typesetting of the book in Chinese, while the English version is
to be translated by Prof. Yachun Li and published by the Springer-Verlag. The
authors would like to express their deep-felt gratitude to them all for their hearty
devotion, earnest support, and strong help.

Owing to the limitation of the authors’ knowledge, there must be mistakes and
careless omissions in the book, so the authors hereby sincerely invite readers to
make frank comments and criticism in any respect.

Shanghai, China Tatsien Li
February 2015
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Chapter 1
Introduction and Overview

1.1 Objectives

Nonlinear wave equations are a kind of important infinite-dimensional dynamical
systems. The so-called infinite-dimensional dynamical system is a system described
by nonlinear evolutionary partial differential equations (nonlinear evolutionary equa-
tions for short). While, the nonlinear evolution equation is the common name of
nonlinear partial differential equations whose solutions depend not only on the spa-
tial variables but also on a special argument t (time). For example, the nonlinear
heat equations appearing in the phenomenon of heat flux and reaction-diffusion
(including reaction-diffusion equations), the nonlinear wave equations appearing in
the vibration and electromagnetics, the nonlinear Schrödinger equation in quantum
mechanics, the Navier-Stokes equation describing the incompressible fluids, the
Yang-Mills equation in the gauge field theory, the hyperbolic conservation laws,
the KdV equation, and so on. All of these are equations with wide applications and
essential significance in related disciplines.

To make clear the problems which is going to be studied in this book, we first
investigate the finite-dimensional dynamical systems, i.e., the nonlinear ordinary
differential equations (systems). In this situation, the solution is a function of the
time variable t only, and does not depend on the spatial variables.

Let us first consider the simplest case: the following Cauchy problem of nonlinear
ordinary differential equation:

du

dt
= u1+α, (1.1.1)

t = 0 : u = ε, (1.1.2)

where α is a positive constant, and ε > 0 is a small parameter. The solution of this
problem can be expressed explicitly as

© Springer-Verlag GmbH Germany and Shanghai Scientific
and Technical Publishers 2017
T. Li and Y. Zhou, Nonlinear Wave Equations, Series in Contemporary Mathematics 2,
DOI 10.1007/978-3-662-55725-9_1

1



2 1 Introduction and Overview

Fig. 1.1 Blow-up of
solution

u(t) = ε

(1 − αtεα)1/α
. (1.1.3)

Therefore, as t ↗ 1
α
ε−α, u(t) → +∞, as shown in Fig. 1.1.

Thus, for this problem, the solution does not exist for all the time t ≥ 0, i.e., there
does not exist a global classical solution (The so-called classical solution means
a solution in the normal sense; while, the global solution means that the solution
exists for all the time t ≥ 0). This implies the formation of singularity for solution
after a certain period of time (the solution itself or its derivative → ∞; here both the
solution and its derivative → ∞), called the blow-up of solution. Compared with
the linear case, for the Cauchy problem of nonlinear ordinary equations, the solution
may blow up generically. In current situation, knowing that the solution will blow
up, let us show how long the solution will exist. Obviously, if we denote by ˜T (ε) the
life-span of solution, i.e., the maximum time for the solution to exist, then we have

˜T (ε) = 1

α
ε−α ≈ ε−α. (1.1.4)

This shows that, for small initial data, the higher the order of the nonlinear term on
the right-hand side, namely, the larger the α, the larger the life-span of solution. This
is because that, for a small solution, the nonlinear term on the right-hand side has
smaller influence when it has higher order.

However, if the equation involves a dissipative term, things will change greatly.
Regarding u as the velocity and assuming that there exists a damping force pro-
portional to the velocity, the above Eq. (1.1.1), for example, will be replaced by the
following equation (where the proportional constant is taken to be 1):

du

dt
= −u + u1+α, (1.1.5)
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Fig. 1.2 Exponential decay
of solution

and the initial value is still (1.1.2). Then it is easy to know that the solution of Cauchy
problem (1.1.5) and (1.1.2) is

u(t) = ε

[eαt (1 − εα) + εα]1/α , (1.1.6)

as shown in Fig. 1.2. This Cauchy problem admits a unique solution for all the time
t ≥ 0 as long as ε > 0 is sufficiently small (ε < 1), namely, the life-span of solution
is

˜T (ε) = +∞, (1.1.7)

and this solution is exponentially decaying as t → +∞.
Why there is so big difference between these two situations?A fundamental reason

is that the corresponding linearized equations are quite different. The linearized
equation of (1.1.5) is du

dt = −u, all of its solutions decay exponentially as t → +∞;
While, the linearized equation of (1.1.1) is du

dt = 0, all of its nonzero solutions do
not decay. It is just this essential distinction that yields different results on whether
the global solutions exist or not.

As a matter of fact, there is a rather general conclusion in the situation of ordinary
differential equations. We consider the following system of ordinary differential
equations:

dU

dt
= f (U ), (1.1.8)

whereU = (u1, . . . , un)T is the unknown vector function, and f (U ) = ( f1(U ), · · · ,
fn(U ))T is a given suitably smooth function of U , and assume that

f (0) = 0, (1.1.9)

i.e.,U ≡ 0 is an equilibrium (the zero solution) of the system. The linearized system
of (1.1.8) can be written as
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dU

dt
= AU, (1.1.10)

where
A = ∇ f (0) (1.1.11)

is the Jacobian matrix of the nonlinear term f (U ) on the right-hand side of (1.1.8)
at U = 0.

Assume that each eigenvalue of A has negative real part, equivalently, each solu-
tion of the linearized system (1.1.10) decays exponentially as t → +∞, then the
Cauchy problem of the original nonlinear system (1.1.8) with small initial data

t = 0 : U = U0 (U0 small) (1.1.12)

admits a global solution U = U (t) for t ≥ 0, and U (t) decays exponentially as
t → +∞.

Here, “each eigenvalueof A has negative real part” is equivalent to saying that there
is a certain dissipative mechanism in system (1.1.8); While, “the Cauchy problem
with small initial data admits a global solution for t ≥ 0 and the solution decays
exponentially as t → +∞” implies that: if the null solution is perturbed a little bit at
the initial time, this small perturbationwill finally disappear very quickly as t → +∞
in a way of exponential decay, that is to say, the zero solution has the asymptotic
stability. See You (1982) in the theory of ordinary differential equations.

Hence, for the Cauchy problem of nonlinear evolution equations with small initial
data, to study the global existence and uniqueness of (classical) solutions on t ≥ 0
and the (exponential) decay of solutions as t → +∞ is, equivalently, to study the
asymptotic stability of zero solution from the point of view of differential equations,
to study whether the zero solution is an attractor from the point of view of dynamical
systems, and to study the stabilization of the system from the point of view of
control theory. Therefore, this is a research topic of important theoretical and practical
significance.

This theory, in the case of ordinary differential equations (systems), namely, in
the case of finite dimensional dynamical systems, can be guaranteed, as stated above,
only when the equations (systems) have the abovementioned dissipativemechanism.
A natural question is how to generalize this theory to the case of infinite dimensional
dynamical systems, namely, to the case of nonlinear partial differential equations,
and figure out when the zero solution is asymptotically stable, i.e., when the Cauchy
problem with small initial data admits a unique global classical solution on t ≥ 0
with a certain decay as t → +∞.

Comparing the dynamical systems of the infinite and finite dimensional cases,
they have something in common and there are also essential differences.

There is only one main common point, that is, roughly speaking, in the case of
small initial data, the higher the order 1 + α of the nonlinear term, namely, the larger
the α, the larger the life-span of classical solution.
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But in the infinite dimensional case, the solution depends not only on the time
variable t but also on the space variable x = (x1, . . . , xn) (n = 1, 2 or 3 in various
specific applications), and this brings forth great complexity and very rich topics to
the discussion in the infinite dimensional case.

First of all, as mentioned above, there are many different types of evolutionary
partial differential equations. Each type corresponds to different physical phenomena,
with its own essential features andmethods,which needs to be dealtwith individually.

In this book we focus on the following Cauchy problem of nonlinear wave equa-
tions with small initial data:

�u = F(u, Du, Dx Du), (1.1.13)

t = 0 : u = εφ(x), ut = εψ(x), (1.1.14)

where

� = ∂2

∂t2
− 	

(

	 =
n

∑

i=1

∂2

∂x2i

)

(1.1.15)

is the wave operator,

Dx =
(

∂

∂x1
, · · · , ∂

∂xn

)

, D =
(

∂

∂t
,

∂

∂x1
, · · · , ∂

∂xn

)

, (1.1.16)

φ andψ are sufficiently smooth functions with compact support, assumewithout loss
of generality that φ,ψ ∈ C∞

0 (IRn), and ε > 0 is a small parameter.
Denote

λ̂ = (λ; (λi ), i = 0, 1, · · · , n; (λi j ), i, j = 0, 1, · · · , n, i + j ≥ 1). (1.1.17)

Assume that the nonlinear term F(λ̂) on the right-hand side is sufficiently smooth
in a neighborhood of λ̂ = 0 and satisfies

F(λ̂) = O(|λ̂|1+α), (1.1.18)

in which α ≥ 1 is an integer.
In addition to the importance of the wave phenomenon itself and its various

applications, the motivation that we focus on the nonlinear wave equation lies also
in that this is the first nonlinear evolution equation which involves in the study on
the asymptotic stability of the zero solution. The first work dates back to that of
Segal 1968 in 1968. However, arising from the study of the late mathematician John
1979–1981 on the blow-up phenomena of solutions to the nonlinear wave equations
at the end of 1970’s, it was really developed by the works of Klainerman 1980–1982
in the beginning of 1980’s and a series of subsequent works by John and Klainerman
(1984) Klainerman (1983) Klainerman (1985), and Klainerman and Ponce (1983).
Meanwhile, since the hyperbolic case is much more complicated than many other
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cases, which ismore challenging inmathematics, there are still many problemsworth
further research and thinking. It is also worth pointing out that the general framework
of solving method that we are going to introduce in the following is applicable
not only to nonlinear wave equations,but also to some other nonlinear evolution
equations, such as nonlinear heat equations, nonlinear Schrödinger equations, and
so on (see Li and Chen 1992).

Second of all, different from the case of ordinary differential equations (systems),
the linearized equation of the above nonlinear wave equation, namely, the usual wave
equation

�u = 0, (1.1.19)

does not contain a dissipative term (its energy is conserved, while for the case with
dissipative terms, see Sect. 1.4), however its solutions may still have some decay. For
instance, it can be proved that (see Li and Chen 1992): any solution u = u0(t, x) of
equation (1.1.19) satisfies

‖u0(t, ·)‖L∞(IRn) ≤ C(1 + t)−
n−1
2 , ∀t ≥ 0, (1.1.20)

whereC is a positive constant depending on the solution but independent of t . There-
fore, if the space dimension n ≥ 2, then any solution of (1.1.19) decays as t → +∞.
There is one more thing that is different from the case of ordinary differential equa-
tions (systems), that is, even if the solution decays, it may not decay exponentially,
it may decay polynomially like (1.1.20); and the higher the space dimension n, the
larger the decay rate. To illustrate this fact, F. John has quoted the following motto
from Shakespeare’s Henry VI:

Glory is like a circle in the water,

Which never ceaseth to enlarge itself,

Till by broad spreading it disperse to naught.

As a matter of fact, when the space dimension is higher, the wave has more space to
evacuate and then decays faster.

Based on the above observation, roughly speaking, when the space dimension n
and α are larger, the solution may have larger decay rate and larger life-span, then
the global solution on t ≥ 0 for Cauchy problem may exist for small initial data and
may have some decay as t → +∞, i.e., the zero solution is asymptotically stable;
Otherwise, when n and α are smaller, the classical solutions only exists locally in
general, that is, the classical solutions may blow up in a finite time and then the zero
solution is not stable.

Sincewhether the classical solutions exist or not is undetermined,wecan generally
study the life-span˜T (ε)of classical solutions to theCauchyproblem (1.1.13)–(1.1.14)
for any given space dimension n ≥ 1 and integerα ≥ 1. If˜T (ε) = +∞, thenwe have
the global existence and uniqueness of classical solutions on t ≥ 0. Meanwhile, we
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can further study the asymptotic stability of the solution as t → +∞, especially
its decay. Otherwise, if ˜T (ε) is finite, then we can only have the local existence of
solutions in the finite interval [0, ˜T (ε)), and the solution will blow up as t → ˜T (ε),
on this occasion, we hope to obtain a sharp estimate on the lower bound of ˜T (ε).
In other words, one of our objectives of study is to establish a sharp estimate on
the lower bound of the life-span ˜T (ε) for any given n ≥ 1 and α ≥ 1. The so-called
sharpness means that the estimate cannot be improved for general F , namely, we can
always find some special F and initial data such that the life-span of the solution has
an upper bound estimate of the same type.

Our second objective is to provide a concise and unified framework to deal with
this kind of research — the global iteration method.

In the sequel we will see that, for various important results in this research field,
which were obtained by using different methods by many famous mathematicians
for different particular cases since 1980’s, we can handle them in a unified and simple
method, as long as we realize the above two objectives; moreover, we can essentially
improve some results or fill gaps of research for some important situations, so that
the whole problem can be solved thoroughly.

1.2 Past and Present

We first consider the special case that the nonlinear term F does not depend on u
explicitly:

F = F(Du, Dx Du). (1.2.1)

The first general results were given byKlainerman (1980) andKlainerman (1982).
With the aid of the L∞ decay estimate (1.1.20) of solutions to the wave equation
and the energy estimates, using Nash–Moser–Hörmander iteration he proved that,
for sufficiently small ε > 0, the Cauchy problem (1.1.13)–(1.1.14) admits a global
classical solution u = u(t, x) on t ≥ 0 and the solution has some decay as t → +∞
if n and α satisfy the following relations:

α = 1 2 3, 4, · · ·
n ≥ 6 3 2

The same result was proved in tandem by Shatah (1982) and Klainerman& Ponce
(1983) in simpler methods, while the later used the local solution extension method
and the former used the simple contraction mapping principle. They both used the
Lq(q > 2) decay estimate of solutions to the wave equation.

The case α = 1, corresponding to the quadratic nonlinearity, being the first non-
linear power in the Taylor’s expansion of the nonlinear term, appears most naturally.
On this occasion, the restriction n ≥ 6 on the space dimension in the above result is
not sharp. In 1985, Klainerman used some Lorentz invariant operators like momen-
tum, angular momentum, and time–space expansion to establish some related decay
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estimates and improve this restriction to n ≥ 4 by using the local solution exten-
sion method. Then the above table which ensures the global existence of classical
solutions is turned into

α = 1 2 3, 4, · · ·
n ≥ 4 3 2

Now we consider the case that α = 1 and n = 3. John (1981) already proved that
the classical solution to the equation

�u = u2t (n = 3) (1.2.2)

with any given compactly supported nontrivial initial data must blow up in a finite
time, so in general we cannot expect the global existence of classical solutions and
have to estimate the life-span of solutions. Based on a series of research given by
John, Sideris, andKlainerman, finallyKlainerman (1983), John&Klainerman (1984)
obtained the following lower bound estimate to the life-span in general cases:

˜T (ε) ≥ exp{aε−1}, (1.2.3)

where a is a positive constant independent of ε. At this moment, the classical solution
does not exist globally in general, but the life-span ˜T (ε) grows exponentially as
ε → 0, namely, when ε > 0 is very small, the life-span is considerably large from
the perspective of practical applications. Hence, such solutions are called almost
global solutions.

Furthermore, we consider the cases that α = 1, n = 2 and α = 2, n = 2. For the
case n = 2, Kovalyov (1987) proved that

˜T (ε) ≥
{

b(ε ln ε)−2, α = 1,
exp{aε−2}, α = 2,

(1.2.4)

where a, b are both positive constants independent of ε. But the above result is not
sharp when α = 1 and can be improved by

˜T (ε) ≥ bε−2, α = 1, (1.2.5)

which has been mentioned in the lecture notes of Hörmander in 1985, Li Tatsien and
Yu Xin also proved this independently in 1989.

When n = 1, things are easier because of D’Alembert formula, and it can be
proved that

˜T (ε) ≥ bε−α, ∀ integer α ≥ 1, (1.2.6)

where b is a positive constant independent of ε (see Li Tatsien and Yu Xin (1989).
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In summary, we have the following table

T (ε) ≥
n α = 1 2 · · · α · · ·
1 bε−1 bε−2 · · · bε−α · · ·
2 bε−2 exp{aε−2}
3 exp{aε−1} +∞
4, 5,· · ·

Wepoint out that, the results in the above table are all sharp with respect to general
nonlinear term F without any additional restrictions.

Now we consider the general case that the nonlinear term F on the right-hand
side depends on u:

F = F(u, Du, Dx Du). (1.2.7)

Since for wave equations, the energy estimates can give only the L2 estimates to
partial derivatives of the solution but not the L2 estimate of the solution itself, things
become much more complicated. To obtain the sharp lower bound estimate of the
life-span, some delicate estimates need to be established to the solution itself of the
wave equation.

For the most important case α = 1, with the aid of the conformal mapping from
IRn+1 to R × Sn , Christodoulou (1986) first proved the global existence of classical
solutions with small initial data under the condition that n ≥ 5 is odd. The essential
restriction that the space dimension is odd was removed by Li Tatsien and Chen
Yunmei (1987 1988b) by using the following concise and unified method (the global
iterationmethod), they proved the global existence of classical solutions with small
initial data under the following conditions satisfied by n and α:

α = 1 2, 3, · · ·
n ≥ 5 3

Now we turn to the case that α = 1 and n = 4. After carefully analyzing the
results and method by Li Tatsien and Chen Yunmei in the above paper, Hörmander,
the Fields Medal winner, proved in Hörmander (1991) that

˜T (ε) ≥
{

exp{aε−1},
+∞, when F ′′

uu(0, 0, 0) = 0; (1.2.8)

while, for the case that α = 1 and n = 3, Lindblad (1990b) proved that

˜T (ε) ≥
{

bε−2,

exp{aε−1}, when F ′′
uu(0, 0, 0) = 0,

(1.2.9)
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where a, b are both positive constants independent of ε. We can see from their results
that: even if F depends on u, as long as it does not contain u2, the life-span has the
same lower bound estimate as in the special case that F does not depend on u when
n ≥ 3. This shows that the “worst” term is u2.

The above full results for the cases that n ≥ 3 and α ≥ 1 can also be obtained
by the unified global iteration method (see Li Tatsien, Yu Xin and Zhou Yi 1991a,
1992b), which can be represented in the following table:

T (ε) ≥
n α = 1 2, 3, · · ·
3 bε−2

exp{aε−1}, when Fuu(0, 0, 0) = 0

4 exp{aε−1}
+∞, when Fuu(0, 0, 0) = 0 +∞

5,6,· · ·

Nowwe consider the rest cases. The case that n = 1 andα ≥ 1 is relatively simple;
but the case that n = 2 and α ≥ 1 is more complicated. When n = 1 and α ≥ 1, we
have

˜T (ε) ≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

bε− α
2 , in general;

bε− α(1+α)
2+α , when

∫ +∞
−∞ ψ(x)dx = 0;

bε−α, when ∂
β
u F(0, 0, 0) = 0,∀ 1 + α ≤ β ≤ 2α,

(1.2.10)

where b is a positive constant independent of ε (see Li Tatsien, Yu Xin, and Zhou
Yi 1991b, 1992a). When n = 2 and α ≥ 1, through rather delicate discussions, we
have the following table:

n = 2 T (ε) ≥
α = 1 2 3, 4, · · ·

be(ε)

bε−1, when ψ(x)dx = 0 bε−6 +∞
bε−2, when exp{aε−2}, when

∂2
uF (0, 0, 0) = 0 ∂β

uF (0, 0, 0) = 0

(β = 3, 4)

where a and b are both positive constants independent of ε, and e(ε) is defined by

ε2e2(ε) ln(1 + e(ε)) = 1 (1.2.11)

(see Li Tatsien and Zhou Yi 1993, 1994b).
We point out that all these results are sharp except for the case that n = 4 and

α = 1, for which the estimate
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˜T (ε) ≥ exp{aε−1} (1.2.12)

obtained by Hörmander, can be improved by (see Li Tatsien and Zhou Yi (1995b–
1995c), see also Lindblad and Sogge (1996) who simplified the proof to a certain
extent)

˜T (ε) ≥ exp{aε−2}, (1.2.13)

which was already proved to be sharp.
The consideration in the above cases is made for very general nonlinear term F on

the right-hand side. However, even the general nonlinear term on the right-hand side
cannot ensure the global existence of classical solutions, it is still possible to obtain
global classical solutions for nonlinear terms on the right-hand side, satisfying some
special requirements, in particular, when the nonlinear term on the right-hand side
has a certain compatibility with the wave operator.

To ensure the existence of global classical solutions, there is a kind of additional
requirements on the nonlinear terms called the null condition, which is applica-
ble to quite a lot important practical applications. Roughly speaking, the so-called
null condition means that every small plane wave solution to the linearized equation
(namely, the homogeneous linear wave equation) is still a solution to the correspond-
ing nonlinear equation (namely, the nonlinear wave equation under consideration).
For instance,

�u = u2t − |∇u|2 (here ∇ is Dx) (1.2.14)

is exactly a nonlinear wave equation satisfying the null condition. See Christodoulou
(1986), Christodoulou and Klainerman (1993), Klainerman (1986), Sogge (1995)
for reference.

1.3 Methods

From the above historical survey we can see how a full result was obtained based on
step-by-step efforts of many mathematicians in a considerably long period of time.
Most of previous researches were conducted individually for a variety of nonlinear
evolution equations and for different cases (different space dimensions, different
values of α, special forms of F or general form of F , global existence or life-span
estimates of classical solutions, · · · ) of the same equation, where various methods
were adopted. To construct a theory edifice on an existing base, this base has to
be cleaned up first. It turns out that this kind of problems can be unitedly treated
by simply using the contraction mapping principle. This enables us to put forward
a normalized treatment method, called the global iteration method, based on the
contraction mapping principle to deal with the global existence and the life-span
estimates of classical solutions. It shows up as a solving process composed of several
pieces as follows:
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estimates of solutions to the linearized problem
⇓

selection of the solution space
⇓

the contraction mapping principle
⇓

the lower bound estimate of life-span (including the global existence).

This framework has some obvious features and advantages.
1. Universality
a. It is applicable to various types of nonlinear evolution equations. In addition to

nonlinear wave equations, it is also applicable to nonlinear heat equations, nonlinear
Schrödinger equations, and quite a few some other nonlinear evolution equations
and coupled systems.

b. It imposes no additional restrictions to the specific form of the nonlinear term
other than the power 1 + α in a neighborhood of the origin.

c. It combines the treatment on both the global existence and the lower bound
estimate of life-span of solutions in a unified way.

2. Conciseness
a. To use the global iteration method to the nonlinear evolution equation under

consideration, it needs only to know clearly about the properties and related estimates
of the solution to the corresponding linearized equation (mainly, the decay estimates
as well as the energy estimates), and then construct a suitable function space where
we can use the contraction mapping principle. The result for the nonlinear case can
be obtained directly by dealing with everything on the basis of linearized problem.

b. All the results are represented by a simple relation between the space dimension
n(≥ 1) and α(≥ 1), moreover, in many situations the results can be obtained for all
the corresponding cases of n and α in a unified way.

c. The workload when using this method equates roughly to that of proving the
local existence of classical solutions.

3. Accuracy
Since the whole solving framework is based on the understanding on the solutions

to the corresponding linearized problem, in the case of the global classical solutions,
the decay rate of the obtained solution as t → +∞ remains exactly the same as that
for the linearized problem.

To be specific, for the Cauchy problem (1.1.13)–(1.1.14) of nonlinear wave equa-
tions, in the special case that the right-hand side F does not depend on u explicitly
(see (1.2.2)), it can be proved in a unified and concise way that (See Li andYu (1989))

˜T (ε) ≥
⎧

⎨

⎩

+∞, if K0 > 1,
exp{aε−α}, if K0 = 1,
bε− α

1−K0 , if K0 < 1,
(1.3.1)
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where

K0 = n − 1

2
α, (1.3.2)

and a and b are both positive constants independent of ε. This immediately gives us
the first table in Sect. 1.2.

In the general case that F depends explicitly on u (see (1.2.7)), as stated before,
the key point is to establish appropriate and subtle estimates on the solution itself to
the Cauchy problem of the linear wave equation

�u = F(t, x), (1.3.3)

t = 0 : u = f (x), ut = g(x), (1.3.4)

which then yield the accurate result for the lower bound estimate on the life-span.
There is a known L2 estimate for the solutionwhen n ≥ 3, calledVonWahl Inequality
(SeeWahl (1970)). Applying this inequality in the global iterationmethod leads to the
global existence result of Li Tatsien and Chen Yunmei (1988b); but it is not sufficient
for obtaining the accurate lower bound estimate of life-span. After analyzing the
method in Li andChen (1988b), Hörmander (1991) improved this inequality and then
obtained the lower bound estimate (1.2.12) of life-span when α = 1 and n = 4. Li
Tatsien and Yu Xin (1991) observed that the solution of the wave equation has larger
decay rate as t → +∞ inside the light cone, so they divided the whole space into two
parts and introduced a new type of Banach space, established a new inequality— the
generalized Von Wahl Inequality, and finally the global iteration method is applied
to obtain uniformly and briefly the result shown in the second table in Sect. 1.2 in
the case that n ≥ 3 and α ≥ 1, that is,

˜T (ε) ≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+∞, if K > 1,

exp{aε−α}, if K = 1,

bε− α
1−K , if K < 1,

(1.3.5)

where

K = (n − 1)α − 1

2
, (1.3.6)

and a and b are both positive constants independent of ε.
To obtain the result when n = 2, the corresponding results (see Li and Zhou

1993, 1994b) can only be obtained by the global iteration method after extending the
abovementioned VonWahl Inequality and generalized VonWahl Inequality from the
case of L2 to L p(p ≥ 1). In the case that n = 4 and α = 1, more dlicate estimates
(see Li and Zhou 1995b–1995c) are necessary to improve the estimate (1.2.12) of
Hörmander.
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We can figure out that, to obtain good results, the global iteration method, as a
universalmethod, should be used in accordancewith appropriate and subtle estimates
of solutions to the linearized equations of the nonlinear evolution equations under
consideration. In addition, it also has independent value in establishing the delicate
estimates of solutions to the linear problem, which can be further applied to other
occasion.

1.4 Supplements

The application of the global iteration method to the nonlinear wave equations has
been stated as above and will be demonstrated in details in the main body of this
book. Here, to help the reader has a more macroscopic view, we cite some results
obtained by applying the global iteration method to some other nonlinear evolution
equations, although they will be kept away from this book.

For the following Cauchy problem of nonlinear heat equations with small initial
data

ut − 	u = F(u, Dxu, D
2
xu), (1.4.1)

t = 0 : u = εφ(x), (1.4.2)

the lower bound estimate on the life-span ˜T (ε) of classical solutions can be expressed
in the following table (see Zheng Songmu and Chen Yunmei 1986, Li Tatsien and
Chen Yunmei 1988a, 1992):

T (ε) ≥
n α = 1 2 3, 4, · · ·
1 bε−2 exp{aε−2}
2 exp{aε−1}
3,4,· · · +∞

As a matter of fact, for each solution u = u0(t, x) to the heat equation

ut − 	u = 0, (1.4.3)

by using the heat kernel expression, it is easy to prove that

|u0(t, x)| ≤ C(1 + t)−
n
2 , ∀t ≥ 0, (1.4.4)

where C is a positive constant independent of t . Compared with (1.1.20), it can be
found that the decay rate of solutions is bigger than that for the wave equation, then
for nonlinear heat equations, the asymptotic stability of zero solution can be obtained
in more situations. By using the global iteration method, it can be obtained at once
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that

˜T (ε) ≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+∞, if K > 1,

exp{aε−α}, if K = 1,

bε− α
1−K̄ , if K < 1,

(1.4.5)

where

K = αn

2
. (1.4.6)

This gives all the contents contained in the above table.
Now let us look at the following Cauchy problem of nonlinear dissipative wave

equations with small initial data:

�u + ut = F(u, Du, Dx Du), (1.4.7)

t = 0 : u = εφ(x), ut = εψ(x). (1.4.8)

Regarding u as the displacement, the presence of the dissipation term ut here is
caused by the assumption that the damping force proportional to the velocity exists
in the process of vibration. Thanks to this dissipation term, the decay rate of solutions
becomes larger than that for the normal wave equations. In fact, for the linearized
equation of (1.4.7)

�u + ut = 0, (1.4.9)

any given solution u = u0(t, x) has the same decay rate (1.4.4) as that for the heat
equation, and then the life-span of solutions to equation (1.4.7) has the same lower
bound estimate (1.4.5) as that for the heat equation (see Li Yachun 1996), and the
results given are all sharp (see Li Tatsien and Zhou Yi 1995a).

There are also corresponding results for nonlinear Schrödinger equations, we will
not go into details here.

1.5 Arrangement of Contents

This book includes 15 chapters.
This chapter (Chap. 1) is the introduction and overview. In addition to remain-

ing the independent value of their own, Chaps. 2–7 are mainly in preparation for
introducing basic results and contents of this book in later chapters. Thereinto, we
introduce the solving formulas for linear wave equation in Chap. 2, Chap. 3 is focused
on introducing some Sobolev type inequalities with decay factors, Chap. 4 is aimed
at establishing various estimates to solutions of the linear wave equation, some esti-
mates on product functions and composite functions are given in Chap.5, Chap. 6 is
devoted to establishing the general theory of theCauchy problem for the second-order

http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_7
http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_6
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linear hyperbolic equations, and in Chap.7 the Cauchy problem of nonlinear wave
equations is reduced to the Cauchy problem of second-order quasi-linear hyperbolic
systems in general, acting as a necessary preparation for later discussion.

In Chaps. 8–11, we fully have our discussion focused on the global existence and
lower bound estimates of life-span for classical solutions to the Cauchy problem of
nonlinear wave equations in the cases that the dimension n = 1, n ≥ 3, n = 2 and
n = 4, respectively, and all the results announced in Chap.1 are proved. In Chap.12,
we focus on the null condition which is showed to have positive influence on the
global existence of classical solutions to the Cauchy problem of nonlinear wave
equations, and then we improve some results in the previous chapters accordingly.

In Chaps. 13 and 14, the upper bound estimates on the life-span of classical solu-
tions are established for some typical examples, which show that all the above men-
tioned results about the lower bound estimates on the life-span of classical solutions
to the Cauchy problem of nonlinear wave equations are sharp, and so the whole
theory is close to the level of perfection.

In the end, in Chap.15, examples are given to show some important applications
and generalizations of the aforementioned results.

Here we point out that C or Ci (i = 1, 2, · · · ) appearing in quite a few estimates
stand for some generic positive constants and are not always mentioned each time
they appear.

http://dx.doi.org/10.1007/978-3-662-55725-9_7
http://dx.doi.org/10.1007/978-3-662-55725-9_8
http://dx.doi.org/10.1007/978-3-662-55725-9_11
http://dx.doi.org/10.1007/978-3-662-55725-9_12
http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_14
http://dx.doi.org/10.1007/978-3-662-55725-9_15


Chapter 2
Linear Wave Equations

2.1 Expression of Solutions

In this section we consider the following Cauchy problem of linear wave equations:

�u = F(t, x), (t, x) ∈ IR × IRn, (2.1.1)

t = 0 : u = f (x), ut = g(x), ∈ IRn, (2.1.2)

where x = (x1, . . . , xn),

� = ∂2

∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n
(2.1.3)

is the n−dimensional wave operator, and F, f and g are given functions with suitable
regularities.

According to the superposition principle and the Duhamel’s principle based on
this, to solve the Cauchy problem (2.1.1)–(2.1.2), it suffices to solve the Cauchy
problem of the following homogeneous wave equation:

�u = 0, (t, x) ∈ IR × IRn, (2.1.4)

t = 0 : u = 0, ut = g(x), x ∈ IRn. (2.1.5)

Denote the solution of this problem by

u = S(t)g. (2.1.6)

Here

S(t) : g → u(t, ·), (2.1.7)

© Springer-Verlag GmbH Germany and Shanghai Scientific
and Technical Publishers 2017
T. Li and Y. Zhou, Nonlinear Wave Equations, Series in Contemporary Mathematics 2,
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18 2 Linear Wave Equations

being a linear operator whose specific properties reflect the nature of wave equations,
is the key object of study of this chapter.

If the solution of the Cauchy problem (2.1.4)–(2.1.5) is known, then it is easy to
know that the solution to the Cauchy problem

�u = 0, (t, x) ∈ IR × IRn, (2.1.8)

t = 0 : u = f (x), ut = 0, x ∈ IRn (2.1.9)

can be expressed by

u = ∂

∂t
(S(t) f ); (2.1.10)

while, the solution to the Cauchy problem of the inhomogeneous wave equation:

�u = F(t, x), (t, x) ∈ IR × IRn, (2.1.11)

t = 0 : u = 0, ut = 0, x ∈ IRn (2.1.12)

can be expressed, according to the Duhamel’s principle, by

u =
∫ t

0
S(t − τ )F(τ , ·)dτ . (2.1.13)

Therefore, in general the solution to the Cauchy problem (2.1.1)–(2.1.2) of wave
equations can be represented uniformly by

u = ∂

∂t
(S(t) f ) + S(t)g +

∫ t

0
S(t − τ )F(τ , ·)dτ . (2.1.14)

On the other hand, the solution to the Cauchy problem (2.1.4)–(2.1.5) can also
be obtained by solving the Cauchy problem of the forms (2.1.8)–(2.1.9) or (2.1.11)–
(2.1.12). In fact, if the solution v to the Cauchy problem

�v = 0, (t, x) ∈ IR × IRn, (2.1.15)

t = 0 : v = g, vt = 0, x ∈ IRn (2.1.16)

is already known, then

u =
∫ t

0
v(τ , ·)dτ (2.1.17)

is exactly the solution to the Cauchy problem (2.1.4)–(2.1.5). Moreover, it is easy to
show from (2.1.14) that the solution to the Cauchy problem
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�u = g(x)δ(t), (t, x) ∈ IR × IRn, (2.1.18)

t = −1 : u = 0, ut = 0, x ∈ IRn (2.1.19)

is exactly the solution to the Cauchy problem (2.1.4)–(2.1.5), where δ is the Dirac
function.

2.1.1 Expression of Solutions When n ≤ 3

When n = 1, as t ≥ 0, the solution to the Cauchy problem (2.1.4)–(2.1.5) of the
one-dimensional wave equation is given by the well-known d’Alembert formula:

u(t, x) = 1

2

∫ x+t

x−t
g(y)dy. (2.1.20)

When n = 2, as t ≥ 0, the solution to the Cauchy problem (2.1.4)–(2.1.5) of the
two-dimensional wave equation is given by the two-dimensional Poisson formula:

u(t, x) = 1

2π

∫
|y−x |≤t

g(y)√
t2 − |y − x |2 dy, (2.1.21)

where x = (x1, x2), y = (y1, y2), and

|y − x | =
√

(y1 − x1)2 + (y2 − x2)2.

When n = 3, as t ≥ 0, the solution to the Cauchy problem (2.1.4)–(2.1.5) of the
three-dimensional wave equation is given by the three-dimensional Poisson formula:

u(t, x) = 1

4πt

∫
|y−x |=t

g(y)dSy, (2.1.22)

where x = (x1, x2, x3), y = (y1, y2, y3),

|y − x | =
√

(y1 − x1)2 + (y2 − x2)2 + (y3 − x3)2,

and dSy stands for the area element of the sphere |y − x | = t .
The derivation of formulas (2.1.20)–(2.1.22) can be found, say, in Gu Chaohao,

Li Tatsien et al. 1987.
We can find out from (2.1.20)–(2.1.22) that, when the space dimension n ≤ 3,

the expressions of the solution u = u(t, x) to the Cauchy problem (2.1.4)–(2.1.5)
involve only g(x) itself but not its derivatives. Besides, when

g(x) ≥ 0, ∀x ∈ IRn, (2.1.23)
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we always have

u(t, x) ≥ 0, ∀(t, x) ∈ IR+ × IRn, (2.1.24)

where n = 1, 2 and 3. This property is called the positivity of the fundamental
solution (See Remark 2.2).

When n ≥ 4, the fundamental solution does not have the positivity any longer.
This can be shown by the expression of solutions, which will be derived later soon.

2.1.2 Method of Spherical Means

Here and throughout this section, we always assume that n > 1.
For any given function ψ(x) = ψ(x1, . . . , xn), denote by

h(x, r) = 1

ωnrn−1

∫
|y−x |=r

ψ(y)dSy (2.1.25)

the integral mean of ψ on the sphere centered at x = (x1, . . . , xn) with radius r ,
where ωn stands for the area of the unit sphere Sn−1 in IRn , dSy is the area element
of the sphere |y − x | = r , and ωnrn−1 is the area of this sphere. The above formula
can be easily rewritten as

h(x, r) = 1

ωn

∫
|ξ|=1

ψ(x + rξ)dωξ, (2.1.26)

where dωξ is the area element of the unit sphere Sn−1, and ξ = (ξ1, . . . , ξn).
From the above formula, it turns out that the function h(x, r) is well-defined not

only for r ≥ 0 but also for r < 0, and is an even function of r .
If ψ ∈ C2, then it is obvious that h ∈ C2, and

h(x, 0) = ψ(x), (2.1.27)

and since h is an even function of r , we have

∂h

∂r
(x, 0) = 0. (2.1.28)

In addition, from (2.1.26) we have

∂h(x, r)

∂r
= 1

ωn

∫
|ξ|=1

n∑
i=1

ψxi (x + rξ)ξi dωξ
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= 1

ωnrn−1

∫
|ξ̃|=r

n∑
i=1

ψxi (x + ξ̃)ξi dS,

where ξ̃ = rξ, and dS stands for the area element of the sphere |ξ̃| = r . Then, from
the Green’s formula we get

∂h(x, r)

∂r
= 1

ωnrn−1

∫
|y−x |≤r

�ψ(y)dy, (2.1.29)

where

� = ∂2

∂x21
+ · · · + ∂2

∂x2n
(2.1.30)

is the n-D Laplacian operator.
Differentiating (2.1.29) oncewith respect to r , and using (2.1.29) again, we obtain

∂2h(x, r)

∂r2
= −n − 1

ωnrn

∫
|y−x |≤r

�ψ(y)dy

+ 1

ωnrn−1

∫
|y−x |=r

�ψ(y)dSy

= −n − 1

r

∂h(x, r)

∂r

+ 1

ωnrn−1

∫
|y−x |=r

�ψ(y)dSy . (2.1.31)

On the other hand, from (2.1.26) we have

�xh(x, r) = 1

ωn

∫
|ξ|=1

�xψ(x + rξ)dωξ

= 1

ωnrn−1

∫
|y−x |=r

�ψ(y)dSy, (2.1.32)

where �x stands for the Laplacian operator with respect to x (see (2.1.30)).
Combining (2.1.31)–(2.1.32) and noting (2.1.27)–(2.1.28), we obtain the

following

Lemma 2.1 Assume thatψ(x) ∈ C2, then its spherical mean function h(x, r) ∈ C2,
and satisfies the following Darboux equation

∂2h(x, r)

∂r2
+ n − 1

r

∂h(x, r)

∂r
= �xh(x, r) (2.1.33)
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and the initial condition

r = 0 : h = ψ(x),
∂h

∂r
= 0. (2.1.34)

In particular, taking

ψ(x1, . . . , xn) = φ(x1) (2.1.35)

as a function depending only on x1 but not on x2, . . . , xn, we can prove that its
spherical mean function has the expression

h(x, r) = ωn−1

ωn

∫ 1

−1
φ(x1 + rμ)(1 − μ2)

n−3
2 dμ, (2.1.36)

where, ωn−1 is taken to be 2 when n = 2, i.e., it is defined artificially that ω1 = 2,
and the same below. This coincides with the value of ω1 deduced by using (2.4.7) in
this chapter when n = 2.

In fact, from (2.1.26) we easily get

h(x, r) = 1

ωnrn−1

∫
|y|=r

ψ(x + y)dS

= 1

ωnrn−1

∂

∂r

∫
|y|≤r

ψ(x + y)dy. (2.1.37)

Noticing (2.1.35), we have

∫
|y|≤r

ψ(x + y)dy =
∫

λ2+|ỹ|2≤r2
φ(x1 + λ)dλd ỹ,

where ỹ = (y2, . . . , yn). Adopting polar coordinates to the variable ỹ and denoting
ρ = |ỹ|, the above formula can be rewritten as

∫
|y|≤r

ψ(x + y)dy

= ωn−1

∫
λ2+ρ2≤r2

φ(x1 + λ)ρn−2dλdρ

= ωn−1

∫ r

−r
dλ

∫ √
r2−λ2

0
φ(x1 + λ)ρn−2dρ,
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then it is easy to show that

∂

∂r

∫
|y|≤r

ψ(x + y)dy

= ωn−1r
∫ r

−r
φ(x1 + λ)(r2 − λ2)

n−3
2 dλ

= ωn−1r
n−1

∫ 1

−1
φ(x1 + rμ)(1 − μ2)

n−3
2 dμ.

Thus, (2.1.36) follows from (2.1.37).
The spherical mean function h(x, r) given by (2.1.36) depends only on x1 and r ,

then the corresponding Darboux equation (2.1.33) is reduced to

∂2h

∂r2
+ n − 1

r

∂h

∂r
= ∂2h

∂x21
, (2.1.38)

moreover,

∂2h

∂x21
= ωn−1

ωn

∫ 1

−1
φ′′(x1 + rμ)(1 − μ2)

n−3
2 dμ. (2.1.39)

Taking x1 = 0 in (2.1.38)–(2.1.39), we obtain

Lemma 2.2 Suppose that

h(r) = ωn−1

ωn

∫ 1

−1
φ(rμ)(1 − μ2)

n−3
2 dμ, (2.1.40)

then we have

h′′(r) + n − 1

r
h′(r) = ωn−1

ωn

∫ 1

−1
φ′′(rμ)(1 − μ2)

n−3
2 dμ. (2.1.41)

Nowwe apply the above results to solving the Cauchy problem of wave equations.
Suppose that v = v(t, x) is the solution to the Cauchy problem (2.1.15)–(2.1.16).

It is clear that v is an even function of t . Let

w(x, r) = ωn−1

ωn

∫ 1

−1
v(rμ, x)(1 − μ2)

n−3
2 dμ. (2.1.42)
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Regarding x as a parameter, from Lemma 2.2 and using equation (2.1.15), it yields

∂2w(x, r)

∂r2
+ n − 1

r

∂w(x, r)

∂r

= ωn−1

ωn

∫ 1

−1
vt t (rμ, x)(1 − μ2)

n−3
2 dμ

= ωn−1

ωn

∫ 1

−1
�xv(rμ, x)(1 − μ2)

n−3
2 dμ

= �xw(x, r),

i.e.,w = w(x, r) satisfies the Darboux equation (2.1.33). Meanwhile, from (2.1.16),
and taking particularly φ ≡ 1 (thus its spherical mean is h ≡ 1) in (2.1.36), we have

ωn−1

ωn

∫ 1

−1
(1 − μ2)

n−3
2 dμ = 1, (2.1.43)

then it is clear that

r = 0 : w = g(x),
∂w

∂r
= 0. (2.1.44)

Hence, it follows from Lemma 2.1 that

w(x, r) = 1

ωn

∫
|ξ|=1

g(x + rξ)dωξ. (2.1.45)

Combining (2.1.42) and (2.1.45) and noting that v is an even function of t , we
obtain

2ωn−1

ωn

∫ 1

0
v(rμ, x)(1 − μ2)

n−3
2 dμ = 1

ωn

∫
|ξ|=1

g(x + rξ)dωξ. (2.1.46)

Equation (2.1.46) is an integral equation satisfied by the solution v = v(t, x) to
the Cauchy (2.1.15)–(2.1.16). Therefore, the Cauchy problem (2.1.15)–(2.1.16) can
be solved through inversion of (2.1.46).

Applying in (2.1.46) the variable substitution

r = √
s, rμ = √

σ, (2.1.47)

and denoting

Q(r, x) = 1

ωn

∫
|ξ|=1

g(x + rξ)dωξ, (2.1.48)
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we obtain
ωn−1

ωn

∫ s

0

v(
√

σ, x)√
σ

(s − σ)
n−3
2 dσ = s

n−2
2 Q(

√
s, x). (2.1.49)

Ignoring for the time being the dependence with respect to x , and denoting

w(s) = s
n−2
2 Q(

√
s, x), χ(σ) = v(

√
σ, x)√
σ

, (2.1.50)

Equation (2.1.49) can be rewritten as

ωn−1

ωn

∫ s

0
χ(σ)(s − σ)

n−3
2 dσ = w(s). (2.1.51)

Next we will solve the integral equation (2.1.51) so as to derive the expression of
solutions to the Cauchy problem of wave equations as n > 1.

2.1.3 Expression of Solutions When n(> 1) Is Odd

When n(> 1) is odd, n−3
2 is a nonnegative integer, by taking derivatives of order n−1

2
on both sides of (2.1.51), we can solve that

χ(s) = ωn

ωn−1 · ( n−3
2 )!

( d

ds

) n−1
2

w(s), (2.1.52)

thus, noting (2.1.50), we have

v(
√
s, x)√
s

= ωn

ωn−1 · ( n−3
2 )!

(
d

ds

) n−1
2

(s
n−2
2 Q(

√
s, x)). (2.1.53)

Taking s = t2 in the above formula, we get that the solution to the Cauchy problem
(2.1.15)–(2.1.16) is

v(t, x) = ωn

ωn−1 · ( n−3
2 )! t

(
1

2t

∂

∂t

) n−1
2

(tn−2Q(t, x)),

(t, x) ∈ IR+ × IRn. (2.1.54)

Using Theorem 2.5 in the appendix (Sect. 2.4) of this chapter, namely,

ωn = 2π
n
2

�( n2 )
, (2.1.55)
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the above formula can also be written as

v(t, x) =
√

π

�( n2 )
t
( 1

2t

∂

∂t

) n−1
2

(tn−2Q(t, x)),

(t, x) ∈ IR × IRn. (2.1.56)

Finally, using (2.1.17), we obtain the following

Theorem 2.1 When n(> 1) is odd, the solution to the Cauchy problem (2.1.4)–
(2.1.5) is

u(t, x) =
√

π

2�( n2 )

(
1

2t

∂

∂t

) n−3
2

(tn−2Q(t, x)), (2.1.57)

where

Q(t, x) = 1

ωn

∫
|ξ|=1

g(x + tξ)dωξ. (2.1.58)

Taking particularly n = 3 in Theorem 2.1, and noting that ω3 = 4π and �( 12 ) =√
π, the three-dimensional Poisson formula (2.1.22) follows immediately.

2.1.4 Expression of Solutions When n(≥ 2) Is Even

When n(≥ 2) is even, to obtain the solution u = u(t, x) to the Cauchy problem
(2.1.4)–(2.1.5), we can add an argument xn+1 artificially, and regard u as the solution
to the following Cauchy problem

�n+1u = 0, (2.1.59)

t = 0 : u = 0, ut = g(x), (2.1.60)

where x = (x1, . . . , xn), and

�n+1 = ∂2

∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n+1

(2.1.61)

is the (n + 1)-dimensional wave operator.
Applying Theorem 2.1 to the Cauchy (2.1.59)–(2.1.60), we get

u(t, x) =
√

π

2�( n+1
2 )

( 1

2t

∂

∂t

) n−2
2

(tn−1Q(t, x)), (2.1.62)
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where

Q(t, x) = 1

ωn+1

∫
|ξ′|=1

g(x1 + tξ1, . . . , xn + tξn)dωξ′ , (2.1.63)

and ξ′ = (ξ, ξn+1) = (ξ1, . . . , ξn, ξn+1).

Denote y′ = (y, yn+1). It is clear that

Q(t, x) = 1

ωn+1tn

∫
|y′|=t

g(x + y)dSy′

= 1

ωn+1tn
∂

∂t

∫
|y′|≤t

g(x + y)dy′

= 1

ωn+1tn
∂

∂t

∫
|y|≤t

∫ √
t2−|y|2

−
√

t2−|y|2
g(x + y)dyn+1dy

= 2

ωn+1tn
∂

∂t

∫
|y|≤t

√
t2 − |y|2g(x + y)dy

= 2

ωn+1tn−1

∫
|y|≤t

g(x + y)√
t2 − |y|2 dy

= 2

ωn+1tn−1

∫
|y−x |≤t

g(y)√
t2 − |y − x |2 dy. (2.1.64)

Thus, using (2.4.7) in the appendix (Sect. 2.4) of this chapter, namely,

ωn+1

ωn
= �( n2 )

�( n+1
2 )

√
π, (2.1.65)

we obtain

Theorem 2.2 When n(≥ 2) is even, the solution to the Cauchy problem (2.1.4)–
(2.1.5) is

u(t, x) = 1

ωn�( n2 )

(
1

2t

∂

∂t

) n−2
2

R(t, x), (2.1.66)

where

R(t, x) =
∫

|y−x |≤t

g(y)√
t2 − |y − x |2 dy. (2.1.67)

Taking particularly n = 2 in Theorem 2.2, and noting that ω2 = 2π, the two-
dimensional Poisson formula (2.1.21) follows immediately.

Some of the results in Sects. 2.1.2–2.1.4 can be found in Courant and Hilbert
(1989).
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2.2 Expression of Fundamental Solutions

The solution E = E(t, x) of the following Cauchy problem of wave equation

�E = 0, (t, x) ∈ IR+ × IRn, (2.2.1)

t = 0 : E = 0, Et = δ(x), x ∈ IRn (2.2.2)

in the sense of distributions, is called the fundamental solution of thewave operator.
In (2.2.2), δ(x) is the Dirac function.

Obviously, when we find the fundamental solution E = E(t, x), the solution to
the Cauchy problem (2.1.4–2.1.5) can be expressed by

S(t)g = E(t, ·) ∗ g, ∀t ≥ 0, (2.2.3)

where ∗ stands for the convolution of distributions.
Conversely, if there exists a distribution E such that (2.2.3) holds for any given

function g, then E must be the fundamental solution of the wave operator.
Now we derive the expression of the fundamental solution of the wave operator.
For any given a > 0, define the function

χa
+(y) = (max(y, 0))a

�(a + 1)
=

{ ya

�(a+1) , y ≥ 0,
0, y < 0.

(2.2.4)

χa+(y) is a continuous function of y, whose support is {y ≥ 0}. It is easy to show
that, as a > 0 we have

d

dy
χa+1

+ (y) = χa
+(y). (2.2.5)

Since one can keep differentiating a continuous function in the sense of distributions,
χa+(y) can be defined inductively for a ≤ 0 in the category of distributions by using
the above formula. Hence, for any given real number a, the function χa+(y) with
support ⊆ {y ≥ 0} can be defined. It is easy to know that χa+(y) is a homogeneous
function of degree a with respect to y, and

sing suppχa
+ ⊆ {y = 0}, (2.2.6)

where sing supp stands for the singular support of distributions.
In particular, we have

χ0
+(y) = d

dy
χ1

+(y) = H(y), (2.2.7)
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where

H(y) =
{
1, y > 0,
0, y < 0

(2.2.8)

is the Heaviside function. Then

χ−1
+ (y) = d

dy
χ0

+(y) = δ(y). (2.2.9)

In addition, noticing that �( 12 ) = √
π, it is easy to show that

χ
− 1

2+ (y) = d

dy
χ

1
2+(y) =

{ 1√
πy , y > 0,

0, y < 0.
(2.2.10)

Theorem 2.3 The fundamental solution of the n(≥ 1)-dimensional wave operator
is

E(t, x) = 1

2π
n−1
2

χ
− n−1

2+ (t2 − |x |2). (2.2.11)

Proof It suffices to verify (2.2.3).
When n = 1, from (2.2.11) and noting (2.2.7) we have

E(t, ·) ∗ g = 1

2

∫
H(t2 − |x − y|2)g(y)dy

= 1

2

∫
H(t − |x − y|)g(y)dy

= 1

2

∫
|y−x |≤t

g(y)dy

= 1

2

∫ x+t

x−t
g(y)dy.

From D’Alembert formula (2.1.20), it yields (2.2.3) as n = 1.
When n(≥ 2) is even, noting that due to (2.2.10) we have

χ
− 1

2+ (t2 − | · |2) ∗ g = 1√
π

∫
|y−x |≤t

g(y)√
t2 − |x − y|2 dy,

then from Theorem 2.2 and noting (2.1.55) we have

S(t)g =
√

π

ωn�( n2 )

(
1

2t

∂

∂t

) n−2
2

(χ
− 1

2+ (t2 − | · |2) ∗ g)
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=
√

π

ωn�( n2 )
χ

− n−1
2+ (t2 − | · |2) ∗ g

= E(t, ·) ∗ g,

i.e., (2.2.3) is satisfied when n(≥ 2) is even.
When n(≥ 3) is odd, noting that due to (2.2.9) we have

χ−1
+ (t2 − | · |2) ∗ g

=
∫

δ(t2 − |x − y|2)g(y)dy

=
∫

δ((t + |x − y|)(t − |x − y|))g(y)dy

=
∫

δ(2t (t − |x − y|))g(y)dy

= 1

2t

∫
δ(t − |x − y|)g(y)dy

= 1

2t

∫
|y−x |=t

g(y)dSy

= tn−2

2

∫
|ξ|=1

g(x + tξ)dωξ,

then from Theorem 2.1 and noting (2.1.55) we have

S(t)g =
√

π

ωn�( n2 )

(
1

2t

∂

∂t

) n−3
2

(χ−1
+ (t2 − | · |2) ∗ g)

=
√

π

ωn�( n2 )
χ

− n−1
2+ (t2 − | · |2) ∗ g

= E(t, ·) ∗ g,

i.e., (2.2.3) is satisfied when n(≥ 3) is odd.
The proof of Theorem 2.3 is finished. �

Remark 2.1 Noting (2.2.9) and (2.2.5), fromTheorem 2.3we easily know that: when
n(> 1) is odd, the support of the fundamental solution E(t, x) is the characteristic
cone |x | = t .

Remark 2.2 From Theorem 2.3, it is easy to show that the fundamental solution of
the wave operator as n = 1 is

E(t, x) =
{

1
2 , |x | ≤ t,
0, |x | > t; (2.2.12)
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as n = 2 it is

E(t, x) =
{

1

2π
√

t2−|x |2 , |x | ≤ t,

0, |x | > t,
(2.2.13)

where x = (x1, x2); while, as n = 3 it is

E(t, x) = δ(|x | − t)

4π|x | , (2.2.14)

where x = (x1, x2, x3). These coincide with the results shown by (2.1.20)–(2.1.22),
and indicate directly the positivity of fundamental solutions as n = 1, 2 and 3 shown
in Sect. 2.1.1.

2.3 Fourier Transform

The solution of the Cauchy problem to linear wave equations can also be obtained
by the Fourier transform.

Taking the Fourier transform in the Cauchy problem (2.1.4)–(2.1.5) with respect
to the argument x , we have

ût t (t, ξ) + |ξ|2û(t, ξ) = 0, (2.3.1)

t = 0 : û = 0, ût = ĝ(ξ), (2.3.2)

where û and ĝ stand for the Fourier transforms of u and g, respectively. Regarding
ξ as a parameter and solving the above Cauchy problem of ordinary differential
equation, we immediately get

û(t, ξ) = sin(|ξ|t)
|ξ| ĝ(ξ). (2.3.3)

Using (2.1.14), we obtain the following

Theorem 2.4 Suppose that u = u(t, x) is the solution of the Cauchy problem
(2.1.1)–(2.1.2), then the Fourier transform of u with respect to x is

û(t, ξ) = cos(|ξ|t) f̂ (ξ) + sin(|ξ|t)
|ξ| ĝ(ξ)

+
∫ t

0

sin(|ξ|(t − τ ))

|ξ| F̂(τ , ξ)dτ . (2.3.4)

Hereafter, we will utilize Theorem 2.4 to establish some estimates on solutions
to the Cauchy problem of wave equations.
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2.4 Appendix—The Area of Unit Sphere

It is known that � function is defined by (see Chen and Yu 2010):

�(z) =
∫ ∞

0
t z−1e−t dt, ∀z > 0. (2.4.1)

We have

�(z + 1) = z�(z), ∀z > 0, (2.4.2)

and when z is a positive integer,

�(z + 1) = z!. (2.4.3)

Moreover

�(1) = 1 and �

(
1

2

)
= √

π. (2.4.4)

B function is defined by (see Chen and Yu 2010)

B(p, q) =
∫ 1

0
x p−1(1 − x)q−1dx, ∀p, q > 0, (2.4.5)

and we have

B(p, q) = �(p)�(q)

�(p + q)
. (2.4.6)

Taking x = μ2 in the following operations, and noting (2.4.6) and (2.4.4), when
n > 1 we have

∫ 1

−1
(1 − μ2)

n−3
2 dμ = 2

∫ 1

0
(1 − μ2)

n−3
2 dμ

=
∫ 1

0
x− 1

2 (1 − x)
n−3
2 dx

= B

(
1

2
,
n − 1

2

)

= �( 12 )�( n−1
2 )

�( n2 )

=
√

π�( n−1
2 )

�( n2 )
,
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then from (2.1.43) we obtain: when n > 1 we have

ωn

ωn−1
= �( n−1

2 )

�( n2 )

√
π. (2.4.7)

This shows that {�( n2 )ωn} forms a geometric sequence with common ratio
√

π.
Hence, noticing that ω2 = 2π, we have

�
(n
2

)
ωn = π

n−2
2 (�(1)ω2) = 2π

n
2 ,

then we obtain the following

Theorem 2.5 The area of the unit sphere Sn−1 in n(> 1)-dimensional space IRn is

ωn = 2π
n
2

�( n2 )
. (2.4.8)



Chapter 3
Sobolev Type Inequalities with Decay Factor

3.1 Preliminaries

In this chapter we are going to establish Sobolev type inequalities with decay factor.
The key point is to consider the Lorentz invariance of the wave operator and then
introduce a group of first-order partial differential operators instead of the normal
differential operators in the differential operations (see Klainerman 1985).

To illustrate this, denote

x0 = t, x = (x1, . . . , xn), (3.1.1)

and we make the following convention about the range of related letters as super-
scripts or subscripts, if there are no special instructions:

a, b, c, . . . = 0, 1, . . . , n; (3.1.2)

i, j, k, . . . = 1, . . . , n. (3.1.3)

Introduce the Lorentz metric

η = (ηab)a,b=0,1,...,n = diag{−1, 1, . . . , 1}, (3.1.4)

and denote

∂0 = − ∂

∂t
, ∂i = ∂

∂xi
(i = 1, . . . , n), (3.1.5)

then the n-dimensional wave operator can be written as

� = −ηab∂a∂b = ∂2
0 − ∂2

1 − · · · − ∂2
n . (3.1.6)

Here and hereafter, we make the convention that repeated indices stand for summa-
tion, then
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ηab∂a∂b =
n∑

a,b=0

ηab∂a∂b.

Introduce the following first-order partial differential operators:

�ab = xa∂b − xb∂a = −�ba (a, b = 0, 1, . . . , n), (3.1.7)

L0 = ηabxa∂b = t∂t + x1∂1 + · · · + xn∂n, (3.1.8)

∂ = (∂0, ∂1, . . . , ∂n) = (−∂t , ∂1, . . . , ∂n), (3.1.9)

∂x
def.= Dx = (∂1, . . . , ∂n), (3.1.10)

They will play important roles in later discussion. From (3.1.7) we particularly have

�i j = xi∂ j − x j∂i = −� j i (i, j = 1, . . . , n), (3.1.11)

�0i = t∂i + xi∂t
def.= Li (i = 1, . . . , n). (3.1.12)

Denote

�x = (�i j )1≤i< j≤n, (3.1.13)

� = (�ab)0≤a<b≤n, (3.1.14)

L = (L0, L1, . . . , Ln), (3.1.15)

�̂x = (�x , ∂x ), (3.1.16)

� = (�, L0) = (�x , L), (3.1.17)

� = (�, L0, ∂) = (�x , L , ∂) = (�, ∂). (3.1.18)

For future needs, we give some simple and important properties for the sets made up
of these first-order partial differential operators.

3.1.1 Commutant Relations

Lemma 3.1.1 The following commutant relations hold:

[∂a, ∂b] = 0, (3.1.19)

[�ab,�cd ] = ηbc�ad + ηad�bc − ηbd�ac − ηac�bd , (3.1.20)

[L0,�ab] = 0, (3.1.21)

[�ab, ∂c] = ηbc∂a − ηac∂b, (3.1.22)

[L0, ∂a] = −∂a, (3.1.23)

where [·, ·] stands for the Poisson bracket, i.e.,
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[A, B] = AB − BA. (3.1.24)

Proof Equation (3.1.19) is obvious. To prove other commutant relations, we first
point out that we always have

∂axb = ηab = ηba (a, b = 0, 1, . . . , n). (3.1.25)

Then

[�ab,�cd ]
= �ab�cd − �cd�ab

= (xa∂b − xb∂a)(xc∂d − xd∂c)

−(xc∂d − xd∂c)(xa∂b − xb∂a)

= xa(∂bxc)∂d − xc(∂d xa)∂b − xb(∂axc)∂d + xc(∂d xb)∂a

−xa(∂bxd)∂c + xd(∂cxa)∂b + xb(∂axd)∂c − xd(∂cxb)∂a

= ηbcxa∂d − ηdaxc∂b − ηacxb∂d + ηdbxc∂a

−ηbd xa∂c + ηcaxd∂b + ηad xb∂c − ηcbxd∂a

= ηbc(xa∂d − xd∂a) + ηad(xb∂c − xc∂b)

−ηbd(xa∂c − xc∂a) − ηac(xb∂d − xd∂b)

= ηbc�ad + ηad�bc − ηbd�ac − ηac�bd ,

this is just (3.1.20).

[L0,�ab]
= L0�ab − �abL0

= ηcd xc∂d(xa∂b − xb∂a) − (xa∂b − xb∂a)η
cd xc∂d

= ηcd xc(∂d xa)∂b − xaη
cd(∂bxc)∂d

−ηcd xc(∂d xb)∂a + xbη
cd(∂axc)∂d

= ηcdηdaxc∂b − ηcdηbcxa∂d − ηcdηdbxc∂a + ηcdηacxb∂d

= xa∂b − xa∂b − xb∂a + xb∂a = 0,

this is just (3.1.21).

[�ab, ∂c] = �ab∂c − ∂c�ab

= (xa∂b − xb∂a)∂c − ∂c(xa∂b − xb∂a)

= −(∂cxa)∂b + (∂cxb)∂a = ηbc∂a − ηac∂b,

this is exactly (3.1.22).
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Finally,

[L0, ∂a] = L0∂a − ∂a L0

= (ηcd xc∂d)∂a − ∂a(η
cd xc∂d)

= −ηcd(∂axc)∂d = −ηcdηac∂d = −∂a,

this is exactly (3.1.23).
Lemma 3.1.1 is proved. �

Bymathematical induction, from (3.1.22)–(3.1.23) we easily obtain the following

Corollary 3.1.1 For any given multi-index k = (k1, . . . , kσ), we have

[∂a, �
k] =

∑

|i |≤|k|−1

Aki�
i D

=
∑

|i |≤|k|−1

Ãki D�i (a = 0, 1, . . . , n), (3.1.26)

where |k| = k1 + · · · + kσ , σ stands for the number of partial differential operators
in the set � = (�1, . . . , �σ),

�k = �
k1
1 · · ·�kσ

σ ,

D =
(

∂

∂t
,

∂

∂x1
, . . . ,

∂

∂xn

)
, (3.1.27)

i = (i1, . . . , iσ) is a multi-index, |i | = i1 + · · · + iσ , and Aki and Ãki are all con-
stants.

3.1.2 L p,q(IRn) space

We first introduce the L p,q(IRn) space (first introduced by Li and Yu (1989, 1991)).

Definition 3.1.1 If

g(r, ξ)
�= f (rξ)r

n−1
p ∈ L p(0,+∞; Lq(Sn−1)), (3.1.28)

where r = |x |, ξ = (ξ1, . . . , ξn) ∈ Sn−1 (Sn−1 is the unit sphere in IRn: |ξ| = 1),
1 ≤ p, q ≤ +∞, then we say that f = f (x) ∈ L p,q(IRn), endowed with the norm

‖ f ‖L p,q (IRn)
def.= ‖ f (rξ)r

n−1
p ‖L p(0,+∞;Lq (Sn−1)). (3.1.29)

From (3.1.28)–(3.1.29), for 1 ≤ p, q < +∞ we have
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‖ f ‖L p,q (IRn) =
(∫ ∞

0
‖ f (rξ)‖p

Lq (Sn−1)
rn−1dr

) 1
p

=
(∫ ∞

0

(∫

|ξ|=1
| f (rξ)|qdωξ

) p
q

r n−1dr

) 1
p

,

where dωξ is the area element of Sn−1; for 1 ≤ p < +∞ and q = +∞ we have

‖ f ‖L p,∞(IRn) =
(∫ ∞

0
‖ f (rξ)‖p

L∞(Sn−1)
rn−1dr

) 1
p

=
(∫ ∞

0

(
ess sup|ξ|=1| f (rξ)|

)p
rn−1dr

) 1
p

;

for p = +∞ and 1 ≤ q < +∞ we have

‖ f ‖L∞,q (IRn) = ess sup0≤r<∞‖ f (rξ)‖L p(Sn−1)

= ess sup0≤r<∞

(∫

|ξ|=1
| f (rξ)|qdωξ

) 1
q

;

for p = q = +∞ we have

‖ f ‖L∞,∞(IRn) = ess sup
0≤r<∞
|ξ|=1

| f (rξ)| = ess sup
x∈IRn

| f (x)|.

Lemma 3.1.2 Endowed with the norm (3.1.29), L p,q(IRn) is a Banach space. More-
over, when p = q, L p,q(IRn) is reduced to the normal L p(IRn) space:

L p,p(IRn) = L p(IRn). (3.1.30)

As stated above, L p,q(IRn) is a space which is L p in the radial direction and is
Lq on the sphere, and will play an important role in later discussion.

3.1.3 Generalized Sobolev Norms

Lemma 3.1.1 tells us that, the elements of each of the sets �x ,�, �̂x , �̄ and � of
first-order partial differential operators can span to a Lie algebra, that is to say, the
commutant operator of any two given operators in a corresponding set can be repre-
sented by a linear combination of operators in it with constant coefficients. Therefore,
the normal differential operators can be replaced by these partial differential opera-
tors so as to constitute the corresponding generalized Sobolev norms.
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Denote by A = (Ai )1≤i≤σ any given set in the sets �x ,�, �̂x ,� and � of partial
differential operators, for any given function u = u(t, x), for which the norms on the
right-hand side of the following formula are well defined, we can use

‖u(t, ·)‖A,N ,p,q =
∑

|k|≤N

‖Aku(t, ·)‖L p,q (IRn), ∀t ≥ 0 (3.1.31)

and
‖u(t, ·)‖A,N ,p = ‖u(t, ·)‖A,N ,p,p, ∀t ≥ 0 (3.1.32)

to define the corresponding generalized Sobolev norms, where N is any given
nonnegative integer, k = (k1, . . . , kσ) is a multi-index, |k| = k1 + · · · + kσ, and
Ak = Ak1

1 · · · Akσ
σ .

In particular, since the sets �x and �̂x contain only the partial derivatives with
respect to x , for any given set A in them, we can also define the corresponding
generalized Sobolev norms to any given function u = u(x) depending only on x by

‖u(·)‖A,N ,p,q =
∑

|k|≤N

‖Aku(·)‖L p,q (IRn) (3.1.33)

and
‖u(·)‖A,N ,p = ‖u(·)‖A,N ,p,p. (3.1.34)

Thanks to the Lie algebraic properties of the operator sets �x ,�, �̂x , �̄ and �,
the above defined generalized Sobolev norms corresponding to different orderings of
operators in the set A are all equivalent to each other, and moreover, the equivalence
of the norms showed by (3.1.31)–(3.1.32) is uniform with respect to t . Therefore,
different orderings of operators do not influence the definition of norms substantially.

Specifically, denote by Ā = ( Āi )1≤i≤σ the same operator set A = (Ai )1≤i≤σ with
only different ordering of the operators within it, then we have

C1‖u(t, ·)‖A,N ,p,q ≤ ‖u(t, ·)‖ Ā,N ,p,q

≤ C2‖u(t, ·)‖A,N ,p,q , ∀t ≥ 0, (3.1.35)

and so forth, where C1 and C2 are positive constants independent of both the choice
of u = u(t, x) and t .

In particular, choosing � as the operator set A, we obtain the corresponding
generalized Sobolev norms ‖u(t, ·)‖�,N ,p,q and ‖u(t, ·)‖�,N ,p. From Corollary 3.1.1
we have

Lemma 3.1.3 For any given integer N ≥ 0, we have

c‖Du(t, ·)‖�,N ,p,q ≤
∑

|k|≤N

‖D�ku(t, ·)‖L p,q (IRn)

≤ C‖Du(t, ·)‖�,N ,p,q , ∀t ≥ 0, (3.1.36)
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where 1 ≤ p, q ≤ +∞, c andC are positive constants independent of both the choice
of u = u(t, x) and t. �

3.1.4 Commutativity with the Wave Operator

Now we prove that all the operators except L0 in the set � of partial differential
operators are commutative with the wave operator �, and the commutant operator
of L0 and � is just an amplification of �. In other words, we want to prove

Lemma 3.1.4 We have the following commutant relations:

[∂a,�] = 0, (3.1.37)

[�ab,�] = 0, (3.1.38)

[L0,�] = −2�. (3.1.39)

Proof Formula (3.1.37) is obvious. Noting (3.1.6)–(3.1.8) and (3.1.25), we have

[�ab,�] = �ab� − ��ab

= ηcd∂c∂d(xa∂b − xb∂a) − (xa∂b − xb∂a)η
cd∂c∂d

= ηcd∂c[(∂d xa)∂b] + ηcd(∂cxa)∂d∂b

−ηcd∂c[(∂d xb)∂a] − ηcd(∂cxb)∂d∂a

= ηcdηda∂c∂b + ηcdηca∂d∂b − ηcdηdb∂c∂a

−ηcdηcb∂d∂a

= 0

and

[L0,�] = L0� − �L0

= ηcd∂c∂d(η
abxa∂b) − ηabxa∂b(η

cd∂c∂d)

= ηcdηab∂c[(∂d xa)∂b] + ηcdηab(∂cxa)∂d∂b

= ηcdηabηda∂c∂b + ηcdηabηca∂d∂b

= 2ηab∂a∂b = −2�.

These are exactly (3.1.38) and (3.1.39), respectively.
Lemma 3.1.4 is proved. �

According to Lemma 3.1.4 and the mathematical induction, it is easy to obtain

Lemma 3.1.5 For any given multi-index k = (k1, . . . , kσ), we have



42 3 Sobolev Type Inequalities with Decay Factor

[�, �k] =
∑

|i |≤|k|−1

Bki�
i�, (3.1.40)

where i = (i1, . . . , iσ) is a multi-index, Bki are constants.

3.1.5 Representing Derivatives Under Ordinary Coordinates
by Derivatives Under Polar Coordinates

On any given sphere centered at the origin, the set�x given by (3.1.13) is a complete
group of tangential differential operators. In fact, the outward normal direction at
any given point x = (x1, . . . , xn) on this sphere is (x1, . . . , xn), then the differential
operators

�i j = xi∂ j − x j∂i (1 ≤ i < j ≤ n) (3.1.41)

at this point give the directional derivatives along the directions (0, . . . ,−x j
(i)

, 0, . . . ,

0, xi
( j)

, 0, . . . , 0) on the tangential space of this sphere, and these tangential directions

can obviously span to thewhole tangential space of the sphere at this point. Therefore,
the set �x and the radial derivative

∂r = 1

r

n∑

i=1

xi∂i (r = |x |) (3.1.42)

can be regarded as the derivatives under polar coordinates.
In order to represent the derivatives under ordinary coordinates by the derivatives

under polar coordinates, we multiply both sides of (3.1.41) by xi and summing up
with respect i , noting (3.1.42) we have

n∑

i=1

xi�i j = r2∂ j − r x j∂r ,

then we obtain

∂i = 1

r2

⎛

⎝
n∑

j=1

x j� j i + r xi∂r

⎞

⎠ (i = 1, . . . , n). (3.1.43)

Lemma 3.1.6 We have the following commutant relations:

[∂i , ∂r ] = 1

r
∂i − xi

r2
∂r , (3.1.44)
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[∂i , r∂r ] = ∂i , (3.1.45)

[�i j , ∂r ] = 0, (3.1.46)

[�i j , r∂r ] = 0. (3.1.47)

Proof Noting that ∂r
∂xi

= xi
r (i = 1, . . . , n), from (3.1.42) we have

[∂i , ∂r ] = ∂i

⎛

⎝
n∑

j=1

x j

r
∂ j

⎞

⎠ −
n∑

j=1

x j

r
∂ j∂i

=
n∑

j=1

δi j

r
∂ j −

n∑

j=1

x j xi
r3

∂ j

= 1

r
∂i − xi

r2
∂r ,

this is exactly (3.1.44). Formula (3.1.45) can be obtained similarly.
From (3.1.11), using the obtained (3.1.44), we have

[�i j , ∂r ] = (xi∂ j − x j∂i )∂r − ∂r (xi∂ j − x j∂i )

= xi [∂ j , ∂r ] − x j [∂i , ∂r ] − xi
r

∂ j + x j

r
∂i

= xi

(
1

r
∂ j − x j

r2
∂r

)
− x j

(
1

r
∂i − xi

r2
∂r

)

− xi
r

∂ j + x j

r
∂i

= 0,

this is just (3.1.46). Similarly, (3.1.47) can be obtained by using (3.1.45). �

Now we prove the following

Lemma 3.1.7 For any given multi-index α (|α| > 0), we have

|Dα
x u(x)| ≤ Cr−|α| ∑

0<k+|β|≤|α|
rk |∂k

r �
β
x u(x)|, (3.1.48)

where r = |x | 	= 0, β is a multi-index, and C is a positive constant independent of
both u and x.

Remark 3.1.1 Noticing the Recursive relations such as

(r∂r )
2 = r2∂2

r + r∂r ,
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Formula (3.1.48) can be equivalently rewritten as

|Dα
x u(x)| ≤ Cr−|α| ∑

0<k+|β|≤|α|
|(r∂r )k�β

x u(x)|. (3.1.49)

Therefore, due to (3.1.46)–(3.1.47), the different orderings of the operators ∂r and
�x on the right-hand sides of (3.1.48) and (3.1.49) do not affect the outcome.

Proof of Lemma 3.1.7 From (3.1.43) we have

|∂i u(x)| ≤ C

r
(|�xu(x)| + |(r∂r )u(x)|), (3.1.50)

noticing the commutant relations (3.1.22) and (3.1.45), it is easy to prove (3.1.49) by
then, mathematical induction, and thus obtain the conclusions in Lemma3.1.7. The
proof is finished. �

The above discussion is carried out in IRn . The operators in Minkowski space
IR1+n corresponding to �x and ∂r can be taken as � = (�ab) and L0. To represent
the derivatives in ordinary sense, multiply both sides of

�ab = xa∂b − xb∂a (0 ≤ a < b ≤ n) (3.1.51)

by ηcaxc and sum up with respect to a, noting (3.1.8) we have

ηcaxc�ab = ηcaxcxa∂b − ηcaxcxb∂a

= −(t2 − r2)∂b − xbL0,

thus

∂a = −ηcbxc�ba + xaL0

t2 − |x |2 (a = 0, 1, . . . , n). (3.1.52)

Lemma 3.1.8 For any given multi-index α(|α| > 0), we have

|Dαu(t, x)| ≤ C(1 + |t − |x ||)−|α| ∑

0<|β|≤|α|
|�βu(t, x)|, (3.1.53)

where D is defined by (3.1.27), β is a multi-index, and C is a positive constant
independent of both u and (t, x).

Proof Since the set � contains D, (3.1.53) is obvious when |t − |x || ≤ 1; while,
when |t − |x || > 1, we need only to prove

|Dαu(t, x)| ≤ C |t − |x ||−|α| ∑

|β|≤|α|
|�β

u(t, x)|, (3.1.54)
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where � = (�, L0) (see (3.1.17)).
When |t − |x || > 1, it follows obviously from (3.1.52) that

|∂au(t, x)| ≤ C

|t − |x || |�u(t, x)|.

Noticing the commutant relations (3.1.22)–(3.1.23), it is easy to prove the required
(3.1.54) by mathematical induction. �

Remark 3.1.2 Assume in Lemma 3.1.8 that |α| = 1, then from (3.1.53) we have

|Du(t, x)| ≤ C(1 + |t − |x ||)−1
∑

|β|=1

|�βu(t, x)|. (3.1.55)

3.2 Some Variations of Classical Sobolev Embedding
Theorems

In this section, we always assume that n > 1.

3.2.1 Sobolev Embedding Theorems on a Unit Sphere

We know that the set�x = (�i j )1≤i< j≤n is a complete group of differential operators
on the unit sphere Sn−1. Thanks to the Lie algebraic properties of �x , we can utilize
�x to construct the corresponding Sobolev spacesW

s,p
�x

(Sn−1) or Hs
�x

(Sn−1) on Sn−1

with norms defined by

‖u‖Ws,p
�x

(Sn−1) =
∑

|α|≤s

‖�α
x u‖L p(Sn−1)

=
∑

|α|≤s

(∫

Sn−1
|�α

x u(ξ)|pdωξ

) 1
p

(3.2.1)

or

‖u‖Hs
�x

(Sn−1) =
∑

|α|≤s

‖�α
x u‖L2(Sn−1)

=
∑

|α|≤s

(∫

Sn−1
|�α

x u(ξ)|2dωξ

) 1
2

, (3.2.2)
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where ξ = (ξ1, . . . , ξn) ∈ Sn−1, dωξ is the area element of Sn−1, α is a multi-index,
and 1 ≤ p ≤ +∞ (when p = +∞, it is necessary to make corresponding changes
to the norm expression on the rightmost-hand side of (3.2.1)).

Applying classical Sobolev embedding theorems to the (n − 1)-dimensional com-
pact manifold Sn−1, we obtain

Theorem 3.2.1 Suppose that the function u = u(x) = u(rξ) is such that the quan-
tities on the right-hand sides of the following inequalities are well-defined, where
r = |x |, and ξ ∈ Sn−1,

1◦ If s > n−1
p , then we have

|u(x)| = |u(rξ)| ≤ C‖u(rξ)‖Ws,p
�x

(Sn−1); (3.2.3)

2◦ If s = n−1
p , then for any given q satisfying p ≤ q < +∞, we have

‖u(rξ)‖Lq (Sn−1) ≤ C‖u(rξ)‖Ws,p
�x

(Sn−1); (3.2.4)

3◦ If 0 < s < n−1
p , then (3.2.4) still holds for any given q satisfying 1

q = 1
p − s

n−1 .

In (3.2.3) and (3.2.4), r is regarding as a parameter and C is a positive constant
independent of both u and r.

3.2.2 Sobolev Embedding Theorems on a Ball

Denote by Bλ a ball in IRn centered at x0 with radius λ (> 0) :

Bλ = {x | |x − x0| < λ}. (3.2.5)

Applying the Sobolev embedding theorem to functions defined on Bλ, we have

Theorem 3.2.2 For any given p ≥ 1, suppose that function u = u(x) is such that
the quantities on the right-hand sides of the following inequalities are well-defined,

1◦ If s > n
p , then we have

‖u‖L∞(Bλ) ≤ Cλ− n
p

∑

|α|≤s

λ|α|‖Dα
x u‖L p(Bλ); (3.2.6)

2◦ If s = n
p , then for any given q satisfying p ≤ q < +∞, we have

‖u‖Lq (Bλ) ≤ Cλ
−n

(
1
p − 1

q

) ∑

|α|≤s

λ|α|‖Dα
x u‖L p(Bλ); (3.2.7)
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3◦ If 0 < s < n
p , then (3.2.7) still holds for any given q satisfying 1

q = 1
p − s

n .

In (3.2.6) and (3.2.7), C is a positive constant independent of both u and λ.

Proof Without loss of generality, we need only to prove Theorem 3.2.2 for the case
that x0 = 0. When λ = 1, this is just the usual Sobolev embedding theorem. For
general λ > 0, setting x = λy and denoting

v(y) = u(λy) = u(x), (3.2.8)

it can be proved by scaling transformation. As a matter of fact, it is clear that

‖v‖L∞(B1) = ‖u‖L∞(Bλ), (3.2.9)

‖Dα
y v‖L p(B1) = λ|α|− n

p ‖Dα
x u‖L p(Bλ), (3.2.10)

then from estimates (3.2.6) and (3.2.7) satisfied by v in the case λ = 1, we obtained
(3.2.6) and (3.2.7) for general λ > 0 immediately. �
Remark 3.2.1 The conclusions in Theorem 3.2.2 still hold if Bλ is changed into
IRn \ Bλ.

3.2.3 Sobolev Embedding Theorems on an Annulus

Let
Ea,λ = {y | ||y| − a| < λa}, (3.2.11)

wherea > 0, and0 < λ ≤ λ0 < 1. Ea,λ is the annular region enclosed by two spheres
centered at the origin with radiuses (1 − λ)a and (1 + λ)a, respectively, that is,

Ea,λ = {y | (1 − λ)a < |y| < (1 + λ)a}.

Theorem 3.2.3 If s > n
p , then for any given x0 ∈ IRn with |x0| 	= 0, we have

|u(x0)| ≤ Cλ− 1
p |x0|− n

p

∑

k+|α|≤s

λk |x0|k‖∂k
r �

α
x u(x)‖L p(E|x0 |,λ), (3.2.12)

where C is a positive constant independent of the function u and x0 as well as the
choice of λ.

Proof First, we point out that: to prove (3.2.12), it suffices to prove the following
estimate at |x0| = 1:

|u(x0)| ≤ Cλ− 1
p

∑

k+|α|≤s

λk‖∂k
r �

α
x u‖L p(E1,λ). (3.2.13)
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In fact, in the general case that |x0| 	= 0, set x̄ = x
|x0| , and denote

v(x̄) = u(|x0|x̄) = u(x), (3.2.14)

noticing that �x̄ = �x and ∂r̄ = |x0|∂r , it is easy to show that

‖∂k
r̄ �

α
x̄ v(x̄)‖L p(E1,λ)

= ‖∂k
r̄ �

α
x̄ u(|x0|x̄)‖L p(E1,λ)

=
(∫

||x̄ |−1|≤λ

|∂k
r̄ �

α
x̄ u(|x0|x̄)|pdx̄

) 1
p

= |x0|k− n
p

(∫

||x |−|x0||≤λ|x0|
|∂k

r �
α
x u(x)|pdx

) 1
p

= |x0|k− n
p ‖∂k

r �
α
x u(x)‖L p(E|x0 |,λ).

Denote x̄0 = x0
|x0| , then |x̄0| = 1.Noting the above formula and using estimate (3.2.13)

satisfied by v(x̄0) = u(x0), (3.2.12) follows immediately.
Second, we point out that: to prove (3.2.13), it suffices to prove the following

estimate at λ = λ0(< 1):

|u(x0)| ≤ C
∑

k+|α|≤s

‖∂k
r �

α
x u‖L p(E1,λ0 )

. (3.2.15)

In fact, in the general case that 0 < λ ≤ λ0, set

v(x̄) = u(x), (3.2.16)

where x = rξ, x̄ = r̄ξ, ξ ∈ Sn−1, and

r̄ = λ0

λ
(r − 1 + λ) + 1 − λ0. (3.2.17)

Noticing that �x̄ = �x and ∂r̄ = λ
λ0

∂r , it is easy to show that

‖∂k
r̄ �

α
x̄ v(x̄)‖L p(E1,λ0 )

= ‖∂k
r̄ �

α
x̄ u(x)‖L p(E1,λ0 )

=
(∫

||x̄ |−1|≤λ0

|∂k
r̄ �

α
x̄ u(x)|pdx̄

) 1
p

=
(

λ

λ0

)k (∫ 1+λ0

1−λ0

∫

Sn−1
|∂k

r �
α
x u(x)|pr̄ n−1dr̄dωξ

) 1
p
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=
(

λ

λ0

)k− 1
p

(∫ 1+λ

1−λ

∫

Sn−1
|∂k

r �
α
x u(x)|p

(
r̄

r

)n−1

rn−1drdωξ

) 1
p

≤
(

λ

λ0

)k− 1
p
(
1 + λ0

1 − λ

) n−1
p

‖∂k
r �

α
x u(x)‖L p(E1,λ)

≤
(

λ

λ0

)k− 1
p
(
1 + λ0

1 − λ0

) n−1
p

‖∂k
r �

α
x u(x)‖L p(E1,λ)

≤ Cλk− 1
p ‖∂k

r �
α
x u(x)‖L p(E1,λ),

Then, using estimate (3.2.15) satisfied by v(x̄0) = u(x0), (3.2.13) follows immedi-
ately.

Thus, to complete the proof of Theorem 3.2.3, it suffices to prove (3.2.15). When
x ∈ E1,λ0 , we have 1 − λ0 < r = |x | < 1 + λ0, then, using Lemma 3.1.7 and the
Sobolev embedding theorem, we immediately obtain our conclusion. The proof is
finished. �

Remark 3.2.2 For the contents in this subsection, please see Klainerman (1985) for
reference.

3.2.4 Sobolev Embedding Theorems for Decomposed
Dimensions

Denote
x = (x ′, x ′′), (3.2.18)

where
x ′ = (x1, . . . , xm), x ′′ = (xm+1, . . . , xn), (3.2.19)

and 1 ≤ m ≤ n − 1.

Theorem 3.2.4 We have

‖ f ‖L∞(IRm ;L2(IRn−m )) ≤ C‖ f ‖Hs0 (IRn), (3.2.20)

where s0 > m
2 ; meanwhile,

‖ f ‖L p(IRm ;L2(IRn−m )) ≤ C‖ f ‖Hs0 (IRn), (3.2.21)

where 2 < p < +∞, and 1
p = 1

2 − s0
m (thus 0 < s0 < m

2 ). In (3.2.20) and (3.2.21), C
is a positive constant independent of f , and Hs0(IRn) is a fractional Sobolev space
with norm
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‖ f ‖Hs0 (IRn) = ‖(1 + |ξ|2) s0
2 f̂ (ξ)‖L2(IRn), (3.2.22)

where ξ = (ξ1, . . . , ξn), and f̂ stands for the Fourier transform of f .

Proof Wefirst prove (3.2.21). From the Sobolev embedding theoremand the Parseval
inequality we have

‖ f ‖L p(IRm ;L2(IRn−m ))

=
(∫

IRm
‖ f (x ′, ·)‖p

L2(IRn−m )
dx ′

) 1
p

=
(∫

IRm

(∫

IRn−m
f 2(x ′, x ′′)dx ′′

) p
2

dx ′
) 1

p

=
∥∥∥∥
∫

IRn−m
f 2(·, x ′′)dx ′′

∥∥∥∥

1
2

L
p
2 (IRm )

≤
(∫

IRn−m
‖ f 2(·, x ′′)‖

L
p
2 (IRm )

dx ′′
) 1

2

=
(∫

IRn−m

(∫

IRm
| f |p(x ′, x ′′)dx ′

) 2
p

dx ′′
) 1

2

= ‖ f ‖L2(IRn−m ;L p(IRm ))

≤ C‖ f ‖L2(IRn−m ;Hs0 (IRm ))

= C

(∫

IRn−m
‖ f (·, x ′′)‖2Hs0 (IRm )dx

′′
) 1

2

= C‖(1 + |ξ′|2) s0
2 f̂ (ξ′, ξ′′)‖L2(IRn)

≤ C‖ f ‖Hs0 (IRn),

which is just (3.2.21).
Similarly, we have

‖ f ‖L∞(IRm ;L2(IRn−m ))

= ess sup
x ′∈IRm

‖ f (x ′, ·)‖L2(IRn−m )

= ess sup
x ′∈IRm

(∫

IRn−m
f 2(x ′, x ′′)dx ′′

) 1
2

≤
(∫

IRn−m
‖ f (·, x ′′)‖2L∞(IRm )dx

′′
) 1

2

= ‖ f ‖L2(IRn−m ;L∞(IRm ))
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≤ C‖ f ‖L2(IRn−m ;Hs0 (IRm ))

≤ C‖ f ‖Hs0 (IRn),

which is exactly (3.2.20). �

Remark 3.2.3 From the proof of Theorem 3.2.4 we can see that when 2 < p ≤ +∞
we always have

‖ f ‖L p(IRm ;L2(IRn−m )) ≤ C‖ f ‖L2(IRn−m ;L p(IRm )), (3.2.23)

where C is a positive constant independent of f .

In particular, taking m = 1 in Theorem 3.2.4, we have

Corollary 3.2.1 We have the following estimate:

‖ f ‖L∞(IR;L2(IRn−1)) ≤ C‖ f ‖Hs0 (IRn), (3.2.24)

where s0 > 1
2 ; meanwhile,

‖ f ‖L p(IR;L2(IRn−1)) ≤ C‖ f ‖Hs0 (IRn), (3.2.25)

where 2 < p < +∞, and 1
p = 1

2 − s0 (thus 0 < s0 < 1
2 ).

3.3 Sobolev Embedding Theorems Based on Binary
Partition of Unity

In this section we will review a kind of Sobolev embedding theorems introduced by
Li and Zhou (1995b, c), in the derivation of which the binary partition of unity plays
an important role.

3.3.1 Binary Partition of Unity

Suppose that �0 = �0(x) ∈ C∞
0 (IRn) satisfying

�0(x) = �0(|x |), (3.3.1)

supp�0 ⊆ {x | |x | ≤ 2} (3.3.2)

and
�0(x) ≡ 1, |x | ≤ 1. (3.3.3)
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Set
� j (x) = �1(2

−( j−1)x), j = 1, 2, . . . , (3.3.4)

where
�1(x) = �0(2

−1x) − �0(x). (3.3.5)

It is clear that, for j = 1, 2, . . ., � j (x) ∈ C∞
0 (IRn) and

� j (x) = � j (|x |), (3.3.6)

supp� j ⊆ {x | 2 j−1 ≤ |x | ≤ 2 j+1}. (3.3.7)

We have the following partition of unity:

∞∑

j=0

� j (x) ≡ 1, ∀x ∈ IRn.

In fact, due to (3.3.4)–(3.3.5) and noting (3.3.3), for any fixed x ∈ IRn , we have

N∑

j=0

� j (x) = �0(x) + (�0(2
−1x) − �0(x))

+(�0(2
−2x) − �0(2

−1x)) + · · ·
+(�0(2

−N x) − �0(2
−N+1x))

= �0(2
−N x) → 1

as N → ∞. Thus, we obtain the following

Lemma 3.3.1 (Binary partition of unity) There exist � j (x) ∈ C∞
0 (IRn) ( j = 0,

1, . . .) satisfying
(i) � j (x) = � j (|x |), j = 0, 1, . . . ;
(ii) supp�0 ⊆ {x | |x | ≤ 2}, and �0(x) ≡ 1, |x | ≤ 1;
(iii) supp� j ⊆ {x | 2 j−1 ≤ |x | ≤ 2 j+1}, j = 1, 2, . . . ,

such that ∞∑

j=0

� j (x) ≡ 1, ∀x ∈ IRn. (3.3.8)

Noting (3.3.2), from Lemma3.3.1 and the previous arguments we obtain

Corollary 3.3.1 There exist � j (x) ∈ C∞
0 (IRn) ( j = 1, 2, . . .), satisfying

(i) � j (x) = �1(2−( j−1)x), j = 1, 2, . . . ;
(ii) �1(x) = �1(|x |), and supp�1 ⊆ {x | 1 ≤ |x | ≤ 4},
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such that ∞∑

j=1

� j (x) ≡ 1, ∀x ∈ IRn, |x | ≥ 2. (3.3.9)

3.3.2 Sobolev Embedding Theorems Based on Binary
partition of Unity

We will prove the following

Theorem 3.3.1 Let �(x) be the characteristic function of the set {x | |x | ≥ a}
(a > 0).

1◦ If 1
2 < s0 < n

2 , then we have

‖� f ‖L∞,2(IRn) ≤ Cas0−
n
2 ‖ f ‖Ḣ s0 (IRn); (3.3.10)

2◦ For any given p > 2, we have

‖� f ‖L p,2(IRn) ≤ Ca−(n−1)s0‖ f ‖Ḣ s0 (IRn), (3.3.11)

where s0 = 1
2 − 1

p .
In (3.3.10)–(3.3.11), C is a positive constant independent of both f and a, and

Ḣ s0(IRn) is a homogeneous Sobolev space with the norm

‖ f ‖Ḣ s0 (IRn) = ‖|ξ|s0 f̂ (ξ)‖L2(IRn), (3.3.12)

where f̂ (ξ) stands for the Fourier transform of f (x).

Proof 1◦ Thanks to the scaling transformation, it suffices to prove the corresponding
inequalities (3.3.10) and (3.3.11) when a = 4.

In fact, in the general case that a > 0, set x = by, where b = a
4 , and denote

f̃ (y) = f (by) = f (x). (3.3.13)

Noting that
̂f (by) = b−n f̂

(η

b

)
, (3.3.14)

from (3.3.12) it is easy to show that

‖ f̃ (y)‖Ḣ s0 (IRn) = ‖ f (by)‖Ḣ s0 (IRn)

= b−n
∥∥∥|η|s0 f̂

(η

b

)∥∥∥
L2(IRn)
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= bs0−
n
2 ‖|ξ|s0 f̂ (ξ)‖L2(IRn)

= bs0−
n
2 ‖ f ‖Ḣ s0 (IRn). (3.3.15)

It is also clear from (3.1.29) that, if we denote by �̃ the characteristic function of the
set {x | |x | ≥ 4}, then we have

‖�̃ f̃ ‖L∞,2(IRn) = ‖� f ‖L∞,2(IRn) (3.3.16)

and
‖�̃ f̃ ‖L p,2(IRn) = b− n

p ‖� f ‖L p,2(IRn). (3.3.17)

Consequently, from the inequality satisfied by f̃ at a = 4 we can obtain the inequal-
ities (3.3.10) and (3.3.11) in the general case that a > 0.

2◦ Now we prove (3.3.10) at a = 4, i.e., to prove that if �(x) is the characteristic
function of the set {x | |x | ≥ 4}, then for 1

2 < s0 < n
2 we have

‖� f ‖L∞,2(IRn) ≤ C‖ f ‖Ḣ s0 (IRn). (3.3.18)

According to Corollary 3.3.1, on the set {x | |x | ≥ 4} we have

� f (x) ≡ f (x) ≡
∞∑

j=1

� j (x) f (x)
def.=

∞∑

j=1

f j (x). (3.3.19)

For f1(x) = �1(x) f (x), its support is included in {x | 1 ≤ |x | ≤ 4}. Accord-
ing to (3.2.24) in Corollary 3.2.1 and noting that the norms ‖ f1‖L∞(IR;L2(IRn−1)) and
‖ f1‖L∞,2(IRn) are equivalent to each other through a homeomorphic transformation
between independent variables, for s0 > 1

2 we have

‖ f1‖L∞,2(IRn) ≤ C‖ f1‖Hs0 (IRn). (3.3.20)

Due to Poincaré inequality and Parseval identity, noting that f1 is compactly
supported, we have

‖ f1‖Hs0 (IRn )

≤ C‖ f1‖Ḣ s0 (IRn )

= C‖|ξ|s0 f̂1(ξ)‖L2(IRn )

= C

∥∥∥∥|ξ|s0
∫

IRn
�̂1(ξ − η) f̂ (η)dη

∥∥∥∥
L2(IRn )

≤ C

(∥∥∥∥
∫

IRn
|ξ − η|s0 |�̂1(ξ − η) f̂ (η)|dη

∥∥∥∥
L2(IRn )

+
∥∥∥∥
∫

IRn
|�̂1(ξ − η)||η|s0 | f̂ (η)|dη

∥∥∥∥
L2(IRn )

)

= C(‖�∗
1 f∗‖L2(IRn ) + ‖�1∗ f ∗‖L2(IRn ))

≤ C(‖ f∗‖Lγ (IRn )‖�∗
1‖L n

s0 (IRn )
+ ‖�1∗‖L∞(IRn )‖ f ∗‖L2(IRn )), (3.3.21)
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where ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�̂∗
1(ξ) = |ξ|s0 |�̂1(ξ)|,

f̂∗(ξ) = | f̂ (ξ)|,
�̂1∗(ξ) = |�̂1(ξ)|,
f̂ ∗(ξ) = |ξ|s0 | f̂ (ξ)|

(3.3.22)

and
1

γ
+ s0

n
= 1

2
(3.3.23)

(here it is necessary to assume furthermore that s0 < n
2 ). From theSobolev embedding

theorem we have

‖ f∗‖Lγ(IRn) ≤ C‖ f∗‖Ḣ s0 (IRn) = C‖ f ‖Ḣ s0 (IRn). (3.3.24)

From Parseval identity we have

‖ f ∗‖L2(IRn) = ‖ f ‖Ḣ s0 (IRn). (3.3.25)

Due to s0 < n
2 , using the Hausdorff–Young inequality and noticing that �1 is com-

pactly supported, we have

‖�∗
1‖L

n
s0 (IRn)

≤ C‖�̂∗
1‖L

n
n−s0 (IRn)

= C‖|ξ|s0�̂1(ξ)‖L
n

n−s0 (IRn)
< +∞. (3.3.26)

In addition, it is obvious that

‖�1∗‖L∞(IRn) ≤ ‖�̂1‖L1(IRn) < +∞. (3.3.27)

Plugging (3.3.24)–(3.3.27) into (3.3.21), it follows from (3.3.20) that

‖ f1‖L∞,2(IRn) ≤ C‖ f ‖Ḣ s0 (IRn). (3.3.28)

Using again the scaling transformation, from (3.3.28) we get

‖ f j‖L∞,2(IRn) ≤ 2( j−1)(s0− n
2 )C‖ f ‖Ḣ s0 (IRn) ( j = 1, 2, . . .). (3.3.29)

In fact, for any given j = 1, 2, . . ., set y = 2−( j−1)x , and denote

f̃ j (y) = f j (2
( j−1)y) = f j (x),

f̃ (y) = f (2( j−1)y) = f (x),
(3.3.30)
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similarly to (3.3.15) and (3.3.16), we have

‖ f̃ j‖L∞,2(IRn) = ‖ f j‖L∞,2(IRn) (3.3.31)

and
‖ f̃ ‖Ḣ s0 (IRn) = 2( j−1)(s0− n

2 )‖ f ‖Ḣ s0 (IRn). (3.3.32)

Thus, due to (3.3.19) and noting s0 < n
2 , we obtain

‖� f ‖L∞,2(IRn) ≤
∞∑

j=1

‖ f j‖L∞,2(IRn)

≤ C
∞∑

j=1

2( j−1)(s0− n
2 )‖ f ‖Ḣ s0 (IRn)

≤ C‖ f ‖Ḣ s0 (IRn).

This is just the desired (3.3.18).
3◦ Now we prove (3.3.11) at a = 4, i.e., to prove that if �(x) is the characteristic

function of the set {x | |x | ≥ 4}, then for any given p > 2, when s0 = 1
2 − 1

p we have

‖� f ‖L p,2(IRn) ≤ C‖ f ‖Ḣ s0 (IRn). (3.3.33)

This proof is similar to that of (3.3.18), here we only explain some different points
between them. Now from (3.2.25) in Corollary 3.2.1 we similarly have

‖ f1‖L p,2(IRn) ≤ C‖ f1‖Hs0 (IRn), (3.3.34)

where s0 = 1
2 − 1

p . Therefore, similarly to (3.3.28), we have

‖ f1‖L p,2(IRn) ≤ C‖ f ‖Ḣ s0 (IRn). (3.3.35)

Moreover, noticing that in addition to (3.3.31)–(3.3.32), similarly to (3.3.17) we also
have

‖ f̃ j‖L p,2(IRn) = 2−( j−1) n
p ‖ f j‖L p,2(IRn), (3.3.36)

then we can obtain from (3.3.35) by the scaling transformation that

‖ f j‖L p,2(IRn) ≤ 2−( j−1)(n−1)s0C‖ f ‖Ḣ s0 (IRn) ( j = 1, 2, . . .), (3.3.37)

consequently we can easily obtain the desired (3.3.33). The proof is finished. �

In order to prove the following theorem, we first review the corresponding Hölder
inequality in L p,q(IRn) space. Just like the L p,q(IRn) space is an extension of the
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L p(IRn) space, thisHölder inequality is also an extension of the usualHölder inequal-
ity and is easy to be proved by using the usual Hölder inequality.

Lemma 3.3.2 (Hölder inequality) Suppose that f1(x) ∈ L p1,q1(IRn), f2(x) ∈ L p2,q2

(IRn), where 1 ≤ p1, p2, q1, q2 ≤ +∞, and 1
p1

+ 1
p2

≤ 1, 1
q1

+ 1
q2

≤ 1, then f1 f2
(x) ∈ L p,q(IRn) with

1

p
= 1

p1
+ 1

p2
,

1

q
= 1

q1
+ 1

q2
, (3.3.38)

moreover,
‖ f1 f2‖L p,q (IRn) ≤ ‖ f1‖L p1,q1 (IRn)‖ f2‖L p2 ,q2 (IRn). (3.3.39)

Theorem 3.3.2 Let�(x) be the characteristic function of the set {x | |x | > a} (a >

0), and � = 1 − �. Then we have

‖ f ‖Ḣ−s0 (IRn) ≤ C(‖� f ‖Lq (IRn) + as0−
n
2 ‖� f ‖L1,2(IRn)), (3.3.40)

where
1

2
< s0 <

n

2
and

1

q
= 1

2
+ s0

n
, (3.3.41)

and C is a positive constant independent of both f and a.

Proof From the definition we know that

‖ f ‖Ḣ−s0 (IRn) = sup
v∈Ḣs0 (IRn )

v 	=0

∫
f v

‖v‖Ḣ s0 (IRn)

. (3.3.42)

Using the Hölder inequality, we have

∣∣∣∣
∫

f v

∣∣∣∣ ≤
∣∣∣∣
∫

(� f )v

∣∣∣∣ +
∣∣∣∣
∫

(� f )v

∣∣∣∣

≤ ‖� f ‖Lq (IRn)‖v‖Lγ(IRn) + ‖� f ‖L1,2(IRn)‖�v‖L∞,2(IRn), (3.3.43)

where q is determined by (3.3.41) and 1
γ

= 1
2 − s0

n .
By the Sobolev embedding theorem we have

‖v‖Lγ(IRn) ≤ C‖v‖Ḣ s0 (IRn). (3.3.44)

From (3.3.10) in Theorem 3.1 we also have

‖�v‖L∞,2(IRn) ≤ Cas0−
n
2 ‖v‖Ḣ s0 (IRn). (3.3.45)

Substituting (3.3.44)–(3.3.45) into (3.3.43), the wanted (3.3.40) follows from
(3.3.42). �
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3.4 Sobolev Type Inequalities with Decay Factor

3.4.1 Sobolev Type Inequalities with Decay Factor Inside the
Characteristic Cone

Lemma 3.4.1 (Interpolation inequality) Suppose that � ⊆ IRn is a bounded or
unbounded domain, and f ∈ L p(�) ∩ Lq(�) for 1 ≤ p ≤ q ≤ +∞, then for any
given r satisfying p ≤ r ≤ q, f ∈ Lr (�) and satisfies the following interpolation
inequality:

‖ f ‖Lr (�) ≤ ‖ f ‖θ
L p(�)‖ f ‖1−θ

Lq (�), (3.4.1)

where 0 ≤ θ ≤ 1 satisfying
1

r
= θ

p
+ 1 − θ

q
. (3.4.2)

Proof Noting (3.4.2), by Hölder inequality we have

‖ f ‖Lr (�) = ‖| f |θ| f |1−θ‖Lr (�)

≤ ‖| f |θ‖
L

p
θ (�)

‖| f |1−θ‖
L

q
θ (�)

= ‖ f ‖θ
L p(�)‖ f ‖1−θ

Lq (�).

This is exactly (3.4.1). �

Suppose that χ(t, x) is the characteristic function of a certain set in IR+ × IRn ,
similarly to (3.1.31)–(3.1.32), we may define

‖u(t, ·)‖A,N ,p,q,χ =
∑

|k|≤N

‖χ(t, ·)Aku(t, ·)‖L p,q (IRn), ∀t ≥ 0 (3.4.3)

and
‖u(t, ·)‖A,N ,p,χ = ‖u(t, ·)‖A,N ,p,p,χ, ∀t ≥ 0. (3.4.4)

This is actually the generalized Sobolev norm restricted on this set. In particular, we
may define ‖u(t, ·)‖�,N ,p,q,χ and ‖u(t, ·)‖�,N ,p,χ etc.

Now, as shown in the following theorem, we give the Sobolev type inequalities
with decay factor on a cone inside the characteristic cone of the wave equation.

Theorem 3.4.1 Let χ1(t, x) be the characteristic function of the set {(t, x) | |x | ≤
1+t
2 }. For any given p ≥ 1,

1◦ if s > n
p , then we have

|χ1u(t, x)| ≤ C(1 + t + |x |)− n
p ‖u(t, ·)‖�,s,p,χ1; (3.4.5)
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2◦ if s = n
p , then for any given q satisfying p ≤ q < +∞, we have

‖χ1u(t, ·)‖Lq (IRn) ≤ C(1 + t)−n( 1
p − 1

q )‖u(t, ·)‖�,s,p,χ1; (3.4.6)

3◦ if 0 < s < n
p , then (3.4.6) still holds for any given q satisfying 1

q ≥ 1
p − s

n and
q > p.

In (3.4.5) and (3.4.6), C is a positive constant independent of both u and t ≥ 0.

Proof Taking λ = 1+t
2 in Theorem 3.2.2 and using Lemmas 3.1.8 and 3.4.1, we can

obtain the required conclusions.
In fact, when s > n

p , from (3.2.6) and noting Lemma 3.1.8, we get

|χ1u(t, x)| ≤ ‖u(t, ·)‖
L∞

(
B 1+t

2

)

≤ C(1 + t)−
n
p

∑

|α|≤s

(1 + t)|α|‖Dα
x u(t, ·)‖

L p

(
B 1+t

2

)

= C(1 + t)−
n
p

∑

|α|≤s

(1 + t)|α|‖χ1D
α
x u(t, ·)‖L p(IRn)

≤ C(1 + t)−
n
p

∑

|α|≤s

(1 + t)|α| ·
∑

|β|≤|α|
‖(1 + |t − | · ||)−|α|χ1�

βu(t, ·)‖L p(IRn).

Noticing that |x | ≤ 1+t
2 , it is easy to show that

C1(1 + t) ≤ 1 + |t − |x || ≤ C2(1 + t), (3.4.7)

where C1 and C2 are both positive constants. From the above formula we obtain

|χ1u(t, x)| ≤ C(1 + t)−
n
p ‖u(t, ·)‖�,s,p,χ1 . (3.4.8)

Noting again that |x | ≤ 1+t
2 , we have

1 + t ≤ 1 + t + |x | ≤ 3

2
(1 + t),

which implies the conclusion in case 1◦.
In case 2◦, from (3.2.7), (3.4.6) can be proved similarly to (3.4.8).
In case 3◦, setting

1

q̄
= 1

p
− s

n
,

we have
q̄ ≥ q > p.
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Consequently, from Lemma 3.4.1 we have

‖χ1u(t, ·)‖Lq (IRn) ≤ ‖χ1u(t, ·)‖θ
L p(IRn)‖χ1u(t, ·)‖1−θ

Lq̄ (IRn)
, (3.4.9)

where 0 ≤ θ ≤ 1 satisfying
1

q
= θ

p
+ 1 − θ

q̄
. (3.4.10)

Similarly to (3.4.8), from (3.2.7) we can prove

‖χ1u(t, ·)‖Lq̄ (IRn) ≤ C(1 + t)−n( 1
p − 1

q̄ )‖u(t, ·)‖�,s,p,χ1 . (3.4.11)

Plugging this in (3.4.9) and noticing (3.4.10), we obtain

‖χ1u(t, ·)‖Lq (IRn) ≤ C(1 + t)−n( 1
p − 1

q̄ )(1−θ)‖u(t, ·)‖1−θ
�,s,p,χ1

‖χ1u(t, ·)‖θ
L p(IRn)

≤ C(1 + t)−n( 1
p − 1

q )‖u(t, ·)‖�,s,p,χ1 .

This is exactly (3.4.6). The proof is finished. �

From Theorem 3.4.1 we immediately arrive at

Corollary 3.4.1 For any given p > 1 and any given integer N ≥ 0,

1◦ if s > n
p , then

‖u(t, ·)‖�,N ,∞,χ1 ≤ C(1 + t)−
n
p ‖u(t, ·)‖�,N+s,p,χ1 , ∀t ≥ 0; (3.4.12)

2◦ If s = n
p , then for any q satisfying p ≤ q < +∞, we have

‖u(t, ·)‖�,N ,q,χ1 ≤ C(1 + t)
−n

(
1
p − 1

q

)

‖u(t, ·)‖�,N+s,p,χ1 , ∀t ≥ 0;
(3.4.13)

3◦ If 0 < s < n
p , (3.4.13) still holds for any given q satisfying 1

q ≥ 1
p − s

n and
q > p.

Remark 3.4.1 The estimates in Theorem3.4.1 andCorollary 3.4.1 hold for any given
function u(t, x) (as long as the norms appearing are well-defined). The reason why
there appear on the right-hand sides of these estimates the decay rates of t is that the
� operator contains positive power of t and the corresponding norms imply a certain
growth with respect to t .

According to Remark 3.2.1, and noting that 1 + |t − |x || = 1 + |x | − t ≥ 5+t
2

when |x | ≥ 3(1+t)
2 , we have
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Remark 3.4.2 In Theorem 3.4.1, if χ1(t, x) is taken to be the characteristic function
of the set {(t, x) | |x | ≥ 3(1+t)

2 }, then we still have (3.4.8) for case 1◦ and (3.4.6) for
cases 2◦ and 3◦, respectively. Therefore, Corollary3.4.1 still holds.

Remark 3.4.3 Please refer to Klainerman (1985) for 1◦ of Theorem 3.4.1.

3.4.2 Sobolev Type Inequalities with Decay Factor on the
Entire Space

Now we prove

Theorem 3.4.2 For any given p ≥ 1, when s > n
p , we have the following Sobolev

type inequality with decay factor:

|u(t, x)| ≤ C(1 + t + |x |)− n−1
p (1 + |t − |x ||)− 1

p · ‖u(t, ·)‖�,s,p, ∀t ≥ 0,∀x ∈ IRn,

(3.4.14)

where C is a positive constant independent of u.

For this purpose, we first prove the following lemma for the radial differential
operator ∂r .

Lemma 3.4.2 For any given integer k ≥ 1, we have

∂k
r =

n∑

i1,...,ik=1

xi1 · · · xik
r k

∂i1 · · · ∂ik . (3.4.15)

Proof Due to (3.1.42), (3.4.15) holds for k = 1. By mathematical induction, it suf-
fices to prove that: if (3.4.15) holds for the integer k ≥ 1, then it also holds for the
integer k + 1.

According to (3.4.15) and using the definition (3.1.42) of ∂r , we have

∂k+1
r =

∑

i1,...,ik+1

xik+1

r
∂ik+1

( xi1 · · · xik
r k

∂i1 · · · ∂ik

)

=
∑

i1,...,ik+1

xi1 · · · xik+1

rk+1
∂i1 · · · ∂ik+1

+
∑

i1,...,ik+1

xik+1

r

[
δi1ik+1xi2 · · · xik

r k
+ · · ·

+ xi1 · · · xik−1δik ik+1

rk
− k

xi1 · · · xik
r k+1

· xik+1

r

]
∂i1 · · · ∂ik

=
∑

i1,...,ik+1

xi1 · · · xik+1

rk+1
∂i1 · · · ∂ik+1 .
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This is exactly (3.4.15) for the integer k + 1.

Corollary 3.4.2 For any given integer k ≥ 1, we have

|∂k
r u| ≤ C

∑

|β|=k

|Dβ
x u|, (3.4.16)

where C is a positive constant independent of u.

Proof of Theorem 3.4.2 We divide the proof into two cases.
1◦ The case that

|t − |x || ≥ 1

2
(t + |x |) > 0. (3.4.17)

Applying (3.2.6) in Theorem 3.2.2 to the ball Bλ centered at x with radius λ =
1
4 (t + |x |) and using Lemma 3.1.8, we obtain

|u(t, x)| ≤ C(t + |x |)− n
p

∑

|α|≤s

(t + |x |)|α|‖Dα
y u(t, y)‖L p(Bλ)

≤ C(t + |x |)− n
p

∑

|α|≤s

(t + |x |)|α|

∥∥∥∥∥∥
(1 + |t − |y||)−|α| ∑

|β|≤α

|�βu(t, y)|
∥∥∥∥∥∥
L p(Bλ)

≤ C(t + |x |)− n
p

∑

|α|≤s

(t + |x |)|α|

∥∥∥∥∥∥
|t − |y||−|α| ∑

|β|≤α

|�βu(t, y)|
∥∥∥∥∥∥
L p(Bλ)

.

(3.4.18)

Since on Bλ we have

|y − x | ≤ 1

4
(t + |x |),

it is easy to show from (3.4.17) that

|t − |y|| ≥ 1

4
(t + |x |),

then from (3.4.18) we get

|u(t, x)| ≤ C(t + |x |)− n
p ‖u(t, ·)‖�,s,p. (3.4.19)

Consequently, we have

|u(t, x)| ≤ C(t + |x |)− n−1
p |t − |x ||− 1

p ‖u(t, ·)‖�,s,p. (3.4.20)
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2◦ The case that
0 < |t − |x || <

1

2
(t + |x |). (3.4.21)

Now it is obvious that |x | 	= 0. Take

λ = |t − |x ||
2|x | . (3.4.22)

Then under condition (3.4.21) we have

1

3
|x | < t < 3|x |, (3.4.23)

thus
|t − |x || < 2|x |,

therefore, 0 < λ < 1.
Applying Theorem 3.2.3 to the annular domain E|x |,λ = {y | ||y| − |x || < λ|x |}

and noticing Corollary 3.4.1, we obtain

|u(t, x)| ≤ C

( |t − |x ||
|x |

)− 1
p

|x |− n
p

∑

k+|α|≤s

|t − |x ||k‖∂k
r �

α
y u(t, y)‖L p(E|x |,λ)

≤ C |t − |x ||− 1
p |x |− n−1

p

∑

|α|+|β|≤s

|t − |x |||β|‖Dβ
y�

α
y u(t, y)‖L p(E|x |,λ),

which, together with Lemma 3.1.8, implies that

|u(t, x)| ≤ C |t − |x ||− 1
p |x |− n−1

p

∑

|α|+|β|≤s

|t − |x |||β|

·
∥∥∥∥∥∥
(1 + |t − |y||)−|β| ∑

|γ|≤|β|
|�γ�α

y u(t, y)|
∥∥∥∥∥∥
L p(E|x |,λ)

≤ C |t − |x ||− 1
p |x |− n−1

p

∑

|α|+|β|≤s

|t − |x |||β|

·
∥∥∥∥∥∥
|t − |y||−|β| ∑

|γ|≤|β|
|�γ�α

y u(t, y)|
∥∥∥∥∥∥
L p(E|x |,λ)

. (3.4.24)

Since on E|x |,λ we have

||y| − |x || <
1

2
|t − |x ||,
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then we get

|t − |y|| ≥ |t − |x || − ||y| − |x || >
1

2
|t − |x ||. (3.4.25)

Thus, (3.4.24) leads to

|u(t, x)| ≤ C |t − |x ||− 1
p |x |− n−1

p ‖u(t, ·)‖�,s,p. (3.4.26)

Then, noting (3.4.23), we have

|u(t, x)| ≤ C(t + |x |)− n−1
p |t − |x ||− 1

p ‖u(t, ·)‖�,s,p. (3.4.27)

Finally, from the usual Sobolev inequality we have

|u(t, x)| ≤ C‖u(t, ·)‖�,s,p, ∀t ≥ 0,∀x ∈ IRn. (3.4.28)

Combining (3.4.20), (3.4.27) and (3.4.28), the desired (3.4.14) follows. The proof
of Theorem 3.4.2 is finished.

Corollary 3.4.3 For any given p ≥ 1, when s > n
p we have

‖u(t, ·)‖L∞(IRn) ≤ C(1 + t)−
n−1
p ‖u(t, ·)‖�,s,p, ∀t ≥ 0, (3.4.29)

where C is a positive constant independent of u.

Corollary 3.4.4 For any given integer N ≥ 0, we have

‖u(t, ·)‖�,N ,∞ ≤ C(1 + t)−
n−1
p ‖u(t, ·)‖�,N+s,p, ∀t ≥ 0, (3.4.30)

where p ≥ 1, s > n
p , and C is a positive constant independent of u.

Remark 3.4.4 Please refer toKlainerman (1985) for the conclusion and proof outline
of Theorem 3.4.2.

Remark 3.4.5 Comparing (3.4.12) in Corollary 3.4.1 (or the corresponding conclu-
sion in Remark 3.4.2) with Corollary 3.4.4, we can see that: on a cone inside (or
outside) the characteristic cone of the wave equation, the corresponding Sobolev
type inequalities have faster decay rate.



Chapter 4
Estimates on Solutions to the Linear Wave
Equations

4.1 Estimates on Solutions to the One-Dimensional Linear
Wave Equations

Consider the following Cauchy problem of one-dimensional linear wave equations:

utt − uxx = F(t, x), (t, x) ∈ IR+ × IR, (4.1.1)

t = 0 : u = f (x), ut = g(x), x ∈ IR. (4.1.2)

We will establish some related estimates on its solution u = u(t, x) as follows.

Theorem 4.1.1 For the solution u = u(t, x)of the one-dimensional Cauchy problem
(4.1.1)–(4.1.2), the following estimates hold:

1◦ We have

‖u(t, ·)‖L∞(IR) ≤ ‖ f ‖L∞(IR) + t‖g‖L∞(IR) +
∫ t

0
(t − τ )‖F(τ , ·)‖L∞(IR)dτ , ∀ t ≥ 0;

(4.1.3)

2◦ For any given p (1 ≤ p ≤ +∞), we have

‖u(t, ·)‖L p(IR) ≤ ‖ f ‖L p(R) + t
1
p ‖g‖L1(IR) +

∫ t

0
(t − τ )

1
p ‖F(τ , ·)‖L1(IR)dτ , ∀ t ≥ 0 (4.1.4)

and

‖Du(t, ·)‖L p(IR) ≤ ‖ f ′‖L p(IR) + ‖g‖L p(IR) +
∫ t

0
‖F(τ , ·)‖L p(IR)dτ , ∀ t ≥ 0, (4.1.5)

where

D =
(

∂

∂t
,

∂

∂x

)
; (4.1.6)
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3◦ If ∫ +∞

−∞
g(x)dx = 0, (4.1.7)

then when F ≡ 0, for any given p(1 ≤ p ≤ +∞) we have

‖u(t, ·)‖L p(IR) ≤ ‖ f ‖L p(IR) + ‖G‖L p(IR), ∀ t ≥ 0, (4.1.8)

where

G(x) =
∫ x

−∞
g(y)dy (4.1.9)

is the primitive function of g.

Proof Thanks to (2.1.14) in Chap.2, it suffices to prove Theorem 4.1.1 for the case
that F ≡ 0, and in this case, from (2.1.20) in Chap.2, the solution to the Cauchy
problem (4.1.1)–(4.1.2) can be expressed by

u(t, x) = 1

2
( f (x + t) + f (x − t)) + 1

2

∫ x+t

x−t
g(y)dy. (4.1.10)

Noting that

1

2

∥∥∥∥
∫ x+t

x−t
g(y)dy

∥∥∥∥
L∞(IR)

≤ 1

2

∥∥∥∥
∫ x+t

x−t
dy

∥∥∥∥
L∞(IR)

· ‖g‖L∞(IR) = t‖g‖L∞(IR), (4.1.11)

Estimate (4.1.3) for the case F ≡ 0 follows immediately from (4.1.10).
To prove (4.1.4) for the case F ≡ 0, we rewrite (4.1.10) as

u(t, x) = 1

2
( f (x + t) + f (x − t)) + 1

2

∫
R

H(t − |x − y|)g(y)dy, (4.1.12)

where H is the Heaviside function. Noticing that

‖H(t − | · −y|)‖L p(IR) =
(∫ y+t

y−t
dx

) 1
p

= (2t)
1
p ,

from (4.1.11) we have

‖u(t, ·)‖L p(IR) ≤ ‖ f ‖L p(IR) + 1

2

∫
R

‖H(t − | · −y|)‖L p(IR)|g(y)|dy

= ‖ f ‖L p(IR) + 1

2
(2t)

1
p ‖g‖L1(IR)

≤ ‖ f ‖L p(IR) + t
1
p ‖g‖L1(IR).

This is exactly (4.1.4) when F ≡ 0.

http://dx.doi.org/10.1007/978-3-662-55725-9_2
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From (4.1.10) we have

∂u

∂t
(t, x) = 1

2
( f ′(x + t) − f ′(x − t)) + 1

2
(g(x + t) + g(x − t)), (4.1.13)

∂u

∂x
(t, x) = 1

2
( f ′(x + t) + f ′(x − t)) + 1

2
(g(x + t) − g(x − t)), (4.1.14)

then it is easy to get (4.1.5) when F ≡ 0.
Finally, under assumption (4.1.7), noting (4.1.9), (4.1.10) can be rewritten as

u(t, x) = 1

2
( f (x + t) + f (x − t)) + 1

2
(G(x + t) − G(x − t)), (4.1.15)

which implies (4.1.8) immediately. The proof is finished. �

4.2 Generalized Huygens Principle

In the following sections, we always assume that the space dimension n ≥ 2 unless
otherwise noted.

Consider the following Cauchy problem of the linear homogeneous wave equa-
tion:

�u(t, x) = 0, (t, x) ∈ IR+ × IRn, (4.2.1)

t = 0 : u = f (x), ut = g(x), x ∈ IRn, (4.2.2)

and assume that the initial data are compactly supported:

supp{ f, g} ⊆ {x | |x | ≤ ρ} (ρ > 0 is a constant). (4.2.3)

When n(≥ 3) is odd, from the expression of solutions showed in Theorem 2.1.1
in Chap.2 we can see that, when

t − |x | ≥ ρ, (4.2.4)

we always have
u(t, x) ≡ 0. (4.2.5)

This is just the well-known Huygens principle.
Whenn(≥ 2) is even, the above conclusion is no longer valid (seeTheorem2.1.2 in

Chap.2), but we can establish a corresponding estimate on the solution, called the
generalized Huygens principle as follows.

Theorem 4.2.1 Let u = u(t, x) be the solution to the Cauchy problem (4.2.1)–
(4.2.2), and (4.2.3) hold. Then when n(≥ 2) is even, and

http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_2
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t − |x | ≥ 2ρ, (4.2.6)

we have

|u(t, x)| ≤ C(t + |x |)− n−1
2 (t − |x |)− n−1

2
(
(t − |x |)−1‖ f ‖L1(IRn) + ‖g‖L1(IRn)

)
,

(4.2.7)
where C is a positive constant independent of both ( f, g) and ρ.

Proof From Theorem2.1.2 in Chap.2, now the solution of the Cauchy problem
(4.2.1)–(4.2.2) can be expressed by

u(t, x) = 1

ωn�( n
2 )

(
2t

(
1

2t

∂

∂t

) n
2
∫

|y−x |≤t

f (y)√
t2 − |y − x |2 dy

+
(
1

2t

∂

∂t

) n−2
2
∫

|y−x |≤t

g(y)√
t2 − |y − x |2 dy

)
, (4.2.8)

whereωn is the area of the unit sphere in IRn . Noting the compact support assumption
(4.2.3) on the initial data, the range of integration in the above formula is actually
{y | |y − x | ≤ t}⋂{y | |y| ≤ ρ}.

Due to assumption (4.2.6), on the sphere |y − x | = t we always have

|y| ≥ |y − x | − |x | = t − |x | ≥ 2ρ,

then the integrands in (4.2.8) are always zero. Thus, the differential operator 1
2t

∂
∂t

can be moved into the integral sign successively so that we get

u(t, x) = C1t
∫

|y−x |≤t
|y|≤ρ

(t2 − |y − x |2)− n+1
2 f (y)dy + C2

∫
|y−x |≤t
|y|≤ρ

(t2 − |y − x |2)− n−1
2 g(y)dy,

(4.2.9)

where C1 and C2 are some constants.
Under condition (4.2.6) and the assumption |y| ≤ ρ, we have

t2 − |y − x |2 = t2 − |x |2 + 2x · y − |y|2
≥ t2 − |x |2 − 2|x ||y| − |y|2
≥ t2 − |x |2 − 2ρ|x | − ρ2

= (t2 − |x |2)
(
1 − (2|x | + ρ)ρ

(t − |x |)(t + |x |)
)

≥ (t2 − |x |2)
(
1 − (2|x | + ρ)ρ

2ρ(2|x | + 2ρ)

)

≥ 1

2
(t2 − |x |2). (4.2.10)

http://dx.doi.org/10.1007/978-3-662-55725-9_2
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Therefore, (4.2.7) follows immediately from (4.2.9). The proof is finished. �

Remark 4.2.1 According to Theorem 4.2.1, on the domain enclosed by the forward
characteristic cone given by (4.2.6) with the vertex (t, x) = (2ρ, 0), we have

|u(t, x)| ≤ Cρ(1 + t)−
n−1
2 (‖ f ‖L1(Rn) + ‖g‖L1(Rn)), (4.2.11)

where Cρ is a positive constant independent of ( f, g) but depending on ρ. Therefore,
as t → +∞ the solution u = u(t, x) has at least the decay rate (1 + t)− n−1

2 on the
domain enclosed by this forward characteristic cone.

Remark 4.2.2 If assumption (4.2.6) is changed into

t − |x | ≥ aρ, (4.2.12)

where a > 1 is a constant, the conclusion of Theorem4.2.1 is still valid. Since a(> 1)
can be infinitely close to 1, in the interior of the forward characteristic cone with
vertex (t, x) = (ρ, 0), namely, when

t − |x | > ρ, (4.2.13)

the solution u = u(t, x) has at least the decay rate (1 + t)− n−1
2 as t → +∞. This

gives the reasonwhy the conclusion given by Theorem 4.2.1 is called the generalized
Huygens principle by comparing with the result (4.2.5) for the case that n is odd.

Remark 4.2.3 The result in Theorem 4.2.1 goes back to Hörmander (1988), and the
proof can also be found in Li and Zhou (1995c).

From Theorem 4.2.1, it is easy to obtain the following

Corollary 4.2.1 Under the assumptions of Theorem 4.2.1, for any given l satisfying
0 ≤ l ≤ n−1

2 , we have

|u(t, x)| ≤ Cρ(1 + t + |x |)− n−1
2 (1 + |t − |x ||)−l

(‖ f ‖L1(IRn) + ‖g‖L1(IRn)

)
,

(4.2.14)
where Cρ is a positive constant depending only on ρ.

4.3 Estimates on Solutions to the Two-Dimensional
Linear Wave Equations

Consider the following Cauchy problem of the two-dimensional linear homogeneous
wave equation:

�u(t, x) = 0, (t, x) ∈ IR+ × IR2, (4.3.1)

t = 0 : u = f (x), ut = g(x), x ∈ IR2, (4.3.2)

where x = (x1, x2).
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Theorem 4.3.1 Let u = u(t, x) be the solution to the two-dimensional Cauchy prob-
lem (4.3.1)–(4.3.2).

1◦ We have

‖u(t, ·)‖L2(IR2) ≤ ‖ f ‖L2(IR2) + C
√
ln(2 + t)‖(1 + | · |2)g‖L2(IR2); (4.3.3)

2◦ If ∫
IR2

g(x)dx = 0, (4.3.4)

then we have

‖u(t, ·)‖L2(IR2) ≤ ‖ f ‖L2(IR2) + C‖(1 + | · |2)g‖L2(IR2), (4.3.5)

where C is a positive constant.

Proof From Theorem 2.3.1 in Chap.2, the Fourier transform of u = u(t, x) with
respect to x is

û(t, ξ) = cos(|ξ|t) f̂ (ξ) + sin(|ξ|t)
|ξ| ĝ(ξ). (4.3.6)

Thus, from the Parseval identity we have

‖u(t, ·)‖L2
x

= ‖û(t, ·)‖L2
ξ

≤ ‖ f̂ ‖L2 +
∥∥∥∥ sin(|ξ|t)|ξ| ĝ(ξ)

∥∥∥∥
L2

= ‖ f ‖L2 +
∥∥∥∥ sin(|ξ|t)|ξ| ĝ(ξ)

∥∥∥∥
L2

. (4.3.7)

Adopting polar coordinates to variable ξ: ξ = rω, where r = |ξ| and
ω = (cos θ, sin θ), we have

I (t)
def.=
∥∥∥∥ sin(|ξ|t)|ξ| ĝ(ξ)

∥∥∥∥
2

L2

=
∫∫

sin2(r t)

r
ĝ2(rω)drdθ. (4.3.8)

Integrating by parts, we get

I ′(t) =
∫∫

sin(2r t)ĝ2(rω)drdθ

= 1

t

∫∫
cos(2r t)ĝ(rω)∂r ĝ(rω)drdθ,

http://dx.doi.org/10.1007/978-3-662-55725-9_2
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then we obtain

|I ′(t)| ≤ 1

t

(∫∫
ĝ2(rω)drdθ

) 1
2
(∫∫

(∂r ĝ(rω))2drdθ

) 1
2

.

By integration by parts once in the above two integrals and using Parseval identity,
we obtain

|I ′(t)| ≤ C

t
‖(1 + | · |2)g‖2L2 , ∀ t > 0, (4.3.9)

where C is a positive constant.
Noting that near t = 0, say, 0 ≤ t ≤ 1, we have

sin2(r t) ≤ (r t)2 ≤ r2,

from (4.3.8) and using Parseval identity we have

I (t) ≤ ‖g‖2L2 , ∀ 0 ≤ t ≤ 1. (4.3.10)

Combining (4.3.9)–(4.3.10), it is easy to obtain that

I (t) ≤ C ln(2 + t)‖(1 + | · |2)g‖2L2 , ∀ t ≥ 0, (4.3.11)

then (4.3.3) follows immediately from (4.3.7).
On the other hand, if (4.3.4) holds, then from the definition of Fourier transform,

this condition is equivalent to
ĝ(0) = 0, (4.3.12)

hence the integration by parts yields

ĝ(ξ)

|ξ| = 1

|ξ|
∫ 1

0
∂s ĝ(sξ)ds =

∫ 1

0
∂r ĝ(sξ)ds

= ∂r ĝ(ξ) − |ξ|
∫ 1

0
s∂2

r ĝ(sξ)ds, (4.3.13)

where ξ = rω.
It is easy to show from (4.3.7) that

‖u(t, ·)‖L2 ≤ ‖ f ‖L2 +
∥∥∥∥ ĝ(ξ)

|ξ|
∥∥∥∥

L2

≤ ‖ f ‖L2 + ‖ĝ‖L2 +
∥∥∥∥ ĝ(ξ)

|ξ|
∥∥∥∥

L2(B1)

, (4.3.14)
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where B1 = {ξ| |ξ| ≤ 1}. And from (4.3.13) we have

∥∥∥∥ ĝ(ξ)

|ξ|
∥∥∥∥

L2(B1)

≤ ‖∂r ĝ‖L2(B1) +
∫ 1

0
s‖∂2

r ĝ(sξ)‖L2(B1)ds

= ‖∂r ĝ‖L2(B1) +
∫ 1

0
s2‖∂2

r ĝ(ξ)‖L2(Bs )ds

≤ ‖∂r ĝ‖L2 + ‖∂2
r ĝ‖L2 .

Then, noting (4.3.14) and using Parseval identity, (4.3.5) follows immediately. �

4.4 An L2 Estimate on Solutions to the n(≥ 4)-Dimensional
Linear Wave Equations

In this section, based on an estimate in Hidano et al. (2009) we will establish a new
L2 estimate on solutions to the Cauchy problem of the n(≥ 4)-dimensional linear
wave equations. This estimate will play a crucial role in Chap.11 when establishing
the sharp lower bound estimate on the life-span of solutions to the Cauchy problem
of four-dimensional linear wave equations with small initial data.

First of all, we prove the following lemma. The result in this lemma is known as
Morawetz estimate.

Lemma 4.4.1 Suppose that n ≥ 3 and u = u(t, x) is the solution to the Cauchy
problem

�u(t, x) = 0, (4.4.1)

t = 0 : u = 0, ut = g(x). (4.4.2)

of the n-dimensional linear wave equation, then we have the following space-time
estimate:

‖|x |−su‖L2(IR×IRn) ≤ C‖g‖
Ḣ s− 3

2 (IRn)
, (4.4.3)

where s satisfies

1 < s <
n

2
, (4.4.4)

Ḣ s− 3
2 (IRn) is defined by (3.3.12) in Chap.3, and C is a positive constant.

Proof We first prove that: if s satisfies (4.4.4), then for any given v ∈ Ḣ s(IRn) we
have

sup
r>0

r
n
2 −s‖v(rω)‖L2(Sn−1) ≤ C‖v‖Ḣ s (IRn), (4.4.5)

where x = rω, r = |x | and ω ∈ Sn−1.

http://dx.doi.org/10.1007/978-3-662-55725-9_11
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In fact, from 1◦ of Theorem 3.3.1 (wherein taking a = 1) in Chap.3, for any given
h ∈ Ḣ s(IRn), we easily get

‖h‖L2(Sn−1) ≤ C‖h‖Ḣ s (IRn). (4.4.6)

For any given v ∈ Ḣ s(IRn), taking h(x) = v(λx)
def.= hλ(x) in the above formula,

where λ is any given positive number, we obtain

‖hλ‖L2(Sn−1) ≤ C‖hλ‖Ḣ s (IRn). (4.4.7)

whereas
‖hλ‖L2(Sn−1) = ‖v(λω)‖L2(Sn−1) (4.4.8)

and
‖hλ‖Ḣ s (IRn) = ∥∥|ξ|s ĥλ

∥∥
L2(IRn)

=
∥∥∥|ξ|s ̂v(λx)

∥∥∥
L2(IRn)

,

where ̂ over a function stands for the Fourier transform of this function. From the
definition of Fourier transform we have

̂v(λx) = λ−n v̂
( ξ

λ

)
,

then it is easy to show that

‖hλ‖Ḣ s (IRn) =
∥∥∥|ξ|s ̂v(λx)

∥∥∥
L2(IRn)

= λ−n
∥∥∥|ξ|s v̂

( ξ

λ

)∥∥∥
L2(IRn)

= λs− n
2
∥∥|ξ|s v̂(ξ)

∥∥
L2(IRn)

= λs− n
2 ‖v‖Ḣ s (IRn). (4.4.9)

Plugging (4.4.8)–(4.4.9) in (4.4.7), we immediately get that for any given λ > 0, we
have

‖v(λω)‖L2(Sn−1) ≤ Cλs− n
2 ‖v‖Ḣ s (IRn). (4.4.10)

Taking λ = r = |x | particularly in the above formula, (4.4.5) follows immediately.
Applying (4.4.10) to the Fourier transform v̂ of v, we obtain

( ∫
Sn−1

|v̂(λω)|2dω
) 1

2 ≤ Cλs− n
2 ‖|x |sv‖L2(IRn). (4.4.11)

From this, the duality can be used to get

∥∥∥|x |−s
∫

Sn−1
eiλx ·ωh(ω)dω

∥∥∥
L2(IRn)

≤ Cλs− n
2 ‖h‖L2(Sn−1). (4.4.12)
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In fact,

The left-hand side of (4.4.12) = sup
v =0

∫
IRn v(x)|x |−s

∫
Sn−1 eiλx ·ωh(ω)dωdx

‖v‖L2(IRn)

.

(4.4.13)
Set

v̄(x) = |x |−sv(x), (4.4.14)

we have
∫

IRn

v(x)|x |−s
∫

Sn−1
eiλx ·ωh(ω)dωdx =

∫
Sn−1

( ∫
IRn

eiλx ·ω v̄(x)dx
)

h(ω)dω

=
∫

Sn−1

ˆ̄v(λω)h(ω)dω,

then

∣∣∣
∫

IRn

v(x)|x |−s
∫

Sn−1
eiλx ·ωh(ω)dωdx

∣∣∣ ≤ ‖ ˆ̄v(λω)‖L2(Sn−1)‖h‖L2(Sn−1), (4.4.15)

while, using (4.4.11) and noting (4.4.14), we have

‖ ˆ̄v(λω)‖L2(Sn−1) ≤ Cλs− n
2 ‖|x |s v̄‖L2(IRn) = Cλs− n

2 ‖v‖L2(IRn). (4.4.16)

Thus, (4.4.12) follows from (4.4.13).
Now we are ready to consider the solution u = u(t, x) to the Cauchy problem

(4.4.1)–(4.4.2). From (2.3.3) in Chap.2 we have

u = Imv. (4.4.17)

Since

v̂(t, ξ) = eit |ξ|

|ξ| ĝ(ξ), (4.4.18)

takingFourier transformwith respect to t for the above formula,we get the space-time
Fourier transform of v:

v�(τ , ξ) =
⎧⎨
⎩

δ(τ − |ξ|)
|ξ| ĝ(ξ), τ > 0,

0, τ < 0,
(4.4.19)

thus, the Fourier transform of v with respect to t is: for τ > 0,

ṽ(τ , x) =
∫

IRn

eix ·ξ δ(τ − |ξ|)
|ξ| ĝ(ξ)dξ = τ n−2

∫
Sn−1

eix ·ωτ ĝ(τω)dω; (4.4.20)
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and for τ < 0, ṽ(τ , x) ≡ 0. Then, using (4.4.12) we obtain that: for τ > 0, we have

‖|x |−s ṽ(τ , x)‖L2(IRn) ≤ Cτ
n
2 −2+s‖ĝ(τω)‖L2(Sn−1). (4.4.21)

Noting that when τ < 0, ṽ(τ , x) ≡ 0, taking the L2 norm with respect to τ for the
above formula and using Paserval identity, we obtain

‖|x |−sv(t, x)‖L2(IR×IRn) ≤ C
( ∫ ∞

0
τ 2
(

n
2 −2+s

) ∫
Sn−1

ĝ2(τω)dωdτ
) 1

2

= C
( ∫

IRn

|ξ|2s−3ĝ2(ξ)dξ
) 1

2 = C‖g‖
Ḣ s− 3

2 (IRn)
, (4.4.22)

thus, noting (4.4.17), we immediately obtain (4.4.3). The proof is finished. �

The following lemma gives the dual estimate of the above Morawetz estimate.

Lemma 4.4.2 Suppose that n ≥ 3 and u = u(t, x) is the solution to the Cauchy
problem of the n-dimensional linear wave equations:

�u(t, x) = F(t, x), (4.4.23)

t = 0 : u = ut = 0, (4.4.24)

then for any given T > 0, we have

sup
0≤t≤T

‖u(t, ·)‖
Ḣ

3
2 −s

(IRn)
≤ C‖|x |s F(t, x)‖L2(0,T ;L2(IRn)), (4.4.25)

where s satisfies (4.4.4), and C is a positive constant.

Proof Thanks to Duhamel principle (2.1.13) in Chap.2 and Lemma 4.4.1, it is easy
to obtain that

‖|x |−su‖L2(0,T ;L2(IRn)) ≤ C
∫ T

0
‖F(τ , ·)‖

Ḣ s− 3
2 (IRn)

dτ . (4.4.26)

In addition, by duality we have

sup
0≤t≤T

‖u(t, ·)‖
Ḣ

3
2 −s

(IRn)
= sup

G =0

∫ T
0

∫
IRn u(t, x)G(t, x)dxdt∫ T

0 ‖G(t, ·)‖
Ḣ s− 3

2 (IRn)
dt

. (4.4.27)

Let v = v(t, x) satisfy

�v(t, x) = G(t, x), (4.4.28)

t = T : v = vt = 0. (4.4.29)
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From integration by parts we get

∫ T

0

∫
IRn

u(t, x)G(t, x)dxdt =
∫ T

0

∫
IRn

u(t, x)�v(t, x)dxdt

=
∫ T

0

∫
IRn

�u(t, x)v(t, x)dxdt

=
∫ T

0

∫
IRn

F(t, x)v(t, x)dxdt, (4.4.30)

then

∣∣∣
∫ T

0

∫
IRn

u(t, x)G(t, x)dxdt
∣∣∣ ≤ ‖|x |s F‖L2(0,T ;L2(IRn))‖|x |−sv‖L2(0,T ;L2(IRn)).

(4.4.31)
Applying (4.4.26) to v, we have

‖|x |−sv‖L2(0,T ;IRn) ≤ C
∫ T

0
‖G(t, ·)‖

Ḣ s− 3
2 (IRn)

dt, (4.4.32)

then the dual estimate (4.4.25) follows immediately from (4.4.27). The proof is
finished. �

Theorem 4.4.1 Suppose that n ≥ 4 and u = u(t, x) is the solutions to the Cauchy
problem (4.4.23)–(4.4.24) of the n-dimensional linear wave equations, where, for
any given t ∈ [0, T ], the term F(t, x) on the right-hand side is supported in {x |
|x | ≤ t + ρ} with respect to x, where ρ is a positive constant:

suppF ⊆ {(t, x) | 0 ≤ t ≤ T, |x | ≤ t + ρ}. (4.4.33)

Then we have the following L2 estimate of the solution u:

‖u(t, ·)‖L2(IRn ) ≤ Cρ

{
‖(1 + t)sχ1F‖L2(0,T ;Lq (IRn )) + ‖(1 + t)−

n−3
2 χ2F‖L2(0,T ;L1,2(IRn ))

}
,

0 ≤ t ≤ T, (4.4.34)

where
1

2
< s < 1, (4.4.35)

q (1 < q < 2) is determined by

1

q
= 1

2
+

3

2
− s

n
, (4.4.36)
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χ1(t, x) is the characteristic function of the set {(t, x) | |x | ≤ 1+t
2 }, χ2 = 1 − χ1,

and Cρ is a positive constant possibly depending on ρ.

Proof Denote
|D| = √−�x , (4.4.37)

where �x stands for the Laplace operator in IRn . Acting |D|s− 3
2 on both sides of the

wave equation (4.4.23) and noticing the commutativity between |D| and the wave
operator �, from Lemma 4.4.2 we easily get

‖u(t, ·)‖L2(IRn)

≤ C
∥∥|x |s(|D|s− 3

2 F
)∥∥

L2(0,T ;L2(IRn))

≤ C
{∥∥|x |s(|D|s− 3

2 (χ1F)
)∥∥

L2(0,T ;L2(IRn))

+ ∥∥|x |s(|D|s− 3
2 (χ2F)

)∥∥
L2(0,T ;L2(IRn))

}
, 0 ≤ t ≤ T . (4.4.38)

First, we estimate the first term on the right-hand side of the above formula.
Noting (4.4.37) and the definition of χ1, it is easy to show that

(
|D|s− 3

2 (χ1F)
)
(t, x) =

∨
|ξ|s− 3

2 ∗ (χ1F),

where ∨ over a function stands for the inverse Fourier transform of this function, and
∗ stands for the convolution. Noting that in

∨
|ξ|s− 3

2 = C
∫

IRn

eix ·ξ|ξ|s− 3
2 dξ,

by setting ξ = η
|x | we have

∨
|ξ|s− 3

2 = C
( ∫

IRn

ei x
|x | ·η|η|s− 3

2 dη
)
|x |−(n+s− 3

2 ),

and
∫

IRn ei x
|x | ·η|η|s− 3

2 dη is a constant independent of x , then we finally obtain

(
|D|s− 3

2 (χ1F)
)
(t, x) = C

∫
IRn

χ1F(t, y)

|x − y|n+s− 3
2

dy = C
∫

|y|≤ 1+t
2

χ1F(t, y)

|x − y|n+s− 3
2

dy.

(4.4.39)
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Then, when |x | ≥ 1 + t , since we have |x − y| ≥ |x | − |y| ≥ |x |
2 from |y| ≤ 1+t

2 , we
have

∣∣(|D|s− 3
2 (χ1F)

)
(t, x)

∣∣ ≤ C |x |−(n+s− 3
2 )‖χ1F‖L1(IRn)

≤ C |x |−(n+s− 3
2 )‖χ1F‖Lq (IRn)‖χ1‖Lq′

(IRn)

≤ C(1 + t)
n
q′ |x |−(n+s− 3

2 )‖χ1F‖Lq (IRn), (4.4.40)

where q ′(> 2) is determined by 1
q + 1

q ′ = 1, then from (4.4.36) we have

1

q ′ = 1

2
−

3

2
− s

n
. (4.4.41)

Noting n ≥ 4 and (4.4.41), from (4.4.40) we easily obtain
∥∥|x |s(|D|s− 3

2 (χ1F)
)∥∥

L2(|x |≥1+t) ≤ C(1 + t)
n
q′ ‖χ1F‖Lq (IRn)‖|x |−(n− 3

2 )‖L2(|x |≥1+t)

≤ C(1 + t)
n
q′ − n−3

2 ‖χ1F‖Lq (IRn)

= C(1 + t)s‖χ1F‖Lq (IRn). (4.4.42)

On the other hand, when |x | ≤ 1 + t , from (3.3.12) in Chap.3 and noting (4.4.36),
it is clear that

∥∥|x |s(|D|s− 3
2 (χ1F)

)∥∥
L2(|x |≤1+t) ≤ (1 + t)s

∥∥|D|s− 3
2 (χ1F)‖L2(IRn)

= (1 + t)s‖χ1F‖
Ḣ s− 3

2 (IRn)

≤ C(1 + t)s‖χ1F‖Lq (IRn), (4.4.43)

Here, we obtained the last inequality by using both the continuity of the embedding

H
3
2 −s(IRn) ⊂ Lq ′

(IRn)

in the Sobolev embedding theorem and the duality, and q ′ is defined by (4.4.41).
Combining (4.4.42)–(4.4.43), we get

∥∥|x |s(|D|s− 3
2 (χ1F)

)∥∥
L2(IRn)

≤ C(1 + t)s‖χ1F‖Lq (IRn), (4.4.44)

then

∥∥|x |s(|D|s− 3
2 (χ1F)

)∥∥
L2(0,T ;L2(IRn))

≤ C
∥∥(1 + t)sχ1F

∥∥
L2(0,T ;Lq (IRn))

. (4.4.45)

Now we estimate the second term on the right-hand side of (4.4.38).
Noticing the definition of χ2 and assumption (4.4.33) on F (where we assume

without loss of generality that ρ ≥ 1), similarly to (4.4.39), we have
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(|D|s− 3
2 (χ2F)

)
(t, x) = C

∫
IRn

χ2F(t, y)

|x − y|n+s− 3
2

dy = C
∫

t+ρ≥|y|≥ 1+t
2

χ2F(t, y)

|x − y|n+s− 3
2

dy.

(4.4.46)
Then, when |x | ≥ 2(t + ρ), similarly to (4.4.40), we have

∣∣(|D|s− 3
2 (χ2F)

)
(t, x)

∣∣ ≤ C |x |−(n+s− 3
2 )‖χ2F‖L1(IRn), (4.4.47)

consequently, noting that n ≥ 4, it is easy to show that

∥∥|x |s(|D|s− 3
2 (χ2F)

)∥∥
L2(|x |≥2(t+ρ))

≤ C‖χ2F‖L1(IRn)‖|x |−(n− 3
2 )‖L2(|x |≥2(t+ρ))

≤ C(1 + t)−
n−3
2 ‖χ2F‖L1(IRn)

≤ C(1 + t)−
n−3
2 ‖χ2F‖L1,2(IRn). (4.4.48)

On the other hand, when |x | ≤ 2(t + ρ), according to (3.3.12) in Chap.3 and
Theorem 3.3.2 in Chap.3 (in which we take f = χ2F,ψ = χ2, a = 1+t

2 and s0 =
3
2 − s) and noting (4.4.35), we have

∥∥|x |s(|D|s− 3
2 (χ2F)

)∥∥
L2(|x |≤2(t+ρ))

≤ Cρ(1 + t)s
∥∥|D|s− 3

2 (χ2F)
∥∥

L2(IRn)

= Cρ(1 + t)s‖χ2F‖
Ḣ s− 3

2 (IRn)

≤ Cρ(1 + t)−
n−3
2 ‖χ2F‖L1,2(IRn). (4.4.49)

Combining (4.4.48)–(4.4.49), we obtain

∥∥|x |s(|D|s− 3
2 (χ2F)

)∥∥
L2(IRn)

≤ Cρ(1 + t)−
n−3
2 ‖χ2F‖L1,2(IRn), (4.4.50)

thus

∥∥|x |s(|D|s− 3
2 (χ2F)

)∥∥
L2(0,T ;L2(IRn))

≤ Cq‖(1 + t)−
n−3
2 χ2F‖L2(0,T ;L1,2(IRn)).

(4.4.51)

Substituting (4.4.45) and (4.4.51) into (4.4.38), we obtain the desired (4.4.34).
The proof of Theorem 4.4.1 is finished. �

4.5 L p,q Estimates on Solutions to the Linear Wave
Equations

Consider the following Cauchy problem of the linear wave equations:

�u(t, x) = F(t, x), (t, x) ∈ IR+ × IRn, (4.5.1)

t = 0 : u = f (x), ut = g(x), x ∈ IRn. (4.5.2)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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In this section we will establish some new estimates on the solution by using the
L p,q space introduced in Sect. 3.1.2 of Chap.3.

First we prove

Lemma 4.5.1 Suppose that n ≥ 1 and u = u(t, x) is the solution to the Cauchy
problem (4.5.1)–(4.5.2). Then for any given real number s, we have

‖u(t, ·)‖Ḣ s (IRn) ≤ ‖ f ‖Ḣ s (IRn) + ‖g‖Ḣ s−1(IRn) +
∫ t

0
‖F(τ , ·)‖Ḣ s−1(IRn)dτ , ∀ t ≥ 0;

(4.5.3)
moreover, for any given real number σ(0 ≤ σ ≤ 1), we have

‖u(t, ·)‖L2(IRn ) ≤ ‖ f ‖L2(IRn ) + tσ‖g‖Ḣσ−1(IRn ) +
∫ t

0
(t − τ )σ‖F(τ , ·)‖Ḣσ−1(IRn )dτ , ∀ t ≥ 0,

(4.5.4)

where Ḣ s(IRn) is a homogeneous Sobolev space with the norm (see (3.3.12) in
Chap.3)

‖ f ‖Ḣ s (IRn) = ‖|ξ|s f̂ (ξ)‖L2(IRn), (4.5.5)

where f̂ (ξ) is the Fourier transform of f (x).

Proof From Theorem2.3.1 in Chap.2, the Fourier transform of u = u(t, x) with
respect to x is given by

û(t, ξ) = cos(|ξ|t) f̂ (ξ) + sin(|ξ|t)
|ξ| ĝ(ξ) +

∫ t

0

sin(|ξ|(t − τ ))

|ξ| F̂(τ , ξ)dτ . (4.5.6)

Then it is easy to show that

|̂u(t, ξ)| ≤ | f̂ (ξ)| + |ξ|−1 |̂g(ξ)| +
∫ t

0
|ξ|−1|F̂(τ , ξ)|dτ .

Multiplying both sides of the above formula by |ξ|s , and noting (4.5.5), we immedi-
ately get (4.5.3).

Moreover, noticing that for any given σ satisfying 0 ≤ σ ≤ 1, we have

| sin(|ξ|t)| ≤ | sin(|ξ|t)|σ ≤ (|ξ|t)σ,

we obtain from (4.5.6) that

û(t, ξ) ≤ | f̂ (ξ)| + tσ|ξ|σ−1 |̂g(ξ)| +
∫ t

0
(t − τ )σ|ξ|σ−1|F̂(τ , ξ)|dτ ,

from which (4.5.4) follows immediately. The proof is finished. �
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http://dx.doi.org/10.1007/978-3-662-55725-9_2


4.5 L p,q Estimates on Solutions to the Linear Wave Equations 81

Remark 4.5.1 We note that when n ≥ 3, according to the Sobolev embedding theo-
rem, the embedding

H 1(IRn) ⊂ Lq ′
(IRn)

is continuous, where 1
q ′ = 1

2 − 1
n . Then by duality the embedding

Lq(IRn) ⊂ Ḣ−1(IRn)

is continuous, where q satisfies
1

q
= 1

2
+ 1

n
. (4.5.7)

From this, taking particularly s = 0 in (4.5.3) or taking particularly σ = 0 in (4.5.4),
we obtain

‖u(t, ·)‖L2(IRn) ≤ ‖ f ‖L2(IRn) + C
(
‖g‖Lq (IRn) +

∫ t

0
‖F(τ , ·)‖Lq (IRn)dτ

)
, ∀ t ≥ 0,

(4.5.8)
where q is defined by (4.5.7), and C is a positive constant. This is an inequality
established for the L2 norm of the solution u(t, x) when n ≥ 3, which is known as
the Von Wahl inequality (see Wahl (1970)).

Lemma 4.5.2 Under the assumption of Lemma 4.5.1, we have the following energy
estimate:

‖Du(t, ·)‖L2(IRn) ≤ ‖Dx f ‖L2(IRn) + ‖g‖L2(IRn) +
∫ t

0
‖F(τ , ·)‖L2(IRn)dτ , ∀ t ≥ 0,

(4.5.9)

where D =
(

∂
∂t ,

∂
∂x1

, . . . , ∂
∂xn

)
and Dx =

(
∂

∂x1
, . . . , ∂

∂xn

)
.

Proof From (4.5.6) we have

|ξ |̂u(t, ξ) = cos(|ξ|t)|ξ| f̂ (ξ) + sin(|ξ|t)ĝ(ξ) +
∫ t

0
sin(|ξ|(t − τ ))F̂(τ , ξ)dτ

and

∂û(t, ξ)

∂t
= − sin(|ξ|t)|ξ| f̂ (ξ) + cos(|ξ|t)ĝ(ξ) +

∫ t

0
cos(|ξ|(t − τ ))F̂(τ , ξ)dτ ,

from which the energy estimate (4.5.9) follows immediately. �

Nextwewill givemore detailed L2 estimates to the solution of theCauchyproblem
(4.5.1)–(4.5.2).

Theorem 4.5.1 Let u = u(t, x) be the solution to the Cauchy problem (4.5.1)–
(4.5.2). Then
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1◦ When n ≥ 3, we have

‖u(t, ·)‖L2(IRn) ≤ ‖ f ‖L2(IRn) + C
{
‖g‖Lq (IRn)

+
∫ t

0
(‖F(τ , ·)‖q,χ1 + (1 + τ )−

n−2
2 ‖F(τ , ·)‖1,2,χ2)dτ

}
,

∀ t ≥ 0, (4.5.10)

where q is defined by (4.5.7).
2◦ When n = 2, we have

‖u(t, ·)‖L2(IRn) ≤ ‖ f ‖L2(IRn) + C
{

tσ‖g‖Lq (IRn)

+
∫ t

0
(t − τ )σ

(‖F(τ , ·)‖q,χ1 + (1 + τ )−σ‖F(τ , ·)‖1,2,χ2

)
dτ
}
,

∀ t ≥ 0, (4.5.11)

where 0 < σ < 1
2 , and q satisfies

1

q
= 1 − σ

2
. (4.5.12)

In (4.5.10)–(4.5.11), χ1 is the characteristic function of the set {(t, x) | |x | ≤
1+t
2 }, χ2 = 1 − χ1, ‖F(τ , ·)‖q,χ1 = ‖χ1F(τ , ·)‖Lq (IRn), ‖F(τ , ·)‖1,2,χ2 =

‖χ2F(τ , ·)‖L1,2(IRn), and C is a positive constant independent of f, g, F and t.

Proof First we prove (4.5.10) when n ≥ 3.
Taking s = 0 in (4.5.3), similarly to (4.5.8), we get

‖u(t, ·)‖L2(IRn) ≤ ‖ f ‖L2(IRn) + C‖g‖Lq (IRn) +
∫ t

0
‖F(τ , ·)‖Ḣ−1(IRn)dτ , ∀ t ≥ 0.

(4.5.13)
Using Theorem 3.2 in Chap.3 (in which we take s0 = 1 and a = 1+τ

2 ), we have

‖F(τ , ·)‖Ḣ−1(IRn) ≤ C(‖F(τ , ·)‖q,χ1 + (1 + τ )−
n−2
2 ‖F(τ , ·)‖1,2,χ2), (4.5.14)

where q is defined by (4.5.7). Plugging (4.5.14) in (4.5.13), we get the desired
(4.5.10).

Now we prove (4.5.11) when n = 2.
We notice that when n = 2, from the Sobolev embedding theorem, for any σ

satisfying 0 < σ ≤ 1,
H 1−σ(IR2) ⊂ Lq ′

(IR2)
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is a continuous embedding, where 1
q ′ = 1

2 − 1−σ
2 = σ

2 . Then, by duality

Lq(IR2) ⊂ Ḣσ−1(IR2)

is a continuous embedding, where q is defined by (4.5.12). Thus, from (4.5.4) we get

‖u(t, ·)‖L2(IR2) ≤ ‖ f ‖L2(IR2) + Ctσ‖g‖Lq (IR2) +
∫ t

0
(t − τ )σ‖F(τ , ·)‖Ḣσ−1(IR2)dτ , ∀ t ≥ 0.

(4.5.15)
When 0 < σ < 1

2 , using Theorem 3.3.2 in Chap.3 (in which we take s0 = 1 − σ and
a = 1+τ

2 ), we have

‖F(τ , ·)‖Ḣσ−1(IR2) ≤ C(‖F(τ , ·)‖q,χ1 + (1 + τ )−σ‖F(τ , ·)‖1,2,χ2), (4.5.16)

where q is defined by (4.5.12). Substituting (4.5.16) into (4.5.15), we get (4.5.11).
The proof is finished. �

Noting Lemma 3.1.5 and Corollary 3.1.1 in Chap.3, from Theorem 4.5.1 we
immediately obtain

Corollary 4.5.1 Under the assumption of Theorem 4.5.1, for any given integer
N ≥ 0,

1◦ when n ≥ 3, we have

‖u(t, ·)‖�,N ,2 ≤ ‖u(0, ·)‖�,N ,2 + C
{
‖ut (0, ·)‖�,N ,q

+
∫ t

0

(
‖F(τ , ·)‖�,N ,q,χ1 + (1 + τ )− n−2

2 ‖F(τ , ·)‖�,N ,1,2,χ2

)
dτ
}
, ∀t ≥ 0, (4.5.17)

where q is defined by (4.5.7).
2◦ when n = 2, we have

‖u(t, ·)‖�,N ,2 ≤ ‖u(0, ·)‖�,N ,2 + C
{

tσ‖ut (0, ·)‖�,N ,q

+
∫ t

0
(t − τ )σ

(‖F(τ , ·)‖�,N ,q,χ1 + (1 + τ )−σ‖F(τ , ·)‖�,N ,1,2,χ2

)
dτ
}
, ∀ t ≥ 0,

(4.5.18)

where 0 < σ < 1
2 , and q is defined by (4.5.12).

In (4.5.17)–(4.5.18), ‖u(0, ·)‖�,N ,2 represents the value of ‖u(t, ·)‖�,N ,2 at t = 0,
‖ut (0, ·)‖�,N ,q represents the value of ‖ut (t, ·)‖�,N ,q at t = 0.

Similarly, from (4.5.8) we get

Corollary 4.5.2 When n ≥ 3, suppose that u = u(t, x) is the solution to the Cauchy
problem (4.5.1)–(4.5.2), then for any given integer N ≥ 0, we have

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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‖u(t, ·)‖�,N ,2 ≤ C
(
‖u(0, ·)‖�,N ,2 + ‖ut (0, ·)‖�,N ,q +

∫ t

0
‖F(τ , ·)‖�,N ,q dτ

)
, ∀t ≥ 0,

(4.5.19)
where q satisfies (4.5.7).

Theorem 4.5.2 Let n ≥ 2. Under the assumptions of Theorem 4.5.1, for any given
p > 2 we have

‖u(t, ·)‖p,2,χ2 ≤ C(1 + t)
−(n−1)( 12− 1

p )

·
{
‖ f ‖Ḣ s (IRn ) + ‖g‖Lγ (IRn ) +

∫ t

0
(‖F(τ , ·)‖γ,χ1 + (1 + τ )

−( n−2
2 +s)‖F(τ , ·)‖1,2,χ2 )dτ

}
,

∀ t ≥ 0, (4.5.20)

where

s = 1

2
− 1

p
,
1

γ
= 1

2
+ 1 − s

n
, (4.5.21)

and C is a positive constant independent of f, g, F and t.

Proof From (3.3.11) in Theorem 3.3.1 of Chap.3, in which we take a = 1+t
2 , we

have
‖u(t, ·)‖p,2,χ2 ≤ C(1 + t)−(n−1)( 1

2 − 1
p )‖u(t, ·)‖Ḣ s (IRn), (4.5.22)

where s is given by the first formula of (4.5.21), so 0 < s < 1
2 . Thus, from (4.5.3)

we obtain

‖u(t, ·)‖p,2,χ2 ≤ C(1 + t)−(n−1)( 1
2 − 1

p )
{
‖ f ‖Ḣ s (IRn) + ‖g‖Ḣ s−1(IRn)

+
∫ t

0
‖F(τ , ·)‖Ḣ s−1(IRn)dτ

}
. (4.5.23)

From the Sobolev embedding theorem we know that

H 1−s(IRn) ⊂ Lγ′
(IRn)

is a continuous embedding, where 1
γ′ = 1

2 − 1−s
n , then by duality

Lγ(IRn) ⊂ Ḣ s−1(IRn)

is a continuous embedding, where γ is defined by the second formula of (4.5.21).
Then

‖g‖Ḣ s−1(IRn) ≤ C‖g‖Lγ(IRn). (4.5.24)

Furthermore, by Theorem3.3.2 in Chap.3, inwhichwe take s0 = 1 − s and a = 1+τ
2 ,

we have

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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‖F(τ , ·)‖Ḣ s−1(IRn) ≤ C(‖F(τ , ·)‖γ,χ1 + (1 + τ )−( n−2
2 +s)‖F(τ , ·)‖1,2,χ2),

(4.5.25)
where γ is defined by the second formula of (4.5.21). Plugging (4.5.24)–(4.5.25) in
(4.5.23), we get the desired (4.5.20). �

Using Lemma 3.1.5 andCorollary 3.1.1 in Chap.3, fromTheorem 4.5.2we imme-
diately have

Corollary 4.5.3 Under the assumptions of Theorem 4.5.2, for any given integer
N ≥ 0, we have

‖u(t, ·)‖�,N ,p,2,χ2 ≤ C(1 + t)
−(n−1)( 12− 1

p )
{ ∑

|k|≤N

‖�ku(0, ·)‖Ḣ s (IRn ) + ‖ut (0, ·)‖�,N ,γ

+
∫ t

0
(‖F(τ , ·)‖�,N ,γ,χ1 + (1 + τ )

−( n−2
2 +s)‖F(τ , ·)‖�,N ,1,2,χ2 )dτ

}
, ∀t ≥ 0, (4.5.26)

where p > 2, s and γ are defined by (4.5.21), ‖�ku(0, ·)‖Ḣ s (IRn) stands for the value
of ‖�ku(t, ·)‖Ḣ s (IRn) at t = 0, and C is a positive constant.

Remark 4.5.2 Estimate (4.5.10) in Theorem 4.5.1 was established by Li and Yu
(1991).

4.6 L1–L∞ Estimates on Solutions to the Linear Wave
Equations

This section aims to estimate the L∞ norm of solutions to the Cauchy problem of
the linear wave equations by using the L1 norm of the initial data and their partial
derivatives of several orders. Such estimates are called the L1–L∞ estimates.

4.6.1 L1–L∞ Estimates on Solutions to the Homogeneous
Linear Wave Equation

Theorem 4.6.1 Let n ≥ 2. If u = u(t, x) is the solution to the Cauchy problem

{ �u(t, x) = 0, (t, x) ∈ IR+ × IRn, (4.6.1)

t = 0 : u = f (x), ut = g(x), x ∈ IRn, (4.6.2)

then we have

|u(t, x)| ≤ C(1 + t)−
n−1
2 (‖ f ‖W n,1(IRn) + ‖g‖W n−1,1(IRn)), ∀(t, x) ∈ IR+ × IRn

(4.6.3)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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or

‖u(t, ·)‖L∞(IRn) ≤ C(1 + t)−
n−1
2 (‖ f ‖W n,1(IRn) + ‖g‖W n−1,1(IRn)), ∀t ≥ 0, (4.6.3’)

where C is a positive constant independent of ( f, g) and t.

Proof From the expressions (2.1.14), (2.2.3) and (2.2.11) of solutions given in
Chap.2, noticing also (2.2.5) in Chap.2, it is easy to show that

u(t, x) = Cn

{
d

dt

∫
IRn

χ
− n−1

2+ (t2 − |x − y|2) f (y)dy +
∫

IRn
χ

− n−1
2+ (t2 − |x − y|2)g(y)dy

}

= Cn

{
2t
∫

IRn
χ

− n+1
2+ (t2 − |x − y|2) f (y)dy +

∫
IRn

χ
− n−1

2+ (t2 − |x − y|2)g(y)dy

}

= Cn

{
2t
∫

IRn
χ

− n+1
2+ (t2 − |y|2) f (x − y)dy +

∫
IRn

χ
− n−1

2+ (t2 − |y|2)g(x − y)dy

}
,

(4.6.4)

whereCn = 1

2π
n−1
2

,χa+(y) is defined by (2.2.4) and (2.2.5) inChap.2, and the integral

here stands for the convolution in the sense of distributions.
First, we estimate

I =
∫

IRn

χ
− n−1

2+ (t2 − |y|2)g(x − y)dy. (4.6.5)

Set y = rξ, where r = |y| and ξ ∈ Sn−1, we have

I =
∫

IRn

χ
− n−1

2+ (t2 − r2)g(x − rξ)rn−1drdωξ, (4.6.6)

where dωξ stands for the area element of Sn−1.
From (2.2.5) in Chap.2, for any given integer m ≥ 0, it is easy to show that

( 1

2r
∂r

)m
χ

− n−1
2 +m

+ (t2 − r2) = (−1)mχ
− n−1

2+ (t2 − r2), (4.6.7)

then

I = (−1)m
∫

IRn

( 1

2r

∂

∂r

)m
χ

− n−1
2 +m

+ (t2 − r2) · g(x − rξ)rn−1drdωξ . (4.6.8)

Noticing (4.2.5) and that the support of χa+(y) ⊆ {y ≥ 0}, it is easy to verify that: if
we particularly take

m =
{

n−3
2 , if n(≥ 3) is odd;

n−2
2 , if n(≥ 2) is even,

(4.6.9)
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then, for any integer a satisfying 1 ≤ a ≤ m, we always have

( 1

2r

∂

∂r

)m−a
χ

− n−1
2 +m

+ (t2 − r2) · 1

2r

(
∂r

1

2r

)a−1
(g(x − rξ)rn−1)

∣∣∣r=+∞
r=0

= 0.

(4.6.10)

Hence, integratingm times by parts with respect to r on the right-hand side of (4.6.8),
we obtain

I =
∫

IRn

χ
− n−1

2 +m
+ (t2 − r2)

(
∂r

1

2r

)m
(g(x − rξ)rn−1)drdωξ, (4.6.11)

where m is determined by (4.6.9).
From (4.6.9) we have

−n − 1

2
+ m =

{−1, if n(≥ 3) is odd;
− 1

2 , if n(≥ 2) is even,
(4.6.12)

then, from (2.2.9) and (2.2.10) in Chap.2, χ
− n−1

2 +m
+ is a positive measure. Hence,

from (4.6.11) it is easy to show that

|I | ≤ C
∑
l≤m

∫
IRn

χ
− n−1

2 +m
+ (t2 − r2)|∂l

r g(x − rξ)|rn−1−2m+ldrdωξ

≤ C
∑
|k|≤m

∫
IRn

χ
− n−1

2 +m
+ (t2 − |y|2)∣∣Dk

x g(x − y)
∣∣|y|−2m+|k|dy, (4.6.13)

here and hereafter, C and Ck etc. represent some positive constants, and Dx =
( ∂

∂x1
, · · · , ∂

∂xn
).

Now for any given k(|k| ≤ m), we consider the integral

Ik =
∫

IR
χ

− n−1
2 +m

+ (t2 − |y|2)∣∣Dk
x g(x − y)

∣∣|y|−2m+|k|dy. (4.6.14)

Let

y = (y′, y′′), (4.6.15)

where

y′ = (y1, · · · , y|k|+1), y′′ = (y|k|+2, · · · , yn). (4.6.16)

Noting (4.6.9), when |k| ≤ m, we always have |k| + 1 < n, so y′ and y′′ are both
nonempty. Since |y′′| ≤ |y|, from (4.6.14) we get

http://dx.doi.org/10.1007/978-3-662-55725-9_2
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Ik ≤
∫

IRn

χ
− n−1

2 +m
+ (t2 − |y′|2 − |y′′|2)|y′′|−2m+|k|∣∣Dk

x g(x − y)
∣∣dy

≤
∫ (∫

χ
− n−1

2 +m
+ (t2 − |y′|2 − |y′′|2)|y′′|−2m+|k|dy′′

)
· sup

y′′

∣∣Dk
x g(x − y)

∣∣dy′.

(4.6.17)

�

Lemma 4.6.1 For any given k (|k| ≤ m), m being given by (4.6.9), and for any
given real number R, we have∫

χ
− n−1

2 +m
+ (R − |y′′|2)|y′′|−2m+|k|dy′′ ≤ C|k|, (4.6.18)

where C|k| is a positive constant independent of R but possibly depending on |k|.
Proof When R ≤ 0, from the property of the support of χa+(y) we know that the
integral on the left-hand side of (4.6.18) is always zero, the conclusion in the lemma
is obvious.

When R > 0, setting y′′ = √
Rz′′ and noticing that χa+(y) is a homogeneous

function of degree a with respect to y, it is clear that
∫

χ
− n−1

2 +m
+ (R2 − |y′′|2)|y′′|−2m+|k|dy′′ =

∫
χ

− n−1
2 +m

+ (1 − |z′′|2)|z′′|−2m+|k|dz′′,

(4.6.19)

whose value is independent of R. Therefore, to prove Lemma 4.6.1, it suffices to
prove that the integral on the right-hand side of the above formula is finite.

When n(≥ 3) is odd, from (2.6.12) and (2.2.9) in Chap.2, the integral on the
right-hand side of (4.6.19) is reduced to
∫

χ−1
+ (1 − |z′′|2)|z′′|−2m+|k|dz′′ =

∫
δ(1 − |z′′|2)|z′′|−2m+|k|dz′′

=
∫

δ(2(1 − |z′′|))|z′′|−2m+|k|dz′′

=1

2

∫
δ(1 − |z′′|)|z′′|−2m+|k|dz′′ < +∞;

while, when n(≥ 2) is even, from (2.6.12) and (2.2.10) in Chap.2, the integral on
the right-hand side of (4.6.19) is reduced to
∫

χ
− 1

2+ (1 − |z′′|2)|z′′|−2m+|k|dz′′ =
∫

|z′′|≤1

|z′′|−2m+|k|√
π(1 − |z′′|2)dz′′ = C

∫ 1

0

dr√
1 − r2

= π

2
C < +∞,

where C is a positive constant depending on |k|.
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This proves Lemma 4.6.1. �

By Lemma 4.6.1, from (4.6.19)) we can obtain

Ik ≤ Ck

∫
sup

y′′

∣∣Dk
x g(x − y)

∣∣dy′. (4.6.20)

Noting the following identity:

h(y′, y′′) = (−1)n−|k|−1
∫ ∞

y|k|+2

· · ·
∫ ∞

yn

∂|k|+2 · · · ∂nh(y′, z′′)dz′′,

and taking h(y′, y′′) = Dk
x g(x − y) in it, from (4.6.20) we immediately have

Ik ≤ Ck‖g‖W n−1,1(IRn), (4.6.21)

then from (4.6.13) we get

|I | ≤ C‖g‖W n−1,1(IRn). (4.6.22)

Now we prove that: when t ≥ 2 we have

|I | ≤ Ct− n−1
2 ‖g‖W n−1,1(IRn), (4.6.23)

where C is a positive constant independent of t .
We divide the proof into three steps.
(i) For any given t ≥ 2, if it is satisfied on the support of g that

t − r ≥ 1

2
, (4.6.24)

where r = |y|, then

t2 − r2 ≥ t

2
> 0, (4.6.25)

thus from (4.6.5) and noting that χa+(y) is a homogeneous function of degree a with
respect to y, we have

I =
∫

IRn

χ
− n−1

2+ (t2 − r2)g(x − y)dy = χ
− n−1

2+ (1)
∫

IRn

(t2 − r2)−
n−1
2 g(x − y)dy.

Therefore, noting (4.6.25), we have

|I | ≤ Ct− n−1
2 ‖g‖L1(IRn). (4.6.26)
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(ii) For any given t ≥ 2, if it is satisfied on the support of g that

t − r ≤ 1, (4.6.27)

where r = |y|, then

r ≥ t − 1 ≥ t

2
≥ 1, (4.6.28)

thus from (4.6.13) (in which m is replaced by m + 1, and it is obvious that the
inequality still holds), we obtain

|I | ≤ C
∑

|k|≤m+1

∫
IRn

χ
− n−1

2 +m+1
+ (t2 − r2)

∣∣Dk
x g(x − y)

∣∣r−2m−2+|k|dy

≤ C
∑

|k|≤m+1

( t

2

)−2m−2+|k| ∫
IRn

χ
− n−1

2 +m+1
+ (t2 − r2)

∣∣Dk
x g(x − y)

∣∣dy

≤ Ct−m−1
∑

|k|≤m+1

∫
IRn

χ
− n−1

2 +m+1
+ (t2 − r2)

∣∣Dk
x g(x − y)

∣∣dy. (4.6.29)

When n(≥ 3) is odd, from (4.6.12) and using (2.2.7) in Chap.2, we have

χ
− n−1

2 +m+1
+ (t2 − r2) = H(t2 − r2),

here H is the Heaviside function, thus from (4.6.29) and noting (4.6.9), we immedi-
ately get

|I | ≤ Ct− n−1
2 ‖g‖

W
n−1
2 ,1

(IRn)
. (4.6.30)

Whenn(≥ 2) is even, from (4.6.12), using (2.2.4) inChap.2, andnoticing (4.6.27),
it is easy to show that

χ
− n−1

2 +m+1
+ (t2 − r2) = C0

√
t2 − r2 ≤ C0

√
t + r ≤ C0

√
2t,

so C0 is a positive constant, thus from (4.6.29) and noting (4.6.9), we immediately
get

|I | ≤ Ct− n−1
2 ‖g‖W

n
2 ,1

(IRn)
. (4.6.31)

(iii) Combining estimates (4.6.30)–(4.6.31) and using the partition of unity, it is
easy to yield (4.6.23). Then, noticing (4.6.22), we obtain

|I | ≤ C(1 + t)−
n−1
2 ‖g‖W n−1,1(IRn). (4.6.32)
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Similarly, we can prove

∣∣∣∣
∫

IRn

χ
− n+1

2+ (t2 − |y|2) f (x − y)dy

∣∣∣∣ ≤ C(1 + t)−
n+1
2 ‖ f ‖W n,1(IRn). (4.6.33)

Hence, the desired (4.6.3) and (6.3)’ follow from (4.6.4).
The proof of Theorem 4.6.1 is finished. �

Corollary 4.6.1 Under the assumptions of Theorem 4.6.1, assume furthermore that
( f, g) has the following compact support:

supp{ f, g} ⊆ {x | |x | ≤ ρ}, (4.6.34)

where ρ is a positive number, then we have

|u(t, x)| ≤ Cρ(1 + t + |x |)− n−1
2
(
1 + ∣∣t − |x |∣∣)−l

(‖ f ‖W n,1(IRn) + ‖g‖W n−1,1(IRn)),

(4.6.35)

where Cρ is a positive constant depending only on ρ. Moreover, when n(≥ 3) is odd,
l ≥ 0; while, when n(≥ 2) is even, 0 ≤ l ≤ n−1

2 .

Proof Due to the finite speed of propagation of the wave, on the support of the
solution u = u(t, x), t − |x | ≥ −ρ.

When
−ρ ≤ t − |x | ≤ 2ρ,

it is easy to show that for any given l ≥ 0, (4.6.35) can be deduced from Theorem
4.6.1. When

t − |x | ≥ 2ρ,

if n(≥ 3) is odd, then from the Huygens principle we know that u(t, x) ≡ 0(see
(4.2.4)–(4.2.5)); while, if n(≥ 2) is even, and 0 ≤ l ≤ n−1

2 , then (4.6.35) can also be
derived from Corollary 4.2.1. �

4.6.2 L1–L∞ Estimates on Solutions to the Inhomogeneous
Linear Wave Equations

Lemma 4.6.2 (J.-L.Lions extension) Suppose that � ⊂ IRn is a domain with a Cm

boundary, m ≥ 0 is an integer, and 1 ≤ p ≤ +∞. Then there exists an extension
operator P from W m,p(�) to W m,p(IRn), such that for any given u ∈ W m,p(�),

Pu ∈ W m,p(IRn), (4.6.36)
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and

‖Pu‖W m,p(IRn) ≤ C‖u‖W m,p(�), (4.6.37)

where C ia a positive constant independent of u.

Proof See Lions (1980) for reference. �

Lemma 4.6.3 Suppose that Bt is the ball in IRn centered at the origin with radius
t . Then for any given integer m ≥ 0, there exists an extension operator Pm

t such that
for any given function f ∈ W m,1(Bt ), Pm

t f is a function defined on the entire space
IRn and satisfies

‖Dα(Pm
t f )‖L1(IRn) ≤ C

∑
|β|≤|α|

t |β|−|α|‖Dβ f ‖L1(Bt ), ∀|α| ≤ m, (4.6.38)

where C is a positive constant independent of f .

Proof When t = 1, take Pm
1 as the Lions extension operator mentioned in the

above lemma, (4.6.38) is then an immediate consequence of (4.6.37)(in which we
take p = 1). In general, set x̄ = x

t , f̄ (x̄) = f ( x
t ), and take Pm

t f (x) = Pm
1 f̄ (x̄) =

Pm
1 f ( x

t ), then from

‖Dα
x̄ (Pm

1 f̄ )‖L1(IRn) ≤ C
∑

|β|≤|α|
‖Dβ

x̄ f̄ ‖L1(B1), ∀|α| ≤ m

satisfied at t = 1, (4.6.38) is obtained immediately by scaling. �

Corollary 4.6.2 Under the assumptions of Lemma 4.6.3, for any given t ≥ 1, we
have

‖Pm
t f ‖W m,1(IRn) ≤ Cm‖ f ‖W m,1(Bt ), (4.6.39)

where Cm ia a positive constant independent of both f and t ≥ 1.

Lemma 4.6.4 Suppose that n ≥ 2 and u = u(t, x) is the solution to the Cauchy
problem

{ �u(t, x) = F(x)δ(t − |x |), (t, x) ∈ IR+ × IRn, (4.6.40)

t = 0 : u = 0, ut = 0. (4.6.41)

If

supp F ⊆ {x |1 ≤ |x | ≤ 2}, (4.6.42)



4.6 L1–L∞ Estimates on Solutions to the Linear Wave Equations 93

then we have

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2
(
1 + ∣∣t − |x |∣∣)−l‖F‖W n−1,1(IRn), (4.6.43)

where C is a positive constant. Moreover, when n(≥ 3) is odd, l ≥ 0; while, when
n(≥ 2) is even, 0 ≤ l ≤ n−1

2 .

Proof From the special form of the right-hand side of the wave equation (4.6.40)
and noting (4.6.42), it is easy to show that t ≥ 1 and t − |x | ≥ 0 on the support of
the solution u = u(t, x).

(i) First we prove that: when t − |x | ≥ 6, if n(≥ 3) is odd, then we have

u(t, x) ≡ 0; (4.6.44)

while, if n(≥ 2) is even, then we have

|u(t, x)| ≤ C(t2 − |x |2)− n−1
2 ‖F‖L1(IRn). (4.6.45)

Thus, it is clear that (4.6.43) holds in this case.
By Duhamel principle, the solution to the Cauchy problem (4.6.40)–(4.6.41) can

be written as

u = u(t, x) =
∫ t

0
v(t, x; τ )dτ , (4.6.46)

where v = v(t, x; τ ) is the solution to the following Cauchy problem:

{ �v(t, x; τ ) = 0, (4.6.47)

t = τ : v = 0, vt = F(x)δ(τ − |x |). (4.6.48)

Due to (4.6.42), v = v(t, x; τ ) is identically equal to zero except when 1 ≤ τ ≤ 2,
then, when t ≥ 2, (4.6.46) can be written as

u = u(t, x) =
∫ 2

1
v(t, x; τ )dτ . (4.6.49)

When t − |x | ≥ 6, if 1 ≤ τ ≤ 2, then (t − τ ) − |x | ≥ 4. Thus, due to (4.2.4)–
(4.2.5), if n(≥ 3) is odd, then v(t, x; τ ) ≡ 0, and then (4.6.49) implies (4.6.44).
Moreover, according to Theorem 4.2.1, if n(≥ 2) is even, it is easy to show that

|v(t, x; τ )| ≤ C((t − τ )2 − |x |2)− n−1
2 ‖F(·)δ(τ − | · |)‖L1(IRn)

≤ C(t2 − |x |2)− n−1
2 ‖F(·)δ(τ − | · |)‖L1(IRn),

then (4.6.45) can be obtained easily from (4.6.49).



94 4 Estimates on Solutions to the Linear Wave Equations

(ii) When 0 ≤ t − |x | ≤ 6, since t ≥ 1, it is easy to show that (4.6.43) that we
want to prove is equivalent to

|u(t, x)| ≤ Ct− n−1
2 ‖F‖W n−1,1(IRn). (4.6.50)

According to Theorem2.2.1 in Chap.2, using Duhamel principle, and noticing
that χa+ is a homogeneous function of degree a, we have

u(t, x) =
∫ t

0

∫
IRn

E(t − τ , x − y)F(y)δ(τ − |y|)dydτ

= Cn

∫ t

0

∫
IRn

χ
− n−1

2+ ((t − τ )2 − |x − y|2)F(y)δ(τ − |y|)dydτ

= Cn

∫
IRn

χ
− n−1

2+ ((t − |y|)2 − |x − y|2)F(y)dy

= Cn

∫
IRn

χ
− n−1

2+ (t2 − |x |2 + 2〈x, y〉 − 2t |y|)F(y)dy

= Cn(2t)−
n−1
2

∫
IRn

χ
− n−1

2+
(

b + a
〈x, y〉
|x | − |y|

)
F(y)dy

def.=Cn(2t)−
n−1
2 I, (4.6.51)

where E is the fundamental solution, Cn = 1

2π
n−1
2

,

I =
∫

IRn

χ
− n−1

2+
(

b + a
〈x, y〉
|x | − |y|

)
F(y)dy, (4.6.52)

〈x, y〉 is the inner product between x and y, and

a = |x |
t

, b = 1

2
(t − |x |)

(
1 + |x |

t

)
(4.6.53)

are both independent of y.
When 0 ≤ t − |x | ≤ 6, it is obvious that

0 ≤ a ≤ 1, 0 ≤ b ≤ 6. (4.6.54)

Thus, to prove (4.6.50), it suffices to prove that: for I given by (4.6.52) we have

|I | ≤ C‖F‖W n−1,1(IRn), (4.6.55)

where C is a positive constant independent of both a and b.

http://dx.doi.org/10.1007/978-3-662-55725-9_2
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Thanks to the rotational symmetry, we can assume without loss of generality that

x = (|x |,
n−1︷ ︸︸ ︷

0, · · · , 0).

Then

〈x, y〉
|x | = y1,

hence (4.6.52) can be written as

I =
∫

IRn

χ
− n−1

2+ (b + ay1 − |y|)F(y)dy. (4.6.56)

Set

y = (y1, y′)

and

y′ = qω̃,

where q = |y′| and ω̃ ∈ Sn−2. From (2.2.5) in Chap.2, it is easy to get
(

− |y|
q

∂q

)m

χ
− n−1

2 +m
+ (b + ay1 − |y|) = χ

− n−1
2+ (b + ay1 − |y|), (4.6.57)

where m is given by (4.6.9). Similarly to the derivation of (4.6.11), by integration by
parts, (4.6.56) can be written as

I =
∫

dy1

∫
IRn−1

χ
− n−1

2 +m
+ (b + ay1 − |y|) ·

(
∂q

|y|
q

)m

(F(y1, y′)qn−2)dqdω̃.

(4.6.58)

We note that χ
− n−1

2 +m
+ is a positive measure due to (4.6.12), and q ≤ 2 holds on the

support of F due to (4.6.42), then, noticing that χa+ is a homogeneous function of
degree a, we obtain

|I | ≤ C
∑

0≤l≤m

∫
dy1

∫
IRn−1

χ− n−1
2 +m

(b + ay1 − |y|)∣∣∂l
q F
∣∣qn−2−2m+l dqdω̃

≤ C
∑

0≤l≤m

∫
dy1

∫
IRn−1

χ− n−1
2 +m

(b + ay1 − |y|)∣∣Dl F
∣∣qn−2−2m+l dqdω̃

= C
∑

0≤l≤m

∫
IRn

(b + ay1 + |y|) n−1
2 −mχ

− n−1
2 +m

+ ((b + ay1)
2 − |y|2)∣∣Dl F

∣∣|y′|−2m+l dy

≤ C
∑

0≤l≤m

∫
IRn

χ
− n−1

2 +m
+ ((b + ay1)

2 − |y|2)∣∣Dl F
∣∣|y′|−2m+l dy, (4.6.59)

http://dx.doi.org/10.1007/978-3-662-55725-9_2
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where (4.6.12) and (4.6.42) have been used to obtain the last inequality.
Now for any given l (0 ≤ l ≤ m), we consider the integral

Il =
∫

IRn

χ
− n−1

2 +m
+ ((b + ay1)

2 − |y|2)∣∣Dl F
∣∣|y′|−2m+ldy. (4.6.60)

Set

ỹ′ = (y1, . . . , yl+1), ỹ′′ = (yl+2, . . . , yn), (4.6.61)

and denote

(b + ay1)
2 − |y|2 = R(ỹ′) − |̃y′′|2, (4.6.62)

where

R(ỹ′) = (b + ay1)
2 − |̃y′|2. (4.6.63)

Noting that |̃y′′| ≤ |y′|, from (4.6.60) we have

Il ≤
∫ (∫

χ
− n−1

2 +m
+ (R − |̃y′′|2)|̃y′′|−2m+ld ỹ′′

)
sup

ỹ′′
|Dl F |d ỹ′, (4.6.64)

then similarly to the proof of (4.6.21), we can obtain

Il ≤ Cl‖F‖W n−1,1(IRn). (4.6.65)

Thus, (4.6.55) follows from (4.6.59)–(4.6.60), and then (4.6.50), namely, (4.6.43)
holds.

Combining (i) and (ii), Lemma 4.6.4 is proved. �

Remark 4.6.1 If assumption (4.6.42) is changed to

supp F ⊆ {x | r1 ≤ |x | ≤ r2
}
, (4.6.66)

where r1 and r2 are positive constants satisfying r1 < r2, then the conclusions of
Lemma 4.6.4 still hold.

Lemma 4.6.5 Under the assumptions of Lemma 4.6.4 we have

|u(t, x)| ≤ C
(
1 + t + |x |)− n−1

2
(
1 + ∣∣t − |x |∣∣)−l‖F‖W n−1,1(Bt ), ∀t ≥ 0, (4.6.67)

where C is a positive constant independent of both F and t, Bt is the ball in IRn

centered at the origin with radius t . Moreover, when n(≥ 3) is odd, l ≥ 0; while,
when n(≥ 2) is even, 0 ≤ l ≤ n−1

2 .
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Proof Noting that t ≥ 1 on the support of the solution u = u(t, x), we need only to
prove (4.6.67) when t ≥ 1.

Assume that F (t) is the restriction of F on Bt , and let G = Pn−1
t F (t) be the Lions

extension operator given in Corollary 4.6.2. Suppose that v = v(τ , x) is the solution
of the Cauchy problem

{ �v(τ , x) = G(x)δ(τ − |x |), (τ , x) ∈ IR+ × IRn, (4.6.68)

τ = 0 : v = 0, vτ = 0. (4.6.69)

From the construction of the Lions extension (see Lions (1980)) it is easy to see that,
if F satisfies (4.6.42), then its extension G must satisfy a condition of form (4.6.66).
Hence, from Lemma 4.6.4 and Remark 4.6.1 we obtain

|v(τ , x)| ≤ C
(
1 + τ + |x |)− n−2

2
(
1 + ∣∣τ − |x |∣∣)−l‖G‖W n−1,1(IRn), (4.6.70)

in particular, we have

|v(t, x)| ≤ C
(
1 + t + |x |)− n−2

2
(
1 + ∣∣t − |x |∣∣)−l‖G‖W n−1,1(IRn). (4.6.71)

From Corollary 4.6.2 we have

‖G‖W n−1,1(IRn) ≤ C‖F‖W n−1,1(IRn). (4.6.72)

In addition, for any given t ≥ 1, by definition, G(x) ≡ F(x) on |x | ≤ t , then for any
given τ satisfying 0 ≤ τ ≤ t , Eq. (4.6.68) can be written as

�v(τ , x) = F(x)δ(τ − |x |), (4.6.73)

then it is clear that

v(t, x) = u(t, x), ∀x ∈ IRn. (4.6.74)

Plugging (4.6.72) and (4.6.74) in (4.6.71), we arrive at the desired (4.6.67). The proof
is finished. �

Lemma 4.6.6 Suppose that n ≥ 2 and u = u(t, x) is the solution of the Cauchy
problem

{ �u(t, x) = F(t, x), (t, x) ∈ IR+ × IRn, (4.6.75)

t = 0 : u = 0, ut = 0, (4.6.76)
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where the function F(t, x) on the right-hand side satisfies

supp F ⊆
{
(t, x)

∣∣1 ≤ |x | ≤ 2,
∣∣t − |x |∣∣ ≤ 1

2

}
, (4.6.77)

then we have

|u(t, x)| ≤ C
(
1 + t + |x |)− n−1

2
(
1 + ∣∣t − |x |∣∣)−l

∫ t

0
‖F(τ , ·)‖�,n−1,1dτ , (4.6.78)

where C is a positive constant, � is defined by (3.1.17) in Chap.3. Moreover, when
n(≥ 3) is odd, l ≥ 0; while, when n(≥ 2) is even, 0 ≤ l ≤ n−1

2 .

Proof For any given q ∈ IR, let

Fq(t, x) = F(|x | − q, x)δ(t − |x |). (4.6.79)

By assumption (4.6.77), when |q| ≥ 1
2 , Fq ≡ 0.

Let

τq(t, x) = δ(t + q)δ(x). (4.6.80)

We have
∫

Fq ∗ τqdq =
∫

τq ∗ Fqdq

=
∫∫∫

δ(t − τ + q)δ(x − y)F(|y| − q, y)δ(τ − |y|)dτdydq

=
∫∫

δ(t − τ + q)F(|x | − q, x)δ(τ − |x |)dτdq

=
∫

δ(t − |x | + q)F(|x | − q, x)dq = F(t, x). (4.6.81)

Therefore, for the fundamental solution E = E(t, x) of the wave equation (see
Sect. 2.2 in Chap.2), we have

E ∗ F =E ∗
∫

Fq ∗ τqdq

=
∫

E ∗ Fq ∗ τqdq

=
∫∫∫

δ(t − τ + q)δ(x − y)(E ∗ Fq)(τ , y)dydτdq

=
∫

(E ∗ Fq)(t + q, x)dq, (4.6.82)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_2
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thus, the solution to the Cauchy problem (4.6.75)–(4.6.76) is

u(t, x) =
∫ t

0
(E ∗ F)(τ , x)dτ

=
∫ t

0

∫
(E ∗ Fq)(τ + q, x)dqdτ

=
∫ ∫ t

0
(E ∗ Fq)(τ + q, x)dτdq

=
∫ ∫ t+q

q
(E ∗ Fq)(τ , x)dτdq

=
∫

uq(t + q, x)dτdq, (4.6.83)

where we denote

uq(t, x) =
∫ t

q
(E ∗ Fq)(τ , x)dτdq. (4.6.84)

Thanks to (4.6.79), uq = uq(t, x) is the solution of the Cauchy problem

{ �uq = Fq(t, x) = F(|x | − q, x)δ(t − |x |), (4.6.85)

t = q : uq = 0, (uq)t = 0. (4.6.86)

According to Lemma 4.6.4 and noting that |q| ≤ 1
2 , it is easy to show that

|uq(t + q, x)| ≤ C(1 + t + q + |x |)− n−1
2 (1 + ∣∣t + q − |x |∣∣)−l

·
∑

|α|≤n−1

∫
|x |≤t+q

|Dl
x F(|x | − q, x)|dx

≤ C(1 + t + |x |)− n−1
2 (1 + ∣∣t − |x |∣∣)−l

·
∑

|α|≤n−1

∫
|x |≤t+q

|Dl
x F(|x | − q, x)|dx, (4.6.87)

then from (4.6.83) we have

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2 (1 + ∣∣t − |x |∣∣)−l ·

·
∑

|α|≤n−1

∫ ∫
|x |≤t+q

|Dl
x F(|x | − q, x)|dxdq. (4.6.88)
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Furthermore, according to Lemma3.1.7 in Chap.3 and noting (4.6.77), we get

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2 (1 + ∣∣t − |x |∣∣)−l

·
∑

k+|β|≤n−1

∫ ∫
|x |≤t+q

|∂k
r �β

x F(|x | − q, x)|dxdq. (4.6.89)

But noting that ∂r = 1
r

n∑
i=1

xi∂i (r = |x |), it is easy to know that

∂r F(|x | − q, x) =Ft (|x | − q, x) + Fr (|x | − q, x)

= (t Ft + r Fr ) + (r Ft + t Fr )

t + r

= L0F + Lr F

t + r
, (4.6.90)

where we denote

Lr =
n∑

i=1

xi

r
Li , (4.6.91)

and Li (i = 1, . . . , n) are given by (3.1.12) in Chap.3. Thus, from (4.6.89) we obtain

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2 (1 + ∣∣t − |x |∣∣)−l

∑
|α|≤n−1

∫ t

0

∫
|�α

F(τ , x)|dxdτ

= C(1 + t + |x |)− n−1
2 (1 + ∣∣t − |x |∣∣)−l

∫ t

0
‖F(τ , ·)‖�,n−1,1dτ , (4.6.92)

where � is given by (3.1.17) in Chap.3, and ‖ · ‖�,n−1,1 is defined by (3.1.32) in
Chap.3. This is exactly (4.6.78) thatwewant. The proof ofLemma4.6.6 is finished.�

4.6.3 L1–L∞ Estimates on Solutions to the Linear Wave
Equations

Based on the previous two subsections, now we prove the following two important
theorems related to the L1–L∞ estimates on solutions to the linear wave equations.

Theorem 4.6.2 Suppose that n ≥ 2 and u = u(t, x) is the solution to the following
Cauchy problem:

{ �u(t, x) = F(t, x), (t, x) ∈ IR+ × IRn, (4.6.93)

t = 0 : u = 0, ut = 0, (4.6.94)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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then we have

|u(t, x)| ≤ C
(
1 + t + |x |)− n−1

2
(
1 + ∣∣t − |x |∣∣)−l

·
∫ t

0

∑
|α|≤n−1

∥∥∥(1 + | · | + τ )−
n−1
2 +l�α F(τ , ·)

∥∥∥
L1(IRn)

dτ , (4.6.95)

where C is a positive constant, � is defined by (3.1.18) in Chap.3. Moreover, when
n(≥ 3) is odd, l ≥ 0; while, when n(≥ 2) is even, 0 ≤ l ≤ n−1

2 .

Theorem 4.6.3 Suppose that n ≥ 2 and u = u(t, x) is the solution to the following
Cauchy problem:

⎧⎪⎨
⎪⎩

�u(t, x) =
n∑

a=0

Ca∂a F(t, x), (t, x) ∈ IR+ × IRn, (4.6.96)

t = 0 : u = 0, ut = 0, (4.6.97)

where Ca(a = 0, 1, · · · , n) are constants, then we have

|u(t, x)| ≤ C
(
1 + t + |x |)− n−1

2

( ∫ t

0
(1 + τ )

n−1
2 ‖F(τ , ·)‖L∞(IRn)dτ

+ (1 + τ )−
n+1
2 ‖F(τ , ·)‖�,n+1,1dτ

)
, (4.6.98)

where C is a positive constant, and � is defined by (3.1.18) in Chap.3.

In order to prove Theorem 4.6.2, we first introduce the following two lemmas.

Lemma 4.6.7 Suppose that n ≥ 2, u = u(t, x) is the solution to Cauchy problem
(4.6.93)–(4.6.94), and

supp F ⊆ {(t, x)
∣∣t2 + |x |2 ≤ 4

}
, (4.6.99)

then we have

|u(t, x)| ≤ C
(
1 + t + |x |)− n−1

2
(
1 + ∣∣t − |x |∣∣)−l

∫ t

0
‖F(τ , ·)‖W n−1,1(IRn)dτ ,

(4.6.100)
where C is a positive constant. Moreover, when n(≥ 3) is odd, l ≥ 0; while, when
n(≥ 2) is even, 0 ≤ l ≤ n−1

2 .

Proof From Duhamel principle we have

u(t, x) =
∫ t

0
v(t, x; τ )dτ , (4.6.101)

where v = v(t, x; τ ) is the solution of the Cauchy problem

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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{ �v(t, x) = 0, (4.6.102)

t = τ : v = 0, vt = F(τ , x). (4.6.103)

From assumption (4.6.99) we have supp F ⊆ {(t, x)|0 ≤ t ≤ 2, |x | ≤ 2}, then
v = v(t, x; τ ) is identically equal to zero except when 0 ≤ τ ≤ 2, and the corre-
sponding supp F(τ , x) ⊆ {x ||x | ≤ 2}. Thus, from Corollary 4.6.1 we have

|v(t, x; τ )| ≤ C
(
1 + t − τ + |x |)− n−1

2
(
1 + ∣∣t − τ − |x |∣∣)−l‖F(τ , ·)‖W n−1,1(IRn).

(4.6.104)
Noticing that when 0 ≤ τ ≤ 2 we have

1 + t − τ + |x | ≤ 1 + t + |x |

and

1 + t − τ + |x | ≥ 1 + t − τ

3
+ |x | ≥ 1 + t − 2

3
+ |x | ≥ 1

3
(1 + t + |x |),

we also have

1 + ∣∣t − τ − |x |∣∣ ≤ 1 + ∣∣t − |x |∣∣+ τ ≤ 3 + ∣∣t − |x |∣∣ ≤ 3
(
1 + ∣∣t − |x |∣∣)

and

1 + ∣∣t − τ − |x |∣∣ ≥ 1 +
∣∣t − τ − |x |∣∣

3
≥ 1 +

∣∣t − |x |∣∣− τ

3
≥ 1

3

(
1 + ∣∣t − |x |∣∣),

(4.6.101) and (4.6.104) immediately yield (4.6.100) that we want. �

Lemma 4.6.8 Suppose that n ≥ 2, u = u(t, x) is the solution to Cauchy problem
(4.6.93)-(4.6.94), and

supp F ⊆ {(t, x)
∣∣1 ≤ t2 + |x |2 ≤ 4

}
, (4.6.105)

then we have

|u(t, x)| ≤ C
(
1 + t + |x |)− n−1

2
(
1 + ∣∣t − |x |∣∣)−l

∫ t

0
‖F(τ , ·)‖�,n−1,1dτ ,

(4.6.106)

where C is a positive constant, and � is given by (3.1.17) in Chap.3. Moreover, when
n(≥ 3) is odd, l ≥ 0; while, when n(≥ 2) is even, 0 ≤ l ≤ n−1

2 .

Proof (i) Assume that
∣∣t − |x |∣∣ ≥ 1

4 holds on the support of F . From (3.1.54) in
Chap.3, for any given multi-index α, we have

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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|Dα F(t, x)| ≤ C
∑

0≤|β|≤|α|

∣∣�β
F(t, x)

∣∣, (4.6.107)

then Lemma 4.6.7 immediately leads to (4.6.106).
(ii) Assume that

∣∣t − |x |∣∣ ≤ 1
2 holds on the support of F . Then (4.6.106) follows

immediately from Lemma 4.6.6.
(iii) Based on (i) and (ii), in the general case, our conclusions can be obtained by

partition of unity. �

Now we prove Theorem 4.6.2.

Proof Under assumption (4.6.105), from (4.6.106) in Lemma 4.6.8, it is clear that

|u(t, x)| ≤ C(t + |x |)− n−1
2
∣∣t − |x |∣∣−l

∫ t

0

∑
|α|≤n−1

‖(τ + | · |)− n−1
2 +l�

α
F(τ , ·)‖L1(IRn)dτ .

(4.6.108)

For any given λ > 0, let u = u(t, x) be the solution of Cauchy problem (4.6.93)–
(4.6.94) corresponding to the function F(t, x) on the right-hand side. Turning F(t, x)

into a function of (t, x), depending on the parameter λ: Fλ(t, x) = F(λt,λx), by
scaling, the solution of the corresponding Cauchy problem should be uλ(t, x) =
λ−2u(λt,λx). Assume that Fλ(t, x), as a function of (t, x), still satisfies (4.6.105),
then from (4.6.108) we have

|uλ(t, x)| = λ−2|u(λt,λx)|

≤ C(t + |x |)− n−1
2
∣∣t − |x |∣∣−l

∫ t

0

∑
|α|≤n−1

‖(τ + | · |)− n−1
2 +l�

α
Fλ(τ , ·)‖L1(IRn )dτ .

In the above formula, set t̄ = λt , x̄ = λx , and note that � (t, x) is a scaling invari-
ant differential operator, still denoting (t̄, x̄) as (t, x) in the resulting formula, we
can easily see that (4.6.108) is of scaling invariant form, i.e., for any given λ > 0,
(4.6.108) is still valid when

supp F ⊆ {(t, x)
∣∣λ2 ≤ t2 + |x |2 ≤ 4λ2}, (4.6.109)

then from thebinarypartitionof unity (seeSect. 3.1 inChap.3)weknow that (4.6.108)
still holds when

supp F ⊆ {(t, x)
∣∣t2 + |x |2 ≥ 1}. (4.6.110)

Taking particularly l = 0 in (4.6.108), under assumption (4.6.110) we have

|u(t, x)| ≤ C(t + |x |)− n−1
2

∫ t

0

∑
|α|≤n−1

‖(τ + | · |)− n−1
2 �

α
F(τ , ·)‖L1(IRn)dτ .

(4.6.111)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Since we have τ + |y| ≥ 1 (where y is the integral variable) in the integral on the
right-hand side of (4.6.111), due to (4.6.110), for l given in Lemma 4.6.8 it is obvious
that

|u(t, x)| ≤ C(t + |x |)− n−1
2

∫ t

0

∑
|α|≤n−1

‖(τ + | · |)− n−1
2 +l�

α
F(τ , ·)‖L1(IRn)dτ .

(4.6.112)
Thus, from (4.6.108) and (4.6.112) we obtain

|u(t, x)| ≤ C(t + |x |)− n−1
2
(
1 + ∣∣t − |x |∣∣)−l

·
∫ t

0

∑
|α|≤n−1

‖(τ + | · |)− n−1
2 +l�

α
F(τ , ·)‖L1(IRn)dτ . (4.6.113)

Noting that we have t + |x | ≥ 1 on the support of the solution u = u(t, x) due to
(4.6.110), under assumption (4.6.110), from the above formula we get

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2
(
1 + ∣∣t − |x |∣∣)−l

·
∫ t

0

∑
|α|≤n−1

‖(τ + | · |)− n−1
2 +l�

α
F(τ , ·)‖L1(IRn)dτ . (4.6.114)

On the other hand, by Lemma 4.6.7, (4.6.100) holds under assumption (4.6.99).
Using the partition of unity, the desired (4.6.95) follows from the combination of
(4.6.114) and (4.6.100). The proof of Theorem 4.6.2 is finished. �

In order to prove Theorem 4.6.3, we first prove the following lemma.

Lemma 4.6.9 Suppose that n ≥ 2 and u = u(t, x) is the solution to the Cauchy
problem (4.6.96)–(4.6.97), in which F(t, x) satisfies (4.6.105), then we have

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2

∫ t

0
(‖F(τ , ·)‖L∞(IRn) + ‖F(τ , ·)‖�,n+1,1)dτ ,

(4.6.115)

where C is a positive constant, and � is given by (3.1.17) in Chap.3.

Proof By Lemma 4.6.7 we have

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2

∫ t

0
‖F(τ , ·)‖W n−1,1(IRn)dτ . (4.6.116)

Therefore, if
∣∣τ − |y|∣∣ ≥ 1

4 (where (τ , y) are the integral variables on the right-hand
side of the above formula) on the support of F , then from (3.1.54) in Chap.3 it is
easy to show that

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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|u(t, x)| ≤ C(1 + t + |x |)− n−1
2

∫ t

0
‖F(τ , ·)‖�,n−1,1dτ , (4.6.117)

then (4.6.115) follows.
Thus, by partition of unity, it suffices to discuss the case that

∣∣τ − |y|∣∣ ≤ 1
2 on

the support of F . Since we always have τ 2 + |y|2 ≥ 1 due to (4.6.105), it is easy to
show that τ ≥ 1

4 and |y| ≥ 1
4 on the support of F . In fact, from

∣∣τ − |y|∣∣ ≤ 1
2 , we

have τ ≤ |y| + 1
2 , and then

1 ≤ τ 2 + |y|2 ≤
(
|y| + 1

2

)2 + |y|2 = 2|y|2 + |y| + 1

4
≤
(
2|y| + 1

2

)2
,

i.e., |y| ≥ 1
4 . Similarly, we can prove τ ≥ 1

4 .
Suppose that v = v(t, x) is the solution of the Cauchy problem

{ �v = F(t, x), (t, x) ∈ IR+ × IRn, (4.6.118)

t = 0 : v = 0, vt = 0. (4.6.119)

Noting that τ ≥ 1
4 on the support of F , it easy easy to show that the solution u =

u(t, x) of the Cauchy problem (4.6.96)–(4.6.97) can be written as

u = u(t, x) =
n∑

a=0

Ca∂av. (4.6.120)

We first consider the case that
∣∣t − |x |∣∣ ≥ 1

8 . Now from (3.1.54) in Chap.3 we
have

|u(t, x)| ≤ C |Dv(t, x)| ≤ C |�v(t, x)|. (4.6.121)

Using (3.1.38) and (3.1.39) in Lemma 3.1.4 of Chap.3 and noting that τ ≥ 1
4 on

the support of F , it is clear that �v(t, x) satisfies a Cauchy problem similar to
(4.6.118)–(4.6.119), while there are additional terms containing �F(t, x) on the
right-hand side of equation (4.6.118). Thus, using Lemma 4.6.8, it follows from the
above formula that

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2

∫ t

0
‖F(τ , ·)‖�,n,1dτ . (4.6.122)

Now we consider the case that
∣∣t − |x |∣∣ ≤ 1

8 .
Construct a function ψ ∈ C∞

0 (IR+ × IRn) such that

ψ(t, x) = ψ(t, |x |), (4.6.123)

ψ(t, x) ≡ 0, if t + |x | ≤ 1

6
; or if t + |x | ≥ 1

4
and
∣∣t − |x |∣∣ ≥ 1

6
, (4.6.124)
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ψ(t, x) ≡ 1, if t + |x | ≥ 1

4
and
∣∣t − |x |∣∣ ≤ 1

8
, (4.6.125)

and

0 ≤ ψ ≤ 1. (4.6.126)

Let

v1(t, x) = ψ(t, x)v(t, x). (4.6.127)

We have
{ �v1 = ψF + 2Q(ψ, v) + v�ψ, (4.6.128)

t = 0 : v1 = 0, v1t = 0, (4.6.129)

where

Q(ψ, v) = ∂tψ∂tv −
n∑

i=1

∂iψ∂iv. (4.6.130)

Noticing the definition of �i j (see (3.1.11)) in Chap.3) and using (3.1.43) in
Chap.3, we can verify directly the following identity:

�v1 = r− n−1
2 (∂2

t − ∂2
r )(r

n−1
2 v1) + (n − 1)(n − 3)

4
r−2v1 −

n∑
i, j,k=1

x j xk

r4
� j i�kiv1,

(4.6.131)

then from (4.6.128)–(4.6.129) we get

(∂2
t − ∂2

r )(r
n−1
2 v1) = − (n − 1)(n − 3)

4
r

n−1
2 −2v1 + r

n−1
2

n∑
i, j,k=1

x j xk

r4
� j i�kiv1

+ r
n−1
2 (ψF + 2Q(ψ, v) + v�ψ)

def.= G̃(t, x), (4.6.132)

t = 0 : r
n−1
2 v1 = 0, ∂t (r

n−1
2 v1) = 0. (4.6.133)

Noting that t ≥ 1
4 on the support of v(t, x), from (4.6.124) we know that on

the support of v1(t, x) we have
∣∣t − |x |∣∣ ≤ 1

6 , and then t
3 ≤ |x | ≤ t + 1

6 . Thus, it is
clear that

∣∣∣∣− (n − 1)(n − 3)

4
r

n−1
2 −2v1 + r

n−1
2

n∑
i, j,k=1

x j xk

r4
� j i �ki v1

∣∣∣∣ ≤ C(1 + t)
n−1
2 −2

∑
|α|≤2

|�α
v1|.

(4.6.134)
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By (3.1.52) in Chap.3 we easily have

|∂av| ≤ C∣∣t − |x |∣∣
∑
|α|=1

|�α
v| (a = 0, 1, . . . , n), (4.6.135)

where C is a positive constant. Observing that t ≥ 1
4 on the support of v = v(t, x),

due to (4.6.125), we now have ∂aψ ≡ 0 unless
∣∣t − |x |∣∣ ≥ 1

8 . Then, from (4.6.135)
we easily get

|2Q(ψ, v) + v�ψ| ≤ C
∑
|α|=1

|�α
v|. (4.6.136)

On the other hand, from (3.1.8) and (3.1.12) in Chap.3 it is easy to have

t Q(ψ, v) = L0ψ · ∂tv −
n∑

i=1

∂xi ψ · Liv (4.6.137)

and

t�ψ = L0ψt −
n∑

i=1

Liψxi , (4.6.138)

and then similarly, we can get

|2Q(ψ, v) + v�ψ| ≤ Ct−1
∑
|α|≤1

|�α
v|. (4.6.139)

Combining (4.6.136) and (4.6.138), we obtain

|2Q(ψ, v) + v�ψ| ≤ C(1 + t)−1
∑
|α|≤1

|�α
v|. (4.6.140)

Using (4.1.5) (in which we take p = +∞) and (4.1.3) in Theorem 4.1.1, from
(4.6.132)–(4.6.133) we obtain, respectively,

|r n−1
2 ∂tv1|, |∂r (r

n−1
2 v1)| ≤

∫ t

0
‖G̃(τ , ·)‖L∞(IRn)dτ (4.6.141)

and

|r n−1
2 v1| ≤ t

∫ t

0
‖G̃(τ , ·)‖L∞(IRn)dτ ≤ Cr

∫ t

0
‖G̃(τ , ·)‖L∞(IRn)dτ , (4.6.142)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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where we used in the last formula the above stated fact: r = |x | ≥ t
3 on the support

of v1(t, x).
Observing that

r
n−1
2 ∂rv1 = ∂r (r

n−1
2 v1) − n − 1

2
r

n−1
2 −1v1,

from (4.6.141)–(4.6.141) we obtain

|∂tv1(t, r)|, |∂rv1(t, x)| ≤ Cr− n−1
2

∫ t

0
‖G̃(τ , ·)‖L∞(IRn)dτ , (4.6.143)

then, using (4.6.132), (4.6.134) and (4.6.140), noting (4.6.105) and that t + |x | ≤ 1
4

on the support of G̃(t, x) so that all the related estimates are made accordingly, it is
easy to obtain that

|∂tv1|, |∂r v1| ≤ Cr− n−1
2

(∫ t

0
‖F(τ , ·)‖L∞(IRn )dτ

+
∫ t

0

(
(1 + τ )−1 + (1 + τ )

n−1
2 −2
) ∑

|α|≤2

‖�α
v(τ , ·)‖L∞(IRn )dτ

)
.

(4.6.144)

According to the Lorentz invariance of the wave operator (see (3.1.38)–(3.1.39)
in Lemma 3.1.4 of Chap.3), and noting that t ≥ 1

4 on the support of v = v(t, x),
it is easy to know that every �

α
v (|α| ≤ 2) satisfies a Cauchy problem similar to

the Cauchy problem (4.6.118)–(4.6.119) satisfied by v, but now the right-hand side
of equation (4.6.118) is a linear combination of �

α
F (|α| ≤ 2). Then, according to

Theorem 4.6.2 and noticing that |x | ≥ t
3 and t + |x | ≤ 1

4 on the support of G̃(t, x)

so that all the related estimates are made accordingly, from (3.1.52) in Chap.3 we
obtain

|� f | ≤ C |�F |.

Therefore, when 0 ≤ τ ≤ t we have

∑
|α|≤2

‖�α
v(τ , ·)‖L∞(IRn) ≤ C(1 + τ )−

n−1
2

∫ τ

0
‖F(s, ·)‖�,n+1,1ds

≤ C(1 + τ )−
n−1
2

∫ t

0
‖F(s, ·)‖�,n+1,1ds, (4.6.145)
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then

∫ t

0

(
(1 + τ )−1 + (1 + τ )

n−1
2 −2
) ∑

|α|≤2

‖�α
v(τ , ·)‖L∞(IRn)dτ

≤ C
∫ t

0

(
(1 + τ )−

n−1
2 −1 + (1 + τ )−2

)
dτ ·
∫ t

0
‖F(s, ·)‖�,n+1,1ds

≤ C
∫ t

0
‖F(τ , ·)‖�,n+1,1ds. (4.6.146)

Hence, from (4.6.144) we have

|∂tv1|, |∂rv1| ≤ Cr− n−1
2

(∫ t

0
‖F(τ , ·)‖L∞(IRn)dτ +

∫ t

0
‖F(τ , ·)‖�,n+1,1dτ

)
.

(4.6.147)

As stated above, on the support of v1(t, x) we have t ≥ 1
4 and

t
3 ≤ |x | ≤ t + 1

6 , then
from the above formula we immediately get

|∂tv1|, |∂r v1| ≤ C(1 + t + |x |)− n−1
2

(∫ t

0
‖F(τ , ·)‖L∞(IRn)dτ +

∫ t

0
‖F(τ , ·)‖�,n+1,1dτ

)
.

(4.6.148)

By (4.6.125) and noting that t ≥ 1
4 on the support of v(t, x), it is easy to show that

v1(t, x) ≡ v(t, x) when
∣∣t − |x |∣∣ ≤ 1

8 . Therefore, in the situation that
∣∣t − |x |∣∣ ≤ 1

8 ,
from (4.6.148) we have

|∂tv(t, x)|, |∂rv(t, x)| ≤ C(1 + t + |x |)− n−1
2

(∫ t

0
‖F(τ , ·)‖L∞(IRn)dτ

+
∫ t

0
‖F(τ , ·)‖�,n+1,1dτ

)
.

(4.6.149)

In addition, from (4.6.145) and noticing that
∣∣t − |x |∣∣ ≤ 1

8 , similarly we have

∑
|α|≤2

|�α
v(t, ·)| ≤ C(1 + t)−

n−1
2

∫ t

0
‖F(τ , ·)‖�,n+1,1dτ

≤ C(1 + t + |x |)− n−1
2

∫ t

0
‖F(τ , ·)‖�,n+1,1dτ . (4.6.150)

Thus, using Lemma 3.1.7 in Chap.3, and noting that when t ≥ 1
4 and

∣∣t − |x |∣∣ ≤ 1
8

we have r = |x | ≥ 1
8 , from (4.6.149)–(4.6.150) we get

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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|∂av(t, x)| ≤ C(1 + t + |x |)− n−1
2

(∫ t

0
‖F(τ , ·)‖L∞(IRn )dτ+

∫ t

0
‖F(τ , ·)‖�,n+1,1dτ

)
,

a = 0, 1, . . . , n. (4.6.151)

Then, in the situation that
∣∣t − |x |∣∣ ≤ 1

8 , from (4.6.120) we obtain

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2

(∫ t

0
‖F(τ , ·)‖L∞(IRn)dτ +

∫ t

0
‖F(τ , ·)‖�,n+1,1dτ

)
.

(4.6.152)

Combining (4.6.122) and (4.6.152), we finish the proof of Lemma 4.6.9. �

Now we prove Theorem 4.6.3.
Proof of Theorem 4.6.3 For any given λ > 0, let u = u(t, x) be the solution to the
Cauchy problem (4.6.96)–(4.6.97). If we change the function F(t, x) on right-hand
side into function Fλ(t, x) = F(λt,λx) depending on a parameter λ, the solution to
the corresponding Cauchy problem should be uλ(t, x) = λ−1u(λt,λx).

Similarly to (4.6.108), we rewrite (4.6.115) obtained under assumption (4.6.105)
into the following scaling invariant form:

|u(t, x)| ≤ C(t + |x |)− n−1
2

(∫ t

0
‖(τ + | · |) n−1

2 F(τ , ·)‖L∞(IRn)dτ

+
∫ t

0

∑
|α|≤n+1

‖(τ + | · |)− n+1
2 �

α
F(τ , ·)‖L1(IRn)dτ

)
,

(4.6.153)

and then we find that this formula still holds under assumption (4.6.110). Noticing
that t ≥ 1

4 on the support of u(t, x) due to assumption (4.6.105), under assumption
(4.6.110), from (4.6.153) we obtain

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2

(∫ t

0
(1 + τ )

n−1
2 ‖F(τ , ·)‖L∞(IRn)dτ

+
∫ t

0
(1 + τ )−

n+1
2 ‖F(τ , ·)‖�,n+1,1dτ

)
.

(4.6.154)

But if (4.6.99) is satisfied, then t ≤ 2 on the support of F(t, x), and fromTheorem
4.6.2 we easily know that

|u(t, x)| ≤ C(1 + t + |x |)− n−1
2

∫ t

0
(1 + τ )−

n−1
2 ‖F(τ , ·)‖�,n,1dτ

≤ C(1 + t + |x |)− n−1
2

∫ t

0
(1 + τ )−

n+1
2 ‖F(τ , ·)‖�,n,1dτ . (4.6.155)
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Based on (4.6.154)–(4.6.155), (4.6.98) can be obtained by partition of unity. The-
orem 4.6.3 is proved. �

Observing Lemma 3.1.5 in Chap.3, from Theorems 4.6.1 and 4.6.2 (in which we
take l = 0) it is easy to obtain

Corollary 4.6.3 Let n ≥ 2. If u = u(t, x) is the solution to Cauchy problem (4.6.1)–
(4.6.2), then for any given integer N ≥ 0, we have

(1 + t)
n−1
2 ‖u(t, ·)‖�,N ,∞ ≤ C

{
‖u(0, ·)‖�,N+n,1 +

∫ t

0
(1 + τ )−

n−1
2 ‖F(τ , ·)‖�,N+n−1,1dτ

}
, ∀t ≥ 0,

(4.6.156)

where C is a positive constant, and ‖u(0, ·)‖�,N+n,1 is the value of ‖u(t, ·)‖�,N+n,1

at t = 0.

Similarly, from Theorem 4.6.1 and Theorem 4.6.3 we obtain

Corollary 4.6.4 Let n ≥ 2. If u = u(t, x) is the solution to Cauchy problem (4.6.96)
and (4.6.2), then for any given integer N ≥ 0, we have

(1 + t)
n−1
2 ‖u(t, ·)‖�,N ,∞

≤ C

{
‖u(0, ·)‖�,N+n,1 +

∫ t

0

(
(1 + τ )

n−1
2 ‖F(τ , ·)‖�,N ,∞ + (1 + τ )−

n+1
2 ‖F(τ , ·)‖�,N+n+1,1

)
dτ

}
,

∀t ≥ 0, (4.6.157)

where C is a positive constant, and ‖u(0, ·)‖�,N+n,1 is the value of ‖u(t, ·)‖�,N+n,1

at t = 0.

Remark 4.6.2 The heart of this section is Theorems4.6.1, 4.6.2 and 4.6.3. Where
Theorem 4.6.1 belongs to Klainerman (see Klainerman (1980)), while, Theorem
4.6.2 is an improvement and extension of Hörmander (see Hörmander (1988)) to a
similar theorem of Klainerman (see Klainerman (1986)), and Theorem 4.6.3 essen-
tially belongs to Lindblad(he considered the case n = 3, see Lindblad (1990b)). The
proofs of these three theorems in this chapter follow in principle the arguments of
Hörmander.

http://dx.doi.org/10.1007/978-3-662-55725-9_3


Chapter 5
Some Estimates on Product Functions
and Composite Functions

For the needs of the following chapters, in this chapter we will give some estimates
about product functions and composite functions (see Li and Chen 1989, 1992).

5.1 Some Estimates on Product Functions

For the space L p,q(Rn) introduced in Sect. 3.1.2 of Chap.3, Similarly to Lemma
2.3.2 in Chap.2, we have the following

Lemma 5.1.1 (Hölder inequality) If fi ∈ L pi ,qi (IRn), 1 ≤ pi , qi ≤ +∞(i =
1, . . . , M) and

1

p
=

M∑

i=1

1

pi
,
1

q
=

M∑

i=1

1

qi
, 1 ≤ p, q ≤ +∞, (5.1.1)

then

M∏

i=1

fi ∈ L p,q(IRn), (5.1.2)

and

∥∥∥
M∏

i=1

fi
∥∥∥
L p,q (IRn)

≤
M∏

i=1

‖ fi‖L pi ,qi (IRn). (5.1.3)

Utilizing the set � of partial differential operators defined by (3.1.18) in Chap. 3,
for any given integer N ≥ 0, we define
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‖ f (t, ·)‖�,N ,p,q,χ =
∑

|k|≤N

‖χ(t, ·)�k f (t, ·)‖L p,q (IRn), (5.1.4)

where 1 ≤ p, q ≤ +∞,χ(t, x) is the characteristic function of any given set in
R+×IRn , k = (k1, . . . , kσ) is amulti-index, |k| = k1+· · ·+kσ, σ is the number of the
partial differential operators included in�:� = (�1, . . . , �σ), and�k = �

k1
1 · · ·�kσ

σ .

In the sequel, we simply denote

‖ f (t, ·)‖�,N ,p,q,χ =

⎧
⎪⎪⎨

⎪⎪⎩

‖ f (t, ·)‖�,N ,p,χ, if p = q;
‖ f (t, ·)‖�,N ,p,q , if χ ≡ 1;
‖ f (t, ·)‖p,q,χ, if N = 0;
‖ f (t, ·)‖L p,q (Rn), if N = 0, and χ ≡ 1

(5.1.5)

and so on.

Lemma 5.1.2 Suppose that 1 ≤ p, q, pi , qi ≤ +∞(i = 1, . . . , 4) satisfy

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
,

1

q
= 1

q1
+ 1

q2
= 1

q3
+ 1

q4
, (5.1.6)

and the norms appearing on the right-hand sides of the following formulas are all
well-defined. Then for any given integer N > 0 we have

‖ f g(t, ·)‖�,N ,p,q,χ

≤ C(‖ f (t, ·)‖�,[ N−1
2 ],p1,q1,χ‖�g(t, ·)‖�,N−1,p2,q2,χ

+‖ f (t, ·)‖�,N ,p3,q3,χ‖g(t, ·)‖�,[ N
2 ],p4,q4,χ), ∀t ≥ 0; (5.1.7)

and for any given multi-index k(|k| = N > 0) we have

‖(�k( f g) − f �kg)(t, ·)‖p,q,χ

≤ C(‖ f (t, ·)‖�,[ N
2 ],p1,q1,χ‖g(t, ·)‖�,N−1,p2,q2,χ

+‖� f (t, ·)‖�,N−1,p3,q3,χ‖g(t, ·)‖�,[ N−1
2 ],p4,q4,χ), ∀t ≥ 0, (5.1.8)

where C is a positive constant, and [ ] stands for the integer part of a real number.
Proof First we prove (5.1.7).
From the definition of the operator set �, it is easy to know that we still have the
chain rule:

�( f g) = (� f )g + f (�g), (5.1.9)
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therefore, for any given multi-index k(|k| ≤ N ) we have

�k( f g) =
∑

|i |+| j |≤N

Ci j�
i f · � jg

=
∑

|i |+| j |≤N
|i |<| j |

Ci j�
i f · � jg +

∑

|i |+| j |≤N
|i |≥| j |

Ci j�
i f · � jg

def= I +II, (5.1.10)

where Ci j are constants.
In I, we should have |i | ≤ [ N−1

2 ]. In fact, when N is even, due to |i | < N
2 = [ N2 ],

we have |i | ≤ [ N−1
2 ]; while, when N is odd, due to |i | < N

2 = [ N−1
2 ] + 1

2 , we still
have |i | ≤ [ N−1

2 ]. Thus, from Hölder inequality (5.1.3), and noting that χ2 = χ and
| j | > 0, it is easy to show that

‖I‖p,q,χ ≤ C‖ f (t, ·)‖�,[ N−1
2 ],p1,q1,χ‖�g(t, ·)‖�,N−1,p2,q2,χ. (5.1.11)

While, in II, due to | j | ≤ [ N2 ], from Hölder inequality (5.1.3) we then have

‖II‖p,q,χ ≤ C‖ f (t, ·)‖�,N ,p3,q3,χ‖g(t, ·)‖�,[ N
2 ],p4,q4,χ, (5.1.12)

where C is a positive constant. (5.1.7) follows by combining (5.1.11) and (5.1.12).
Moreover, for |k| = N (> 0), since

�k( f g) − f �kg =
∑

|i |+| j |=N−1

Ci j�
i (� f )� jg, (5.1.13)

we can get (5.1.8) similarly. The proof is finished. �

Remark 5.1.1 Noting (5.1.5), from Lemma 5.1.2 we immediately obtain that: for
any given integer N > 0, if the norms appearing on the right-hand sides of the
following formulas are all well-defined, then we have

‖ f g(t, ·)‖�,N ,r,χ ≤ C(‖ f (t, ·)‖�,[ N−1
2 ],p1,χ‖�g(t, ·)‖�,N−1,q1,χ

+‖ f (t, ·)‖�,N ,p2,χ‖g(t, ·)‖�,[ N
2 ],q2,χ), ∀t ≥ 0 (5.1.14)

and

‖ f g(t, ·)‖�,N ,r ≤ C(‖ f (t, ·)‖�,[ N−1
2 ],p1‖�g(t, ·)‖�,N−1,q1

+‖ f (t, ·)‖�,N ,p2‖g(t, ·)‖�,[ N
2 ],q2), ∀t ≥ 0; (5.1.15)
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moreover, for any given multi-index k(|k| = N > 0), we have

‖(�k( f g) − f �kg)(t, ·)‖r,χ ≤ C(‖ f (t, ·)‖�,[ N
2 ],p1,χ‖g(t, ·)‖�,N−1,q1,χ

+‖� f (t, ·)‖�,N−1,p2,χ‖g(t, ·)‖�,[ N
2 ],q2,χ), ∀t ≥ 0

(5.1.16)

and

‖(�k( f g) − f �kg)(t, ·)‖Lr (IRn) ≤ C(‖ f (t, ·)‖
�,[ N2 ],p1‖g(t, ·)‖�,N−1,q1

+‖� f (t, ·)‖�,N−1,p2‖g(t, ·)‖
�,[ N−1

2 ],q2 ), ∀t ≥ 0,

(5.1.17)

where C is a positive constant, 1 ≤ p1, q1, p2, q2, r ≤ +∞, and

1

r
= 1

p1
+ 1

q1
= 1

p2
+ 1

q2
. (5.1.18)

Remark 5.1.2 From (5.1.7) we can obtain that: for any given integer N ≥ 0 we have

‖ f g(t, ·)‖�,N ,p,q,χ ≤ C(‖ f (t, ·)‖�,[ N
2 ],p1,q1,χ‖g(t, ·)‖�,N ,p2,q2,χ

+‖ f (t, ·)‖�,N ,p3,q3,χ‖g(t, ·)‖�,[ N
2 ],p4,q4,χ), ∀t ≥ 0,

(5.1.19)

where C is a positive constant.
Moreover, similarly to (5.1.8),we canprove that: for anygivenmulti-index k(|k| =

N > 0) we have

‖(�k( f g) − f �kg)(t, ·)‖p,q,χ

≤ C(‖� f (t, ·)‖�,[ N−1
2 ],p1,q1,χ‖g(t, ·)‖�,N−1,p2,q2,χ

+‖� f (t, ·)‖�,N−1,p3,q3,χ‖g(t, ·)‖�,[ N−1
2 ],p4,q4,χ), ∀t ≥ 0, (5.1.20)

where C is a positive constant.

Equations (5.1.19) and (5.1.20) take the forms with more symmetry. Correspond-
ing to Remark 5.1.1, we can obtain some similar estimates.

Remark 5.1.3 Similarly to (5.1.19), using Hölder inequality (5.1.3) it can be proved
that: for any given integer N ≥ 0 we have

∥∥∥
β∏

i=0

fi (t, ·)
∥∥∥

�,N ,p,q,χ
≤ C

β∑

i=0

‖ fi (t, ·)‖�,N ,pii ,qii ,χ

∏

j 	=i

‖ f j (t, ·)‖�,[ N2 ],pi j ,qi j ,χ, ∀t ≥ 0,

(5.1.21)
where 1 ≤ p0, q0, pi j , qi j ≤ +∞(i, j = 0, · · · ,β),
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1

p
=

β∑

j=0

1

pi j
,
1

q
=

β∑

j=0

1

qi j
(i = 0, · · · ,β), (5.1.22)

and C is a positive constant.

Remark 5.1.4 In Lemma 5.1.2, replacing � by D =
(

∂
∂t ,

∂
∂x1

, . . . , ∂
∂xn

)
, the conclu-

sions still hold. Then, for any given integer N > 0 we have

‖ f g(t, ·)‖D,N ,p,q,χ ≤ C(‖ f (t, ·)‖D,[ N−1
2 ],p1,q1,χ‖Dg(t, ·)‖D,N−1,p2,q2,χ

+‖ f (t, ·)‖D,N ,p3,q3,χ‖g(t, ·)‖D,[ N
2 ],p4,q4,χ), ∀t ≥ 0;

(5.1.23)

and for any given multi-index k(|k| = N > 0) we have

‖(Dk( f g) − f Dkg)(t, ·)‖p,q,χ

≤ C(‖ f (t, ·)‖D,[ N
2 ],p1,q1,χ‖g(t, ·)‖D,N−1,p2,q2,χ

+‖Df (t, ·)‖D,N−1,p3,q3,χ‖g(t, ·)‖D,[ N−1
2 ],p4,q4,χ), ∀t ≥ 0, (5.1.24)

where C is a positive constant. We also have similar conclusions for Remarks 5.1.1–
5.1.3.

Lemma 5.1.3 Let n ≥ 2. Suppose that functions f = f (t, x) and g = g(t, x)
have compact support {x | |x | ≤ t + ρ} with respect to variable x for any given
t ≥ 0, and the norms appearing on the right-hand sides of the following formulas
are well-defined, then for a = 0, 1, . . . , n we have

‖ f ∂ag(t, ·)‖L p,q (IRn) ≤ Cρ‖Dx f (t, ·)‖L2(IRn)

∑

|I |=1

‖� Ig(t, ·)‖L p1,q1 (IRn), ∀t ≥ 0,

(5.1.25)
where

∂0 = − ∂

∂t
, ∂i = ∂

∂xi
(i = 1, . . . , n), (5.1.26)

Cρ is a positive constant depending on ρ, and 1 ≤ p, q, p1, q1 ≤ +∞ satisfy

1

p
= 1

2
+ 1

p1
,
1

q
= 1

2
+ 1

q1
. (5.1.27)

Proof First we prove

|∂ag(t, x)| ≤ C(ρ)(2ρ + t − r)−1
∑

|I |=1

|� Ig(t, x)|. (5.1.28)
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Here and hereafter, we denote by C(ρ) a positive constant depending on ρ, and by
C a positive constant independent of ρ.

Thanks to the compact support assumption, it suffices to give the proof in the case
that r ≤ t + ρ, where r = |x |.

From the definition of � (see (3.1.18) in Chap. 3), (5.1.28) is obvious when
|t − r | ≤ ρ; while, when t − r ≥ ρ, (5.1.28) still holds due to (3.1.52) in Chap.3.
Thus, from Hölder inequality (5.1.3) we have

‖ f ∂ag(t, ·)‖L p,q (IRn) ≤ C(ρ)

∥∥∥
f (t, ·)

2ρ + t − r

∥∥∥
L2(IRn)

∑

|I |=1

‖� Ig(t, ·)‖L p1,q1 (IRn).

(5.1.29)

On the other hand, using the integration by parts and the Hölder inequality, we
have

∫ t+ρ

0

f 2(t, ·)
(2ρ + t − r)2

rn−1dr =
∫ t+ρ

0
f 2(t, ·)rn−1d

(
1

2ρ + t − r

)

= −
∫ t+ρ

0

f 2(t, ·)
2ρ + t − r

d(rn−1) −
∫ t+ρ

0

2 f fr (t, ·)
2ρ + t − r

rn−1dr

≤
∫ t+ρ

0

2| f || fr |(t, ·)
2ρ + t − r

rn−1dr

≤ C

(∫ t+ρ

0

f 2(t, ·)
(2ρ + t − r)2

rn−1dr

)1/2 (∫ t+ρ

0
f 2r (t, ·)rn−1dr

)1/2

,

Then (noting (3.1.42) in Chap. 3), we get

∥∥∥
f (t, ·)

2ρ + t − r

∥∥∥
L2(IRn)

≤ C‖∂r f (t, ·)‖L2(IRn) ≤ C‖Dx f (t, ·)‖L2(IRn). (5.1.30)

Estimate (5.1.25) follows by combining (5.1.29) and (5.1.30). �

Lemma 5.1.4 Under the assumptions of Lemma 5.1.3, for any given integer N ≥ 0
we have

‖ f ∂ag(t, ·)‖�,N ,p,q ≤ Cρ{‖ f (t, ·)‖�,[ N
2 ],p1,q1‖Dg(t, ·)‖�,N ,2

+‖Dx f (t, ·)‖�,N ,2‖g(t, ·)‖�,[ N
2 ]+1,p1,q1}, ∀t ≥ 0;

(5.1.31)

and for any given multi-index k(|k| = N > 0) we have

‖(�k( f ∂ag) − f �k∂ag)(t, ·)‖L p,q (IRn ) ≤ Cρ(‖ f (t, ·)‖
�,[ N2 ],p1,q1‖Dg(t, ·)‖�,N−1,2

+‖Dx f (t, ·)‖�,N ,2‖g(t, ·)‖
�,[ N2 ]+1,p1,q1

), ∀t ≥ 0

(5.1.32)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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and

‖(�k∂a( f g) − f �k∂ag)(t, ·)‖L p,q (IRn ) ≤ Cρ(‖Df (t, ·)‖�,N ,2‖g(t, ·)‖
�,[ N2 ]+1,p1,q1

+‖ f (t, ·)‖
�,[ N2 ]+1,p1,q1

‖g(t, ·)‖�,N ,2), ∀t ≥ 0,

(5.1.33)

where Cρ is a positive constant depending on ρ.

Proof For any given multi-index k(|k| ≤ N ), similarly to (5.1.10) we have

�k( f ∂ag) =
∑

|i |+| j |≤N

Ci j�
i f · � j∂ag, (5.1.34)

where Ci j are constants.
We notice that at most one of |i | and | j | may be greater than [ N2 ]:
(i) if |i | ≤ [ N2 ], then from Hölder inequality (5.1.3) we have

‖�i f · � j∂ag(t, ·)‖L p,q (IRn)

≤ ‖�i f (t, ·)‖L p1 ,q1 (IRn)‖� j∂ag(t, ·)‖L2(IRn)

≤ C‖ f (t, ·)‖�,[ N
2 ],p1,q1‖∂ag(t, ·)‖�,N ,2; (5.1.35)

(ii) if | j | ≤ [ N2 ], then from Lemma 3.1.3 and Corollary 3.1.1 in Chap.3, it is easy
to show that

‖�i f · � j∂ag(t, ·)‖L p,q (IRn)

≤ C
∑

| j̃ |≤| j |
‖�i f · D� j̃g(t, ·)‖L p,q (IRn)

≤ C(ρ)‖Dx�
i f (t, ·)‖L2(IRn)

∑

|I |=1
| j̃ |≤| j |

‖� I� j̃g(t, ·)‖L p1 ,q1 (IRn)

≤ C(ρ)‖Dx f (t, ·)‖�,N ,2‖g(t, ·)‖�,[ N
2 ]+1,p1,q1 . (5.1.36)

Combining (5.1.35) and (5.1.36), we obtain the estimate (5.1.31) that we want.
Moreover, for any given multi-index k(|k| = N > 0) we have

�k( f ∂ag) − f �k∂ag =
∑

|i |+| j |=N
|i |>0

Ci j�
i f · � j∂ag, (5.1.37)

then we can get (5.1.32) similarly.

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Finally, noting Corollary 3.1.1 in Chap.3 we have

�k∂a( f g) − f �k∂ag

= �k(∂a f · g) + �k( f ∂ag) − f �k∂ag

=
∑

|i |+| j |≤N

Ci j�
i∂a f · � jg +

∑

|i |+| j |≤N
|i |>0

Di j�
i f · � j∂ag

=
∑

|i |+| j |≤N

Ci j�
i∂a f · � jg +

∑

|i |+| j |≤N
|i |>0,| j̃ |≤| j |

Di j�
i f · D� j̃g

def= I +II, (5.1.38)

where Ci j , Di j and Di j are constants.
Using Hölder inequality (5.1.3) in I, if |i | ≤ N

2 , then we have

‖�i∂a f · � jg(t, ·)‖L p,q (IRn) ≤ C‖Df (t, ·)‖�,[ N
2 ],p1,q1‖g(t, ·)‖�,N ,2;

while, if | j | ≤ N
2 , then we have

‖�i∂a f · � jg(t, ·)‖L p,q (IRn) ≤ C‖Df (t, ·)‖�,N ,2‖g(t, ·)‖�,[ N
2 ],p1,q1 .

Combining them we get

‖I‖L p,q (IRn) ≤ C(‖Df (t, ·)‖�,N ,2‖g(t, ·)‖�,[ N
2 ],p1,q1

+‖Df (t, ·)‖�,[ N
2 ],p1,q1‖g(t, ·)‖�,N ,2), ∀ t ≥ 0. (5.1.39)

In II, when |i | ≤ [ N2 ], from Hölder inequality (5.1.3) we easily know that

‖�i f · � j∂ag(t, ·)‖L p,q (IRn) ≤ C‖ f (t, ·)‖�,[ N
2 ],p1,q1‖∂ag(t, ·)‖�,N−1,2;

while, when | j | ≤ [ N2 ], by Lemma 5.1.3 and noting Corollary 3.1.1 in Chap.3, we
have

‖�i f · D� j̃g(t, ·)‖L p,q (IRn) ≤ C(ρ)‖Dx�
i f (t, ·)‖L2(IRn)

∑

|I |=1

‖� I� j̃g(t, ·)‖L p1,q1 (IRn)

≤ C(ρ)‖Df (t, ·)‖�,N ,2‖g(t, ·)‖�,[ N
2 ]+1,p1,q1 .

Combining them we obtain

‖II‖L p,q (IRn) ≤ C(ρ)(‖Df (t, ·)‖�,N ,2‖g(t, ·)‖�,[ N
2 ]+1,p1,q1

+‖ f (t, ·)‖�,[ N
2 ],p1,q1‖∂ag(t, ·)‖�,N−1,2), ∀t ≥ 0. (5.1.40)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Equation (5.1.33) can be proved by combining (5.1.39) and (5.1.40). The proof is
finished. �

5.2 Some Estimates on Composite Functions

Lemma 5.2.1 Suppose that G = G(w) is a sufficiently smooth function of w =
(w1, . . . , wM), and when

|w| ≤ ν0, (5.2.1)

we have
G(w) = O(|w|1+β), (5.2.2)

where ν0 is a positive constant, and β is a nonnegative integer. For any given integer
N ≥ 0, if the vector function w = w(t, x) satisfies

‖w(t, ·)‖�,[ N
2 ],∞ ≤ ν0, ∀ t ≥ 0, (5.2.3)

then for any given multi-index k (|k| ≤ N ), we have

|�kG(w(t, x))| ≤ C(ν0)
∑

|l0 |+···+|lβ |≤|k|
1≤i j≤M( j=0,··· ,β)

β∏

j=0

|�l j wi j (t, x)|, (5.2.4)

where C(ν0) is a positive constant depending on ν0.

Proof From (5.2.2) we have

G(w) =
∑

M∑

j=1
i j=1+β

i j≥0( j=1,...,M)

G̃i1···iM (w)w
i1
1 . . . w

iM
M , (5.2.5)

simply denoted by
G(w) = G̃(w)w1+β . (5.2.6)

In the proof below we also adopt similar simplified expressions.
From this we easily know that (5.2.4) is obvious when |k| = 0.
For any given multi-index k(0 < |k| ≤ N ), we have

�kG(w(t, x)) = �k(G̃(w)w1+β)

=
∑

|i |+| j |=|k|
Ci j�

i (G̃(w))� j (w1+β), (5.2.7)
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in which

�i G̃(w) =
∑

M∑

j=1
γ j=ρ

1≤ρ≤|i |

∂ρG̃(w)

∂γ1w1 . . . ∂γMwM
(�w)α1 . . . (�|i |w)α|i | , (5.2.8)

where

|α1| + · · · + |α|i || = ρ (5.2.9)

and

1 · |α1| + · · · + |i | · |α|i || = |i |. (5.2.10)

In (5.2.7), if |i | ≤ [ |k|
2 ], noting (5.2.3), from (5.2.8) we then have

|�i G̃(w(t, x))| ≤ Cν0 , (5.2.11)

where Cν0 is a positive constant depending on ν0, then it is easy to show that (5.2.4)
is satisfied for the corresponding part (denoted by I) of the sum in (5.2.7).

In (5.2.7), if |i | ≥ [ |k|
2 ]+1, from (5.2.10) we easily know that either |α[ |i |

2 ]+1|,. . . ,
|α|i || are all zeros; or only one of them is 1 and others are all zeros. Therefore, except
at most one factor �|h|w(|h| is a certain number among [ |i |

2 ] + 1, . . . , |i |), each term
in the sum on the right-hand side of (5.2.8) can be estimated by (5.2.3). On the other
hand, now since it is easy to know that | j | ≤ [ |k|

2 ], each term in � j (w1+β) can also
be estimated by (5.2.3). Thus, it is clear that (5.2.4) is also satisfied for this part
(denoted by II) of the sum in (5.2.7).

This proves (5.2.4). �

Lemma 5.2.2 Under the assumptions of Lemma 5.2.1, for any given integer N ≥ 0,
when β = 0, we have

‖G(w(t, ·))‖�,N ,p,q,χ ≤ C(ν0)‖w(t, ·)‖�,N ,p,q,χ, ∀t ≥ 0; (5.2.12)

while, when β ≥ 1, we have

‖G(w(t, ·))‖�,N ,p,q,χ ≤ C(ν0)

⎛

⎝
β∏

i=1

‖w(t, ·)‖
�,[ N2 ],pi ,qi ,χ

⎞

⎠ ‖w(t, ·)‖�,N ,p0,q0,χ, ∀t ≥ 0,

(5.2.13)
where 1 ≤ p, q, pi , qi ≤ +∞(i = 0, 1, . . . ,β),

1

p
=

β∑

i=0

1

pi
,

1

q
=

β∑

i=0

1

qi
, (5.2.14)
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χ(t, x) is the characteristic function of any given set in R+ × Rn, and C(ν0) is a
positive constant depending on ν0.

Proof Estimate (5.2.12) is an obvious consequence of (5.2.4) when β = 0. While,
when β ≥ 1, using (5.1.21), (5.2.13) follows from (5.2.4). The proof is finished. �

Remark 5.2.1 InLemmas5.2.1 and5.2.2, ifwe replace� byD =
(

∂
∂t ,

∂
∂x1

, . . . , ∂
∂xn

)
,

then the conclusions still hold.
In addition, it is not difficult to prove that: when β > 0, for any given integer

N > 0 we have

‖DG(w)(t, ·)‖D,N−1,p ≤ C‖w(t, ·)‖β

D,[ N
2 ],∞‖Dw(t, ·)‖D,N−1,p, ∀t ≥ 0,

(5.2.15)

where 1 ≤ p ≤ +∞, and C is a positive constant.

Lemma 5.2.3 Under the assumptions of Lemma 5.2.1, for any given integer N ≥
[ n2 ] + 1, if the vector function w = w(t, x) satisfies (5.2.3), then we have

‖DG(w)(t, ·)‖L∞(IRn) ≤ C(1 + t)−
n−1
2 (1+β)‖w(t, ·)‖β

�,N ,2‖Dw(t, ·)‖�,N ,2, ∀t ≥ 0,
(5.2.16)

where D =
(

∂
∂t ,

∂
∂x1

, . . . , ∂
∂xn

)
, and C is a positive constant.

Proof Adopting the simplified notations, we have

DG(w) = G ′(w)Dw. (5.2.17)

By (5.2.2) we can write
G ′(w) = G̃(w)wβ, (5.2.18)

and G̃(w) is a sufficiently smooth function on |w| ≤ ν0. From (5.2.3) we have

‖G̃(w)(t, ·)‖L∞(IRn) ≤ C. (5.2.19)

Therefore, noting that N ≥ [ n2 ] + 1, from estimate (3.4.29) (in which we take
p = 2, s = [ n2 ] + 1) with decay factor in Chap.3, we have

‖DG(w(t, ·))‖L∞(IRn)

≤ C‖w(t, ·)‖β
L∞(IRn)‖Dw(t, ·)‖L∞(IRn)

≤ C(1 + t)−
n−1
2 (1+β)‖w(t, ·)‖β

�,[ n2 ]+1,2‖Dw(t, ·)‖�,[ n2 ]+1,2

≤ C(1 + t)−
n−1
2 (1+β)‖w(t, ·)‖β

�,N ,2‖Dw(t, ·)‖�,N ,2, ∀t ≥ 0.

This is exactly (5.2.16). �

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Lemma 5.2.4 (Interpolation inequality) Suppose that f ∈ L p1,q1(IRn)
⋂

L p2,q2

(IRn), and 1 ≤ p1, p2, q1, q2 ≤ +∞. Then f ∈ L p,q(IRn), where

1

p
= θ

p1
+ 1 − θ

p2
,

1

q
= θ

q1
+ 1 − θ

q2
, (5.2.20)

and θ is any given constant satisfying 0 ≤ θ ≤ 1; Moreover, we have the following
interpolation inequality:

‖ f ‖L p,q (IRn) ≤ ‖ f ‖θ
L p1 ,q1 (IRn)‖ f ‖1−θ

L p2 ,q2 (IRn). (5.2.21)

Proof Similarly to the proof of Lemma 3.4.1 in Chap.3, using Hölder inequality and
noting the definition of the norm in L p,q(IRn) space (see (3.1.29) in Chap.3), we
have

‖ f ‖L p,q (IRn) ≤ ‖| f |θ‖
L

p1
θ

,
q1
θ (IRn)

‖| f |1−θ‖
L

p2
1−θ

,
q2
1−θ (IRn)

= ‖ f ‖θ
L p1 ,q1 (IRn)‖ f ‖1−θ

L p2 ,q2 (IRn).

This proves (5.2.21). �

Lemma 5.2.5 Let n ≥ 2. Suppose that G = G(w) is a sufficiently smooth function
of w = (w1, . . . , wM) with

G(0) = 0. (5.2.22)

For any given integer N ≥ n + 2 and any given real number r(1 ≤ r ≤ 2), if the
vector function w = w(t, x) = (w1, . . . , wM)(t, x) satisfies (5.2.3) and the norms
appearing on the right-hand sides of the following formulas are well-defined, then
we have

∥∥∥G(w)

β∏

i=1

ui (t, ·)
∥∥∥

�,N ,r,2
≤ C(1 + t)−

n−1
2 (1− 2

β p )β‖w(t, ·)‖�,N ,2

β∏

i=1

‖ui (t, ·)‖�,N ,2, ∀t ≥ 0

(5.2.23)
and

∥∥∥G(w)

β∏

i=1

ui (t, ·)
∥∥∥

�,N ,r,2,χ1
≤ C(1 + t)−

n
2 (1− 2

β p )β‖w(t, ·)‖�,N ,2

β∏

i=1

‖ui (t, ·)‖�,N ,2, ∀t ≥ 0,

(5.2.24)
where χ1(t, x) is the characteristic function of the set

{
(t, x)

∣∣∣ |x | ≤ 1 + t

2
, t ≥ 0

}
, (5.2.25)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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β ≥ 1 is an integer,
1

p
= 1

r
− 1

2
, (5.2.26)

and C is a positive constant.

Proof For any given multi-index k(|k| ≤ N ), by the chain rule we have

�k

(
G(w)

β∏

i=1

ui (t, ·)
)

=
∑

β∑
i=0

|ki |=|k|

Ck0k1···kβ
�k0G(w(t, ·))

β∏

i=1

�ki ui (t, ·), (5.2.27)

where Ck0k1...kβ
are constants, and k0, . . . , kβ are multi-indexes.

Noting that at most one of |k0|, . . . , |kβ | may be greater than [ N2 ], we have
(i) if |k j | > [ N2 ] for a certain j (1 ≤ j ≤ β), using Hölder inequality (5.1.3),

the embedding theorem (see (3.2.3) in Chap.3) on the sphere Sn−1 and the estimate
(3.4.29) (in which we take p = 2, s = [ n2 ] + 1) with decay factor in Chap.3, and
noting that [ N2 ] + [ n2 ] + 1 ≤ N when N ≥ n + 2, we then have

∥∥∥∥�k0G(w)

β∏

i=1

�ki ui (t, ·)
∥∥∥∥
L1,2(IRn )

≤ C‖�k0G(w(t, ·))‖L2,∞(IRn )

⎛

⎜⎝
β∏

i=1
i 	= j

‖�ki ui (t, ·)‖L∞(IRn )

⎞

⎟⎠ ‖�k j u j (t, ·)‖L2(IRn )

≤ C‖G(w(t, ·))‖�,|k0|+[ n−1
2 ]+1,2

⎛

⎜⎝
β∏

i=1
i 	= j

(1 + t)−
n−1
2 ‖�ki ui (t, ·)‖�,[ n2 ]+1,2

⎞

⎟⎠ ‖u j (t, ·)‖�,|k j |,2

≤ C(1 + t)−
n−1
2 (β−1)‖w(t, ·)‖�,N ,2

⎛

⎜⎝
β∏

i=1
i 	= j

‖ui (t, ·)‖�,N ,2

⎞

⎟⎠ ‖u j (t, ·)‖�,|k j |,2 (5.2.28)

and

∥∥∥∥�k0G(w)

β∏

i=1

�ki ui (t, ·)
∥∥∥∥
L2(IRn)

≤ C‖�k0G(w(t, ·))‖L∞(IRn)

⎛

⎜⎝
β∏

i=1
i 	= j

‖�ki ui (t, ·)‖L∞(IRn)

⎞

⎟⎠ ‖�k j u j (t, ·)‖L2(IRn)

≤ C(1 + t)−
n−1
2 β‖w(t, ·)‖�,N ,2

⎛

⎜⎝
β∏

i=1
i 	= j

‖ui (t, ·)‖�,N ,2

⎞

⎟⎠ ‖u j (t, ·)‖�,|k j |,2. (5.2.29)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Then, using the interpolation inequality (5.2.21) (in which we take p = r, q =
2, p1 = 1, q1 = p2 = q2 = 2, and thus θ = 2

r − 1), we have

∥∥∥∥�k0G(w)

β∏

i=1

�ki ui (t, ·)
∥∥∥∥
Lr,2(IRn )

≤ ‖ · ‖
2
r −1

L1,2(IRn )
‖ · ‖2−

2
r

L2(IRn )

≤ C(1 + t)−
n−1
2 (1− 2

β p )β‖w(t, ·)‖�,N ,2

⎛

⎜⎝
β∏

i=1
i 	= j

‖ui (t, ·)‖�,N ,2

⎞

⎟⎠ ‖u j (t, ·)‖�,|k j |,2, ∀1 ≤ r ≤ 2,

(5.2.30)

where p is defined by (5.2.26).
(ii) if |k j | ≤ [ N2 ] for all j (1 ≤ j ≤ β), similarly we have

∥∥∥�k0G(w)

β∏

i=1

�ki ui (t, ·)
∥∥∥
Lr,2(IRn)

≤ C(1 + t)−
n−1
2 (1− 2

β p )β‖w(t, ·)‖�,|k0|,2
β∏

i=1

‖ui (t, ·)‖�,N ,2, ∀1 ≤ r ≤ 2. (5.2.31)

Noting that |ki | ≤ N (i = 0, 1, . . . ,β), from (5.2.30)–(5.2.31) we immediately
get (5.2.23).

Using estimate (3.4.12) with decay factor in Chap.3, we can similarly prove
(5.2.24). �

Lemma 5.2.6 Under the assumptions of Lemma 5.2.5, for any given multi-index k
(|k| ≤ N ) we have

∥∥∥∥�k
(
G(w)

β∏

i=1

ui (t, ·)
)

− G(w)

( β−1∏

i=1

ui

)
�kuβ(t, ·)

∥∥∥∥
Lr,2(IRn )

≤ C(1 + t)−
n−1
2 (1− 2

β p )β‖w(t, ·)‖�,N ,2

( β−1∏

i=1

‖ui (t, ·)‖�,N ,2

)
‖uβ(t, ·)‖�,N−1,2, ∀t ≥ 0

(5.2.32)

and

∥∥∥∥�k
(
G(w)

β∏

i=1

ui (t, ·)
)

− G(w)

⎛

⎝
β−1∏

i=1

ui

⎞

⎠ �kuβ(t, ·)
∥∥∥∥
r,2,χ1

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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≤ C(1 + t)
− n

2 (1− 2
β p )β‖w(t, ·)‖�,N ,2

⎛

⎝
β−1∏

i=1

‖ui (t, ·)‖�,N ,2

⎞

⎠ ‖uβ(t, ·)‖�,N−1,2, ∀ t ≥ 0,

(5.2.33)

where C is a positive constant.

Proof Since

�k

(
G(w)

β∏

i=1

ui (t, ·)
)

− G(w)

(
β−1∏

i=1

ui

)
�kuβ(t, ·)

=
∑

β∑

i=0
|ki |=|k|

|kβ |<|k|

Ck0k1···kβ
�k0G(w(t, ·))

β∏

i=1

�ki ui (t, ·), (5.2.34)

repeating the proof of Lemma 5.2.5, and noticing |kβ| ≤ N − 1, we can obtain our
conclusions. �

Lemma 5.2.7 Suppose that function G = G(w) satisfies the conditions stated
in Lemma 5.2.1. For any given integer N ≥ n + 2, if the vector functions
w(t, x) = (w1(t, x), . . . , wM(t , x)) and w(t, x) = (w1(t, x), . . . , wM(t, x)) both
satisfy (5.2.3) and the norms appearing on the right-hand sides of the following
formulas are all well-defined, then for any given real number r(1 ≤ r ≤ 2) we have

‖(G(w) − G(w))u(t, ·)‖�,N ,r,2

≤ C(1 + t)−
n−1
2 (1− 2

αp )α
(1 + ‖w̃(t, ·)‖�,N ,2)‖w̃(t, ·)‖β

�,N ,2

·‖w∗(t, ·)‖�,N ,2‖u(t, ·)‖�,N ,2, ∀t ≥ 0 (5.2.35)

and

‖(G(w) − G(w))u(t, ·)‖�,N ,r,2,χ1

≤ C(1 + t)−
n
2 (1− 2

αp )α
(1 + ‖w̃(t, ·)‖�,N ,2)‖w̃(t, ·)‖β

�,N ,2

·‖w∗(t, ·)‖�,N ,2‖u(t, ·)‖�,N ,2, ∀ t ≥ 0, (5.2.36)

where α = 1 + β, p satisfies (5.2.26), χ1(t, x) is the characteristic function of the
set (5.2.25),

w∗ = w − w, (5.2.37)

and
‖w̃(t, ·)‖�,N ,2 = ‖w(t, ·)‖�,N ,2 + ‖w(t, ·)‖�,N ,2. (5.2.38)

Proof Adopting the simplified notations, we have
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G(w) − G(w) = Ĝ(w,w)w∗, (5.2.39)

where Ĝ(w,w) is a sufficiently smooth function, and when

|w|, |w| ≤ ν0, (5.2.40)

we have
Ĝ(w,w) = O(|w|β + |w|β). (5.2.41)

Therefore, if β ≥ 1, from Lemma 5.2.5 it is clear that

‖(G(w) − G(w))u(t, ·)‖�,N ,r,2

≤ C(1 + t)−
n−1
2 (1− 2

αp )α‖w̃(t, ·)‖β
�,N ,2‖w̃(t, ·)‖�,N ,2‖u(t, ·)‖�,N ,2 (5.2.42)

and

‖(G(w) − G(w))u(t, ·)‖�,N ,r,2,χ1

≤ C(1 + t)−
n
2 (1− 2

αp )α‖w̃(t, ·)‖β
�,N ,2‖w∗(t, ·)‖�,N ,2‖u(t, ·)‖�,N ,2, (5.2.43)

then (5.2.35) and (5.2.36) hold; while, if β = 0, rewriting (5.2.39) as

G(w) − G(w) = (Ĝ(w,w) − Ĝ(0, 0))w∗ + Ĝ(0, 0)w∗, (5.2.44)

and noting that
(
1 − 2

αp

)
α = α − 2

p , it is easy to show that (5.2.35) and (5.2.36)

still hold. The proof is finished. �

Remark 5.2.2 The factor (1 + ‖w̃(t, x)‖�,N ,2) on the right-hand sides of (5.2.35)
and (5.2.36) appears only when β = 0.

Similarly to Lemma 5.2.7 we can obtain

Lemma 5.2.8 Suppose that function G = G(w) satisfies the conditions stated in
Lemma 5.2.1, and β ≥ 1 is an integer. For any given integer N ≥ n+2, if the vector
functions w = w(t, x) and w = w(t, x) both satisfy the conditions in Lemma 5.2.7
and the norms appearing on the right-hand sides of the following formulas are all
well-defined, then for any given real number r(1 ≤ r ≤ 2) we have

‖(G(w) − G(w))(t, ·)‖�,N ,r,2

≤ C(1 + t)−
n−1
2 (1− 2

β p )β‖w̃(t, ·)‖β
�,N ,2‖w∗(t, ·)‖�,N ,2 (5.2.45)

and

‖(G(w) − G(w))(t, ·)‖�,N ,r,2,χ1

≤ C(1 + t)−
n
2 (1− 2

β p )β‖w̃(t, ·)‖β
�,N ,2‖w∗(t, ·)‖�,N ,2, (5.2.46)
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where p is defined by (5.2.26), and χ1(t, x) is the characteristic function of the set
(5.2.25).

Remark 5.2.3 Since 1 ≤ r ≤ 2, we have

‖ f ‖Lr (IRn) ≤ C‖ f ‖Lr,2(IRn), (5.2.47)

where C is a positive constant. Therefore, replacing the space Lr,2(IRn) on the left-
hand sides of the estimates in Lemmas 5.2.5–5.2.8 by Lr (IRn), the conclusions still
hold.

5.3 Appendix—A Supplement About the Estimates on
Product Functions

In this section, for the need of Chap.6, we will prove the estimates on product
functions as follows.

Lemma 5.3.1 Suppose that

1

r
= 1

p
+ 1

q
, 1 ≤ p, q, r ≤ +∞. (5.3.1)

For any given integer s ≥ 1, if the norms appearing on the right-hand sides of the
following formulas are all well-defined, then we have

‖Ds( f g)‖Lr (IRn) ≤ C(‖ f ‖L p(IRn)‖Dsg‖Lq (IRn) + ‖Ds f ‖Lq (IRn)‖g‖L p(IRn)) (5.3.2)

and

‖Ds( f g) − f Dsg‖Lr (IRn ) ≤ C
(
‖Df ‖L p(IRn )‖Ds−1g‖Lq (IRn) + ‖Ds f ‖Lq (IRn )‖g‖L p(IRn )

)
,

(5.3.3)
where D = ( ∂

∂t ,
∂

∂x1
, . . . , ∂

∂xn
), C is a positive constant, and Ds f stands for the set

consisted of all the s-order partial derivatives of f .

To prove Lemma 5.3.1, we first give

Lemma 5.3.2 (Nirenberg inequality) Suppose that f ∈ L p(IRn), Ds f ∈ Lq(IRn),
where s ≥ 1 is an integer, and 1 ≤ p, q ≤ +∞. Then, for any given integer i
satisfying 0 ≤ i ≤ s we have

‖Di f ‖Lr (IRn) ≤ C‖ f ‖1− i
s

L p(IRn)‖Ds f ‖ i
s
Lq (IRn), (5.3.4)

where
1

r
=

(
1 − i

s

)
1

p
+ i

s

1

q
, (5.3.5)
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and C is a positive constant.

The proof of Lemma 5.3.2 can be found in Nirenberg (1959).
Now we prove Lemma 5.3.1.
For any given integer s ≥ 1, it is obvious that

Ds( f g) =
∑

i+ j=s
i, j≥0

Ci j D
i f · D jg, (5.3.6)

where Ci j are constants. Using Hölder inequality (5.1.3), we have

‖Ds( f g)‖Lr (IRn) ≤ C
∑

i+ j=s

‖Di f ‖Lr1 (IRn)‖D jg‖Lr2 (IRn), (5.3.7)

where 1 ≤ r1, r2 ≤ +∞, and
1

r1
+ 1

r2
= 1

r
. (5.3.8)

Particularly taking r1 and r2 such that

1

r1
=

(
1 − i

s

)
1

p
+ i

s

1

q
(5.3.9)

and
1

r2
=

(
1 − j

s

)
1

p
+ j

s

1

q
, (5.3.10)

respectively, from Nirenberg inequality (5.3.4) we have

‖Di f ‖Lr1 (IRn) ≤ C‖ f ‖1− i
s

L p(IRn)‖Ds f ‖ i
s
Lq (IRn) (5.3.11)

and
‖D jg‖Lr2 (IRn) ≤ C‖g‖1−

j
s

L p(IRn)‖Dsg‖
j
s
Lq (IRn). (5.3.12)

Plugging (5.3.11)–(5.3.12) in (5.3.7), and noting that

i

s
+ j

s
= 1, (5.3.13)

we obtain

‖Ds( f g)‖Lr (IRn) ≤ C
∑

i+ j=s

(‖Ds f ‖Lq (IRn)‖g‖L p(IRn))
i
s (‖ f ‖L p(IRn)‖Dsg‖Lq (IRn))

j
s .

(5.3.14)
Then, using the inequality
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ab ≤ 1

p̄
a p̄ + 1

q̄
bq̄ , (5.3.15)

where a, b ≥ 0, 1
p̄ + 1

q̄ = 1, and 1 ≤ p̄, q̄ ≤ +∞, and taking particularly p̄ = s
i ,

q̄ = s
j in (5.3.13), we get (5.3.2) from (5.3.14).

As to (5.3.3), as long as we notice that

Ds( f g) − f Dsg =
∑

i+ j=s−1
i, j≥0

Ci j D
i (Df )D jg, (5.3.16)

it can be proved similarly.



Chapter 6
Cauchy Problem of the Second-Order Linear
Hyperbolic Equations

6.1 Introduction

In order to solve the Cauchy problem of nonlinear wave equations later (see Chap.7),
we will consider in this chapter the following Cauchy problem of n-dimensional
linear hyperbolic equations:

utt −
n∑

i, j=1

ai j (t, x)uxi x j − 2
n∑

j=1

a0 j (t, x)utx j = F(t, x), (t, x) ∈ IR+ × IRn, (6.1.1)

t = 0:u = f (x), ut = g(x), x ∈ IRn, (6.1.2)

and prove the existence, uniqueness and regularity of solutions (see Li and Chen
1989, 1992). Here we assume that for all (t, x) ∈ IR+ × IRn ,

ai j (t, x) = a ji (t, x) (i, j = 1, . . . , n) (6.1.3)

and
n∑

i, j=1

ai j (t, x)ξiξ j ≥ m0|ξ|2, ∀ξ = (ξ1, . . . , ξn) ∈ IRn, (6.1.4)

where m0 > 0 is a constant.

Remark 6.1.1 Under assumptions (6.1.3)–(6.1.4), Eq. (6.1.1) is a second-order linear
hyperbolic equation.

To explain this, we only need to notice that for any given (t , x) ∈ IR+ × IRn ,
denoting ai j=ai j (t, x) and a0 j=a0 j (t, x), the corresponding characteristic quadratic
form

λ2
0 − 2

n∑

j=1

a0 jλ0λ j −
n∑

i, j=1

ai jλiλ j (6.1.5)
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can be written to the sum of squares with one positive coefficient and n negative
ones. Due to (6.1.3)–(6.1.4), (ai j ) (i , j=1, . . ., n) is a symmetric positively definite
matrix, and through an orthogonal transformation we can first change (λ1, . . .,λn)
into (λ̄1, . . .,λ̄n), such that the quadratic form (6.1.5) can be reduced to

λ2
0 − 2

n∑

j=1

ā0 jλ0λ̄ j −
n∑

j=1

ā j j λ̄
2
j , (6.1.6)

where
ā j j ≥ m0 > 0 ( j = 1, . . . , n). (6.1.7)

Then we can write the quadratic form (6.1.6) as

(
1 +

n∑

j=1

ā2
0 j

ā j j

)
λ2
0 −

n∑

j=1

ā j j

(
λ̄ j + ā0 j

ā j j
λ0

)2

, (6.1.8)

which is exactly the required form.

6.2 Existence and Uniqueness of Solutions

We will use the Galerkin method to prove the following

Lemma 6.2.1 For any given positive number T > 0, if we assume that

f ∈ H s+1(IRn), g ∈ H s(IRn), (6.2.1)

ai j ∈ L∞((0, T ) × IRn), (6.2.2)
∂ai j

∂t
,
∂ai j

∂xk
∈ L∞(0, T ; H s−1(IRn)) (i, j, k = 1, . . . , n), (6.2.3)

a0 j ∈ L∞(0, T ; H s(IRn)) ( j = 1, . . . , n) (6.2.4)

and
F ∈ L2(0, T ; H s(IRn)), (6.2.5)

where s ≥ [ n
2 ] + 2 is an integer, then Cauchy problem (6.1.1)–(6.1.2) admits a unique

solution u = u(t, x) satisfying

u ∈ L∞(0, T ; H s+1(IRn)), (6.2.6)

ut ∈ L∞(0, T ; H s(IRn)), (6.2.7)

utt ∈ L2(0, T ; H s−1(IRn)), (6.2.8)
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and we have the following estimates:

‖u(t, ·)‖2H s+1(IRn) + ‖ut (t, ·)‖2H s (IRn)

≤ C0(T )

(
‖ f ‖2H s+1(IRn) + ‖g‖2H s (IRn) +

∫ t

0
‖F(τ , ·)‖2H s (IRn)dτ

)
,

∀t ∈ [0, T ], (6.2.9)

where C0(T ) is a positive constant depending on T and the norms of ai j and
a0 j (i, j = 1, . . . , n) in the spaces shown in (6.2.2)–(6.2.4).

Proof Let {wh}(h = 1, 2, . . .) be a basis in the space H s+1(IRn). For any given
m ∈ N , find an approximate solution

um(t) =
m∑

l=1

glm(t)wl (6.2.10)

to Cauchy problem (6.1.1)–(6.1.2) such that

(u′′
m(t), wh)H s (IRn) − 2

n∑

j=1

(
a0 j (t, x)

∂u′
m(t)

∂x j
, wh

)

H s (IRn)

−
n∑

i, j=1

〈
ai j (t, x)

∂2um(t)

∂xi∂x j
, wh

〉

H s−1(IRn),H s+1(IRn)

= (F(t), wh)H s (IRn) (1 ≤ h ≤ m), ∀t ∈ [0, T ] (6.2.11)

and

um(0) = u0m
def.=

m∑

l=1

ξlmwl, (6.2.12)

u′
m(0) = u1m

def.=
m∑

l=1

ηlmwl, (6.2.13)

and assume that as m → ∞,

u0m → f strongly in H s+1(IRn), (6.2.14)

u1m → g strongly in H s(IRn). (6.2.15)

In (6.2.11), 〈·, ·〉H s−1(IRn),H s+1(IRn) stands for the dual inner product between the spaces
H s−1(IRn) and H s+1(IRn), and (·, ·)H s (IRn) the inner product in the space H s(IRn).
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By (6.2.10), (6.2.11)–(6.2.13) can be rewritten as

m∑

l=1

g′′
lm(t)(wl, wh)H s (IRn) −

m∑

l=1

glm(t)
n∑

i, j=1

〈
ai j (t, x)

∂2wl

∂xi∂x j
, wh

〉

H s−1(IRn),H s+1(IRn)

−2
m∑

l=1

g′
lm(t)

n∑

j=1

(
a0 j (t, x)

∂wl

∂x j
, wh

)

H s (IRn)

= (F(t), wh)H s (IRn) (1 ≤ h ≤ m), ∀t ∈ [0, T ] (6.2.16)

and
glm(0) = ξlm, g′

lm(0) = ηlm (1 ≤ l ≤ m). (6.2.17)

By assumptions (6.2.2)–(6.2.5), and noting that the space H M(IRn) is an algebra
when M ≥ [ n

2 ] + 1, it is clear that the inner products appearing in (6.2.16) all make
sense. Then, we get a Cauchy problem of second-order linear ordinary differential
equations in terms of unknowns {glm(t)(1 ≤ l ≤ m)}. From the linear independence
of w1, . . . , wm we have

det |(wl, wh)H s (IRn)| �= 0, (6.2.18)

therefore, from the theory of linear ordinary differential equations we know that
Cauchy problem (6.2.16)–(6.2.17) admits on the interval [0, T ] a unique solution

glm(t) ∈ H 2(0, T ) (1 ≤ l ≤ m), (6.2.19)

then we can determine uniquely the approximate solution um(t) from (6.2.10), and

um(t) ∈ H 2(0, T ; H s+1(IRn)). (6.2.20)

Now we estimate the approximate solution sequence {um(t)}.
Multiplying (6.2.11) by g′

hm(t) and summing over h, we obtain

1

2

d

dt
‖u′

m(t)‖2H s (IRn) −
n∑

i, j=1

〈
ai j (t, x)

∂2um(t)

∂xi∂x j
, u′

m(t)
〉

H s−1(IRn),H s+1(IRn)

−2
n∑

j=1

(
a0 j (t, x)

∂u′
m(t)

∂x j
, u′

m(t)
)

H s (IRn)

= (F(t), u′
m(t))H s (IRn), ∀t ∈ [0, T ]. (6.2.21)

By carefully examining the second term on the left-hand side of (6.2.21), we have

〈
ai j (t, x)

∂2um(t)

∂xi ∂x j
, u′

m(t)

〉

Hs−1(IRn ),Hs+1(IRn )
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=
∑

|k|≤s

〈
Dk

x

(
ai j (t, x)

∂2um (t)

∂xi ∂x j

)
, Dk

x u′
m (t)

〉

H−1(IRn ),H1(IRn )

=
∑

|k|≤s

〈
ai j (t, x)Dk

x
∂2um (t)

∂xi ∂x j
, Dk

x u′
m (t)

〉

H−1(IRn ),H1(IRn )

+
∑

|k|≤s

〈
Dk

x

(
ai j (t, x)

∂2um (t)

∂xi ∂x j

)
− ai j (t, x)Dk

x
∂2um (t)

∂xi ∂x j
, Dk

x u′
m (t)

〉

H−1(IRn ),H1(IRn )

=
∑

|k|≤s

〈
ai j (t, x)Dk

x
∂2um (t)

∂xi ∂x j
, Dk

x u′
m (t)

〉

H−1(IRn ),H1(IRn )

+
∑

|k|≤s

(
Dk

x

(
ai j (t, x)

∂2um (t)

∂xi ∂x j

)
− ai j (t, x)Dk

x
∂2um (t)

∂xi ∂x j
, Dk

x u′
m (t)

)

L2(IRn )

, (6.2.22)

where 〈·, ·〉H−1(IRn),H 1(IRn) stands for the dual inner product between the spaces
H−1(IRn) and H 1(IRn), and (·, ·)L2(IRn) the inner product in the space L2(IRn).

For the first term on the right-hand side of (6.2.22), it is obvious that

∑

|k|≤s

〈
ai j (t, x)Dk

x

∂2um(t)

∂xi∂x j
, Dk

x u′
m(t)

〉

H−1(IRn),H 1(IRn)

=
∑

|k|≤s

〈 ∂

∂xi

(
ai j (t, x)

∂

∂x j
Dk

x um(t)
)
, Dk

x u′
m(t)

〉

H−1(IRn),H 1(IRn)

−
∑

|k|≤s

〈∂ai j (t, x)

∂x j

∂

∂x j
Dk

x um(t), Dk
x u′

m(t)
〉

H−1(IRn),H 1(IRn)

= −
∑

|k|≤s

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x u′
m(t)

)

L2(IRn)

−
∑

|k|≤s

(∂ai j (t, x)

∂x j

∂

∂x j
Dk

x um(t), Dk
x u′

m(t)
)

L2(IRn)
. (6.2.23)

Since
(

ai j (t, x)
∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x u′
m(t)

)

L2(IRn)

= d

dt

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)

)

L2(IRn)

−
(

ai j (t, x)
∂

∂x j
Dk

x u′
m(t),

∂

∂xi
Dk

x um(t)

)

L2(IRn)

−
(

∂ai j (t, x)

∂t

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)

)

L2(IRn)

, (6.2.24)
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and also noticing the symmetry of ai j (see (6.1.3)), it is easy to get

n∑

i, j=1

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x u′
m(t)

)

L2(IRn)

= 1

2

d

dt

n∑

i, j=1

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)

)

L2(IRn)

−1

2

n∑

i, j=1

(
∂ai j (t, x)

∂t

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)

)

L2(IRn)

. (6.2.25)

From (6.2.22)–(6.2.23) and (6.2.25), we can rewrite the second term on the left-
hand side of (6.2.21) as

−
n∑

i, j=1

〈
ai j (t, x)

∂2um (t)

∂xi ∂x j
, u′

m (t)

〉

Hs−1(IRn ),Hs+1(IRn )

= 1

2

d

dt

∑

|k|≤s

n∑

i, j=1

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um (t)

)

L2(IRn )

− 1

2

∑

|k|≤s

n∑

i, j=1

(
∂ai j (t, x)

∂t

∂

∂x j
Dk

x um (t),
∂

∂xi
Dk

x um (t)

)

L2(IRn )

+
∑

|k|≤s

n∑

i, j=1

(
∂ai j (t, x)

∂xi

∂

∂x j
Dk

x um (t), Dk
x u′

m (t)

)

L2(IRn )

−
∑

|k|≤s

n∑

i, j=1

(
Dk

x

(
ai j (t, x)

∂2um (t)

∂xi ∂x j

)
− ai j (t, x)Dk

x
∂2um (t)

∂xi ∂x j
, Dk

x u′
m (t)

)

L2(IRn )

. (6.2.26)

In addition, we have

(
a0 j (t, x)

∂u′
m (t)

∂x j
, u′

m (t)

)

Hs (IRn )

=
∑

|k|≤s

(
Dk

x

(
a0 j (t, x)

∂u′
m (t)

∂x j

)
, Dk

x u′
m (t)

)

L2(IRn )

=
∑

|k|≤s

(
a0 j (t, x)Dk

x
∂u′

m (t)

∂x j
, Dk

x u′
m (t)

)

L2(IRn )

+
∑

|k|≤s

(
Dk

x

(
a0 j (t, x)

∂u′
m (t)

∂x j

)
− a0 j (t, x)Dk

x
∂u′

m (t)

∂x j
, Dk

x u′
m (t)

)

L2(IRn )

. (6.2.27)
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While, for the first term on the right-hand side of the above formula, we have

(
a0 j (t, x)Dk

x
∂u′

m(t)

∂x j
, Dk

x u′
m(t)

)

L2(IRn )

=
(

∂

∂x j

(
a0 j (t, x)Dk

x u′
m(t)

)
, Dk

x u′
m(t)

)

L2(IRn )

−
(

∂a0 j (t, x)

∂x j
Dk

x u′
m(t), Dk

x u′
m(t)

)

L2(IRn )

= −
(

a0 j (t, x)Dk
x u′

m(t), Dk
x
∂u′

m(t)

∂x j

)

L2(IRn )

−
(

∂a0 j (t, x)

∂x j
Dk

x u′
m(t), Dk

x u′
m(t)

)

L2(IRn )

,

hence
(

a0 j (t, x)Dk
x
∂u′

m(t)

∂x j
, Dk

x u′
m(t)

)

L2(IRn )

= −1

2

(
∂a0 j (t, x)

∂x j
Dk

x u′
m(t), Dk

x u′
m(t)

)

L2(IRn)

.

(6.2.28)

From (6.2.27)–(6.2.28), the third term on the left-hand of (6.2.21) can be rewritten
as

−2
n∑

j=1

(
a0 j (t, x)

∂u′
m (t)

∂x j
, u′

m (t)

)

Hs (IRn )

=
∑

|k|≤s

n∑

j=1

(
∂a0 j (t, x)

∂x j
Dk

x u′
m (t), Dk

x u′
m (t)

)

L2(IRn )

−2
∑

|k|≤s

n∑

j=1

(
Dk

x

(
a0 j (t, x)

∂u′
m (t)

∂x j

)
− a0 j (t, x)Dk

x
∂u′

m (t)

∂x j
, Dk

x u′
m (t)

)

L2(IRn )

. (6.2.29)

Thus, combining (6.2.26) and (6.2.29), we can rewrite (6.2.21) as

1

2

d

dt

(
‖u′

m(t)‖2H s (IRn)

+
∑

|k|≤s

n∑

i, j=1

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)
)

L2(IRn)

)

= 1

2

∑

|k|≤s

n∑

i, j=1

(∂ai j (t, x)

∂t

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)
)

L2(IRn)

−
∑

|k|≤s

n∑

i, j=1

(
∂ai j (t, x)

∂xi

∂

∂x j
Dk

x um(t), Dk
x u′

m(t)

)

L2(IRn)

+
∑

|k|≤s

n∑

i, j=1

(
Dk

x

(
ai j (t, x)

∂2um(t)

∂xi∂x j

)
− ai j (t, x)Dk

x

∂2um(t)

∂xi∂x j
, Dk

x u′
m(t)

)

L2(IRn)
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−
∑

|k|≤s

n∑

j=1

(
∂a0 j (t, x)

∂x j
Dk

x u′
m(t), Dk

x u′
m(t)

)

L2(IRn)

+2
∑

|k|≤s

n∑

j=1

(
Dk

x

(
a0 j (t, x)

∂u′
m(t)

∂x j

)
− a0 j (t, x)Dk

x

∂u′
m(t)

∂x j
, Dx

k u′
m(t)

)

L2(IRn)

+(F(t), u′
m(t))H s (IRn), ∀t ∈ [0, T ]. (6.2.30)

Integrating the above formulawith respect to t , and noting (6.2.12)–(6.2.13),when
0 ≤ t ≤ T we get

‖u′
m(t)‖2Hs (IRn ) +

∑

|k|≤s

n∑

i, j=1

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)

)

L2(IRn )

= ‖u1m‖2Hs (IRn) +
∑

|k|≤s

n∑

i, j=1

(
ai j (0, x)

∂

∂x j
Dk

x u0m ,
∂

∂xi
Dk

x u0m

)

L2(IRn )

+
∑

|k|≤s

n∑

i, j=1

∫ t

0

(
∂ai j (τ , x)

∂τ

∂

∂x j
Dk

x um(τ ),
∂

∂xi
Dk

x um(τ )

)

L2(IRn )

dτ

−2
∑

|k|≤s

n∑

i, j=1

∫ t

0

(
∂ai j (τ , x)

∂xi

∂

∂x j
Dk

x um(τ ), Dk
x u′

m(τ )

)

L2(IRn )

dτ

+2
∑

|k|≤s

n∑

i, j=1

∫ t

0

(
Dk

x

(
ai j (τ , x)

∂2um(τ )

∂xi ∂x j

)
− ai j (τ , x)Dk

x
∂2um(τ )

∂xi ∂x j
, Dk

x u′
m(τ )

)

L2(IRn )

dτ

−2
∑

|k|≤s

n∑

j=1

∫ t

0

(
∂a0 j (τ , x)

∂x j
Dk

x u′
m(τ ), Dk

x u′
m(τ )

)

L2(IRn )

dτ

+4
∑

|k|≤s

n∑

j=1

∫ t

0

(
Dk

x

(
a0 j (τ , x)

∂u′
m(τ )

∂x j

)
− a0 j (τ , x)Dk

x
∂u′

m(τ )

∂x j
, Dk

x u′
m(τ )

)

L2(IRn )

dτ

+2
∫ t

0
(F(τ ), u′

m(τ ))Hs (IRn )dτ

def.= ‖u1m‖2Hs (IRn ) +
∑

|k|≤s

n∑

i, j=1

(
ai j (0, x)

∂

∂x j
Dk

x u0m ,
∂

∂xi
Dk

x u0m

)

L2(IRn )

+I+II+III+IV+V+VI. (6.2.31)

Noticing that when s ≥ [ n
2 ] + 2, the Sobelev embedding theorem tells us that

H s−1(IRn) ⊂ L∞(IRn) (6.2.32)
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is a continuous embedding, by assumptions (6.2.3)–(6.2.4) it is obvious that

I+II+IV ≤ C1

∫ t

0

(
‖u′

m(τ )‖2H s (IRn) + ‖Dx um(τ )‖2H s (IRn)

)
dτ , (6.2.33)

where constant C1 > 0 depends only on the norms of ∂ai j

∂t ,
∂ai j

∂xi
and ∂a0 j

∂x j
(i, j =

1, . . . , n) in L∞(0, T ; H s−1(IRn)).
From (5.3.4) in Lemma 5.3.1 of Chap.5 (in which we take p = +∞, q = r = 2)

we have
∥∥∥∥Dk

x

(
ai j (τ , x)

∂2um(τ )

∂xi∂x j

)
− ai j (τ , x)Dk

x

∂2um(τ )

∂xi∂x j

∥∥∥∥
L2(IRn)

≤ C

(
‖Dx ai j (τ , x))‖L∞(IRn)

∥∥∥∥D|k|−1
x

∂2um(τ )

∂xi∂x j

∥∥∥∥
L2(IRn)

+‖D|k|
x ai j (τ , x)‖L2(IRn)

∥∥∥∥
∂2um(τ )

∂xi∂x j

∥∥∥∥
L∞(IRn)

)
, (6.2.34)

where C is a positive constant, and D|k|
x represents the set of all partial derivatives of

|k|-th order, and so on. Noting also (6.2.32), when |k| ≤ s we have

∥∥∥∥Dk
x

(
ai j (τ , x)

∂2um(τ )

∂xi∂x j

)
− ai j (τ , x)Dk

x

∂2um(τ )

∂xi∂x j

∥∥∥∥
L2(IRn)

≤ C‖Dx ai j (τ , x)‖H s−1(IRn)‖Dx um(τ )‖H s (IRn), (6.2.35)

Then, by assumption (6.2.3) we obtain

III ≤ C2

∫ t

0

(
‖u′

m(τ )‖2H s (IRn) + ‖Dx um(τ )‖2H s (IRn)

)
dτ , (6.2.36)

where constant C2 > 0 depends only on norms of ∂ai j

∂xk
(i, j, k = 1, . . . , n) in

L∞(0, T ; H s−1(IRn)). Similarly we have

V ≤ C3

∫ t

0
‖u′

m(τ )‖2H s (IRn)dτ , (6.2.37)

where constant C3 > 0 depends only on norms of ∂a0 j

∂xk
( j, k = 1, . . . , n) in L∞(0, T ;

H s−1 (IRn)).
Moreover, it is obvious that

VI ≤
∫ t

0
‖u′

m(τ )‖2H s (IRn)dτ +
∫ t

0
‖F(τ )‖2H s (IRn)dτ . (6.2.38)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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By assumption (6.1.4) we have

∑

|k|≤s

n∑

i, j=1

(
ai j (t, x)

∂

∂x j
Dk

x um(t),
∂

∂xi
Dk

x um(t)

)

L2(IRn)

≥ m0‖Dx um(t)‖2H s (IRn).

(6.2.39)
Therefore, using (6.2.33), (6.2.36)–(6.2.39) and noting (6.2.2), it follows from

(6.2.31) that

‖u′
m(t)‖2H s (IRn) + ‖Dx um(t)‖2H s (IRn)

≤ C4

(
‖u1m‖2H s (IRn) + ‖Dx u0m‖2H s (IRn) +

∫ t

0
‖F(τ )‖2H s (IRn)dτ

+
∫ t

0

(
‖u′

m(τ )‖2H s (IRn) + ‖Dx um(τ )‖2H s (IRn)

)
dτ

)
, ∀t ∈ [0, T ], (6.2.40)

where constantC4 > 0dependsonlyonnormsofai j (i, j = 1, . . . , n) in L∞((0, T ) ×
IRn) and norms of ∂ai j

∂t ,
∂ai j

∂xk
and ∂a0 j

∂xk
(i, j, k = 1, . . . , n) in L∞(0, T ; H s−1(IRn)).

Combining (6.2.14)–(6.2.15) and assumptions (6.2.1) and (6.2.5), and usingGron-
wall inequality,we have

‖u′
m(t)‖2H s (IRn) + ‖Dx um(t)‖2H s (IRn) ≤ C(T ), ∀t ∈ [0, T ], (6.2.41)

whereC(T ) is a positive constant dependingon T but independent ofm. Furthermore,
from

um(t) = um(0) +
∫ t

0
u′

m(τ )dτ = u0m +
∫ t

0
u′

m(τ )dτ , (6.2.42)

we have

‖um(t)‖H s (IRn) ≤ ‖u0m‖H s (IRn) +
∫ t

0
‖u′

m(τ )‖H s (IRn)dτ , (6.2.43)

then it is easy to know that

‖um(t)‖H s (IRn) ≤ C(T ), ∀t ∈ [0, T ]. (6.2.44)

Hence, we now obtain

{um(t)} ∈ a bounded set in L∞(0, T ; H s+1(IRn)) (6.2.45)

{u′
m(t)} ∈ a bounded set in L∞(0, T ; H s(IRn)). (6.2.46)

Along with (6.2.35) and noting assumption (6.2.3), for any given multi-index k with
|k| ≤ s, we have
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{
Dk

x

(
ai j (t, x)

∂2um(t)

∂xi∂x j

)
− ai j (t, x)Dk

x

∂2um(t)

∂xi∂x j

}

∈ a bounded set in L∞(0, T ; L2(IRn)). (6.2.47)

Similarly, for |k| ≤ s, we have

{
Dk

x

(
a0 j (t, x)

∂u′
m(t)

∂x j

)
− a0 j (t, x)Dk

x

∂u′
m(t)

∂x j

}

∈ a bounded set in L∞(0, T ; L2(IRn)). (6.2.48)

Therefore, from the weak compactness we know that: there exists a subsequence
{uμ(t)} of {um(t)}, such that when μ → ∞ we have

uμ(t)
∗

⇀ u(t) weak ∗ in L∞(0, T ; H s+1(IRn)), (6.2.49)

u′
μ(t)

∗
⇀ u′(t) weak ∗ in L∞(0, T ; H s(IRn)), (6.2.50)

and for |k| ≤ s, we have

Dk
x

(
ai j (t, x)

∂2uμ(t)

∂xi∂x j

)
− ai j (t, x)Dk

x

∂2uμ(t)

∂xi∂x j

∗
⇀ Dk

x

(
ai j (t, x)

∂2u(t)

∂xi∂x j

)
− ai j (t, x)Dk

x

∂2u(t)

∂xi∂x j

weak ∗ in L∞(0, T ; L2(IRn)), (6.2.51)

Dk
x

(
a0 j (t, x)

∂u′
μ(t)

∂x j

)
− a0 j (t, x)Dk

x

∂u′
μ(t)

∂x j

∗
⇀ Dk

x

(
a0 j (t, x)

∂u′(t)
∂x j

)
− a0 j (t, x)Dk

x

∂u′(t)
∂x j

weak ∗ in L∞(0, T ; L2(IRn)). (6.2.52)

Moreover, similarly to (6.2.22) and (6.2.27), we have

〈
ai j (t, x)

∂2uμ(t)

∂xi ∂x j
, wh

〉

Hs−1(IRn),Hs+1(IRn)

=
∑

|k|≤s

〈
ai j (t, x)Dk

x
∂2uμ(t)

∂xi ∂x j
, Dk

xwh

〉

H−1(IRn),H1(IRn)

+
∑

|k|≤s

(
Dk

x

(
ai j (t, x)

∂2uμ(t)

∂xi ∂x j

)
− ai j (t, x)Dk

x
∂2uμ(t)

∂xi ∂x j
, Dk

xwh

)

L2(IRn)

(6.2.53)
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and

〈
a0 j (t, x)

∂u′
μ(t)

∂x j
, wh

〉

Hs−1(IRn),Hs+1(IRn)

=
(

a0 j (t, x)
∂u′

μ(t)

∂x j
, wh

)

Hs (IRn)

=
∑

|k|≤s

(
a0 j (t, x)Dk

x
∂u′

μ(t)

∂x j
, Dk

xwh

)

L2(IRn)

+
∑

|k|≤s

(
Dk

x

(
a0 j (t, x)

∂u′
μ(t)

∂x j

)
− a0 j (t, x)Dk

x
∂u′

μ(t)

∂x j
, Dk

xwh

)

L2(IRn)

=
∑

|k|≤s

〈
a0 j (t, x)Dk

x
∂u′

μ(t)

∂x j
, Dk

xwh

〉

H−1(IRn),H1(IRn)

+
∑

|k|≤s

(
Dk

x

(
a0 j (t, x)

∂u′
μ(t)

∂x j

)
− a0 j (t, x)Dk

x
∂u′

μ(t)

∂x j
, Dk

xwh

)

L2(IRn)

. (6.2.54)

Taking μ → ∞ in (6.2.53) and (6.2.54), it follows from (6.2.49)–(6.2.52) that

〈
ai j (t, x)

∂2uμ(t)

∂xi∂x j
, wh

〉

H s−1(IRn),H s+1(IRn)

∗
⇀

〈
ai j (t, x)

∂2u(t)

∂xi∂x j
, wh

〉

H s−1(IRn),H s+1(IRn)

weak ∗ in L∞(0, T ) (6.2.55)

and

(
a0 j (t, x)

∂u′
μ(t)

∂x j
, wh

)

H s (IRn)

=
〈
a0 j (t, x)

∂u′
μ(t)

∂x j
, wh

〉

H s−1(IRn),H s+1(IRn)

∗
⇀

〈
a0 j (t, x)

∂u′(t)
∂x j

, wh

〉

H s−1(IRn),H s+1(IRn)

weak ∗ in L∞(0, T ). (6.2.56)

Thus, taking m = μ → ∞ in (6.2.11), for any given h ∈ IN we obtain that

d2

dt2
〈uμ(t), wh〉H s−1(IRn),H s+1(IRn) = 〈u′′

μ(t), wh〉H s−1(IRn),H s+1(IRn)

∗
⇀

〈 n∑

i, j=1

ai j (t, x)
∂2u(t)

∂xi∂x j
+ 2

n∑

j=1

a0 j (t, x)
∂u′(t)
∂x j

+ F(t), wh

〉

H s−1(IRn),H s+1(IRn)

weak ∗ in L∞(0, T ). (6.2.57)
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On the other hand, noting (6.2.50), for any given h ∈ IN , when μ → ∞ we have

d

dt
〈uμ(t), wh〉H s−1(IRn),H s+1(IRn) = 〈u′

μ(t), wh〉H s−1(IRn),H s+1(IRn)

∗
⇀

d

dt
〈u(t), wh〉H s−1(IRn),H s+1(IRn) = 〈u′(t), wh〉H s−1(IRn),H s+1(IRn)

weak ∗ in L∞(0, T ), (6.2.58)

then

d2

dt2
〈uμ(t), wh〉H s−1(IRn),H s+1(IRn)

→ d2

dt2
〈u(t), wh〉H s−1(IRn),H s+1(IRn) = 〈u′′(t), wh〉H s−1(IRn),H s+1(IRn)

in D′(0, T ). (6.2.59)

Together with (6.2.57) and (6.2.59), we obtain: for any given h ∈ IN , it holds in
D′(0, T ) that

〈
u′′(t) −

n∑

i, j=1

ai j (t, x)
∂2u(t)

∂xi ∂x j
− 2

n∑

j=1

a0 j (t, x)
∂u′(t)
∂x j

− F(t), wh

〉

Hs−1(IRn ),Hs+1(IRn )

= 0,

(6.2.60)
that is,

〈 ∫ T

0

(
u′′(t) −

n∑

i, j=1

ai j (t, x)
∂2u(t)

∂xi∂x j

−2
n∑

j=1

a0 j (t, x)
∂u′(t)
∂x j

− F(t)
)
φ(t)dt, wh

〉

H s−1(IRn),H s+1(IRn)

= 0, ∀φ ∈ D(0, T ), ∀h ∈ IN . (6.2.61)

Since {wh}(h = 1, 2, . . .) is a set of basis in H s+1(IRn), the above formula yields
that in H s−1(IRn),

∫ T

0

⎛

⎝u′′(t) −
n∑

i, j=1

ai j (t, x)
∂2u(t)

∂xi ∂x j
− 2

n∑

j=1

a0 j (t, x)
∂u′(t)
∂x j

− F(t)

⎞

⎠φ(t)dt = 0, ∀φ ∈ D(0, T ),

(6.2.62)
consequently, in D′(0, T ; H s−1(IRn)) we have

u′′(t) −
n∑

i, j=1

ai j (t, x)
∂2u(t)

∂xi∂x j
− 2

n∑

j=1

a0 j (t, x)
∂u′(t)
∂x j

= F(t), (6.2.63)
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namely, u is a solution to Eq. (6.1.1). Furthermore, noting (6.2.49)–(6.2.50), (6.2.2)
and (6.2.4)–(6.2.5), and using Eq. (6.2.63), we get (6.2.6)–(6.2.8). As a result,
(6.2.63) holds in L2(0, T ; H s−1(IRn)). In addition, thanks to (6.2.57) and (6.2.63),
when μ → ∞ we also have

d

dt
〈u′

μ(t), wh〉H s−1(IRn),H s+1(IRn) = d2

dt2
〈uμ(t), wh〉H s−1(IRn),H s+1(IRn)

∗
⇀

d

dt
〈u′(t), wh〉H s−1(IRn),H s+1(IRn) = d2

dt2
〈u(t), wh〉H s−1(IRn),H s+1(IRn)

weak ∗ in L∞(0, T ). (6.2.64)

Nowwe prove that u satisfies the initial condition (6.1.2). It follows from (6.2.49)–
(6.2.50) that, when μ → ∞, we have

uμ(0) = u0μ
∗

⇀ u(0) weak ∗ in H s(IRn), (6.2.65)

then we immediately get from (6.2.14) that

u(0) = f. (6.2.66)

This is exactly the first formula in (6.1.2). Similarly, from (6.2.58) and (6.2.64), when
μ → ∞, we have

〈u′
μ(0), wh〉H s−1(IRn),H s+1(IRn) → 〈u′(0), wh〉H s−1(IRn),H s+1(IRn), ∀h ∈ IN , (6.2.67)

then it follows from (6.2.15) that

〈u′(0), wh〉H s−1(IRn),H s+1(IRn) = 〈g, wh〉H s−1(IRn),H s+1(IRn), ∀h ∈ IN . (6.2.68)

Since {wh} is a set of basis in H s+1(IRn), we get

u′(0) = g. (6.2.69)

This is just the second formula in (6.1.2).
In consequence, the u obtained from (6.2.49) gives the solution toCauchy problem

(6.1.1)–(6.1.2), and satisfies (6.2.6)–(6.2.8). This proves the existence of solutions.
Now we prove estimate (6.2.9) for any solution u = u(t, x) to Cauchy problem

(6.1.1)–(6.1.2), satisfying (6.2.6)–(6.2.8).
Taking the inner product of ut with both sides of Eq. (6.1.1) in the space H s(IRn),

integrating with respect to t over the interval [0, t], and using almost the same argu-
ments as in establishing estimate (6.2.40) to the approximate solution um(t) previ-
ously, we obtain
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‖Dx u(t, ·)‖2Hs (IRn) + ‖ut (t, ·)‖2Hs (IRn)

≤ C5

(
‖Dx f ‖2Hs (IRn) + ‖g‖2Hs (IRn) +

∫ t

0
‖F(τ , ·)‖2Hs (IRn)dτ

+
∫ t

0

(
‖Dx u(τ , ·)‖2Hs (IRn) + ‖uτ (τ , ·)‖2Hs (IRn)

)
dτ

)
, ∀t ∈ [0, T ], (6.2.70)

where constant C5 > 0 depends only on the norm of ai j (i, j = 1, . . . , n) in

L∞((0, T ) × IRn) and norms of ∂ai j

∂t ,
∂ai j

∂xk
and ∂a0 j

∂xk
(i, j, k = 1, . . . , n) in L∞(0, T ;

H s−1(IRn)). Moreover, since

u(t, ·) = f (·) +
∫ t

0
uτ (τ , ·)dτ , (6.2.71)

we get

‖u(t, ·)‖H s (IRn) ≤ ‖ f ‖H s (IRn) +
∫ t

0
‖uτ (τ , ·)‖H s (IRn)dτ , ∀t ∈ [0, T ]. (6.2.72)

Combining (6.2.70) and (6.2.72) and using Gronwall inequality, we can obtain the
required estimate (6.2.9).

The uniqueness of solutions toCauchy problem (6.1.1)–(6.1.2), satisfying (6.2.6)–
(6.2.8), follows immediately from estimate (6.2.9). As a result, the whole approxi-
mate sequence {um(t)} converges.

The proof of Lemma 2.1.1 is finished. �

6.3 Regularity of Solutions

In this section,wewill use amollifying argument to improveLemma6.2.1 as follows.

Theorem 6.3.1 Under the assumptions of Lemma 6.2.1, for the solution u = u(t, x)

to Cauchy problem (6.1.1)–(6.1.2), after possible change of values on a zero-measure
set of the interval [0, T ], we have

u ∈ C([0, T ]; H s+1(IRn)), (6.3.1)

ut ∈ C([0, T ]; H s(IRn)). (6.3.2)

To prove Theorem 6.3.1, we need to use some properties about the mollifying
operator.

Denote by Jδ the mollifier with respect to the variable x ∈ IRn:

Jδ f = jδ ∗ f, (6.3.3)

http://dx.doi.org/10.1007/978-3-662-55725-9_2
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where f = f (x), δ > 0, and jδ can be taken as, say,

jδ(x) = 1

δn
j
( x

δ

)
, (6.3.4)

where

j (x) =
{

C exp
(

1
|x |2−1

)
, |x | ≤ 1

0, |x | ≥ 1
∈ D(IRn) = C∞

0 (IRn), (6.3.5)

and the constant C is chosen such that
∫

IRn

j (x)dx = 1. (6.3.6)

Lemma 6.3.1 Assume that
f ∈ H s(IRn), (6.3.7)

where s ≥ 0 is any given integer, then we have
(i) for any given δ > 0,

Jδ f ∈ C∞(IRn), (6.3.8)

and for any given integer N ≥ 0,

Jδ f ∈ H N (IRn). (6.3.9)

(ii) for any given multi-index k = (k1, . . . , kn) with |k| ≤ s,

Jδ Dk
x f = Dk

x Jδ f. (6.3.10)

(iii) for any given δ > 0,

‖Jδ f ‖H s (IRn) ≤ C‖ f ‖H s (IRn), (6.3.11)

where C is a positive constant independent of δ; and when δ → 0,

Jδ f → f strongly in H s(IRn). (6.3.12)

(iv) for any given δ > 0 and for any given integer N > s,

‖Jδ f ‖H N (IRn) ≤ CN (δ)‖ f ‖H s (IRn), (6.3.13)

where CN (δ) is a positive constant depending on δ and N.

Proof See Hörmander (1963).



6.3 Regularity of Solutions 149

Lemma 6.3.2 (Friedrichs Lemma) Assume that

a ∈ W 1,∞(IRn), f ∈ L2(IRn), (6.3.14)

then we have
‖[Jδ, L] f ‖L2(IRn) ≤ C‖ f ‖L2(IRn), (6.3.15)

where C > 0 is a positive constant independent of δ; and when δ → 0,

[Jδ, L] f → 0 strongly in L2(IRn), (6.3.16)

in which

L = a(x)
∂

∂xi
(6.3.17)

is a partial differential operator, and

[Jδ, L] = Jδ L − L Jδ (6.3.18)

is the corresponding commutant operator.

Proof See Hörmander (1963). �

Now we use Lemma 6.3.2 to prove the following

Lemma 6.3.3 For any given integer s ≥ [ n
2 ] + 2, assume that

a ∈ L∞(IRn), (6.3.19)

Dx a ∈ H s−1(IRn), (6.3.20)

f ∈ H s(IRn), (6.3.21)

then
‖[Jδ, L] f ‖H s (IRn) ≤ C‖ f ‖H s (IRn), (6.3.22)

and when δ → 0,
[Jδ, L] f → 0 strongly in H s(IRn), (6.3.23)

where L is still defined by (6.3.17), and C is a positive constant independent of δ.

Proof Noticing (6.2.32), due to Lemma 6.3.2, it suffices to prove, for any given
multi-index k with 0 < |k| ≤ s, that

‖Dk
x [Jδ, L] f ‖L2(IRn) ≤ C‖ f ‖H s (IRn), (6.3.24)

and when δ → 0,
Dk

x [Jδ, L] f → 0 strongly in L2(IRn). (6.3.25)
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We have
Dk

x [Jδ, L] f = [Jδ, L]Dk
x f + [Dk

x , [Jδ, L]] f. (6.3.26)

By Lemma 6.3.2 and assumptions (6.3.19)–(6.3.20), noting (6.2.32), it is obvious
that

‖[Jδ, L]Dk
x f ‖L2(IRn) ≤ C‖ f ‖H s (IRn), (6.3.27)

and when δ → 0,
[Jδ, L]Dk

x f → 0 strongly in L2(IRn). (6.3.28)

Therefore, it remains to check the second term on the right-hand side of (6.3.26).
By the property

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (6.3.29)

of the commutant operator, and noting that (6.3.10) implies

[Dk
x , Jδ] = 0, (6.3.30)

we obtain

[Dk
x , [Jδ, L]] f = [Jδ, [Dk

x , L]] f = (Jδ[Dk
x , L] f − [Dk

x , L] f ) − [Dk
x , L](Jδ f − f ).

(6.3.31)
Since

[Dk
x , L] f = Dk

x

(
a(x)

∂ f

∂xi

)
− a(x)Dk

x

(
∂ f

∂xi

)
, (6.3.32)

similarly to (6.2.34), and noticing (6.2.32), we get

‖[Dk
x , L] f ‖L2(IRn ) ≤ C

(
‖Dx a‖L∞(IRn )

∥∥∥∥D|k|−1
x

(
∂ f

∂xi

)∥∥∥∥
L∞(IRn )

+ ‖D|k|
x a‖L2(IRn )

∥∥∥∥
∂ f

∂xi

∥∥∥∥
L∞(IRn )

)

≤ C‖Dx a‖Hs−1(IRn )‖ f ‖Hs (IRn ), (6.3.33)

where D|k| stands for the set of all partial derivatives of order |k|, etc. Similarly we
have

‖[Dk
x , L](Jδ f − f )‖L2(IRn) ≤ C‖Dx a‖H s−1(IRn)‖Jδ f − f ‖H s (IRn). (6.3.34)

Then, using (6.3.11)–(6.3.12) in Lemma 6.3.1, and noting (6.3.20), it follows from
(6.3.31) that

‖[Dk
x , [Jδ, L]] f ‖L2(IRn) ≤ C‖Dx a‖H s−1(IRn)‖ f ‖H s (IRn) ≤ C‖ f ‖H s (IRn), (6.3.35)

and when δ → 0,
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[Dk
x , [Jδ, L] f ] → 0 strongly in L2(IRn). (6.3.36)

This is exactly what we want to prove. We finish the proof of Lemma 6.3.3. �

Now we prove Theorem 6.3.1.
Denote

uδ(t, ·) = Jδu(t, ·), (6.3.37)

where u = u(t, x) is the solution to Cauchy problem (6.1.1)–(6.1.2).
Using (i) and (iv) in Lemma 6.3.1, for any given δ > 0, it follows from (6.2.6)–

(6.2.8) that

uδ ∈ L∞(0, T ; H s+2(IRn)), (6.3.38)

uδ
t ∈ L∞(0, T ; H s+1(IRn)), (6.3.39)

uδ
t t ∈ L∞(0, T ; H s(IRn)), (6.3.40)

then, after possible change of values on a zero-measure set of the interval [0, T ], we
have

uδ ∈ C([0, T ]; H s+1(IRn)), (6.3.41)

uδ
t ∈ C([0, T ]; H s(IRn)). (6.3.42)

Acting the mollifier Jδ on both sides of both Eq. (6.1.1) and initial condition
(6.1.2), respectively, and noticing (6.3.10), we obtain

uδ
t t −

n∑

i, j=1

ai j (t, x)uδ
xi x j

− 2
n∑

j=1

a0 j (t, x)uδ
t x j

= Fδ(t, x) + Gδ, (6.3.43)

t = 0:uδ = f δ, uδ
t = gδ, (6.3.44)

where

Fδ(t, ·) = Jδ F(t, ·), (6.3.45)

f δ = Jδ f, gδ = Jδg, (6.3.46)

and

Gδ = Gδ(t, x)

=
n∑

i, j=1

(Jδ(ai j (t, x)uxi x j ) − ai j (t, x)Jδuxi x j )

+2
n∑

j=1

(Jδ(a0 j (t, x)utx j ) − a0 j (t, x)Jδutx j )
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=
n∑

i, j=1

(
Jδ

(
ai j (t, x)

∂uxi

∂x j

)
− ai j (t, x)

∂

∂x j
(Jδuxi )

)

+2
n∑

j=1

(
Jδ

(
a0 j (t, x)

∂ut

∂x j

)
− a0 j (t, x)

∂

∂x j
(Jδut )

)
. (6.3.47)

According to (6.3.11)–(6.3.12) in Lemma 6.3.1, and noticing assumptions (6.2.1)
and (6.2.5), when δ → 0 we have

f δ → f strongly in H s+1(IRn), (6.3.48)

gδ → g strongly in H s(IRn), (6.3.49)

and from Lebesgue dominated convergence theorem we have

Fδ → F strongly in L2(0, T ; H s(IRn)). (6.3.50)

In addition, from Lemma 6.3.3, and noting (6.2.2)–(6.2.4) and (6.2.6)-(6.2.7), we
have

‖Gδ(t, ·)‖Hs (IRn) ≤ C
(
‖Dx u(t, ·)‖Hs (IRn) + ‖ut (t, ·)‖Hs (IRn)

)

≤ C
(
‖u(t, ·)‖Hs+1(IRn) + ‖ut (t, ·)‖Hs (IRn)

)
, ∀t ∈ [0, T ], (6.3.51)

and when δ → 0, for any given t ∈ [0, T ],

Gδ(t, ·) → 0 strongly in H s(IRn). (6.3.52)

Hence, from Lebesgue dominated convergence theorem we have, as δ → 0,

Gδ → 0 strongly in L2(0, T ; H s(IRn)). (6.3.53)

Due to the established estimate (6.2.9), for any given δ, δ′ > 0, it is easy to show by
(6.3.43)–(6.3.44) that

‖uδ(t, ·) − uδ′
(t, ·)‖2Hs+1(IRn)

+ ‖uδ
t (t, ·) − uδ′

t (t, ·)‖2Hs (IRn)

≤ C(T )
(
‖ f δ − f δ′ ‖2Hs+1(IRn)

+ ‖gδ − gδ′ ‖2Hs (IRn)

+
∫ T

0
‖Fδ(τ , ·) − Fδ′

(τ , ·)‖2Hs (IRn)dτ

+
∫ T

0

(‖Gδ(τ , ·)‖2Hs (IRn) + ‖Gδ′
(τ , ·)‖2Hs (IRn)

)
dτ

)
, ∀t ∈ [0, T ]. (6.3.54)
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Then, using (6.3.48)–(6.3.50) and (6.3.53), and noting (6.3.41)–(6.3.42), we obtain
that when δ → 0,

uδ strongly in C([0, T ]; H s+1(IRn)), (6.3.55)

uδ
t strongly in C([0, T ]; H s(IRn)). (6.3.56)

While, due to (6.2.6)–(6.2.7), similarly to (6.3.50), we obtain that when δ → 0,

uδ → u strongly in L2(0, T ; H s+1(IRn)), (6.3.57)

uδ
t → ut strongly in L2(0, T ; H s(IRn)). (6.3.58)

Hence, when δ → 0 we have

uδ → u strongly in C([0, T ]; H s+1(IRn)), (6.3.59)

uδ
t → ut strongly in C([0, T ]; H s(IRn)). (6.3.60)

This proves Theorem 6.3.1.

Corollary 6.3.1 Using Eq. (6.1.1) we obtain that: under the assumptions of Theorem
6.3.1 we also have

utt ∈ L2(0, T ; H s−1(IRn)). (6.3.61)

Corollary 6.3.2 If we assume furthermore in Theorem 6.3.1 that

F ∈ L∞(0, T ; H s−1(IRn)), (6.3.62)

then for the solution u = u(t, x) to Cauchy problem (6.1.1)–(6.1.2), we have

utt ∈ L∞(0, T ; H s−1(IRn)). (6.3.63)

Corollary 6.3.3 If we assume furthermore in Theorem 6.3.1 that

ai j ∈ C([0, T ] × IRn), Dx ai j ∈ C([0, T ]; H s−2(IRn)), (6.3.64)

a0 j ∈ C([0, T ]; H s−1(IRn)) (6.3.65)

and
F ∈ C([0, T ]; H s−1(IRn)), (6.3.66)

then for the solution u = u(t, x) to Cauchy problem (6.1.1)–(6.1.2), we have

utt ∈ C([0, T ]; H s−1(IRn)). (6.3.67)



Chapter 7
Reduction of Nonlinear Wave Equations
to a Second-Order Quasi-linear Hyperbolic
System

7.1 Introduction

As stated before, this book is concerned with the Cauchy problem of nonlinear wave
equations with small initial data:

�u = F(u, Du, Dx Du), (7.1.1)

t = 0 : u = εϕ(x), ut = εψ(x), (7.1.2)

where

� = ∂2

∂t2
− �

(
� =

n∑
i=1

∂2

∂x2
i

)
(7.1.3)

is the n-dimensional wave operator,

Dx =
( ∂

∂x1
, . . . ,

∂

∂xn

)
,

D =
( ∂

∂t
,

∂

∂x1
, . . . ,

∂

∂xn

)
=

( ∂

∂x0
,

∂

∂x1
, . . . ,

∂

∂xn

)
, (7.1.4)

here we denote x0 = t for convenience, ϕ,ψ ∈ C∞
0 (IRn), and ε > 0 is a small para-

meter.
Let

λ̂ = (λ; (λi ), i = 0, 1, . . . , n; (λi j ), i, j = 0, 1, . . . , n, i + j ≥ 1). (7.1.5)

Assume that in a neighborhood of λ̂ = 0, say, for |λ̂| ≤ ν0 (ν0 is a suitably small
positive number), the nonlinear right-hand side term F(λ̂) is a sufficiently smooth
function satisfying
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F(λ̂) = O(|λ̂|1+α), (7.1.6)

and α ≥ 1 is an integer.
This chapter is aimed to show that Cauchy problem (7.1.1)–(7.1.2) of nonlinear

wave equations with small initial data can be essentially reduced to studying on the
Cauchy problem of quasi-linear hyperbolic equations as

�u =
n∑

i, j=1

bi j (u, Du)uxi x j + 2
n∑

j=1

a0 j (u, Du)utx j + F(u, Du) (7.1.7)

with the corresponding initial data (7.1.2). In (7.1.7), if we denote

λ̃ = (λ, (λi ), i = 0, 1, . . . , n), (7.1.8)

then for |λ̃| ≤ ν0, bi j (λ̃), a0 j (λ̃) (i, j = 1, . . . , n) and F(λ̃) are all sufficiently
smooth functions satisfying

bi j (λ̃) = b ji (λ̃) (i, j = 1, . . . , n), (7.1.9)

bi j (λ̃), a0 j (λ̃) = O(|λ̃|α) (i, j = 1, . . . , n), (7.1.10)

F(λ̃) = O(|λ̃|1+α), (7.1.11)

and α ≥ 1 is the integer appearing in (7.1.6), and we have

n∑
i, j=1

ai j (λ̃)ξiξ j ≥ m0|ξ|2, ∀ξ ∈ IRn, (7.1.12)

where m0 is a positive constant.

ai j (λ̃) = δi j + bi j (λ̃), (7.1.13)

and δi j is the Kronecker symbol.
For this purpose, we will prove that Cauchy problem (7.1.1)–(7.1.2) can be equiv-

alently reduced to a Cauchy problem of a system of second-order quasi-linear hyper-
bolic equations of form (7.1.7) with small initial data like (7.1.2) (see Sect. 7.2).

Moreover, on the occasion that the nonlinear right-hand side term F in (7.1.1)
satisfies some special requirements, the obtained system of second-order quasi-linear
hyperbolic equations of form (7.1.7) also owns some special forms (see Sect. 7.3).
For example, when F does not depend on u explicitly:

F = F(Du, Dx Du), (7.1.14)

the corresponding system (7.1.7) of second-order quasi-linear hyperbolic equations
has the following special form:
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�u =
n∑

i, j=1

bi j (Du)uxi x j + 2
n∑

j=1

a0 j (Du)utx j + F(Du). (7.1.15)

For another example, if F satisfies

∂β
u F(0, 0, 0) = 0, 1 + α ≤ β ≤ β0, (7.1.16)

where β0 > α is an integer, andα ≥ 1 is the integer appearing in (7.1.6), then the cor-
responding term F(u, Du) in system (7.1.7) of second-order quasi-linear hyperbolic
equations has to satisfy a similar condition

∂β
u F(0, 0) = 0, 1 + α ≤ β ≤ β0. (7.1.17)

Remark 7.1.1 From (7.1.6) we always have

∂β
u F(0, 0, 0) = 0, 0 ≤ β ≤ α, (7.1.18)

and (7.1.16) is an additional condition.

According to the results obtained in this chapter, this bookwill focus on discussing
Cauchy problem (7.1.7) and (7.1.2), or its special form (7.1.15) and (7.1.2), of the
second-order quasi-linear hyperbolic equation with small initial data.

7.2 Case of a General Nonlinear Right-Hand Side Term F

This section is concerned with Cauchy problem (7.1.1)–(7.1.2) with a general non-
linear right-hand side term

F = F(u, Du, Dx Du), (7.2.1)

Proposition 7.2.1 Under assumption (7.1.6), Cauchy problem (7.1.1)–(7.1.2) of the
nonlinear wave equation with small initial data can be reduced equivalently to a
Cauchy problem of a second-order quasi-linear hyperbolic system of form (7.1.7)
satisfying (7.1.9)–(7.1.13) with small initial data like (7.1.2).

Proof Let u = u(t, x) be a solution to Cauchy problem (7.1.1)–(7.1.2). Setting

ui = ∂u

∂xi
(i = 1, . . . , n), (7.2.2)

and denoting
U = (u, u1, . . . , un)

T . (7.2.3)
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(7.1.1) can be written as

�u = F(u, DU )
def.= F(u, Du, Du1, . . . , Dun). (7.2.4)

Differentiating the above formula with respect to xi (i = 1, . . . , n), respectively, we
obtain

�ui = ∂F

∂u
(u, DU )

∂u

∂xi
+ ∇F(u, DU )

∂DU

∂xi
(i = 1, . . . , n), (7.2.5)

where ∇F(u, DU ) stands for the gradient of F with respect to the variable DU .
It is easy to know from (7.1.6) that (7.2.4)–(7.2.5) can always be written as a

second-order quasi-linear hyperbolic system of form (7.1.7) for the vector function
U , satisfying the corresponding (7.1.9)–(7.1.13). In addition, the initial conditions
corresponding to the vector function U are given by (7.1.2) and

t = 0 : ui = ε
∂ϕ(x)

∂xi
, (ui )t = ε

∂ψ(x)

∂xi
(i = 1, . . . , n). (7.2.6)

Thus, Cauchy problem (7.1.1)–(7.1.2) of the nonlinear wave equation with small ini-
tial data is reduced to a Cauchy problem of the second-order quasi-linear hyperbolic
system (7.2.4)–(7.2.5) with small initial data (7.1.2) and (7.2.6).

On the contrary, ifU = (u, u1, . . . , un)
T is a solution to theCauchy problemof the

second-order quasi-linear hyperbolic system (7.2.4)–(7.2.5) with small initial data
(7.1.2) and (7.2.6), satisfying (7.1.9)–(7.1.13), then u can be proved to be a solution to
the originalCauchy problem (7.1.1)–(7.1.2) of the nonlinearwave equation satisfying
(7.1.6).

To this end, it suffices to prove (7.2.2). Let

ūi = ∂u

∂xi
(i = 1, . . . , n). (7.2.7)

Similarly to the above derivation, differentiating (7.2.4) with respect to xi (i =
1, . . . , n), respectively, we have

�ūi = ∂F

∂u
(u, DU )

∂u

∂xi
+ ∇F(u, DU )

∂DU

∂xi
(i = 1, . . . , n), (7.2.8)

while, from (7.1.2) we have

t = 0 : ūi = ε
∂ϕ(x)

∂xi
, (ūi )t = ε

∂ψ(x)

∂xi
(i = 1, · · · , n). (7.2.9)

Noting the uniqueness of solutions to the Cauchy problem of wave equations,
from (7.2.5)–(7.2.6) and (7.2.8)–(7.2.9) we immediately get



7.2 Case of a General Nonlinear Right-Hand Side Term F 159

ūi = ui (i = 1, . . . , n), (7.2.10)

this is just the desired (7.2.2).
The proof of Proposition 2.1 is finished.

Remark 7.2.1 If the initial value ψ(x) of Cauchy problem (7.1.1)–(7.1.2) satisfies

∫

IRn

ψ(x)dx = 0, (7.2.11)

then, by the assumption ψ ∈ C∞
0 (IRn) and noting (7.2.6), the initial value of the

reduced Cauchy problem of form (7.1.7) still satisfies the same assumption as
(7.2.11).

7.3 Cases of Special Nonlinear Right-Hand Side Terms F

We first consider the case that the nonlinear right-hand side term F does not depend
on u explicitly:

F = F(Du, Dx Du). (7.3.1)

At this moment, (7.2.4)–(7.2.5), a second-order quasi-linear hyperbolic system
obtained in Sect. 7.2, can be simplified to the following form:

�u = F(DU )
def.= F(Du, Du1, . . . , Dun) (7.3.2)

and

�ui = ∇F(DU )
∂DU

∂xi
(i = 1, . . . , n), (7.3.3)

in which the right-hand side terms do not depend on ui (i = 1, . . . , n) explicitly
just like in (7.2.4)–(7.2.5), and they do not depend on u explicitly either. Then,
corresponding to Proposition 2.1, we have

Proposition 7.3.1 For case (7.3.1) that the nonlinear right-hand side term F does
not depend on u explicitly, under the corresponding assumption (7.1.6), the Cauchy
problem of nonlinear wave equation

�u = F(Du, Dx Du) (7.3.4)

with small initial data (7.1.2) can be reduced equivalently to a Cauchy problem of
a second-order quasi-linear hyperbolic system of form (7.1.15) satisfying (7.1.9)–
(7.1.13) with small initial data like (7.1.2).
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Now we consider the case that nonlinear right-hand side term F = F(u, Du,
Dx Du) satisfies not only (7.1.6) but also the following conditions on its partial
derivatives with respect to u:

∂β
u F(0, 0, 0) = 0, 1 + α ≤ β ≤ β0, (7.3.5)

where β0 > α is an integer, and α ≥ 1 in the integer appearing in (7.1.6).
Under the special assumption that (7.3.5) is satisfied, from (7.2.4)–(7.2.5) it is easy

to show that: when Cauchy problem (7.1.1)–(7.1.2) of the nonlinear wave equation
is reduced to a Cauchy problem of a second-order quasi-linear hyperbolic system of
form (7.1.7) with small initial data like (7.1.2), the term F(u, Du) in (7.1.7) has to
satisfy a similar condition like (7.3.5):

∂β
u F(0, 0) = 0, 1 + α ≤ β ≤ β0. (7.3.6)

Thus, we obtain

Proposition 7.3.2 Under the assumption that the nonlinear right-hand side term
F satisfies not only (7.1.6) but also (7.3.5), Cauchy problem (7.1.1)–(7.1.2) of the
nonlinear wave equation with small initial data can be reduced equivalently to a
Cauchy problem of a second-order quasi-linear hyperbolic system of form (7.1.7)
satisfying (7.1.9)–(7.1.13) with small initial data like (7.1.2), and the term F(u, Du)
in (7.1.7) satisfies condition (7.3.6) similar to (7.3.5).

Remark 7.3.1 β0 = 2α is an important special case. On this occasion, (7.3.5) and
(7.3.6) can be written, respectively, as

∂β
u F(0, 0, 0) = 0, 1 + α ≤ β ≤ 2α (7.3.7)

and
∂β

u F(0, 0) = 0, 1 + α ≤ β ≤ 2α. (7.3.8)

Remark 7.3.2 For the important special case α = 1, (7.3.7) and (7.3.8) can be
reduced, respectively, to

F ′′
uu(0, 0, 0) = 0 (7.3.9)

and
F ′′

uu(0, 0) = 0. (7.3.10)



Chapter 8
Cauchy Problem of One-Dimensional
Nonlinear Wave Equations

8.1 Introduction

In this chapter we consider the following Cauchy problem of one-dimensional fully
nonlinear wave equations with small initial data:

utt − uxx = F(u, Du, Dux ), (8.1.1)

t = 0 : u = εφ(x), ut = εψ(x), (8.1.2)

where

D = ( ∂
∂t ,

∂
∂x ), (8.1.3)

φ,ψ ∈ C∞
0 (IR), (8.1.4)

and ε > 0 is a small parameter.
Let

λ̂ = (λ; (λi ), i = 0, 1; (λi j ), i, j = 0, 1, i + j ≥ 1). (8.1.5)

Assume that in a neighborhood of λ̂ = 0, say, for |λ̂| ≤ ν0, the nonlinear term F(λ̂)

is a sufficiently smooth function satisfying

F(λ̂) = O(|λ̂|1+α), (8.1.6)

and α ≥ 1 is an integer.
This chapter is aimed at studying the life-span ˜T (ε) of classical solutions to

Cauchy problem (8.1.1)–(8.1.2) for any given integer α ≥ 1. From the definition of
life-span, ˜T (ε) is the upper bound of all the values of τ , such that Cauchy problem
(8.1.1)–(8.1.2) admits classical solutions on 0 ≤ t ≤ τ , so the maximum interval of
existence for classical solutions to Cauchy problem (8.1.1)–(8.1.2) is [0, ˜T (ε)).
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We will prove that: there exists a suitably small positive number ε0 such that
for any given ε ∈ (0, ε0], we have the following estimates on the lower bound of
life-span (Li et al. 1991b, 1992a):

(i) In general,
˜T (ε) ≥ aε− α

2 . (8.1.7)

(ii) If
∫ ∞

−∞
ψ(x)dx = 0, (8.1.8)

then
˜T (ε) ≥ aε− α(1+α)

2+α . (8.1.9)

(iii) If
∂β

u F(0, 0, 0) = 0, ∀1 + α ≤ β ≤ β0, (8.1.10)

then
˜T (ε) ≥ aε−min( β0

2 ,α). (8.1.11)

When β0 ≥ 2α, (8.1.11) is reduced to

˜T (ε) ≥ aε−α. (8.1.12)

In particular, when the nonlinear right-hand side term F does not depend on u
explicitly:

F = F(Du, Dux ), (8.1.13)

(8.1.12) is also true.
In the above estimates, a stands for a positive constant independent of ε, and

β0 > α is an integer.
From the results inChaps. 13 and14weknow that the above lower bound estimates

of life-span are all sharp.

By Chap.7, to investigate Cauchy problem (8.1.1)–(8.1.2) of one-dimensional
nonlinear wave equation, it suffices, essentially, to consider the following Cauchy
problem of one-dimensional quasi-linear hyperbolic equation:

utt − uxx = b(u, Du)uxx + 2a0(u, Du)utx + F(u, Du), (8.1.14)

t = 0 : u = εφ(x), ut = εψ(x), (8.1.15)

where (φ,ψ) is assumed to satisfy (8.1.4), and ε > 0 is a small parameter. Let

λ̃ = (λ; (λi ), i = 0, 1). (8.1.16)

http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_14
http://dx.doi.org/10.1007/978-3-662-55725-9_7
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Assume that for |λ̃| ≤ ν0, b(λ̃), a0(λ̃) and F(λ̃) are all sufficiently smooth functions
satisfying

b(λ̃), a0(λ̃) = O(|λ̃|α), (8.1.17)

F(λ̃) = O(|λ̃|1+α), (8.1.18)

where α ≥ 1 is an integer. Then, for suitably small ν0, we have

a(λ̃)
def.= 1 + b(λ̃) ≥ m0, (8.1.19)

and m0 is a positive constant. Moreover, condition (8.1.10) is now reduced to (see
Proposition 7.3.2 in Chap.7)

∂β
u F(0, 0) = 0, ∀1 + α ≤ β ≤ β0. (8.1.20)

8.2 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (8.1.14)–(8.1.15)

8.2.1 Metric Space XS,E,T . Main results

In this section, we will prove the lower bound estimates given by (8.1.7) and (8.1.9)
for the life-span of classical solutions to Cauchy problem (8.1.14)–(8.1.15) of one-
dimensional quasi-linear hyperbolic equation.

From the Sobolev embedding theorem,there exists a suitably small E0 > 0, such
that

‖ f ‖L∞(IR) ≤ ν0, ∀ f ∈ H 1(IR), ‖ f ‖H 1(IR) ≤ E0. (8.2.1)

For any given integer S ≥ 4, and any given positive numbers E(≤ E0) and T , we
introduce the following set of functions:

X S,E,T = {υ(t, x)|DS,T (υ) ≤ E, ∂l
t υ(0, x) = u(0)

l (x) (l = 0, 1, . . . , S)}, (8.2.2)

where

DS,T (υ) = sup
0≤t≤T

‖υ(t, ·)‖L∞(IR)+ sup
0≤t≤T

g−1(t)‖υ(t, ·)‖L1+α(IR)+ sup
0≤t≤T

‖Dυ(t, ·)‖D,S,2

(8.2.3)
with

g(t) =
{

(1 + t)
1

1+α , if
∫

ψdx �= 0;
1, if

∫

ψdx = 0
(8.2.4)

http://dx.doi.org/10.1007/978-3-662-55725-9_7
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and
‖w(t, ·)‖D,S,2 =

∑

|k|≤S

‖Dkw(t, ·)‖L2(IR), ∀t ≥ 0. (8.2.5)

Besides, u(0)
0 = εφ(x), u(0)

1 = εψ(x), and for every l = 2, . . . , S, u(0)
l (x) is the

value of ∂l
t u(t, x) at t = 0, which is uniquely determined by equation (8.1.14) and

initial condition (8.1.15). Obviously, u(0)
l (l = 0, 1, . . . , S) are all sufficiently smooth

functions with compact support.
Introduce the following metric on X S,E,T :

ρ(υ, υ) = DS,T (υ − υ), ∀υ, υ ∈ X S,E,T . (8.2.6)

We want to prove

Lemma 8.2.1 For suitably small ε > 0, X S,E,T is a nonempty complete metric
space.

Proof Choosing an infinitely differentiable function a(t) on [0, T ], such that

a(t) =
{

0, if t ≥ min(T, 1),
1, near t = 0,

(8.2.7)

it is easy to know that for suitably small ε > 0 (the choosing of ε depends on E but
not on T ), the function

υ = υ(t, x) = a(t)
S

∑

l=0

t l

l!u(0)
l (x) (8.2.8)

belongs to X S,E,T , so X S,E,T is not empty.
It is easy to know that X S,E,T constitutes a metric space with respect to the metric

(8.2.6). To prove its completeness, let {υi } be a Cauchy sequence in it:

ρ(υi , υ j ) → 0, i, j → ∞. (8.2.9)

Noticing that L∞(0, T ; L∞(IR)), L∞(0, T ; L1+α(IR)) and L∞(0, T ; H S−l(IR))

(l = 0, 1, . . . , S) are all complete Banach spaces, from (8.2.9) we easily know
that there exists a function υ such that

υi → υ strongly in L∞(0, T ; L∞(IR)), (8.2.10)

g(t)υi → g(t)υ strongly in L∞(0, T ; L1+α(IR)), (8.2.11)

and for l = 0, 1, . . . , S, we have

∂l
t Dυi → ∂l

t Dυ strongly in L∞(0, T ; H S−l(IR). (8.2.12)
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From this it easily yields that

ρ(υi , υ) → 0, i → ∞ (8.2.13)

and
υ ∈ X S,E,T . (8.2.14)

The proof of Lemma 8.2.1 is finished. 
�
Noting S > 4 and the definition of X S,E,T , from the Sobolev embedding theorem

we know that
H 1(IR) ⊂ L∞(IR) (8.2.15)

is a continuous embedding, then, using the interpolation it is easy to prove

Lemma 8.2.2 For any given υ ∈ X S,E,T with S ≥ 4, we have

‖υ(t, ·)‖D,[ S
2 ]+2,∞ ≤ C E, ∀t ∈ [0, T ], (8.2.16)

and for any given p satisfying 2 ≤ p ≤ +∞, we have

‖Dυ(t, ·)‖L p(IR) ≤ C E, ∀t ∈ [0, T ], (8.2.17)

where C is positive constant.

The main theorem in this section is as follows.

Theorem 8.2.1 Under assumptions (8.1.4) and (8.1.17)–(8.1.18), for any given in-
teger S ≥ 4, there exist positive constants ε0 and C0 satisfying C0ε0 ≤ E0, such that
for any given ε ∈ (0, ε0] there exists a positive number T (ε) such that Cauchy prob-
lem (8.1.14)–(8.1.15) admits a unique classical solution u ∈ X S,C0ε,T (ε) on [0, T (ε)],
and T (ε) can be chosen as

T (ε) =
{

aε− α
2 − 1, if

∫

ψdx �= 0;
aε− α(1+α)

2+α − 1, if
∫

ψdx = 0,
(8.2.18)

where a is a positive constant independent of ε.
Moreover, after a possible change of values on a zero-measure set with respect to

t on the interval [0, T (ε)], we have

u ∈ C([0, T (ε)]; H S+1(IR)), (8.2.19)

ut ∈ C([0, T (ε)]; H S(IR)), (8.2.20)

utt ∈ C([0, T (ε)]; H S−1(IR)). (8.2.21)
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Remark 8.2.1 From the Sobolev embedding theoremwe know that H 1(IR) ⊂ C(IR)

is a continuous embedding. Therefore, the solution u = u(t, x) satisfying (8.2.19)–
(8.2.21) is a twice continuously differentiable classical solution to Cauchy problem
(8.1.14)–(8.1.15).

Remark 8.2.2 Noticing that ˜T (ε) > T (ε), it follows from (8.2.18) that estimates
(8.1.7) and (8.1.9) are true for Cauchy problem (8.1.13)–(8.1.14).

8.2.2 Framework to Prove Theorem 8.2.1—The Global
Iteration Method

To prove Theorem 8.2.1, we solve the followingCauchy problem of linear hyperbolic
equation for any given υ ∈ X S,E,T :

utt − uxx = F̂(υ, Dυ, Dux )
def.= b(υ, Dυ)uxx + 2a0(υ, Dυ)utx + F(υ, Dυ), (8.2.22)

t = 0 : u = εφ(x), ut = εψ(x). (8.2.23)

Define a mapping
M : υ → u = Mυ. (8.2.24)

We want to prove that: for suitably small ε > 0, we can find a positive constant C0

such that when E = C0ε and T = T (ε) is defined by (8.2.18), the mapping M maps
X S,E,T into itself and possesses a certain contractive property.

Lemma 8.2.3 When E > 0 is suitably small, for any given υ ∈ X S,E,T , after a
possible change of values on a zero-measure set of t , we have

u = Mυ ∈ C([0, T ]; H S+1(IR)), (8.2.25)

ut ∈ C([0, T ]; H S(IR)), (8.2.26)

utt ∈ L∞(0, T ; H S−1(IR)). (8.2.27)

Proof From the definition of X S,E,T , for any given υ ∈ X S,E,T we have

Dυ ∈ L∞(0, T ; H S(IR)). (8.2.28)

Hence, since

υ(t, ·) = υ(0, ·) +
∫ t

0
υτ (τ , ·)dτ = εφ(x) +

∫ t

0
υτ (τ , ·)dτ , (8.2.29)
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noting (8.1.4), it is easy to get

υ ∈ L∞(0, T ; H S(IR)). (8.2.30)

So, by (8.1.17)–(8.1.18), using Lemma 5.2.2 and Remark 5.2.1 of Chap.5 and notic-
ing (8.2.2) and (8.2.15), we have

b(υ, Dυ), a0(υ, Dυ), F(υ, Dυ) ∈ L∞(0, T ; H S(IR)),

Db(υ, Dυ) ∈ L∞(0, T ; H S−1(IR)). (8.2.31)

In addition, when E > 0 is suitably small, we have

a(υ, Dυ)
def.= 1 + b(υ, Dυ) ≥ m0, (8.2.32)

and m0 is a positive constant.
Therefore, from Theorem 6.3.1 and Corollary 6.3.2 of Chap.6, the conclusion we

want immediately follows. The proof is finished. 
�
It is easy to prove the following

Lemma 8.2.4 For u = u(t, x) = Mυ, the values of ∂l
t u(0, x)(l = 0, 1, . . . , S + 1)

are independent of the choosing of υ ∈ X S,E,T , and

∂l
t u(0, x) = u(0)

l (x) (l = 0, 1, . . . , S). (8.2.33)

Moreover,
‖u(0, ·)‖D,S+1,p ≤ C pε, (8.2.34)

where 1 ≤ p ≤ +∞, C p is a positive constant, and ‖u(0, ·)‖D,S+1,p stands for the
value of ‖u(t, ·)‖D,S+1,p at t = 0.

The following two lemmas are crucial to the proof of Theorem 8.2.1.

Lemma 8.2.5 Under the assumptions of Theorem 8.2.1, when E > 0 is suitably
small, for any given υ ∈ X S,E,T , u = Mυ satisfies

DS,T (u) ≤ C1{ε + (R + √
R)(E + DS,T (u))}, (8.2.35)

where C1 is a positive constant independent of E and T , and

R = R(E, T )
def.=

{

Eα(1 + T )2, if
∫

ψdx �= 0;
Eα(1 + T )

2+α
1+α , if

∫

ψdx = 0.
(8.2.36)

Lemma 8.2.6 Under the assumptions of Lemma 8.2.5, for any given υ, υ ∈ X S,E,T ,
if both u = Mυ and u = Mυ also satisfy u, u ∈ X S,E,T , then we have

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_6
http://dx.doi.org/10.1007/978-3-662-55725-9_6
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DS−1,T (u − u) ≤ C2(R + √
R)(DS−1,T (u − u) + DS−1,T (υ − υ)), (8.2.37)

where C2 is a positive constant independent of E and T , and R = R(E, T ) is still
defined by (8.2.36).

The proofs of Lemmas 8.2.5 and 8.2.6 will be given later. Now we first use these
two lemmas to prove Theorem 8.2.1.
Proof of Theorem 8.2.1 Take

C0 = 3max(C1, C2), (8.2.38)

where C1 and C2 are the positive constants appearing in Lemmas 8.2.5 and 8.2.6,
respectively.

From the proof of Lemma 8.2.1we can show that, if we take E(ε) = C0ε and T (ε)
as shown in (8.2.18), then X S,E(ε),T (ε) is not empty as long as ε > 0 is sufficiently
small.

First we prove that we can choose a suitable constant a in (8.2.18), such that

R(E(ε), T (ε)) + √

R(E(ε), T (ε)) ≤ 1

C0
. (8.2.39)

In fact, from (8.2.36) and (8.2.18), when
∫

ψdx �= 0 or
∫

ψdx = 0, we have,
respectively,

R(E(ε), T (ε)) + √

R(E(ε), T (ε)) = Cα
0 a2 + C

α
2
0 a

or
R(E(ε), T (ε)) + √

R(E(ε), T (ε)) = Cα
0 a

2+α
1+α + C

α
2
0 a

2+α
2(1+α) .

Then, (8.2.39) is true as long as a > 0 is suitably small.
Using (8.2.39), from Lemma 8.2.5 we easily obtain that: there exists a suitably

small ε0 > 0, such that for all ε(0 < ε ≤ ε0), for any given υ ∈ X S,E(ε),T (ε), u = Mυ
satisfies

DS,T (ε)(u) ≤ E(ε). (8.2.40)

Noticing Lemma 8.2.4, we have u = Mυ ∈ X S,E(ε),T (ε), i.e., M maps X S,E(ε),T (ε)

into itself. Furthermore, from Lemma 8.2.6 we obtain that: for all ε(0 < ε ≤ ε0),
for any given υ, υ ∈ X S,E(ε),T (ε), setting u = Mυ, u = Mυ, we then have

DS−1,T (ε)(u − u) ≤ 1

2
DS−1,T (ε)(υ − υ), (8.2.41)

that is, M is a contract mapping with respect to the metric of space X S−1,E(ε),T (ε).

Lemma 8.2.7 X S,E,T is a closed subset of X S−1,E,T .
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Proof It suffices to prove that if

υi ∈ X S,E,T , (8.2.42)

and as i → ∞, we have
υi → υ in X S−1,E,T , (8.2.43)

then
υ ∈ X S,E,T . (8.2.44)

In fact, from (8.2.43) and the definition of the metric in X S−1,E,T we have

υi → υ strongly in L∞(0, T ; L∞(IR)), (8.2.45)

g(t)υi → g(t)υ strongly in L∞(0, T ; L1+α(IR)), (8.2.46)

and for l = 0, 1, . . . , S − 1, we have

∂l
t Dυi → ∂l

t Dυ strongly in L∞(0, T ; H S−1−l(IR)). (8.2.47)

By (8.2.42) and the definition of X S,E,T , we have

DS,T (υi ) ≤ E, i = 1, 2, . . . . (8.2.48)

Thus, noting (8.2.47), for l = 0, 1, . . . , S, we get

∂l
t Dυi

∗
⇀ ∂l

t Dυ weak ∗ in L∞(0, T ; H S−l(IR)). (8.2.49)

From this, noting that for i = 1, 2, . . ., we have

∂l
t υi (0, x) = u(0)

l (x) (l = 0, 1, . . . , S), (8.2.50)

it is easy to show that

∂l
t υ(0, x) = u(0)

l (x) (l = 0, 1, . . . , S). (8.2.51)

Combining (8.2.45)–(8.2.46) and (8.2.49), from (8.2.48) we then have

DS,T (υ) ≤ E . (8.2.52)

(8.2.44) is proved. 
�
Now we prove that: for all ε(0 < ε ≤ ε0), the mapping M has a unique fixed

point u ∈ X S,E(ε),T (ε) on X S,E(ε),T (ε):

u = Mu, (8.2.53)
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so u = u(t, x) is a classical solution to Cauchy problem (8.1.14)–(8.1.15) on
[0, T (ε)].

The uniqueness of this fixed point is an obvious consequence of the contract
property of M under the metric of space X S−1,E(ε),T (ε). To prove the existence, we
take any

u(0) ∈ X S,E(ε),T (ε) (8.2.54)

as the zero-order approximation and use

u(i+1) = Mu(i) (i = 0, 1, 2, . . .) (8.2.55)

to construct an iteration sequence. Since M maps X S,E(ε),T (ε) into itself, we have

u(i) ∈ X S,E(ε),T (ε) (i = 0, 1, 2, . . .). (8.2.56)

From the contraction of M in X S−1,E(ε),T (ε), this iteration generates a fixed point in
X S−1,E(ε),T (ε):

u ∈ X S−1,E(ε),T (ε), (8.2.57)

such that (8.2.53) is satisfied, and as i → ∞ we have

u(i) → u in X S−1,E(ε),T (ε). (8.2.58)

Then, from Lemma 8.2.7 we immediately get

u ∈ X S,E(ε),T (ε), (8.2.59)

which is the unique fixed point of M in the space X S,E(ε),T (ε). Furthermore, byLemma
8.2.3, (8.2.19)–(8.2.20) hold, so it is easy to show that

b(u, Du), a0(u, Du), F(u, Du) ∈ C([0, T ]; H S(IR)), (8.2.60)

then (8.2.21) follows immediately from Corollary 6.3.3 of Chap.6. The proof of
Theorem 8.2.1 is finished.

8.2.3 Proof of Lemma 8.2.5

We first estimate ‖u(t, ·)‖L∞(IR).
Using (8.1.4) in Theorem 4.1.1 of Chap.4 (in which we take p = +∞), from

(8.2.22)–(8.2.23) we get

‖u(t, ·)‖L∞(IR) ≤ ε(‖φ‖L∞(IR) + ‖ψ‖L1(IR)) +
∫ t

0
‖F̂(υ, Dυ, Dux )(τ , ·)‖L1(IR)dτ

http://dx.doi.org/10.1007/978-3-662-55725-9_6
http://dx.doi.org/10.1007/978-3-662-55725-9_4
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≤ Cε +
∫ t

0
‖F̂(υ, Dυ, Dux )(τ , ·)‖L1(IR)dτ , (8.2.61)

Here and hereafter, C stands for a positive constant independent of ε.
By Hölder inequality (see Lemma 5.1.1 in Chap.5), noting (8.1.17)–(8.1.18),

(8.2.15), (8.2.17) and the definition of X S,E,T , and using Lemma 5.2.2 and Remark
5.2.1 in Chap.5 as well as Lemma 3.4.1 in Chap.3, it is easy to have

‖(b(υ, Dυ)uxx + 2a0(υ, Dυ)utx )(τ , ·)‖L1(IR)

≤ C‖(υ, Dυ)(τ , ·)‖α
L1+α(IR)‖Dux (τ , ·)‖L1+α(IR)

≤ C Eαgα(τ )‖Dux (τ , ·)‖1−
2

1+α

L∞(IR)‖Dux (τ , ·)‖
2

1+α

L2(IR)

≤ C Eαgα(τ )‖Dux (τ , ·)‖H 1(IR)

≤ C Eαgα(τ )DS,T (u) (8.2.62)

and

‖F(υ, Dυ)(τ , ·)‖L1(IR) ≤ C‖(υ, Dυ)‖1+α
L1+α(IR)

≤ C E1+αg1+α(τ ). (8.2.63)

Then, noticing (8.2.4), from (8.2.61) we obtain

‖u(t, ·)‖L∞(IR) ≤ Cε + C Eα(1 + t)κ(E + DS,T (u)), (8.2.64)

where

κ =
{

2, if
∫

ψdx �= 0;
1, if

∫

ψdx = 0.
(8.2.65)

Noticing (8.2.36), from (8.2.64) we get

sup
0≤t≤T

‖u(t, ·)‖L∞(IR) ≤ C{ε + R(E, T )(E + DS,T (u))}. (8.2.66)

Now we estimate ‖u(t, ·)‖L1+α(IR).
Using (8.1.4) and (8.1.8) in Theorem4.1.1 ofChap.4 (inwhichwe take p = 1+α)

and noting (8.2.4), similarly to (8.2.66), it follows from (8.2.22)–(8.2.23) that

‖u(t, ·)‖L1+α(IR) ≤ Cεg(t) + C
∫ t

0
(t − τ )

1
1+α ‖F̂(υ, Dυ, Dux )(τ , ·)‖L1(IR)dτ

≤ Cεg(t) + C Eα(1 + t)
2+α
1+α g1+α(t)(E + DS,T (u))

≤ Cg(t){ε + R(E, T )(E + DS,T (u))}, (8.2.67)

so

sup
0≤t≤T

g−1(t)‖u(t, ·)‖L1+α(IR) ≤ C{ε + R(E, T )(E + DS,T (u))}. (8.2.68)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_4
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Finally, we estimate ‖Du(t, ·)‖D,S,2.
For any given double-index k = (k1, k2) with 0 ≤ |k| ≤ S, acting Dk on both

sides of (8.2.22), taking the inner product with Dkut in L2, and integrating with
respect to t , similarly to (6.2.31) in Chap.6, we obtain the following energy integral
formula:

‖Dkut (t, ·)‖2L2(IR) +
∫

IR
a(υ, Dυ)(t, ·)(Dkux (t, ·))2dx

=‖Dkut (0, ·)‖2L2(IR) +
∫

IR
a(υ, Dυ)(0, ·)(Dkux (0, ·))2dx

+
∫ t

0

∫

IR

∂b(υ, Dυ)(τ , ·)
∂τ

(Dkux (τ , ·))2dxdτ

− 2
∫ t

0

∫

IR

∂b(υ, Dυ)(τ , ·)
∂x

Dkux (τ , ·)Dkuτ (τ , ·)dxdτ

− 2
∫ t

0

∫

IR

∂a0(υ, Dυ)(τ , ·)
∂x

(Dkuτ (τ , ·))2dxdτ

+ 2
∫ t

0

∫

IR
Gk(τ , ·)Dkuτ (τ , ·)dxdτ

+ 2
∫ t

0

∫

IR
gk(τ , ·)Dkuτ (τ , ·)dxdτ

def.= ‖Dkut (0, ·)‖2L2(IR) +
∫

IR
a(υ, Dυ)(0, ·)(Dkux (0, ·))2dx

+I+II+III+IV+V, (8.2.69)

where the function a(·) is defined by (8.1.19), and

Gk = Dk(b(υ, Dυ)uxx ) − b(υ, Dυ)Dkuxx

+2[Dk(a0(υ, Dυ)utx ) − a0(υ, Dυ)Dkutx ], (8.2.70)

gk = Dk F(υ, Dυ). (8.2.71)

Noticing (8.1.17) and (8.2.16), it is easy to have

|I|, |II|, |III| ≤ C Eα(1 + t)D2
S,T (u) ≤ C R(E, T )D2

S,T (u). (8.2.72)

Using (5.1.24) in Chap.5 (in which we take p = q = p2 = q2 = p3 = q3 =
2, p1 = q1 = p4 = q4 = +∞, and χ ≡ 1) and Lemma 5.2.2 and Remark 5.2.1
in Chap.5 (in which we take p = q = pi = qi = +∞ (i = 0, 1, . . . ,β) or
p = q = p0 = q0 = 2, and pi = qi = +∞(i = 1, . . . ,β)) and noting (8.2.15) and
(8.2.16), we obtain

‖Gk(τ , ·)‖L2(IR) ≤ C Eα DS,T (u). (8.2.73)

http://dx.doi.org/10.1007/978-3-662-55725-9_6
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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When |k| > 0, using (5.2.15) in Chap.5 and noting (8.2.16), from (8.1.18) we get

‖gk(τ , ·)‖L2(IR) ≤ C Eα+1. (8.2.74)

While, when |k| = 0, from Hölder inequality we have

‖g0(τ , ·)‖L2(IR) = ‖F(υ, Dυ)(τ , ·)‖L2(IR)

≤ C‖(υ, Dυ)(τ , ·)‖1+α
L2(1+α)(IR)

. (8.2.75)

Furthermore, using the interpolation inequality (see Lemma 3.4.1 in Chap.3) and
noticing the definition of X S,E,T , we have

‖υ(τ , ·)‖L2(1+α)(IR) ≤ ‖υ(τ , ·)‖ 1
2
L∞(IR)‖υ(τ , ·)‖ 1

2

L1+α(IR)

≤ C E(g(τ ))
1
2 , (8.2.76)

Then by (8.2.17) we get

‖g0(τ , ·)‖L2(IR) ≤ C E1+α(g(τ ))
1+α
2 . (8.2.77)

From (8.2.73)–(8.2.74) and (8.2.77) we obtain

|IV | ≤ C Eα(1 + t)D2
S,T (u) ≤ C R(E, T )D2

S,T (u) (8.2.78)

and

|V| ≤ C E1+α(g(t))
1+α
2 (1 + t)DS,T (u)

≤ C R(E, T )E DS,T (u). (8.2.79)

Thus, using (8.2.72) and (8.2.78)–(8.2.79), and noticing (8.2.34) and (8.2.32),
from (8.2.69) we have

sup
0≤t≤T

‖Du(t, ·)‖D,S,2 ≤ C{ε + √

R(E, T )(E + DS,T (u))}. (8.2.80)

Combining (8.2.66), (8.2.68) and (8.2.80), we get the desired estimate (8.2.35).
The proof of Lemma 8.2.5 is finished.

8.2.4 Proof of Lemma 8.2.6

Let
u∗ = u − u, υ∗ = υ − υ. (8.2.81)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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From the definition of mapping M we have

u∗
t t − a(υ, Dυ)u∗

xx − 2a0(υ, Dυ)u∗
t x = F∗, (8.2.82)

t = 0 : u∗ = u∗
t = 0, (8.2.83)

where the function a(·) is defined by (8.1.19), and

F∗ = (b(υ, Dυ)−b(υ, Dυ))uxx +2(a0(υ, Dυ)−a0(υ, Dυ))utx + F(υ, Dυ)− F(υ, Dυ).

(8.2.84)

Similarly to (8.2.66) and (8.2.68), now we have

sup
0≤t≤T

‖u∗(t, ·)‖L∞(IR) ≤ C R(E, T )(DS−1,T (u∗) + DS−1,T (υ∗)) (8.2.85)

and

sup
1≤t≤T

g−1(t)‖u∗(t, ·)‖L1+α(IR) ≤ C R(E, T )(DS−1,T (u∗) + DS−1,T (υ∗)). (8.2.86)

Now we estimate ‖Du∗(t, ·)‖D,S−1,2.
For any given double-index k = (k0, k1) with 0 ≤ |k| ≤ S − 1, similarly to

(8.2.69), we have

‖Dku∗
t (t, ·)‖2L2(IR) +

∫

IR
a(υ, Dυ)(t, ·)(Dku∗

x (t, ·))2dx

=
∫ t

0

∫

IR

∂b(υ, Dυ)(τ , ·)
∂τ

(Dku∗
x (τ , ·))2dxdτ

− 2
∫ t

0

∫

IR

∂b(υ, Dυ)(τ , ·)
∂x

Dku∗
x (τ , ·)Dku∗

τ (τ , ·)dxdτ

− 2
∫ t

0

∫

IR

∂a0(υ, Dυ)(τ , ·)
∂x

(Dku∗
τ (τ , ·))2dxdτ

+ 2
∫ t

0

∫

IR
Gk(τ , ·)Dku∗

τ (τ , ·)dxdτ

+ 2
∫ t

0

∫

IR
gk(τ , ·)Dku∗

τ (τ , ·)dxdτ

def.= I+II+III+IV+V, (8.2.87)

where

Gk = Dk(b(υ, Dυ)u∗
xx ) − b(υ, Dυ)Dku∗

xx

+2(Dk(a0(υ, Dυ)u∗
t x ) − a0(υ, Dυ)Dku∗

t x ), (8.2.88)

gk = Dk F∗. (8.2.89)
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Similarly to (8.2.72) and (8.2.78), now we have

|I| + |II| + |III| + |IV| ≤ C Eα(1 + t)D2
S−1,T (u∗)

≤ C R(E, T )D2
S−1,T (u∗). (8.2.90)

Moreover, similarly to (8.2.74) and (8.2.77), respectively, we have, for |k| > 0,

‖gk(τ , ·)‖L2(IR) ≤ C Eα DS−1,T (υ∗), (8.2.91)

while
‖g0(τ , ·)‖L2(IR) ≤ C Eα(g(τ ))

1+α
2 DS−1,T (υ∗), (8.2.92)

hence

|V| ≤ C Eα(g(t))
1+α
2 (1 + t)DS−1,T (u∗)DS−1,T (υ∗)

≤ C R(E, T )DS−1,T (u∗)DS−1,T (υ∗). (8.2.93)

So, by (8.2.90) and (8.2.93), from (8.2.87) we get

sup
0≤t≤T

‖Du∗(t, ·)‖D,S−1,T ≤ C
√

R(E, T )(DS−1,T (u∗) + DS−1,T (υ∗)). (8.2.94)

Combining (8.2.85)–(8.2.86) and (8.2.94), we get the desired (8.2.37). The proof
of Lemma 8.2.6 is finished.

8.3 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (8.1.14)–(8.1.15)
(Continued)

8.3.1 Metric Space XS,E,T . Main results

In this section, we investigate the special case satisfying assumption (8.1.20), and
prove that Cauchy problem (8.1.14)–(8.1.15) has the lower bound estimate of form
(8.1.11) for the life-span of classical solutions. We use arguments similar to the
previous section, and here we only present some essentially different points.

In this case, no matter (8.1.8) is true or not, we still introduce the function set
X S,E,T by (8.2.2), but instead of (8.2.3), we take

DS,T (υ) = sup
0≤t≤T

‖υ(t, ·)‖L∞(IR) + sup
0≤t≤T

(1+ t)
− 1

1+β0 ‖υ(t, ·)‖
L1+β0 (IR)

+ sup
0≤t≤T

‖Dυ(t, ·)‖D,S,2,

(8.3.1)
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where β0 > α is the integer appearing in (8.1.20). We have

Theorem 8.3.1 Under the assumptions of Theorem 8.2.1, assume furthermore that
(8.1.20) holds, we have the same conclusion as Theorem 8.2.1, but instead of (8.2.18),
we now take

T (ε) = aε−min( β0
2 ,α) − 1, (8.3.2)

where α is a positive constant independent of ε.

To prove Theorem 8.3.1, it suffices to prove the following two lemmas.

Lemma 8.3.1 Under the assumptions of Theorem 8.3.1, when E > 0 is suitably
small, for any given υ ∈ X S,E,T , u = Mυ satisfies

DS,T (u) ≤ C1{ε + (R2 + R + √
R)(E + DS,T (u))}, (8.3.3)

where C1 is a positive constant independent of E and T , and

R = R(E, T )
def.= Emin( β0

2 ,α)(1 + T ). (8.3.4)

Lemma 8.3.2 Under the assumptions of Lemma 8.3.1, for any given υ, υ ∈ X S,E,T ,
if both u = Mυ and u = Mυ satisfy u, u ∈ X S,E,T , then we have

DS−1,T (u − u) ≤ C2(R2 + R + √
R)(DS−1,T (u − u) + DS−1,T (υ − υ)), (8.3.5)

where C2 is a positive constant independent of E and T , and R = R(E, T ) is still
defined by (8.3.4).

8.3.2 Proof of Lemma 8.3.1

Noting (8.1.20), we can rewrite F̂ as

F̂(υ, Dυ, Dux )

= (b(υ, 0)ux )x − bx (υ, 0)ux + (b(υ, Dυ) − b(υ, 0))uxx

+ 2(a0(υ, 0)ux )t − 2a0t (υ, 0)ux + 2(a0(υ, Dυ) − a0(υ, 0))uxt

+ (F(υ, Dυ) − F(υ, 0) − FDυ(υ, 0)Dυ) + F(υ, 0) + FDυ(υ, 0)Dυ

=
1

∑

i=0

∂i Gi (υ, ux ) +
1

∑

i=0

Ai (υ)υxi ux +
1

∑

i, j=0

Bi j (υ, Dυ)υxi uxx j +
1

∑

i, j=0

Ci j (υ, Dυ)υxi υx j + F(υ, 0),

(8.3.6)

where (x0, x1) = (t, x), (∂0, ∂1) = (∂t , ∂x ) = D, and by (8.1.17)–(8.1.18) and
(8.1.20), in a neighborhood of λ = 0 we have
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Gi (λ) = O(|λ|1+α) (i = 0, 1;λ = (λ,λ1)), (8.3.7)

and Gi (λ) is affine with respect to the variable λ1,

Ai (λ) = O(|λ|α−1) (i = 0, 1), (8.3.8)

Bi j (λ̃), Ci j (λ̃) = O(|λ̃|α−1) (i, j = 0, 1; λ̃ = (λ,λ0,λ1)) (8.3.9)

and
F(λ, 0) = O(|λ|1+β0). (8.3.10)

Thus, the solution u = Mυ to Cauchy problem (8.2.22)–(8.2.23) can be ex-
pressed by

u = w(0) +
1

∑

i=0

∂iw
(i) − u(0) + u(1) + u(2), (8.3.11)

where w(0) is the solution to Cauchy problem

w
(0)
t t − w(0)

xx = 0, (8.3.12)

t = 0 : w(0) = εφ(x), w
(0)
t = εψ(x), (8.3.13)

and w(i)(i = 0, 1), u(0), u(1) and u(2) satisfy equations

w
(i)
t t − w

(i)
xx = Gi (υ, ux ), (i = 0, 1), (8.3.14)

u(0)
t t − u(0)

xx = 0, (8.3.15)

u(1)
t t − u(1)

xx =
1

∑

i=0

Ai (υ)υxi ux +
1

∑

i, j=0

Bi j (υ, Dυ)υxi uxx j +
1

∑

i, j=0

Ci j (υ, Dυ)υxi υx j (8.3.16)

and
u(2)

t t − u(2)
xx = F(υ, 0), (8.3.17)

respectively; moreover, u(0) satisfies the initial condition

t = 0 : u(0) = 0, u(0)
t = G0(υ, ux )(0, x), (8.3.18)

while, w(i)(i = 0, 1), u(1) and u(2) all satisfy the zero initial condition.
We first estimate ‖u(t, ·)‖L∞(IR).
By (4.1.5) in Chap.4, noting (8.3.7) and (8.2.15), it is easy to know that, when

E > 0 is suitably small, for i = 0, 1 we have

‖∂iw
(i)(t, ·)‖L∞(IR) ≤

∫ t

0
‖Gi (υ, ux )(τ , ·)‖L∞(IR)dτ

http://dx.doi.org/10.1007/978-3-662-55725-9_4
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≤ C Eα(1 + t)(E + DS,T (u))

≤ C R(E, T )(E + DS,T (u)), (8.3.19)

here and hereafter, C always stands for a positive constant independent of E and T ,
and R(E, T ) is defined by (8.3.4).

By (4.1.4) in Chap.4, noting (8.3.7) and (8.2.34), we have

‖u(0)(t, ·)‖L∞(IR) ≤ Cε. (8.3.20)

Using (4.1.4) in Chap.4 again, and noticing (8.3.8)–(8.3.10) and the definition of
X S,E,T , it is easy to show

‖u(1)(t, ·)‖L∞(IR) ≤ C

{

∫ t

0

1
∑

i=0

‖Ai (υ)υxi ux (τ , ·)‖L1(IR)dτ

+
∫ t

0

1
∑

i, j=0

‖Bi j (υ, Dυ)υxi uxx j (τ , ·)‖L1(IR)dτ

+
∫ t

0

1
∑

i, j=0

‖Ci j (υ, Dυ)υxi υx j (τ .·)‖L1(IR)dτ

⎫

⎬

⎭

≤ C Eα(1 + t)(E + DS,T (u))

≤ C R(E, T )(E + DS,T (u)) (8.3.21)

and

‖u(2)(t, ·)‖L∞(IR) ≤ C
∫ t

0
‖F(υ, 0)(τ , ·)‖L1(IR)dτ

≤ C
∫ t

0
‖υ(τ , ·)‖1+β0

L1+β0 (IR)
dτ

≤ C E1+β0(1 + t)2 ≤ C E R2(E, T ). (8.3.22)

Moreover, still from (4.1.4) in Chap.4, it is obvious that

‖w(0)(t, ·)‖L∞(IR) ≤ Cε. (8.3.23)

Combining (8.3.19)–(8.3.23), it follows from (8.3.11) that

sup
0≤t≤T

‖u(t, ·)‖L∞(IR) ≤ C{ε + (R2(E, T ) + R(E, T ))(E + DS,T (u))}. (8.3.24)

Now we estimate ‖u(t, ·)‖L1+β0 (IR).

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_4
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By (4.1.5) in Chap.4, similarly to (8.3.19), for i = 0, 1, we get

‖∂iw
(i)(t, ·)‖L1+β0 (IR) ≤

∫ t

0
‖Gi (υ, ux )(τ , ·)‖L1+β0 (IR)dτ

≤ C
∫ t

0
‖υ(τ , ·)‖α

L∞(IR)‖(υ, ux )(τ , ·)‖L1+β0 (IR)dτ

≤ C Eα(1 + t)1+
1

1+β0 (E + DS,T (u))

≤ C(1 + t)
1

1+β0 R(E, T )(E + DS,T (u)). (8.3.25)

Similarly, by (4.1.4) in Chap.4, we obtain

‖w(0)(t, ·)‖L1+β0 (IR), ‖u(0)(t, ·)‖L1+β0 (IR) ≤ Cε(1 + t)
1

1+β0 , (8.3.26)

‖u(1)(t, ·)‖L1+β0 (IR) ≤ C(1 + t)
1

1+β0 R(E, T )(E + DS,T (u)) (8.3.27)

and
‖u(2)(t, ·)‖L1+β0 (IR) ≤ C(1 + t)

1
1+β0 E R2(E, T ). (8.3.28)

Hence, it follows from (8.3.11) that

sup
0≤t≤T

(1+t)−
1

1+β0 ‖u(t, ·)‖L1+β0 (IR) ≤ C{ε+(R2(E, T )+R(E, T ))(E+DS,T (u))}.
(8.3.29)

Finally, we estimate ‖Du(t, ·)‖D,S,2.
Now we still have (8.2.69)–(8.2.72), (8.2.78) and (8.2.74). Moreover, since

F(υ, Dυ) = F(υ, 0) + F̃(υ, Dυ)Dυ, (8.3.30)

where, F̃(λ̃) is sufficiently smooth in a neighborhood of λ̃ = (λ,λ0,λ1) = 0, and

F̃(λ̃) = O(|λ̃|α), (8.3.31)

using the interpolation inequality (see Lemma 3.4.1 in Chap.3), and noticing (8.3.10)
and the definition of X S,E,T , we have

‖F(υ, 0)(τ , ·)‖L2(IR) ≤ ‖F(υ, 0)(τ , ·)‖ 1
2
L∞(IR)‖F(υ, 0)(τ , ·)‖ 1

2

L1(IR)

≤ C‖υ(τ , ·)‖
1+β0
2

L∞(IR)‖υ(τ , ·)‖
1+β0
2

L1+β0 (IR)

≤ C E1+β0(1 + τ )
1
2 (8.3.32)

and

‖F̃(υ, Dυ)Dυ(τ , ·)‖L2(IR) ≤ ‖F̃(υ, Dυ)(τ , ·)‖L∞(IR)‖Dυ(τ , ·)‖L2(IR)

≤ C E1+α, (8.3.33)

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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then
‖g0(τ , ·)‖L2(IR) ≤ C E1+β0(1 + τ )

1
2 + C E1+α. (8.3.34)

Noticing (8.2.74), we then have

|V | ≤ C E1+β0(1 + t)
3
2 DS,T (u) + C E1+α(1 + t)DS,T (u)

≤ C(R2(E, T ) + R(E, T ))E DS,T (u). (8.3.35)

Using (8.2.72), (8.2.78) and (8.3.35), it follows from (8.2.69) that

sup
0≤t≤T

‖Du(t, ·)‖D,S,2 ≤ C{ε + (R(E, T ) + √

R(E, T ))(E + DS,T (u))}. (8.3.36)

Combining (8.3.24), (8.3.29) and (8.3.36), we get the desired (8.3.3). The proof
of Lemma 8.3.1 is finished.

8.3.3 Proof of Lemma 8.3.2

We have

b(υ, Dυ) − b(υ, Dυ) = b1(υ̃, Dυ̃)υ∗ + b2(υ̃, Dυ̃)Dυ∗

= b1(υ̃, 0)υ∗ + (b1(υ̃, Dυ̃) − b1(υ̃, 0))υ∗ + b2(υ̃, Dυ̃)Dυ∗

= b1(υ̃, 0)υ∗ + b3(υ̃, Dυ̃)Dυ̃υ∗ + b2(υ̃, Dυ̃)Dυ∗ (8.3.37)

and

F(υ, Dυ) − F(υ, Dυ)

= F(υ, 0) − F(υ, 0) +
1

∑

i=0

(Fi (υ, 0)∂i υ − Fi (υ, 0)∂i υ)

+
1

∑

i, j=0

(

Fi j (υ, Dυ)∂i υ∂ j υ − Fi j (υ, Dυ)∂i υ∂ j υ
)

= ∂F

∂u
(υ̃, 0)υ∗ +

1
∑

i=0

∂i (Gi (υ) − Gi (υ))

+
1

∑

i, j=0

(

Fi j (υ, Dυ)∂i υ∂ j υ
∗ + Fi j (υ, Dυ)∂i υ

∗∂ j υ + (Fi j (υ, Dυ) − Fi j (υ, Dυ))∂i υ∂ j υ
)

= ∂F

∂u
(υ̃, 0)υ∗ +

1
∑

i=0

∂i (Ĝi (υ̃)υ∗)
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+
1

∑

i, j=0

(

Fi j (υ, Dυ)∂i υ∂ j υ
∗ + Fi j (υ, Dυ)∂i υ

∗∂ j υ + F̂i j (υ̃, Dυ̃)υ∗∂i υ∂ j υ
)

+
1

∑

i, j,k=0

Fi jk (υ̃, Dυ̃)∂i υ∂ j υ∂kυ∗, (8.3.38)

where
υ̃ = (υ, υ), (8.3.39)

and Gi (υ) is a primitive function of Fi (υ, 0) (i = 0, 1).
Thus, similarly to the proof of Lemma 8.3.1, we get

sup
0≤t≤T

‖u∗(t, ·)‖L∞(IR) + sup
0≤t≤T

(1 + t)−
1

1+β0 ‖u∗(t, ·)‖L1+β0 (IR)

≤ C(R2(E, T ) + R(E, T ))(DS−1,T (u∗) + DS−1,T (υ∗)). (8.3.40)

On the other hand, we still have (8.2.87)–(8.2.91). Moreover, noticing that

F(υ, Dυ) − F(υ, Dυ)

= F(υ, 0) − F(υ, 0) +
1

∑

i=0

(

Fi (υ, Dυ)∂i υ − Fi (υ, Dυ)∂i υ
)

= ∂F

∂u
(υ̃, 0)υ∗ +

1
∑

i=0

(

Fi (υ, Dυ)∂i υ
∗ + (Fi (υ, Dυ) − Fi (υ, Dυ))∂i υ

)

, (8.3.41)

similarly to (8.3.34), we have

‖g0(τ , ·)‖L2(IR) = ‖F∗(τ , ·)‖L2(IR) ≤ C(Eβ0(1 + τ )
1
2 + Eα)DS−1,T (υ∗),

(8.3.42)
then we have

|V | ≤ C(R2(E, T ) + R(E, T ))DS−1,T (u∗)DS−1,T (υ∗). (8.3.43)

Thus, we obtain

sup
0≤t≤T

‖Du∗(t, ·)‖D,S−1,2 ≤ C(R(E, T )+√

R(E, T ))(DS−1,T (u∗)+DS−1,T (υ∗)).

(8.3.44)
Combining (8.3.40) and (8.3.44) yields the desired (8.3.5). The proof of Lemma

8.3.2 is finished.



Chapter 9
Cauchy Problem of n(≥3)-Dimensional
Nonlinear Wave Equations

9.1 Introduction

In this chapter we investigate the following Cauchy problem of n(≥3) dimensional
nonlinear wave equations:

�u = F(u, Du, Dx Du), (9.1.1)

t = 0 : u = εϕ(x), ut = εψ(x), (9.1.2)

where

� = ∂2

∂t2
−

n∑

i=1

∂2

∂x2
i

(9.1.3)

is the n dimensional wave operator,

Dx =
(

∂

∂x1
, · · · ,

∂

∂xn

)
, D =

(
∂

∂t
,

∂

∂x1
, · · · ,

∂

∂xn

)
, (9.1.4)

ϕ and ψ are sufficiently smooth and compactly supported functions, without loss of
generality, we assume that ϕ, ψ ∈ C∞

0 (IRn), and ε > 0 is a small parameter.
Let

λ̂ = (λ; (λi ), i = 0, 1, · · · , n; (λi j ), i, j = 0, 1, · · · , n, i + j ≥ 1). (9.1.5)

Assume that in a neighborhood of λ̂ = 0, say, for |λ̂| ≤ ν0, the nonlinear term F(λ̂)

is a sufficiently smooth function satisfying

F(λ̂) = O(|λ̂|1+α), (9.1.6)

and α ≥ 1 is an integer.
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This chapter is aimed at studying the life-span T̃ (ε) of the classical solution
u = u(t, x) to Cauchy problem (9.1.1)–(9.1.2) in a unified way for any given integer
α ≥ 1 when the space dimension n ≥ 3.

We will prove that: there exists a suitably small positive number ε0 such that for
any given ε ∈ (0, ε0], for different values of α ≥ 1 and n ≥ 3, we have:

(i) In general, the life-span T̃ (ε) has the lower bound estimate as shown in the
following table:

T (ε) ≥
n α = 1 2, 3, · · ·
3 bε−2

4 exp{aε−1} +∞
5,6,· · ·

(ii) If we have
∂2

u F(0, 0, 0) = 0, (9.1.7)

then the life-span T̃ (ε) has the lower bound estimate as shown in the following table:

T (ε) ≥
n α = 1 2, 3, · · ·
3 exp{aε−1} +∞
4,5,· · ·

In particular, when the nonlinear term on the right-hand side does not depend on u
explicitly:

F = F(Du, Dx Du), (9.1.8)

the above estimate is true.
In the above two tables, both a and b stand for positive constants independent of ε.
The first table above gives, in a unified way (see Li Tatsien and Yu Xin 1989,

1991), results on the global existence (T̃ (ε) = +∞) from Li Tatsien and Chen
Yunmei (1988b), as well as results on the lower bound of life-span from Hörmander
(1991) as n = 4 and α = 1 and from Lindblad (1990b) as n = 3 and α = 1,
respectively.While, the second table above gives, under condition (9.1.7), in a unified
way (see Li Tatsien and Zhou Yi 1992b), results on the lower bound of life-span from
Hörmander (1991) as n = 4 and α = 1 and from Lindblad (1990b) as n = 3 and
α = 1, respectively.

From results of Chaps. 13 and 14, the above lower bound estimates on the life-
span are all sharp except that of Hörmander (1991) as n = 4 and α = 1, shown in

http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_14
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the first table as follows:
T̃ (ε) ≥ exp{aε−1}, (9.1.9)

Estimate (9.1.9) will be improved to (see Li Tatsien and Zhou Yi 1995b, 1995c;
Lindblad and Sogge 1996)

T̃ (ε) ≥ exp{aε−2}, (9.1.10)

and estimate (9.1.10) is sharp as well.
FromChap.7we know that, in order to prove the above results forCauchy problem

(9.1.1)–(9.1.2) of nonlinear wave equation, it suffices, essentially, to consider the
following Cauchy problem of second-order quasi-linear hyperbolic equation:

�u =
n∑

i, j=1

bi j (u, Du)uxi x j + 2
n∑

j=1

a0 j (u, Du)utx j + F(u, Du), (9.1.11)

t = 0 : u = εϕ(x), ut = εψ(x), (9.1.12)

where
ϕ,ψ ∈ C∞

0 (IRn), (9.1.13)

and ε > 0 is a small parameter. Let

λ̃ = (λ; (λi ), i = 0, 1, · · · , n). (9.1.14)

Assume that when |̃λ| ≤ ν0, bi j (̃λ), a0 j (̃λ) and F (̃λ) are all sufficiently smooth
functions satisfying

bi j (̃λ) = b ji (̃λ) (i, j = 1, · · · , n), (9.1.15)

bi j (̃λ), a0 j (̃λ) = O(|̃λ|α) (i, j = 1, · · · , n), (9.1.16)

F (̃λ) = O(|̃λ|1+α) (9.1.17)

and
n∑

i, j=1

ai j (̃λ)ξiξ j ≥ m0|ξ|2, ∀ξ ∈ IRn, (9.1.18)

where α ≥ 1 is an integer, m0 is a positive constant, and

ai j (̃λ) = δi j + bi j (̃λ), (9.1.19)

with δi j the Kronecker symbol. In addition, condition (9.1.7) is now reduced to

∂2
u F(0, 0) = 0. (9.1.20)

http://dx.doi.org/10.1007/978-3-662-55725-9_7


186 9 Cauchy Problem of n(≥3)-Dimensional …

9.2 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (9.1.11)–(9.1.12)

In this section, for the life-span of classical solutions to Cauchy problem (9.1.11)–
(9.1.12) of n(≥ 3) dimensional second-order quasi-linear hyperbolic equation, we
will prove the lower bound estimates shown by the first table in the previous section.

9.2.1 Metric Space XS,E,T . Main Results

Thanks to the Sobolev embedding theorem, there exists a suitably small E0 > 0,
such that

‖ f ‖L∞(IRn) ≤ ν0, ∀ f ∈ H [ n
2 ]+1(IRn), ‖ f ‖

H[
n
2 ]+1

(IRn)
≤ E0. (9.2.1)

For any given integer S ≥ 2[ n
2 ] + 4, and any given positive numbers E(≤ E0)

and T (0 < T ≤ +∞), we introduce the set of functions

X S,E,T = {v(t, x)|DS,T (v) ≤ E, ∂l
t v(0, x) = u(0)

l (x) (l = 0, 1, · · · , S + 1)},
(9.2.2)

where

DS,T (v) =
2∑

i=0

sup
0≤t≤T

‖Div(t, ·)‖�,S,2. (9.2.3)

Here, ‖·‖�,S,2 is defined in Sect. 3.1.3 of Chap.3, and if T is finite, then the supremum
is taken over [0, T ]; while, if T = +∞, then the supremum is taken over [0,+∞).
For simplicity, we uniformly denote by [0, T ] the corresponding interval below.
Moreover, u(0)

0 = εϕ(x), u(0)
1 = εψ(x), and when l = 2, · · · , S + 1, u(0)

l (x) are
values of ∂l

t u(t, x) at t = 0, which are determined uniquely by Eq. (9.1.11) and
initial condition (9.1.12). Obviously, u(0)

l (l = 0, 1, · · · , S + 1) are all sufficiently
smooth functions with compact support.

Introduce the following metric on X S,E,T :

ρ(v, v) = DS,T (v − v), ∀v, v ∈ X S,E,T . (9.2.4)

Similarly to Lemma8.2.1 in Chap.8, it is easy to prove

Lemma 9.2.1 When ε > 0 is suitably small, X S,E,T is a non-empty complete metric
space.

Noticing S ≥ 2[ n
2 ] + 4, from (3.4.30) in Chap.3 (in which we take p = 2,

N = [ S
2 ] + 1 and s = [ n

2 ] + 1) we obtain

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_8
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Lemma 9.2.2 When S ≥ 2[ n
2 ] + 4, for any given v ∈ X S,E,T we have

‖(v, Dv, D2v)(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)−

n−1
2 , ∀t ∈ [0, T ], (9.2.5)

where C is a positive constant.

The main result of this section is the following

Theorem 9.2.1 Let n ≥ 3. Under assumptions (9.1.15)–(9.1.19), for any given
S ≥ 2[ n

2 ]+ 4, there exist positive constants ε0 and C0 satisfying C0ε0 ≤ E0, and for
any given ε ∈ (0, ε0], there exists a positive constant T (ε) such that Cauchy problem
(9.1.11)–(9.1.12) admits on [0, T (ε)] a unique classical solution u ∈ X S,C0ε,T (ε), and
T (ε) can be taken as

T (ε) =
⎧
⎨

⎩

+∞, if K > 1,
exp{aε−α} − 1, if K = 1,
bε− α

1−K − 1, if 0 ≤ K < 1,
(9.2.6)

where

K = (n − 1)α − 1

2
, (9.2.7)

and a and b are both positive constants depending only on α and n.
Moreover, after a possible change of values for t on a zero-measure set of

[0, T (ε)], for any given finite T0 satisfying 0 < T0 ≤ T (ε) we have

u ∈ C
([0, T0]; H S+1(IRn)

)
, (9.2.8)

ut ∈ C
([0, T0]; H S(IRn)

)
, (9.2.9)

utt ∈ C
([0, T0]; H S−1(IRn)

)
. (9.2.10)

Remark 9.2.1 From Sobolev embedding theorem we know that

H [ n
2 ]+1(IRn) ⊂ C(IRn)

is a continuous embedding. Noting S ≥ 2[ n
2 ] + 4, function u = u(t, x) satisfy-

ing (9.2.8)–(9.2.10) is a classical solution, with at least second-order continuous
derivatives, to Cauchy problem (9.1.11)–(9.1.12).

Remark 9.2.2 It is easy to show from (9.2.7) that: K > 1 when α ≥ 2 or n ≥ 5;
K = 1 when n = 4 and α = 1; while, 0 < K < 1 when n = 3 and α = 1. Noting
that the life-span T̃ (ε) > T (ε), the first table in Sect. 1 follows immediately from
(9.2.6).
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9.2.2 Framework to Prove Theorem9.2.1—The Global
Iteration Method

To prove Theorem9.2.1, for any given v ∈ X S,E,T , by solving the following Cauchy
problem of linear hyperbolic equation:

�u = F̂(v, Dv, Dx Du)
def.=

n∑

i, j=1

bi j (v, Dv)uxi x j

+2
n∑

j=1

a0 j (v, Dv)utx j + F(v, Dv), (9.2.11)

t = 0 : u = εϕ(x), ut = εψ(x), (9.2.12)

we define a mapping
M : v −→ u = Mv. (9.2.13)

We want to prove that: when ε > 0 is suitably small, we can find a positive constant
C0 such that when E = C0ε and T = T (ε) is defined by (9.2.6), M not only maps
X S,E,T into itself but also possesses a certain contractive property, and thus M has
a unique fixed point in X S,E,T , which is exactly the classical solution to Cauchy
problem (9.1.11)–(9.1.12) on 0 ≤ t ≤ T (ε).

Using results in Chap.6, it is easy to prove the following

Lemma 9.2.3 When E > 0 is suitably small, for any given v ∈ X S,E,T , after
possible change of values on a zero-measure set of t , for any finite T0 satisfying
0 < T0 ≤ T , we have

u = Mv ∈ C
([0, T0]; H S+1(IRn)

)
, (9.2.14)

ut ∈ C
([0, T0]; H S(IRn)

)
, (9.2.15)

utt ∈ L∞ (
0, T0; H S−1(IRn)

)
. (9.2.16)

Moreover, for any given t ∈ [0, T ], u = u(t, x) is compactly supported with respect
to x.

It is easy to prove the following

Lemma 9.2.4 For u = u(t, x) = Mv, the values of ∂l
t u(0, ·)(l = 0, 1, · · · , S + 2)

do not depend on the choice of v ∈ X S,E,T , and

∂l
t u(0, x) = u(0)

l (x) (l = 0, 1, · · · , S + 1). (9.2.17)

Moreover,
‖u(0, ·)‖�,S+2,2 + ‖ut (0, ·)‖�,S+1,q ≤ Cε, (9.2.18)

http://dx.doi.org/10.1007/978-3-662-55725-9_6
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where q satisfies
1

q
= 1

2
+ 1

n
, (9.2.19)

and C is a positive constant depending only on S.

The following two lemmas are crucial to the proof of Theorem9.2.1.

Lemma 9.2.5 Under the assumptions of Theorem9.2.1, if E > 0 is suitably small,
then for any given v ∈ X S,E,T , u = Mv satisfies

DS,T (u) ≤ C1{ε + (R + √
R)(E + DS,T (u))}, (9.2.20)

where C1 is a positive constant,

R = R(E, T )
def.= Eα

∫ T

0
(1 + t)−K dt, (9.2.21)

and K is given by (9.2.7).

Lemma 9.2.6 Under the assumptions of Lemma9.2.5, for any given v, v ∈ X S,E,T ,
if both u = Mv and u = Mv satisfy u, u ∈ X S,E,T , then we have

DS−1,T (u − u) ≤ C2(R + √
R)(DS−1,T (u − u) + DS−1,T (v − v)), (9.2.22)

where C2 is a positive constant, and R = R(E, T ) is still defined by (9.2.21).

The proof of Lemmas9.2.5 and 9.2.6 will be given later. Now we first use these
two lemmas to prove Theorem9.2.1.

Proof of Theorem9.2.1 Take

C0 = 3max(C1, C2), (9.2.23)

whereC1 andC2 are positive constants given in Lemmas9.2.5 and 9.2.6, respectively.
We first prove that, if there exists a positive number ε0 satisfying C0ε0 ≤ E0, and

for any ε ∈ (0, ε0], E = E(ε) = C0ε and T = T (ε) > 0 satisfy

R(E(ε), T (ε)) +√
R(E(ε), T (ε)) ≤ 1

C0
, (9.2.24)

then the mapping M admits a unique fixed point in X S,E(ε),T (ε).
In fact, noting (9.2.24), it is easy to show from Lemmas9.2.5 and 9.2.6 that for

any given v ∈ X S,E(ε),T (ε), u = Mv satisfies

DS,T (ε)(u) ≤ E(ε), (9.2.25)
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and for any given v, v ∈ X S,E(ε),T (ε), u = Mv and u = Mv satisfy

DS−1,T (ε)(u − u) ≤ 1

2
DS−1,T (ε)(v − v). (9.2.26)

In otherwords, M maps X S,E(ε),T (ε) into itself, and M is contractivewith respect to the
metric of X S−1,E(ε),T (ε). Noticing that X S,E(ε),T (ε) is a closed subset of X S−1,E(ε),T (ε)

(see Lemma8.2.7 in Chap.8), from the standard contraction mapping principle we
know that, M admits a fixed point

u ∈ X S,E(ε),T (ε), (9.2.27)

then by Lemma9.2.6 this fixed point is also unique.
This fixed point u = u(t, x) is obviously the classical solution to Cauchy problem

(9.1.11)–(9.1.12) on 0 ≤ t ≤ T (ε).

Now we determine ε0 > 0 and T (ε)(0 < ε ≤ ε0) such that the required (9.2.24)
is satisfied. Below we always assume that ε0 > 0 is sufficiently small so that (9.2.1)
is true when E0 = C0ε0.

(i) In the case K > 1, because

∫ T

0
(1 + t)−K dt ≤ C, ∀T > 0, (9.2.28)

where C is a positive constant independent of T , we can always choose

T (ε) = +∞,

and choose ε0 > 0 to be so small that (9.2.24) is satisfied for any ε satisfying
0 < ε ≤ ε0.

(ii) In the case K = 1, we take

T (ε) = exp{aε−α} − 1,

where a is a positive number satisfying

C0(aCα
0 +√

aCα
0 ) ≤ 1. (9.2.29)

Then, we have

R(E(ε), T (ε)) = Eα(ε)

∫ T (ε)

0
(1 + t)−1dt

= Cα
0 εα ln(1 + T (ε))

= aCα
0 , (9.2.30)

http://dx.doi.org/10.1007/978-3-662-55725-9_8
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Therefore, noting (9.2.29), we get the required (9.2.24). In this case, we obtain an
almost global solution.

(iii) In the case 0 ≤ K < 1, we take

T (ε) = bε− α
1−K − 1,

where b is a positive number satisfying

C0

(
1

1 − K
Cα
0 b1−K +

√
1

1 − K
Cα
0 b1−K

)
≤ 1. (9.2.31)

Then, we have

R(E(ε), T (ε)) = Eα(ε)

∫ T (ε)

0
(1 + t)−K dt

= 1

1 − K
Cα
0 εα[(1 + T (ε))1−K − 1]

≤ 1

1 − K
Cα
0 b1−K , (9.2.32)

therefore, from (9.2.31) we get the required (9.2.24).
In addition, from Lemma9.2.3, (9.2.14)–(9.2.15) are satisfied for any given finite

T0 satisfying 0 < T0 ≤ T (ε), thus it is easy to prove that

bi j (u, Du), a0 j (u, Du), F(u, Du) ∈ C
([0, T0]; H s(IRn)

)
(i, j = 1, · · · , n).

(9.2.33)
Then, Corollary6.3.3 in Chap.6 immediately yields

utt ∈ C
([0, T0]; H s−1(IRn)

)
.

Together with the definition of X S,E,T , we obtain (9.2.8)–(9.2.10). This completes
the proof of Theorem9.2.1.

9.2.3 Proof of Lemma9.2.5

We first estimate ‖u(t, ·)‖�,S,2.
Applying (4.5.17) in Chap. 4 (in which we take N = S) to Cauchy problem

(9.2.11)–(9.2.12) and noting (9.2.18), we obtain

http://dx.doi.org/10.1007/978-3-662-55725-9_6
http://dx.doi.org/10.1007/978-3-662-55725-9_4
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‖u(t, ·)‖�,S,2 ≤ C

{
ε +

∫ t

0

(
‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,q,χ1

+ (1 + τ )−
n−2
2 ‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2

)
dτ
}

, (9.2.34)

where q satisfies (9.2.19), χ1 is the characteristic function of set {(t, x)||x | ≤ 1+t
2 },

χ2 = 1 − χ1, and C is a positive constant.
Noticing (9.1.16) and the definition of X S,E,T , from (9.2.24) in Lemma5.2.5 of

Chap.5 (in which we take r = q, p = n), and noting that Lq,2(IRn) ⊂ Lq(IRn) is a
continuous embedding, we have

‖(bi j (v, Dv)uxi x j )(τ , ·)‖�,S,q,χ1 , ‖(a0 j (v, Dv)utx j )(τ , ·)‖�,S,q,χ1

≤ C(1 + τ )−
n
2 (1− 2

αn )α‖(v, Dv)(τ , ·)‖α
�,S,2‖D2u(τ , ·)‖�,S,2

≤ C(1 + τ )−K Eα DS,T (u), ∀τ ∈ [0, T ]. (9.2.35)

Similarly, noting (9.1.17), we get

‖F(v, Dv)(τ , ·)‖�,S,q,χ1 ≤ C(1 + τ )−K E1+α, ∀τ ∈ [0, T ]. (9.2.36)

From (9.2.23) in Lemma5.2.5 of Chap.5 (in which we take r = 1, p = 2)
we have similar estimates for (1+τ )− n−2

2 ‖(bi j (v, Dv)uxi x j )(τ , ·)‖�,S,1,2,χ2 ,

(1+τ )− n−2
2 ‖(a0 j (v, Dv) utx j )(τ , ·)‖�,S,1,2,χ2 and (1 + τ )− n−2

2 ‖F(v, Dv)

(τ , ·)‖�,S,1,2,χ2 . Plugging these estimates into (9.2.34), we obtain

sup
0≤t≤T

‖u(t, ·)‖�,S,2 ≤ C{ε + R(E, T )(E + DS,T (u))}, (9.2.37)

where R(E, T ) is defined by (9.2.21).
Now we estimate ‖D2u(t, ·)‖�,S,2.
FromLemma3.1.5 inChap.3, for any givenmulti-index k(|k| ≤ S), from (9.2.11)

we have

��k Du = �k D�u +
∑

|l|≤|k|−1

Bki �
l D�u

= �k DF̂(v, Dv, Dx Du) +
∑

|l|≤|k|−1

Bkl�
l DF̂(v, Dv, Dx Du)

=
n∑

i, j=1

bi j (v, Dv)(�k Du)xi x j + 2
n∑

j=1

a0 j (v, Dv)(�k Du)t x j + Gk + gk ,

(9.2.38)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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where

Gk =
n∑

i, j=1

{(
�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j

)

+ bi j (v, Dv)
(
�k Duxi x j − (�k Du)xi x j

)}

+ 2
n∑

j=1

{(
�k D(a0 j (v, Dv)utx j ) − a0 j (v, Dv)�k Dutx j

)

+ a0 j (v, Dv)
(
�k Dutx j − (�k Du)t x j

)}
,

(9.2.39)

gk = �k DF(v, Dv) +
∑

|l|≤|k|−1

Bkl�
l D

⎧
⎨

⎩

n∑

i, j=1

bi j (v, Dv)uxi x j

+ 2
n∑

j=1

a0 j (v, Dv)utx j + F(v, Dv)

⎫
⎬

⎭

= �k DF(v, Dv) +
∑

|l|≤|k|
B̃kl�

l

⎧
⎨

⎩

n∑

i, j=1

bi j (v, Dv)uxi x j

+ 2
n∑

j=1

a0 j (v, Dv)utx j + F(v, Dv)

⎫
⎬

⎭ ,

(9.2.40)

and Bkl and B̃kl are some constants.
Thus, taking the inner product of (9.2.38) with (�k Du)t in L2(IRn), similarly to

(8.2.69) in Chap.8, we have the following energy integral formula:

‖(�k Du(t, ·))t‖2L2(IRn)
+

n∑

i, j=1

∫

IRn
ai j (v, Dv)(t, ·)(�k Du(t, ·))xi (�

k Du(t, ·)x j )dx

= ‖(�k Du(0, ·))t‖2L2(IRn)
+

n∑

i, j=1

∫

IRn
ai j (v, Dv)(0, ·)(�k Du(0, ·))xi (�

k Du(0, ·)x j )dx

+
n∑

i, j=1

∫ t

0

∫

IRn

∂bi j (v, Dv)(τ , ·)
∂τ

(�k Du(τ , ·))xi (�
k Du(τ , ·))x j dxdτ

− 2
n∑

i, j=1

∫ t

0

∫

IRn

∂bi j (v, Dv)(τ , ·)
∂xi

(�k Du(τ , ·))x j (�
k Du(τ , ·))τ dxdτ

http://dx.doi.org/10.1007/978-3-662-55725-9_8
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− 2
n∑

j=1

∫ t

0

∫

IRn

∂a0 j (v, Dv)(τ , ·)
∂x j

(�k Du(τ , ·))τ (�k Du(τ , ·))τ dxdτ

+ 2
∫ t

0

∫

IRn
Gk(τ , ·)(�k Du(τ , ·))τ dxdτ + 2

∫ t

0

∫

IRn
gk(τ , ·)(�k Du(τ , ·))τ dxdτ

def.= ‖(�k Du(0, ·))t‖2L2(IRn)
+

n∑

i, j=1

∫

IRn
ai j (v, Dv)(0, ·)(�k Du(0, ·))xi (�

k Du(0, ·)x j )dx

+ I + II + III + IV + V, (9.2.41)

where ai j are given by (9.1.19).
Noting K < n−1

2 α and (9.1.16), from Lemmas5.2.2 and 5.2.3 in Chap.5 and
Corollary3.1.1 in Chap.3, it is easy to get

|I|, |II|, |III| ≤ C
∫ t

0
(1 + τ )−K Eα‖D2u(τ , ·)‖2�,S,2dτ

≤ C R(E, T )D2
S,T (u), ∀t ∈ [0, T ]. (9.2.42)

Now we estimate the L2 norm of Gk(τ , ·). Noticing (9.1.16) and Lemma9.2.2,
from Lemmas5.2.5 and 5.2.6 in Chap.5 (in which we take r = 2, then p = +∞),
we obtain

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IRn)

≤ ‖(�k(bi j (v, Dv)Duxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IRn)

+ ‖(�k(Dbi j (v, Dv)uxi x j )(τ , ·)‖L2(IRn)

≤ C(1 + τ )−
n−1
2 α(‖(v, Dv, D2v)(τ , ·)‖�,S,2)

α‖D2u(τ , ·)‖�,S,2

≤ C(1 + τ )−
n−1
2 α Eα DS,T (u), ∀τ ∈ [0, T ]. (9.2.43)

On the other hand, noticing (9.1.16), using (3.4.30) in Corollary3.4.4 of Chap.3 (in
which we take N = 0 and p = 2) and Corollary3.1.1 of Chap.3, we have

‖bi j (v, Dv)(�k Duxi x j − (�k Du)xi x j )(τ , ·)‖L2(IRn)

≤ C(‖(v, Dv)(τ , ·)‖L∞(IRn))
α‖(�k Duxi x j − (�k Du)xi x j )(τ , ·)‖L2(IRn)

≤ C(1 + τ )−
n−1
2 α Eα‖D2u(τ , ·)‖�,S,2

≤ C(1 + τ )−K Eα DS,T (u), ∀τ ∈ [0, T ]. (9.2.44)

For the terms with respect to a0 j in Gk , similar estimates hold. Therefore, we have

‖Gk(τ , ·)‖L2(IRn) ≤ C(1 + τ )−K Eα DS,T (u), ∀τ ∈ [0, T ], (9.2.45)

then we get
|IV| ≤ C R(E, T )D2

S,T (u). (9.2.46)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Similarly, by Lemma5.2.5 in Chap.5 (in which we take r = 2, then p = +∞),
we have

‖gk(τ , ·)‖L2(IRn ) ≤ C

(
‖DF(v, Dv)(τ , ·)‖�,S,2 + ‖F(v, Dv)(τ , ·)‖�,S,2

+
n∑

i, j=1

‖bi j (v, Dv)uxi x j (τ , ·)‖�,S,2 + 2
n∑

j=1

‖a0 j (v, Dv)utx j (τ , ·)‖�,S,2

)

≤ C(1 + τ )−K Eα(E + DS,T (u)), ∀τ ∈ [0, T ], (9.2.47)

then
|V| ≤ C R(E, T )(E DS,T (u) + D2

S,T (u)). (9.2.48)

By (9.2.42), (9.2.46) and (9.2.48), and noticing (9.1.18) and Lemma9.2.4, it fol-
lows from (9.2.41) that

sup
0≤t≤T

∑

|k|≤S

‖D�k Du(t, ·)‖2L2(IRn) ≤ C{ε2 + R(E, T )(E DS,T (u) + D2
S,T (u))}.

(9.2.49)
Hence, by Corollary3.1.1 in Chap.3, we immediately get

sup
0≤t≤T

‖D2u(t, ·)‖2�,S,2 ≤ C{ε2 + R(E, T )(E DS,T (u) + D2
S,T (u))}, (9.2.50)

then

sup
0≤t≤T

‖D2u(t, ·)‖�,S,2 ≤ C{ε +√
R(E, T )(E + DS,T (u))}. (9.2.51)

Using similar arguments we can obtain

sup
0≤t≤T

‖Du(t, ·)‖�,S,2 ≤ C{ε +√
R(E, T )(E + DS,T (u))}. (9.2.52)

In fact, similarly to (9.2.38), we have

��ku = �k�u +
∑

|l|≤|k|−1

Bkl�
l�u

= �k F̂(v, Dv, Dx Du) +
∑

|l|≤|k|−1

Bkl�
l F̂(v, Dv, Dx Du)

=
n∑

i, j=1

bi j (v, Dv)(�ku)xi x j + 2
n∑

j=1

a0 j (v, Dv)(�ku)t x j + Gk + gk , (9.2.53)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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where

Gk =
n∑

i, j=1

{(
�k(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�kuxi x j

)
+ bi j (v, Dv)

(
�kuxi x j − (�ku)xi x j

)}

+ 2
n∑

j=1

{(
�k(a0 j (v, Dv)utx j ) − a0 j (v, Dv)�kutx j

)
+ a0 j (v, Dv)

(
�kutx j − (�ku)t x j

)}
,

(9.2.54)

gk = �k F(v, Dv)+
∑

|l|≤|k|−1

Bkl�
l

⎧
⎨

⎩

n∑

i, j=1

bi j (v, Dv)uxi x j + 2
n∑

j=1

a0 j (v, Dv)utx j + F(v, Dv)

⎫
⎬

⎭ ,

(9.2.55)
and Bkl are some constants. Thus, similarly to (9.2.41), we have

‖(�ku(t, ·))t‖2L2(IRn) +
n∑

i, j=1

∫

IRn

ai j (v, Dv)(t, ·)(�ku(t, ·))xi (�
ku(t, ·))x j dx

= ‖(�ku(0, ·))t‖2L2(IRn) +
n∑

i, j=1

∫

IRn

ai j (v, Dv)(0, ·)(�ku(0, ·))xi (�
ku(0, ·))x j dx

+
n∑

i, j=1

∫ t

0

∫

IRn

∂bi j (v, Dv)(τ , ·)
∂τ

(�ku(τ , ·))xi (�
ku(τ , ·))x j dxdτ

− 2
n∑

i, j=1

∫ t

0

∫

IRn

∂bi j (v, Dv)(τ , ·)
∂xi

(�ku(τ , ·))x j (�
ku(τ , ·))τ dxdτ

− 2
n∑

j=1

∫ t

0

∫

IRn

∂a0 j (v, Dv)(τ , ·)
∂x j

(�ku(τ , ·))τ (�ku(τ , ·))τ dxdτ

+ 2
∫ t

0

∫

IRn

Gk(τ , ·)(�ku(τ , ·))τ dxdτ + 2
∫ t

0

∫

IRn

gk(τ , ·)(�ku(τ , ·))τ dxdτ .

(9.2.56)

From this, (9.2.52) can be obtained by completely similar arguments.
Combining (9.2.37) and (9.2.51)–(9.2.52), we obtain the desired (9.2.20).
The proof of Lemma9.2.5 is finished.

9.2.4 Proof of Lemma9.2.6

Let
u∗ = u − u, v∗ = v − v. (9.2.57)
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By the definition (9.2.11)–(9.2.13) of M , it is easy to know that

�u∗ −
n∑

i, j=1

bi j (v, Dv)u∗
xi x j

− 2
n∑

j=1

a0 j (v, Dv)u∗
t x j

= F∗, (9.2.58)

t = 0 : u∗ = u∗
t = 0, (9.2.59)

where

F∗ =
n∑

i, j=1

(bi j (v, Dv) − bi j (v, Dv))uxi x j + 2
n∑

j=1

(a0 j (v, Dv) − a0 j (v, Dv))utx j

+ F(v, Dv) − F(v, Dv). (9.2.60)

We first estimate ‖u∗(t, ·)‖�,S−1,2.
Applying (4.5.17) (in which we take N = S − 1) in Chap.4 to Cauchy problem

(9.2.58)–(9.2.59), we get

‖u∗(t, ·)‖�,S−1,2 ≤ C
∫ t

0

(
‖F̂∗(τ , ·)‖�,S−1,q,χ1 + (1 + τ )−

n−2
2 ‖F̂∗(τ , ·)‖�,S−1,1,2,χ2

)
dτ ,

(9.2.61)
where

F̂∗ =
n∑

i, j=1

bi j (v, Dv)u∗
xi x j

+ 2
n∑

j=1

a0 j (v, Dv)u∗
t x j

+ F∗, (9.2.62)

q satisfies (9.2.19), χ1 is the characteristic function of set {(t, x)||x | ≤ 1+t
2 }, and

χ2 = 1 − χ1.
Similarly to (9.2.35), we have

∥∥∥∥∥∥

⎛

⎝
n∑

i, j=1

bi j (v, Dv)u∗
xi x j

+ 2
n∑

j=1

a0 j (v, Dv)u∗
t x j

⎞

⎠ (τ , ·)
∥∥∥∥∥∥

�,S−1,q,χ1

≤ C(1 + τ )−K Eα DS−1,T (u∗), ∀τ ∈ [0, T ]. (9.2.63)

In addition, from (5.2.36) in Lemma5.2.7 and (5.2.46) in Lemma5.2.8 of Chap.5 (in
which we take N = S − 1, r = q and p = n), and noting that Lq,2(IRn) ⊂ Lq(IRn)

is continuous embedding, it is easy to know that

‖F∗(τ , ·)‖�,S−1,q,χ1 ≤ C(1 + τ )−K Eα DS−1,T (v∗), ∀τ ∈ [0, T ]. (9.2.64)

Combining (9.2.63) and (9.2.64), we obtain

‖F̂∗(τ , ·)‖�,S−1,q,χ1 ≤ C(1 + τ )−K Eα(DS−1,T (u∗) + DS−1,T (v∗)), ∀τ ∈ [0, T ].
(9.2.65)

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Moreover, from (5.2.35) in Lemma5.2.7 and (5.2.45) in Lemma5.2.8 of Chap.5
(in which we take N = S − 1, r = 1 and p = 2), similarly we have

(1 + τ )−
n−2
2

∥∥∥∥∥∥

⎛

⎝
n∑

i, j=1

bi j (v, Dv)u∗
xi x j

+ 2
n∑

j=1

a0 j (v, Dv)u∗
t x j

⎞

⎠ (τ , ·)
∥∥∥∥∥∥

�,S−1,1,2,χ2

≤ C(1 + τ )−K Eα DS−1,T (u∗), ∀τ ∈ [0, T ] (9.2.66)

and

(1 + τ )−
n−2
2 ‖F∗(τ , ·)‖�,S−1,1,2,χ2 ≤ C(1 + τ )−K Eα DS−1,T (v∗), ∀τ ∈ [0, T ],

(9.2.67)
then we get

(1 + τ )−
n−2
2 ‖F̂∗(τ , ·)‖�,S−1,1,2,χ2 ≤ C(1 + τ )−K Eα(DS−1,T (u∗) + DS−1,T (v∗)), ∀τ ∈ [0, T ].

(9.2.68)

Substituting (9.2.65) and (9.2.68) into (9.2.61), we have

sup
0≤t≤T

‖u∗(t, ·)‖�,S−1,2 ≤ C R(E, T )(DS−1,T (u∗) + DS−1,T (v∗)). (9.2.69)

Now we estimate ‖D2u∗(t, ·)‖�,S−1,2.
Similarly to (9.2.41), for any given multi-index k (|k| ≤ S − 1), we have

‖(�k Du∗(t, ·))t‖2L2(IRn)
+

n∑

i, j=1

∫

IRn
ai j (v, Dv)(t, ·)(�k Du∗(t, ·))xi (�

k Du∗(t, ·))x j dx

=
n∑

i, j=1

∫ t

0

∫

IRn

∂bi j (v, Dv)(τ , ·)
∂τ

(�k Du∗(τ , ·))xi (�
k Du∗(τ , ·))x j dxdτ

− 2
n∑

i, j=1

∫ t

0

∫

IRn

∂bi j (v, Dv)(τ , ·)
∂xi

(�k Du∗(τ , ·))x j (�
k Du∗(τ , ·))τ dxdτ

− 2
n∑

j=1

∫ t

0

∫

IRn

∂a0 j (v, Dv)(τ , ·)
∂x j

(�k Du∗(τ , ·))τ (�k Du∗(τ , ·))τ dxdτ

+ 2
∫ t

0

∫

IRn
G̃k(τ , ·)(�k Du∗(τ , ·))τ dxdτ + 2

∫ t

0

∫

IRn
g̃k(τ , ·)(�k Du∗(τ , ·))τ dxdτ

+ 2
∫ t

0

∫

IRn
ĝk(τ , ·)(�k Du∗(τ , ·))τ dxdτ

def.= I + II + III + IV + V + VI, (9.2.70)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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where

G̃k =
n∑

i, j=1

{(
�k D(bi j (v, Dv)u∗

xi x j
− bi j (v, Dv)�k Du∗

xi x j

)

+ bi j (v, Dv)
(
�k Du∗

xi x j
− (�k Du∗)xi x j

)}

+2
n∑

j=1

{(
�k D(a0 j (v, Dv))u∗

t x j
− a0 j (v, Dv)�k Du∗

t x j

)

+ a0 j (v, Dv)
(
�k Du∗

t x j
− (�k Du∗)t x j

)}
, (9.2.71)

g̃k =
∑

|l|≤|k|
B̃kl�

l

⎛

⎝
n∑

i, j=1

bi j (v, Dv)u∗
xi x j

+ 2
n∑

j=1

a0 j (v, Dv)u∗
t x j

⎞

⎠ ,

(9.2.72)

ĝk = �k DF∗ +
∑

|l|≤|k|
B̃kl�

l F∗. (9.2.73)

Similarly to the proof of Lemma9.2.5, we obtain

|I| + |II| + |III| + |IV| + |V| ≤ C R(E, T )D2
S−1,T (u∗). (9.2.74)

It remains to estimate VI. By (9.2.60), we have

DF∗ =
n∑

i, j=1

(
Dbi j (v, Dv) − Dbi j (v, Dv)

)
uxi x j +

n∑

i, j=1

(
bi j (v, Dv) − bi j (v, Dv)

)
Duxi x j

+2
n∑

j=1

(
Da0 j (v, Dv) − Da0 j (v, Dv)

)
utx j + 2

n∑

j=1

(
a0 j (v, Dv) − a0 j (v, Dv)

)
Dutx j

+DF(v, Dv) − DF(v, Dv). (9.2.75)

Then, using (5.2.35) in Lemma5.2.7 and (5.2.45) in Lemma5.2.8 of Chap.5 (in
which we take N = S − 1, r = 2, then p = +∞), we get

‖ĝk(τ , ·)‖L2(IRn) ≤ C
(‖DF∗‖�,S−1,2 + ‖F∗‖�,S−1,2

)

≤ C(1 + τ )−K Eα DS−1,T (v∗), ∀τ ∈ [0, T ], (9.2.76)

so
|VI| ≤ C R(E, T )DS−1,T (u∗)DS−1,T (v∗). (9.2.77)

By (9.2.74) and (9.2.77), similarly to (9.2.50), we have

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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sup
0≤t≤T

‖D2u∗(t, ·)‖2�,S−1,2 ≤ C R(E, T )(D2
S−1,T (u∗) + DS−1,T (u∗)DS−1,T (v∗)),

(9.2.78)
then

sup
0≤t≤T

‖D2u∗(t, ·)‖�,S−1,2 ≤ C
√

R(E, T )(DS−1,T (u∗) + DS−1,T (v∗)). (9.2.79)

Moreover, similarly to (9.2.52), we have

sup
0≤t≤T

‖Du∗(t, ·)‖�,S−1,2 ≤ C
√

R(E, T )(DS−1,T (u∗) + DS−1,T (v∗)). (9.2.80)

Combining (9.2.69) and (9.2.79)–(9.2.80), we get the desired (9.2.22).
Lemma9.2.6 is proved.

9.2.5 The Case that the Nonlinear Term on the Right-Hand
Side Does not Depend on u Explicitly:
F = F(DU, Dx DU)

In the special case that the nonlinear term on the right-hand side does not depend on
u explicitly:

F = F(Du, Dx Du), (9.2.81)

using similar but much simpler arguments, similarly as in Theorem9.2.1, we can
obtain the following complete results on the life-span T̃ (ε) (> T (ε)) of classical
solutions for the space dimension n ≥ 2:

T (ε) =

⎧
⎪⎨

⎪⎩

+ ∞, if K0 > 1,

exp{aε−α} − 1, if K0 = 1,

bε
− α

1−K0 − 1, if K0 < 1,

(9.2.82)

where

K0 = n − 1

2
α, (9.2.83)

and a and b are positive constants depending only on α and n (see Li and Chen 1992
for details).

From (9.2.82), we have the lower bound estimates for life-span T̃ (ε) as shown in
the following table:
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T (ε) ≥
n α = 1 2 3, 4, . . .

2 bε−2 exp{aε−2}
3 exp{aε−1} +∞
4, 5, . . .

This gives not only the second table for n ≥ 3 in Sect. 9.1, but also the sharp result
for n = 2 (see Chaps. 13 and 14 for reference). Together with (8.1.12) in Chap.8 for
n = 1, we obtain, in this special case, the following full results on the lower bound
estimates of life-span T̃ (ε) for any given n ≥ 1 and α ≥ 1:

T (ε) ≥
n α = 1 2 · · · α · · ·
1 bε−1 bε−2 · · · bε−α · · ·
2 bε−2 exp{aε−2}
3 exp{aε−1} +∞
4, 5, . . .

To get (9.2.82)–(9.2.83), since the nonlinear term on the right-hand side does not
depend on u explicitly, we only need to replace (9.2.3) by

DS,T (v) = sup
0≤t≤T

‖Dv(t, ·)‖�,S,2, (9.2.84)

and do not need to estimate the L2 norm of the solution itself, thus, we do not need
(4.5.17) in Chap.4, which is only applicable when n ≥ 3.

9.3 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (9.1.11)–(9.1.12)
(Continued)

In this section, under the assumption

∂2
u F(0, 0) = 0 (9.3.1)

(i.e., (9.1.20) holds), we will prove the lower bound estimates shown by the second
table in Sect. 1, for the life-span of classical solutions to Cauchy problem (9.1.11)–
(9.1.12) of n (≥ 3) dimensional second-order quasi-linear hyperbolic equation. For
this, we only need to improve the corresponding results given in the first table of
Sect. 9.1 when α = 1 and n = 3, 4.

http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_14
http://dx.doi.org/10.1007/978-3-662-55725-9_8
http://dx.doi.org/10.1007/978-3-662-55725-9_4
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To facilitate the narrative, we assume that the support of initial data (9.1.12)
satisfies

supp{ϕ,ψ} ⊆ {x ||x | ≤ ρ}, (9.3.2)

where ρ > 0 is a constant.

9.3.1 Metric Space XS,E,T . Main results

By the Sobolev embedding theorem, there exists a suitably small E0 > 0, such that

‖ f ‖L∞(IRn) ≤ ν0, ∀ f ∈ H [ n
2 ]+1(IRn), ‖ f ‖H [ n

2 ]+1
(IRn)

≤ E0. (9.3.3)

For any given integer S ≥ 2n + 4, any given positive numbers E (≤ E0) and
T (0 < T ≤ +∞), we introduce the set of functions

X S,E,T = {v(t, x)|DS,T (v) ≤ E, ∂l
t v(0, x) = u(0)

l (x) (l = 0, 1, . . . , S + 1)},
(9.3.4)

where

DS,T (v) =
2∑

i=1

sup
0≤t≤T

‖Div(t, ·)‖�,S,2 + sup
0≤t≤T

f −1
n (t)‖v(t, ·)‖�,S,2

+ sup
0≤t≤T

(1 + t)
n−1
2 ‖v(t, ·)‖�,[ S

2 ]+1,∞ (9.3.5)

with

fn(t) =
{

(1 + t)
1
2 , if n = 3;

ln(2 + t), if n = 4,
(9.3.6)

the definitions of ‖·‖�,S,2 etc. can be found in Sect. 3.1.3 of Chap.3, moreover, if T is
finite, the supremum is taken on the interval [0, T ]; while, if T = +∞, the supremum
is taken in [0,+∞). For simplicity, we use the united notation [0, T ] to represent
the corresponding interval. In addition, u(0)

0 = εϕ(x), u(0)
1 = εψ(x), while, for l =

2, . . . , S +1, u(0)
l (x) are values of ∂l

t u(t, x) at t = 0, which are determined uniquely
by Eq. (9.1.11) and initial condition (9.1.12). Obviously, u(0)

l (l = 0, 1, . . . , S + 1)
are all smooth functions with compact support in {x ||x | ≤ ρ}.

Introduce the following metric on X S,E,T :

ρ(v, v) = DS,T (v − v), ∀v, v ∈ X S,E,T . (9.3.7)

Similarly to Lemma9.2.1, we have

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Lemma 9.3.1 When ε > 0 is suitably small, X S,E,T is a non-empty complete metric
space.

Denote by X̃ S,E,T a subset of X S,E,T , which is composed of all the elements in
X S,E,T , whose support with respect x is in {x ||x | ≤ t + ρ} for any given t ∈ [0, T ].
Lemma 9.3.2 When S ≥ 2n + 4, for any given v ∈ X̃ S,E,T , we have

‖(v, Dv, D2v)(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)−

n−1
2 , ∀t ∈ [0, T ], (9.3.8)

where C is positive constant.

Proof Noting S ≥ 2n + 4, from (3.4.30) in Chap.3 (in which we take p = 2,
N = [ S

2 ] + 1 and s = [ n
2 ] + 1), we have

‖(Dv, D2v)(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)−

n−1
2 , ∀t ∈ [0, T ],

while, similar estimates for v follows immediately from the definition (9.3.5) of
DS,T (v). �

The main result of this section is the following

Theorem 9.3.1 Let α = 1, and n = 3, 4. Under assumptions (9.1.15)–(9.1.19),
we assume furthermore that (9.3.1) holds, then for any given integer S ≥ 2n + 4,
there exist positive constants ε0 and C0 with C0ε0 ≤ E0, such that for any given
ε ∈ (0, ε0], there exists a positive number T (ε) such that Cauchy problem (9.1.11)–
(9.1.12) admits a unique classical solution u ∈ X̃ S,C0ε,T (ε) on [0, T (ε)], and T (ε)
can be taken as

T (ε) =
{
exp{aε−1} − 1, if n = 3;
+∞, if n = 4,

(9.3.9)

where a is a positive constant independent of ε.
Moreover, after possible change of values for t on a zero-measure set of interval

[0, T (ε)], for any given finite T0 satisfying 0 < T0 ≤ T (ε), we have

u ∈ C
([0, T0]; H S+1(IRn)

)
, (9.3.10)

ut ∈ C
([0, T0]; H S(IRn)

)
, (9.3.11)

utt ∈ C
([0, T0]; H S−1(IRn)

)
. (9.3.12)

9.3.2 Framework to Prove Theorem9.3.1—The Global
Iteration Method

To prove Theorem9.3.1, for any given v ∈ X̃ S,E,T , similarly, we define a mapping
by solving Cauchy problem (9.2.11)–(9.2.12) of linear hyperbolic equation:

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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M : v −→ u = Mv. (9.3.13)

We want to prove: when ε > 0 is suitable small, we can find a positive constant C0

such that when E = C0ε and T = T (ε) is defined by (9.3.9), M admits a unique
fixed point in X̃ S,E,T , which is exactly the classical solution to Cauchy problem
(9.1.11)–(9.1.12) on 0 ≤ t ≤ T (ε).

Similarly to Lemma9.2.3, we have

Lemma 9.3.3 When E > 0 is suitable small, for any given v ∈ X̃ S,E,T , after
possible change of values on a zero-measure set of t , for any given finite T0 satisfying
0 < T0 ≤ T , we have

u = Mv ∈ C
([0, T0]; H S+1(IRn)

)
, (9.3.14)

ut ∈ C
([0, T0]; H S(IRn)

)
, (9.3.15)

utt ∈ L∞ (
0, T0; H S−1(IRn)

)
. (9.3.16)

Moreover, for any given t ∈ [0, T ], the support of u = u(t, x) with respect to x lies
in {x ||x | ≤ t + ρ}.

Similarly to Lemma9.2.4, we have

Lemma 9.3.4 For u = u(t, x) = Mv, the values of ∂l
t u(0, ·)(l = 0, 1, · · · , S + 2)

are independent of the choice of v ∈ X̃ S,E,T , and

∂l
t u(0, x) = u(0)

l (x) (l = 0, 1, · · · , S + 1). (9.3.17)

Moreover,
‖u(0, ·)‖�,S+2,p + ‖ut (0, ·)‖�,S+1,p,q ≤ Cε, (9.3.18)

where 1 ≤ p, q ≤ +∞, and C is a positive constant.

The following two Lemmas are crucial to the proof of Theorem9.3.1.

Lemma 9.3.5 Under the assumptions of Theorem9.3.1, when E > 0 is suitably
small, for any given v ∈ X̃ S,E,T , u = Mv satisfies

DS,T (u) ≤ C1{ε + (R + √
R + E)(E + DS,T (u))}, (9.3.19)

wher C1 is a positive constant, and

R = R(E, T )
def.= E

∫ T

0
(1 + t)−

n−1
2 dt. (9.3.20)

Lemma 9.3.6 Under the assumptions of Lemma9.3.5, for any given v, v ∈ X̃ S,E,T ,
if u = Mv and u = Mv also satisfy u, u ∈ X̃ S,E,T , then we have
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DS−1,T (u − u) ≤ C2

(
R + √

R + E
) (

DS−1,T (u − u) + DS−1,T (v − v)
)
,

(9.3.21)
where C2 is a positive constant, and R = R(E, T ) is still defined by (9.3.20).

The proof of Lemmas9.3.5 and 9.3.6 will be given later. Nowwe first utilize these
two lemmas to prove Theorem9.3.1.
Proof of Theorem9.3.1 Take

C0 = 3max(C1, C2), (9.3.22)

whereC1 andC2 are positive constants appearing in Lemmas9.3.5 and 9.3.6, respec-
tively.

Similarly to Sect. 9.2, we can prove: if there exists a positive number ε0 with
C0ε0 ≤ E0, such that for any given ε ∈ (0, ε0], E = E(ε) = C0ε and T = T (ε) > 0
satisfy

R(E(ε), T (ε)) +√
R(E(ε), T (ε)) + E(ε) ≤ 1

C0
, (9.3.23)

then the mapping M admits a unique fixed point in X̃ S,E(ε),T (ε), and this fixed point
u = u(t, x) is exactly the classical solution to Cauchy problem (9.1.11)–(9.1.12) on
0 ≤ t ≤ T (ε).

Now we determine ε0 > 0 and T (ε)(0 < ε ≤ ε0) such that (9.3.23) holds. We
always assume that ε0 > 0 is so small that (9.3.3) holds when E0 = C0ε0.

When n = 3, from (9.3.20) we have

R = R(E, T ) = E ln(1 + T ).

Then, if we take E = C0ε and

T (ε) = exp{aε−1} − 1,

where a is a positive number satisfying

C0(aC0 +√
aC0) < 1, (9.3.24)

it is easy to verify (9.3.23) when ε0 > 0 is sufficiently small. At this moment, we
obtain an almost global solution.

When n = 4, from (9.3.20) we have

R = R(E, T ) = E
∫ T

0
(1 + t)−

3
2 dt ≤ C̃ E, ∀T > 0,

where C̃ is a positive constant independent of T . Then, if we take E = C0ε and

T (ε) = +∞,
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when ε0 > 0 is sufficiently small, it is easy to verify (9.3.23). At this moment, we
obtain a global solution. �

9.3.3 Proof of Lemma9.3.5

We first estimate ‖D2u(t, ·)‖�,S,2.

For this, we still use the energy integral formula (9.2.41), where Gk and gk are
given by (9.2.39) and (9.2.40), respectively, and k(|k| ≤ S) is an arbitrarily given
multi-index.

Noting α = 1, from Corollary3.1.1 in Chap.3 and Lemma9.3.2, it is easy to
obtain

|I|, |II|, |III| ≤ C E
∫ t

0
(1 + τ )−

n−1
2 ‖D2u(τ , ·)‖2�,S,2dτ

≤ C R(E, T )D2
S,T (u), ∀t ∈ [0, T ]. (9.3.25)

Now we estimate the L2 norm of Gk(τ , ·).
Using the Taylor expansion of bi j (v, Dv), it is easy to show that

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IRn)

≤ C
{‖�k(Dvuxi x j )‖L2(IRn) + ‖�k(D2vuxi x j )‖L2(IRn)

+ ‖�k(vDuxi x j ) − v�k Duxi x j ‖L2(IRn)

+ ‖�k(DvDuxi x j ) − Dv�k Duxi x j ‖L2(IRn)

+ ‖�k(Db̃i j (v, Dv)uxi x j )‖L2(IRn)

+‖�k (̃bi j (v, Dv)Duxi x j ) − b̃i j (v, Dv)�k Duxi x j ‖L2(IRn)

}

def.= I1 + I2 + I3 + I4 + I5 + I6, (9.3.26)

where b̃i j (v, Dv) denote higher order terms of bi j (v, Dv).
By (5.1.19) in Remark5.1.2 of Chap.5 (in which we take N = S, χ(t, x) ≡

1, p = q = p2 = q2 = p3 = q3 = 2, p1 = q1 = p4 = q4 = +∞), noticing
Lemma9.3.2 and the definition of X S,E,T , it is easy to know that

I1, I2 ≤ C E(1 + τ )−
n−1
2 DS,T (u), τ ∈ [0, T ]. (9.3.27)

By (5.1.32) in Lemma5.1.4 of Chap.5 (in which we take N = S, p = q =
2, p1 = q1 = +∞), noticing Lemma9.3.2 and the definition of X S,E,T , and using
(3.4.30) in Chap.3 (in which we take p = 2, N = [ S

2 ]+1 and s = [ n
2 ]+1), we then

obtain

I3, I4 ≤ C E(1 + τ )−
n−1
2 DS,T (u), ∀τ ∈ [0, T ]. (9.3.28)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Noting (9.3.6), it is easy to know that for n = 3, 4 and any given integer β ≥ 2,
we always have

(1 + τ )−
n−1
2 (β−1) f β

n (τ ) ≤ C, ∀τ ≥ 0. (9.3.29)

Then, by (5.2.32) in Lemma5.2.6 of Chap.5 (in which we take N = S, γ = 2, p =
+∞), and noting the definition of X S,E,T , it is easy to get

I6 ≤ C E(1 + τ )−
n−1
2 DS,T (u), ∀τ ∈ [0, T ]. (9.3.30)

Finally, by (5.1.15) in Remark5.1.1 of Chap.5 (in which we take N = S, r =
q1 = p2 = 2, p1 = q2 = +∞), using (3.4.30) in Chap.3 (in which we take
p = 2, N = [ S

2 ] + 1 and s = [ n
2 ] + 1), (5.2.13) in Chap.5 (in which we take

N = [ S−1
2 ] + 1, p, q, pi , qi (i = 0, 1, · · · ,β) are all +∞) and (5.2.32) in Chap.5

(in which we take N = S, r = 2, p = +∞), and noticing (9.3.29) and the definition
of X S,E,T , we have

I5 ≤ C E(1 + τ )−
n−1
2 DS,T (u), ∀τ ∈ [0, T ]. (9.3.31)

Hence, from (9.3.27)–(9.3.28) and (9.3.30)–(9.3.31) we obtain

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IRn)

≤ C E(1 + τ )−
n−1
2 DS,T (u), ∀τ ∈ [0, T ]. (9.3.32)

On the other hand, noticing Corollary3.1.1 in Chap.3 and (9.3.8), it is easy to get

‖bi j (v, Dv)(�k Duxi x j − (�k Du)xi x j )(τ , ·)‖L2(IRn)

≤ C E(1 + τ )−
n−1
2 DS,T (u), ∀τ ∈ [0, T ]. (9.3.33)

For the terms in Gk involving a0 j (v, Dv), similar estimates hold. Then,

‖Gk(τ , ·)‖L2(IRn) ≤ C E(1 + τ )−
n−1
2 DS,T (u), ∀τ ∈ [0, T ], (9.3.34)

therefore

|IV| ≤ C R(E, T )D2
S,T (u). (9.3.35)

Now we estimate the L2 norm of gk(τ , ·).
Making Taylor expansion of F(v, Dv), and noticing (9.3.1), we have

�k DF(v, Dv) =
n∑

a=0

Ca�
k D(v∂av) +

n∑

a,b=0

Cab�
k D(∂av∂bv) + �k DF̃(v, Dv)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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=
n∑

a=0

Ca�
k(vD∂av) +

n∑

a=0

Ca�
k(Dv∂av)

+
n∑

a,b=0

Cab�
k D(∂av∂bv) + �k DF̃(v, Dv), (9.3.36)

where Ca, Cab are some constants, and F̃(v, Dv) is the higher order term in
F(v, Dv). Then

‖�k DF(v, Dv)(τ , ·)‖L2(IRn)

≤ C
{‖�k(vD2v)‖L2(IRn) + ‖�k(DvDv)‖L2(IRn)

+ ‖�k D(DvDv)‖L2(IRn) + ‖�k DF̃(v, Dv)‖L2(IRn)

}

def.= J1 + J2 + J3 + J4. (9.3.37)

Using (5.1.31) in Lemma5.1.4 of Chap.5 (in which we take N = S, p = q = 2,
p1 = q1 = +∞), and noting (9.3.8) and the definition of X S,E,T , it is easy to have

J1 ≤ C E2(1 + τ )−
n−1
2 , ∀τ ∈ [0, T ]. (9.3.38)

Using (5.1.15) in Remark5.1.1 of Chap.5 (in which we take N = S, r = q1 = p2 =
2, p1 = q2 = +∞), and noting the definition of X S,E,T , it is easy to have

J2, J3 ≤ C E2(1 + τ )−
n−1
2 , ∀τ ∈ [0, T ]. (9.3.39)

Using again (5.1.15) in Remark5.1.1 of Chap.5, using also (5.2.13) in Chap.5 (in
which we take N = [ S

2 ], p, q, pi , qi (i = 0, 1, · · · ,β) are all +∞) and (5.2.32) in
Chap.5 (in which we take N = S, r = 2, p = ∞), and noticing (9.3.29) and the
definition of X S,E,T , we have

J4 ≤ C E2(1 + τ )−
n−1
2 , ∀τ ∈ [0, T ]. (9.3.40)

Hence, we obtain

‖�k DF(v, Dv)(τ , ·)‖L2(IRn) ≤ C E2(1 + τ )−
n−1
2 , ∀τ ∈ [0, T ]. (9.3.41)

Similarly, we can prove: for any given multi-index l(|l| ≤ |k| ≤ S) we have

‖�l F(v, Dv)(τ , ·)‖L2(IRn) ≤ C E2(1 + τ )−
n−1
2 , ∀τ ∈ [0, T ]. (9.3.42)

Moreover, using Taylor expansion, for any givenmulti-index l(|l| ≤ |k|), we have

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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‖�l(bi j (v, Dv)uxi x j )(τ , ·)‖L2(IRn )

≤ C
{
‖�l(vuxi x j )‖L2(IRn ) + ‖�l (Dvuxi x j )‖L2(IRn ) + ‖�l (̃bi j (v, Dv)uxi x j )‖L2(IRn )

}
,

(9.3.43)

where b̃i j (v, Dv) still stand for the higher-order terms inbi j (v, Dv).Adopting similar
method in estimating Ji (i = 1, 2, 3, 4), we obtain

‖�l(bi j (v, Dv)uxi x j )(τ , ·)‖L2(IRn) ≤ C E(1 + τ )−
n−1
2 DS,T (u), ∀τ ∈ [0, T ].

(9.3.44)
For the terms involving a0 j (v, Dv) in gk , we have similar estimates. Hence,we obtain

‖gk(τ , ·)‖L2(IRn) ≤ C E(1 + τ )−
n−1
2 (E + DS,T (u)), ∀τ ∈ [0, T ], (9.3.45)

therefore,
|V | ≤ C R(E, T )(E DS,T (u) + D2

S,T (u)). (9.3.46)

From (9.3.25), (9.3.35) and (9.3.46), noting (9.1.18) and Lemma9.3.4, and using
Corollary3.1.1 in Chap.3, it immediately yields

sup
0≤t≤T

‖D2u(t, ·)‖2�,S,2 ≤ C{ε2 + R(E, T )(E DS,T (u) + D2
S,T (u))}. (9.3.47)

Now we estimate ‖Du(t, ·)‖�,S,2.
For any given multi-index k(|k| ≤ S), from (9.2.53) we have

��ku = �k F̂(v, Dv, Dx Du) +
∑

|l|≤|k|−1

Bkl�
l F̂(v, Dv, Dx Du), (9.3.48)

from this we obtain the following energy integral formula:

‖(�ku(t, ·))t‖2L2(IRn )
+

n∑

i=1

‖(�ku(t, ·))xi ‖2L2(IRn )

= ‖(�ku(0, ·))t‖2L2(IRn )
+

n∑

i=1

‖(�ku(0, ·))xi ‖2L2(IRn)
+ 2

∫ t

0

∫

IRn
g∗

k (τ , ·)(�ku(τ , ·))τ dxdτ ,

(9.3.49)

where

g∗
k =

∑

|l|≤|k|
C∗

kl�
l F̂(v, Dv, Dx Du)

=
∑

|l|≤|k|
C∗

kl�
l

⎛

⎝
n∑

i, j=1

bi j (v, Dv)uxi x j + 2
n∑

j=1

a0 j (v, Dv)utx j + F(v, Dv)

⎞

⎠ ,

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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(9.3.50)

and C∗
kl are some constants. From (9.3.42) and (9.3.44) we immediately have

‖g∗
k (τ , ·)‖L2(IRn) ≤ C E(1 + τ )−

n−1
2 (E + DS,T (u)), ∀τ ∈ [0, T ], (9.3.51)

then it is easy to get

sup
0≤t≤T

‖Du(t, ·)‖2�,S,2 ≤ C{ε2 + R(E, T )(E DS,T (u) + D2
S,T (u))}. (9.3.52)

Now we estimate ‖u(t, ·)‖�,S,2.
To this end, noting (9.3.1), F̂(v, Dv, Dx Du) defined by (9.2.11) can be rewritten

as

F̂(v, Dv, Dx Du) =
n∑

a=0

ca∂a(v2) +
n∑

i=1

di ∂i (vDu) + Q(Dv, Du, Dx Du) + P(v, Dv, Dx Du),

(9.3.53)
where ca, di are some constants, Q(Dv, Du, Dx Du) are the remaining second-order
terms which are affine with respect to Du and Dx Du, and P(v, Du, Dx Du), affine
with respect to Dx Du, are the higher-order (≥ 3) terms in F̂(v, Dv, Dx Du). Then,
by the superposition principle, we have

u = Mv = u1 + u2 + u3 + u4, (9.3.54)

while, u1, u2, u3, u4 satisfy, respectively,

�u1 =
n∑

a=0

ca∂a(v
2), (9.3.55)

�u2 =
n∑

i=0

di∂i (vDu), (9.3.56)

�u3 = Q(Dv, Du, Dx Du) (9.3.57)

and
�u4 = P(v, Dv, Dx Du), (9.3.58)

and u1, u2 and u4 have the zero initial condition, while, u3 has the following initial
condition:

t = 0 : u3 = εϕ(x), u3t = εψ(x). (9.3.59)

Suppose that u1, u1 and u2 satisfy, respectively,
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�u1 = v2, (9.3.60)

�u1 = 0 (9.3.61)

and
�u2 = vDu, (9.3.62)

and u1 and u2 have the zero initial condition, while, u1 has the following initial
condition:

t = 0 : u1 = 0, u1t = v2(0, ·), (9.3.63)

it is easy to know that

u1 =
n∑

a=0

ca∂au1 − c0u1 (9.3.64)

and

u2 =
n∑

i=1

di∂i u2. (9.3.65)

By (4.5.17) in Corollary4.5.1 in Chap.4 and Lemma9.3.4, we have

‖u1(t, ·)‖�,S,2 ≤ C(‖Du1(t, ·)‖�,S,2 + ‖u1(t, ·)‖�,S,2)

≤ C(ε + ‖Du1(t, ·)‖�,S,2). (9.3.66)

From the energy estimates of wave equation (see Lemma4.5.2 in Chap.4) and
Lemma3.1.5 in Chap.3, noting (5.1.15) in Remark5.1.1 of Chap.5, Lemma9.3.2
and the definition of X S,E,T , we have

‖u1(t, ·)‖�,S,2 ≤ C

(
ε +

∫ t

0
‖v2(τ , ·)‖�,S,2dτ

)

≤ C

(
ε +

∫ t

0
E2 fn(τ )(1 + τ )−

n−1
2 dτ

)

≤ C(ε + E2 fn(t)). (9.3.67)

Similarly, we have

‖u2(t, ·)‖�,S,2 ≤ C(ε + E fn(t)DS,T (u)). (9.3.68)

In addition, by (4.5.17) in Corollary4.5.1 of Chap.4 and Lemma9.3.4, we have

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_4
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‖u3(t, ·)‖�,S,2 ≤ C

{
ε +

∫ t

0

(‖Q(Dv, Du, Dx Du)(τ , ·)‖�,S,q,χ1

+(1 + τ )−
n−2
2 ‖Q(Dv, Du, Dx Du)(τ , ·)‖�,S,1,2

)
dτ
}

,

(9.3.69)

where q satisfies
1

q
= 1

2
+ 1

n
, (9.3.70)

and χ1(t, x) is the characteristic function of set
{
(t, x)||x | ≤ 1+t

2

}
.

Using (5.2.24) in Lemma5.2.5 of Chap.5 (inwhichwe take N = S, r = q, p = n
and β = 1), noticing the definition of X S,E,T , the fact that Lq,2(IRn) ⊂ Lq(IRn) is
a continuous embedding, and that Q(Dv, Du, Dx Du) is affine with respect to Du
and Dx Du, we then have

‖Q(Dv, Du, Dx Du)(τ , ·)‖�,S,q,χ1 ≤ C(1+ τ )−
n−2
2 E(E + DS,T (u)), ∀τ ∈ [0, T ].

(9.3.71)
Using (5.2.24) in Lemma5.2.5 of Chap.5 (in which we take N = S, r = q, p = n
and β = 1), we can obtain a similar inequality for (1+ τ )− n−2

2 ‖Q(Dv, Du, Dx Du)

(τ , ·)‖�,S,1,2. Therefore, we have

‖u3(t, ·)‖�,S,2 ≤ C
{
ε + E fn(t)(E + DS,T (u))

}
. (9.3.72)

By Corollary4.5.2 in Chap.4, we have

‖u4(t, ·)|�,S,2 ≤ C

{
ε +

∫ t

0
‖P(v, Dv, Dx Du)(τ , ·)‖�,S,qdτ

}
, (9.3.73)

where q is still given by (9.3.70). Noting that the higher-order (≥3) term P(v, Dv,

Dx Du) is affine with respect to Dx Du, by (5.1.15) in Remark5.1.1 and (5.2.13) in
Lemma5.2.2 of Chap.5, we have

‖P(v, Dv, Dx Du)(τ , ·)‖�,S,q

≤ C
{
‖(v, Dv)‖�,[ S

2 ],∞‖(v, Dv)‖�,[ S
2 ],n‖D2u‖�,S,2

+‖(v, Dv)‖�,[ S
2 ],∞‖D2u‖�,[ S

2 ],n‖(v, Dv)‖�,S,2

+‖D2u‖�,[ S
2 ],∞‖(v, Dv)‖�,[ S

2 ],n‖(v, Dv)‖�,S,2

+‖(v, Dv)‖�,[ S
2 ],∞‖(v, Dv)‖�,[ S

2 ],n‖(v, Dv)‖�,S,2

}

def.= K1 + K2 + K3 + K4. (9.3.74)

Noting Lemma5.2.4 in Chap.5, we have

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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‖ · ‖�,[ S
2 ],n ≤ C‖ · ‖1− 2

n

�,[ S
2 ],∞‖ · ‖ 2

n

�,[ S
2 ],2, (9.3.75)

then, notingLemma3.3.2, Corollary3.4.4 inChap.3 (inwhichwe take N = [ S
2 ], p =

2, s = [ n
2 ] + 1) and the definition of X S,E,T , we obtain

K1 ≤ C E2(1 + τ )−
n−1
2 (1 + τ )−

n−1
2 (1− 2

n ) f
2
n

n (τ )DS,T (u), (9.3.76)

K2 ≤ C E2(1 + τ )−
n−1
2 (1 + τ )−

n−1
2 (1− 2

n ) fn(τ )DS,T (u), (9.3.77)

K3 ≤ C E2(1 + τ )−
n−1
2 (1 + τ )−

n−1
2 (2− 2

n ) f
1+ 2

n
n (τ )DS,T (u) (9.3.78)

and

K4 ≤ C E3(1 + τ )−
n−1
2 (1 + τ )−

n−1
2 (2− 2

n ) f
1+ 2

n
n (τ ). (9.3.79)

Then, for n = 3, 4, noticing the definition (9.3.6) of fn(t), by (9.3.73) we get

‖u4(t, ·)‖�,S,2 ≤ C{ε + E fn(t)(E + DS,T )}. (9.3.80)

Combining (9.3.67)–(9.3.68), (9.3.72) and (9.3.80), we obtain

sup
0≤t≤T

f −1
n (t)‖u(t, ·)‖�,S,2 ≤ C{ε + E(E + DS,T (u))}. (9.3.81)

Finally, we estimate ‖u(t, ·)‖�,[ S
2 ]+1,∞.

From (9.3.54) we have

(1 + t)
n−1
2 ‖u(t, ·)‖�,[ S

2 ]+1,∞ ≤
4∑

i=1

(1 + t)
n−1
2 ‖ui (t, ·)‖�,[ S

2 ]+1,∞

def.= L1 + L2 + L3 + L4. (9.3.82)

Noticing (9.3.64)–(9.3.65) and that [ S
2 ]+n+2 ≤ S for S ≥ 2n+4, from (4.6.157)

in Corollary4.6.4 of Chap.4, and using Lemma9.3.4, we obtain

L1 + L2 ≤ C

{
ε +

∫ t

0
(1 + τ )

n−1
2 ‖(v2, vDu)(τ , ·)‖�,[ S

2 ]+1,∞dτ

+
∫ t

0
(1 + τ )−

n+1
2 ‖(v2, vDu)(τ , ·)‖�,S,1dτ

}
. (9.3.83)

From (5.1.15) in Remark5.1.1 of Chap.5, using Corollary3.4.4 in Chap.3 (in
which we take N = [ S

2 ] + 1, s = n
2 + 1, p = 2) and Lemma9.3.2, and noting the

definition of X S,E,T , we have

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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‖(v2, vDu)(τ , ·)‖
�,[ S

2 ]+1,∞ ≤ C E(1 + τ )−(n+1)(E + DS,T (u)), ∀τ ∈ [0, T ],
(9.3.84)

‖(v2, vDu)(τ , ·)‖�,S,1 ≤ C E f 2n (τ )(E + DS,T (u)), ∀τ ∈ [0, T ], (9.3.85)

then, noting (9.3.6) and (9.3.20), we get

L1 + L2 ≤ Cρ{ε + R(E, T )(E + DS,T (u))}. (9.3.86)

Similarly, by (4.6.156) in Corollary4.6.3 of Chap.4, we obtain

L3 + L4 ≤ C

{
ε +

∫ t

0
(1 + τ )−

n−1
2 (‖Q(Dv, Du, Dx Du)(τ , ·)‖�,S,1

+ ‖P(v, Dv, Dx Du)(τ , ·)‖�,S,1)dτ
}
. (9.3.87)

Using (5.1.15) in Remark5.1.1 of Chap.5, and noting Corollary3.4.4 in Chap.3 and
Lemma9.3.2, from the fact that Q(Dv, Du, Dx Du) is affine with respect to Du and
Dx Du, and that P(v, Dv, Dx Du) is affine with respect to Dx Du, we obtain

‖Q(Dv, Du, Dx Du)(τ , ·)‖�,S,1

≤ C‖Dv‖�,S,2(‖(Du, D2u)‖�,S,2 + ‖Dv‖�,S,2)

≤ C E(E + DS,T (u)),

‖P(v, Dv, Dx Du)(τ , ·)‖�,S,1

≤ C
{
‖(v, Dv)‖�,[ S

2 ],∞‖(v, Dv)‖�,[ S
2 ],2‖D2u‖�,S,2

+‖(v, Dv)‖�,[ S
2 ],∞‖D2u‖�,[ S

2 ],2‖(v, Dv)‖�,S,2

+‖D2u‖�,[ S
2 ],∞‖(v, Dv)‖�,[ S

2 ],2‖(v, Dv)‖�,S,2

+‖(v, Dv)‖�,[ S
2 ],∞‖(v, Dv)‖�,[ S

2 ],2‖(v, Dv)‖�,S,2

}

≤ C E2(1 + τ )−
n−1
2 f 2n (τ )(E + DS,T (u))

≤ C E2(E + DS,T (u)),

therefore,
L3 + L4 ≤ C{ε + R(E, T )(E + DS,T (u))}. (9.3.88)

Thus, we obtain

sup
0≤t≤T

(1 + t)
n−1
2 ‖u(t, ·)‖�,[ S

2 ]+1,∞ ≤ C{ε + R(E, T )(E + DS,T (u))}. (9.3.89)

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Combing (9.3.47), (9.3.52), (9.3.81) and (9.3.89), we get the desired (9.3.19).
The proof of Lemma9.3.5 is finished.

9.3.4 Proof of Lemma9.3.6

Let
u∗ = u − u, v∗ = v − v. (9.3.90)

At this moment we still have (9.2.58)–(9.2.60).
We first estimate ‖D2u∗(t, ·)‖�,S−1,2.

For any givenmulti-index k(|k| ≤ S−1), we still have (9.2.70)–(9.2.73). Similarly
to the proof of Lemma9.3.5, we have

|I|, |II|, |III|, |IV|, |V| ≤ C R(E, T )D2
S−1,T (u∗). (9.3.91)

It remains to estimate VI. Now we still have (9.2.75). By (5.1.31) in Lemma5.1.4
(in which we take p = q = 2, p1 = q1 = +∞) and (5.1.19) in Remark5.1.2 of
Chap.5, using Corollary5.4.4 in Chap. 5 and noting (9.3.53), we obtain

‖ĝk(τ , ·)‖L2(IRn) ≤ C
(‖DF∗(τ , ·)‖�,S−1,2 + ‖F∗(τ , ·)‖�,S−1,2

)

≤ C E(1 + τ )−
n−1
2 DS−1,T (v∗), (9.3.92)

then we have
|IV| ≤ C R(E, T )DS−1,T (u∗)DS−1,T (v∗). (9.3.93)

Hence, we obtain

sup
0≤t≤T

‖D2u∗(t, ·)‖2�,S−1,2 ≤ C R(E, T )(D2
S−1,T (u∗) + DS−1,T (u∗)DS−1,T (v∗)).

(9.3.94)
Similarly, we obtain

sup
0≤t≤T

‖Du∗(t, ·)‖2�,S−1,2 ≤ C R(E, T )(D2
S−1,T (u∗) + DS−1,T (u∗)DS−1,T (v∗)).

(9.3.95)
Finally, using arguments similar to the proof of (9.3.81) and (9.3.89), we obtain,

respectively,

sup
0≤t≤T

f −1
n (t)‖u∗(t, ·)‖�,S−1,2 ≤ C E(DS−1,T (u∗) + DS−1,T (v∗)) (9.3.96)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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and

sup
0≤t≤T

(1 + t)
n−1
2 ‖u∗(t, ·)‖�,[ S−1

2 ]+1,∞ ≤ C R(E, T )(DS−1,T (u∗) + DS−1,T (v∗)).

(9.3.97)
Combining (9.3.94)–(9.3.97) yields the desired (9.3.21).
The proof of Lemma9.3.6 is finished.



Chapter 10
Cauchy Problem of Two-Dimensional
Nonlinear Wave Equations

10.1 Introduction

In this chapter we consider the following Cauchy problem for two-dimensional non-
linear wave equations with small initial data:

�u = F(u, Du, Dx Du), (10.1.1)

t = 0 : u = εϕ(x), ut = εψ(x), (10.1.2)

where

� = ∂2

∂t2
− ∂2

∂x1
2

− ∂2

∂x2
2

(10.1.3)

is the two-dimensional wave operator,

Dx =
( ∂

∂x1
,

∂

∂x2

)
, D =

( ∂

∂t
,

∂

∂x1
,

∂

∂x2

)
, (10.1.4)

ϕ and ψ are sufficiently smooth functions with compact support, we may assume
that

ϕ,ψ ∈ C∞
0 (IR2) (10.1.5)

with
supp{ϕ,ψ} ⊆ {x ||x | ≤ ρ} (ρ > 0 is a constant), (10.1.6)

and ε > 0 is a small parameter.
Denote

λ̂ = (λ; (λi ), i = 0, 1, 2; (λi j ), i, j = 0, 1, 2, i + j ≥ 1). (10.1.7)
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218 10 Cauchy Problem of Two-Dimensional Nonlinear Wave Equations

Assume that in a neighborhood of λ̂ = 0, say, for |λ̂| ≤ ν0 (ν0 is a suitably small
positive number), the nonlinear term F(λ̂) is a sufficiently smooth function and
satisfies

F(λ̂) = O(|λ̂|1+α), (10.1.8)

where α ≥ 1 is an integer.
This chapter is aimed at studying the life-span T̃ (ε) of classical solution u =

u(t, x) to Cauchy problem (10.1.1)–(10.1.2) for any given integerα ≥ 1. For different
values of α, we will use the global iteration method to prove the following results:
there exists a suitably small positive number ε0 such that for any given ε ∈ (0, ε0],
(1) When α = 1, we have (see Li Tatsien and Zhou Yi 1994b)

T̃ (ε) ≥
⎧⎨
⎩

be(ε);
bε−1, if

∫
IR2 ψ(x)dx = 0;

bε−2, if∂2
u F(0, 0, 0) = 0,

(10.1.9)

where b is a positive constant independent of ε, and e(ε) is defined by

ε2e2(ε) ln(1 + e(ε)) = 1. (10.1.10)

(2) When α = 2, we have (see Li Tatsien and Zhou Yi 1993)

T̃ (ε) ≥
{

bε−6;
exp{aε−2}, if ∂

β
u F(0, 0, 0) = 0 (β = 3, 4),

(10.1.11)

where a and b are positive constants independent of ε.
(3) When α ≥ 3, we have (see Li Tatsien and Zhou Yi 1994a)

T̃ (ε) = +∞. (10.1.12)

Remark 10.1.1 In the sequel, we will adopt a simpler way to present the above results
instead of repeating the original proof given in Li and Zhou (1993, 1994a, b).

According to the above results, when n = 2, we have the following lower bound
estimates for the life-span T̃ (ε):

α = 1 2 3, 4, · · ·
be(ε)

bε−1 bε−6

T̃ (ε) ≥ (if
∫

IR2 ψ(x)dx = 0) +∞
bε−2 exp{aε−2}
(if ∂2

u F(0, 0, 0) = 0) (if ∂
β
u F(0, 0, 0) = 0,

β = 3, 4)
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In particular, when the nonlinear term on the right-hand side does not depend on
u explicitly:

F = F(Du, Dx Du), (10.1.13)

from the above table we have

α= 1 2 3, 4, · · ·
T̃ (ε) ≥ bε−2 exp{aε−2} +∞

It yields immediately the related results given in Sect. 9.2.5 of Chap. 9 for n = 2.
Thanks to the results in Chaps. 13 and 14, the above lower bound estimates on the

life-span are all sharp.
Due to Chap. 7, to prove the above results for Cauchy problem (10.1.1)–(10.1.2)

of two-dimensional nonlinear wave equations, it suffices essentially to consider the
following Cauchy problem of two-dimensional second-order quasi-linear hyperbolic
equations:

�u =
2∑

i, j=1

bi j (u, Du)uxi x j + 2
2∑

j=1

a0 j (u, Du)utx j + F(u, Du), (10.1.14)

t = 0 : u = εϕ(x), ut = εψ(x), (10.1.15)

here, ϕ,ψ ∈ C∞
0 (IR2) still satisfy condition (10.1.6), and ε > 0 is a small parameter.

Let
λ̃ = (λ; (λi ), i = 0, 1, 2). (10.1.16)

Assume that when |λ̃| ≤ ν0, bi j (λ̃), a0 j (λ̃) and F(λ̃) are all sufficiently smooth
functions satisfying

bi j (λ̃) = b ji (λ̃) (i, j = 1, 2), (10.1.17)

bi j (λ̃), a0 j (λ̃) = O(|λ̃|α) (i, j = 1, 2), (10.1.18)

F(λ̃) = O(|λ̃|1+α) (10.1.19)

and
2∑

i, j=1

ai j (λ̃)ξiξ j ≥ m0|ξ|2, ∀ξ ∈ IR2, (10.1.20)

where α ≥ 1 is an integer, m0 is a positive constant, and

ai j (λ̃) = δi j + bi j (λ̃) (i, j = 1, 2), (10.1.21)

http://dx.doi.org/10.1007/978-3-662-55725-9_9
http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_14
http://dx.doi.org/10.1007/978-3-662-55725-9_7
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in which δi j is the Kronecker symbol. In addition, condition ∂2
u F(0, 0, 0) = 0 for

α = 1 in (10.1.9) and condition ∂
β
u F(0, 0, 0) = 0 (β = 3, 4) for α = 2 in (10.1.11)

now reduce to, respectively,

∂2
u F(0, 0) = 0 for α = 1 (10.1.22)

and
∂β

u F(0, 0) = 0 (β = 3, 4) for α = 2. (10.1.23)

10.2 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (10.1.14)–(10.1.15) (The
Case α = 1)

In this section, we will consider the life-span of classical solutions to Cauchy prob-
lem (10.1.14)–(10.1.15) of two-dimensional second-order quasi-linear hyperbolic
equations, and prove the lower bound estimates given by the first two formulas in
(10.1.9) when α = 1, while, the lower bound estimate given by the last formula in
(10.1.9) will be proved in Sect. 10.3.

10.2.1 Metric Space XS,E,T . Main Results

From the Sobolev embedding theorem, there exists a suitably small E0 > 0, such
that

‖ f ‖L∞(IR2) ≤ ν0, ∀ f ∈ H 2(IR2), ‖ f ‖H 2(IR2) ≤ E0. (10.2.1)

For any given integer S ≥ 6, and any given positive numbers E (≤ E0) and T ,
we introduce the set of functions

X S,E,T = {v(t, x)|DS,T (v) ≤ E, ∂l
t v(0, x) = u(0)

l (x) (l = 0, 1, . . . , S + 1)},
(10.2.2)

where

DS,T (v) =
2∑

i=1

sup
0≤t≤T

‖Div(t, ·)‖�,S,2 + sup
0≤t≤T

g−1(t)‖v(t, ·)‖�,S,2, (10.2.3)

in which

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

√
ln(2 + t), if

∫

IR2
ψ(x)dx 	= 0;

1, if
∫

IR2
ψ(x)dx = 0,

(10.2.4)
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and u(0)
0 = εϕ(x), u(0)

1 = εψ(x), and, when l = 2, . . . , S + 1, u(0)
l (x) are values of

∂l
t u(t, x) at t = 0, which are uniquely determined by Eq. (10.1.14) and initial condi-

tion (10.1.15). It is obvious that u(0)
l (l = 0, 1, . . . , S + 1) are all sufficiently smooth

functions with compact support (see (10.1.6)).
Similarly to the previous two chapters, it is easy to prove

Lemma 10.2.1 Introduce the following metric in X S,E,T :

ρ(v, v) = DS,T (v − v), ∀v, v ∈ X S,E,T . (10.2.5)

Then, when ε > 0 is suitably small, X S,E,T is a non-empty complete metric space.

Lemma 10.2.2 When S ≥ 6, for any given v ∈ X S,E,T , we have

‖v(t, ·)‖�,[ S
2 ]+1,∞ ≤ C Eg(t)(1 + t)−

1
2 , ∀t ∈ [0, T ], (10.2.6)

‖(Dv, D2v)(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)−

1
2 , ∀t ∈ [0, T ], (10.2.7)

where C is a positive constant.

Proof Since S ≥ 6, by (10.4.30) in Chap. 3 (in which we take n = 2, p = 2, N =
[ S

2 ] + 1, and s = 2), and noticing the definition of X S,E,T , (10.2.6)–(10.2.7) follows
immediately. �

The main result of this section is the following

Theorem 10.2.1 Let n = 2 and α = 1. Under assumptions (10.1.5)–(10.1.6) and
(10.1.17)–(10.1.21), for any given integer S ≥ 6, there exist positive constants ε0 and
C0 with C0ε0 ≤ E0, and for any given ε ∈ (0, ε0], there exists a positive number T (ε),
such that Cauchy problem (10.1.14)–(10.1.15) admits a unique classical solution
u ∈ X S,C0ε,T (ε) on [0, T (ε)], where T (ε) can be taken as

T (ε) =
{

be(ε) − 1,

bε−1 − 1, if
∫

IR2  (x)dx = 0,
(10.2.8)

where e(ε) is defined by (10.1.10), and b is a positive constant independent of ε.
Moreover, after a possible change of values for t on a zero-measure set of the

interval [0, T (ε)], we have

u ∈ C
(
[0, T (ε)]; H S+1(IR2)

)
, (10.2.9)

ut ∈ C
(
[0, T (ε)]; H S(IR2)

)
, (10.2.10)

utt ∈ C
(
[0, T (ε)]; H S−1(IR2)

)
. (10.2.11)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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10.2.2 Framework to Prove Theorem 10.2.1—The Global
Iteration Method

To prove Theorem 10.2.1, for any given v ∈ X S,E,T , similarly to the previous two
chapters, by solving the following Cauchy problem of linear hyperbolic equations:

�u = F̂(v, Dv, Dx Du)

def.=
2∑

i, j=1

bi j (v, Dv)uxi x j + 2
2∑

j=1

a0 j (v, Dv)utx j + F(v, Dv), (10.2.12)

t = 0 : u = εϕ(x), ut = εψ(x), (10.2.13)

we define a mapping
M : v −→ u = Mv. (10.2.14)

We want to prove that: when ε > 0 is suitably small, there exists a positive constant
C0 such that when E = C0ε and T = T (ε) is defined by (10.2.8), the mapping M
admits a unique fixed point in X S,E,T , which is just the classical solution to Cauchy
(10.1.14)–(10.1.15) on 0 ≤ t ≤ T (ε).

Similarly to the previous two chapters, it is easy to prove the following two
lemmas.

Lemma 10.2.3 When E > 0 is suitably small, for any given v ∈ X S,E,T , after a
possible change of values for t on a zero-measure set, we have

u = Mv ∈ C
(
[0, T ]; H S+1(IR2)

)
, (10.2.15)

ut ∈ C
(
[0, T ]; H S(IR2)

)
, (10.2.16)

utt ∈ L∞
(

0, T ; H S−1(IR2)
)
. (10.2.17)

Moreover, for any given t ∈ [0, T ], the support of u = u(t, x) with respect to x is
included in {x ||x | ≤ t + ρ}.
Lemma 10.2.4 For u = u(t, x) = Mv, the values of ∂l

t u(0, ·)(l = 0, 1, · · · , S + 2)

do not depend on the choice of v ∈ X S,E,T , and

∂l
t u(0, x) = u(0)

l (x) (l = 0, 1, · · · , S + 1). (10.2.18)

Moreover,
‖u(0, ·)‖�,S+2,p ≤ Cε, (10.2.19)

where 1 ≤ p ≤ +∞, and C is a positive constant.
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The following two lemmas are crucial to the proof of Theorem 10.2.1.

Lemma 10.2.5 Under the assumptions of Theorem10.2.1, if

T ≤ exp{aε−2} (a > 0 is a constant), (10.2.20)

then, when E > 0 is suitably small, for any given v ∈ X S,E,T , u = Mv satisfies

DS,T (u) ≤ C1{ε + (R + √
R)(E + DS,T (u))}, (10.2.21)

where C1 is a positive constant,

R = R(E, T )
def.= E(1 + T )g(T ), (10.2.22)

and g(T ) is defined by (10.2.4).

Lemma 10.2.6 Under the assumptions of Lemma10.2.5, for any given v, v ∈
X S,E,T , if both u = Mv and u = Mv satisfy u, u ∈ X S,E,T , then we have

DS−1,T (u − u) ≤ C2

(
R + √

R
)(

DS−1,T (u − u) + DS−1,T (v − v)
)
, (10.2.23)

where C2 is a positive constant, and R = R(E, T ) is still defined by (10.2.22).

The proof of Lemmas 10.2.5 and 10.2.6 will be given later. Now we first utilize these
two lemmas to prove Theorem 10.2.1.

Proof of Theorem10.2.1 Take

C0 = 3 max(C1, C2), (10.2.24)

where C1 and C2 are positive constants appearing in Lemmas 10.2.5 and 10.2.6,
respectively.

Similarly to the previous two chapters, we can prove that: if there exists a positive
number ε0 satisfying C0ε0 ≤ E0, and for any given ε ∈ (0, ε0], E = E(ε) = C0ε
and T = T (ε) > 0 satisfying (10.2.20), we have

R(E(ε), T (ε)) + √
R(E(ε), T (ε)) ≤ 1

C0
, (10.2.25)

then the mapping M admits a unique fixed point u = u(t, x) ∈ X S,E(ε),T (ε), which
is exactly the classical solution to Cauchy problem (10.1.14)–(10.1.15) on 0 ≤ t ≤
T (ε).

Now we determine ε0 > 0 and T (ε)(0 < ε ≤ ε0), such that both (10.2.20) and
(10.2.25) hold. We always assume that ε0 > 0 is so small that (10.2.1) is satisfied
when E0 = C0ε0.
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In the case that
∫

IR2 ψ(x)dx 	= 0, from the first formula in (10.2.4) as well as
(10.2.22), it follows that

R = R(E, T ) = E(1 + T )
√

ln(2 + T ).

Then, if we take E = C0ε and

T (ε) = be(ε) − 1,

where e(ε) is defined by (10.1.10), and b(≤ 1) is a positive constant satisfying

C0(bC0 + √
bC0) ≤ 1, (10.2.26)

it is easy to show that both (10.2.20) and (10.2.25) hold when ε0 > 0 is small enough.
This proves the first formula in (10.2.8).

In the case that
∫

IR2 ψ(x)dx = 0,

R = R(E, T ) = E(1 + T ).

Then, if we take E = C0ε and

T (ε) = bε−1 − 1,

where b is still a positive constant satisfying (10.2.26), then it is clear that both
(10.2.20) and (10.2.25) hold when ε0 > 0 is small enough. This proves the second
formula in (10.2.8).

10.2.3 Proof of Lemmas 10.2.5 and 10.2.6

First, we prove Lemma 10.2.5.
We first estimate ‖u(t, ·)‖�,S,2.

For any given multi-index k(|k| ≤ S), from Lemma 3.1.5 in Chap. 3, by using
(10.2.12) we have

��ku = �k F̂(v, Dv, Dx Du) +
∑

|l|≤|k|−1

Bkl�
l F̂(v, Dv, Dx Du)

def.=
∑

|l|≤|k|
Ckl�

l F̂(v, Dv, Dx Du), (10.2.27)

where Bkl and Ckl are constants, and the initial value of �ku can be uniquely deter-
mined by u(0)

l (l = 0, 1, · · · , S + 1).

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Set
�ku = w

(0)
k + w

(1)
k , (10.2.28)

where w
(0)
k satisfies the linear homogeneous wave equation

�w
(0)
k = 0

and the same initial values as �ku, while, w
(1)
k satisfies

�w
(1)
k =

∑
|l|≤|k|

Ckl�
l F̂(v, Dv, Dx Du) (10.2.29)

and the zero initial data.
Set

w
(0)
k = w

(0)
k + w

(0)

k , (10.2.30)

where
w

(0)
k = �ku(0), (10.2.31)

and u(0) satisfies

�u(0) = 0, (10.2.32)

t = 0 : u(0) = εϕ(x), u(0)
t = εψ(x). (10.2.33)

It is obvious from Lemma 3.1.5 in Chap. 3 that

�w
(0)
k = 0. (10.2.34)

Then, from 1o in Theorem 4.3.1 of Chap. 4, it is clear that

‖w(0)
k (t, ·)‖L2(IR2) ≤ C

√
ln(2 + t)ε. (10.2.35)

In the case that
∫

IR2 ψ(x)dx = 0, the second initial value of w
(0)
k should satisfy a

similar condition, namely, ∫

IR2
w

(0)
k,t (0, x)dx = 0. (10.2.36)

To prove this, it suffices to prove

∫

IR2

∂

∂t
(�u(0))(0, x)dx = 0. (10.2.37)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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In fact, by Sect. 3.1 of Chap. 3, we have � = (�x , L , ∂), where

�x = (xi∂ j − x j∂i )1≤i< j≤n, (10.2.38)

L =
(

t∂t +
n∑

i=1

xi∂i , t∂i − xi∂t (i = 1, · · · , n)
)

(10.2.39)

and
∂ = (−∂t , ∂1, · · · , ∂n). (10.2.40)

Noting that ϕ and ψ have compact support, and
∫

IR2 ψ(x)dx = 0, using (10.2.32)
and (10.2.33), and integrating by parts if necessary, the proof of (10.2.37) is straight-
forward, we do not go into details here.

Thus, when
∫

IR2 ψ(x)dx = 0, from (10.2.36) and using 2◦ in Theorem 4.3.1 of
Chap. 4, we have

‖w(0)
k (t, ·)‖L2(IR2) ≤ Cε. (10.2.41)

Combining (10.2.35) and (10.2.41), and noting (10.2.4), we obtain

‖w(0)
k (t, ·)‖L2(IR2) ≤ Cg(t)ε. (10.2.42)

w
(0)

k in (10.2.30) is still the solution to the two-dimensional homogeneous linear
wave equation, whose initial values are the difference of the initial values of �ku
and �ku(0). Noticing that the Cauchy problems satisfied by u and u(0) are (10.2.12)–
(10.2.13) and (10.2.32)–(10.2.33), respectively, and noticing (10.1.18)–(10.1.19) (in

which α = 1), it is easy to know that the initial values of w
(0)

k are of the order ε2.
Then, using again 1◦ in Theorem 4.3.1 of Chap. 4 and noting the first formula in
(10.2.4), we have

‖w(0)
(t, ·)‖L2(IR2) ≤ C

√
ln(2 + t)ε2. (10.2.43)

Thus, from (10.2.30) we get

‖w(0)
k (t, ·)‖L2(IR2) ≤ C(g(t)ε + √

ln(2 + t)ε2). (10.2.44)

Now we estimate ‖w(1)
k (t, ·)‖L2(IR2).

By 2◦ in Theorem 4.5.1 of Chap. 4 (in which we take σ = 1
3 , and q = (1 − σ

2 )−1 =
6
5 ), we obtain

‖w(1)
k (t, ·)‖L2(IR2) ≤ C(1 + t)

1
3

∫ t

0

(
‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S, 6

5 ,χ1

+(1 + τ )−
1
3 ‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2

)
dτ . (10.2.45)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Noting α = 1 and Lemma 10.2.2, using the estimates about product functions and
composite functions in Chap. 5, it is clear that

‖F̂(v, Dv, Dx Du)(τ , ·)‖
�,S, 6

5 ,χ1
≤ C

{
‖(v, Dv)(τ , ·)‖

�,[ S
2 ],3,χ1

‖(v, Dv, Dx Du)(τ , ·)‖�,S,2

+‖Dx Du(τ , ·)‖
�,[ S

2 ],3,χ1
‖(v, Dv)(τ , ·)‖�,S,2

}
,

(10.2.46)

where χ1 is the characteristic function of set
{
(t, x)

∣∣|x | ≤ 1+t
2

}
, and χ2 = 1 − χ1.

Using 2◦ in Corollary 3.4.1 of Chap. 3 (in which we take n = 2, p = 2, q = 3, N =
[ S

2 ] and s = 1), we have

‖(v, Dv)(τ , ·)‖�,[ S
2 ],3,χ1

≤ C(1 + t)−
1
3 ‖(v, Dv)(τ , ·)‖�,S,2

and a similar estimate for ‖Dx Du(τ , ·)‖�,[ S
2 ],3,χ1

. Noticing furthermore the definition
of X S,E,T , it is easy to get

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S, 6
5 ,χ1

≤ C(1 + τ )−
1
3 ‖(v, Dv)(τ , ·)‖�,S,2‖(v, Dv, Dx Du)(τ , ·)‖�,S,2

≤ C(1 + τ )−
1
3 g2(τ )(E2 + E DS,T (u)), (10.2.47)

where g(t)(≥ 1) is defined by (10.2.4).
Similarly, noting α = 1 and using the estimates about product functions and com-

posite functions in Chap. 5, we have

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2 ≤ C
{
‖(v, Dv)(τ , ·)‖

�,[ S
2 ],2,∞‖(v, Dv, Dx Du)(τ , ·)‖�,S,2

+‖Dx Du(τ , ·)‖
�,[ S

2 ],2,∞‖(v, Dv)(τ , ·)‖�,S,2

}
.

(10.2.48)

Using the embedding theorem on a sphere (i.e., 1◦ in Theorem 3.2.1 of Chap. 3, in
which we take n = 2, p = 2, s = 1), we have

‖(v, Dv)(τ , ·)‖�,[ S
2 ],2,∞ ≤ C‖(v, Dv)(τ , ·)‖�,[ S

2 ]+1,2 ≤ C‖(v, Dv)(τ , ·)‖�,S,2

and a similar estimate for ‖Dx Du(τ , ·)‖�,[ S
2 ],2,∞. By the definition of X S,E,T , simi-

larly to (10.2.47), we obtain

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2 ≤ C‖(v, Dv)(τ , ·)‖�,S,2‖(v, Dv, Dx Du)(τ , ·)‖�,S,2

≤ Cg2(τ )(E2 + E DS,T (u)).

(10.2.49)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Plugging (10.2.47) and (10.2.49) in (10.2.45), we get

‖w(1)
k (t, ·)‖L2(IR2) ≤ C(1 + t)

1
3

∫ t

0
(1 + τ )−

1
3 g2(τ )dτ · (E2 + E DS,T (u))

≤ C(1 + t)g2(t)(E2 + E DS,T (u))

≤ Cg(t)R(E, T )(E + DS,T (u)), (10.2.50)

where R(E, T ) is given by (10.2.22).
Using (10.2.44) and (10.2.50), from (10.2.28) we get, when

∫
IR2 ψ(x)dx 	= 0,

‖u(t, ·)‖�,S,2 ≤ Cg(t)
(
ε + R(E, T )(E + DS,T (u))

); (10.2.51)

while, when
∫

IR2 ψ(x)dx = 0, (10.2.51) still holds as long as (10.2.20) is satisfied.
Hence, under condition (10.2.20) we always have

sup
0≤t≤T

g−1(t)‖u(t, ·)‖�,S,2 ≤ C
(
ε + R(E, T )(E + DS,T (u))

)
. (10.2.52)

Now we estimate ‖(Du, D2u)(t, ·)‖�,S,2.
For any given multi-index k(|k| ≤ S), by (9.2.41) in Chap. 9, we have the following

energy integral formula:

‖(�k Du(t, ·))t‖2
L2(IR2)

+
2∑

i, j=1

∫

IR2
ai j (v, Dv)(t, ·)(�k Du(t, ·))xi (�

k Du(t, ·))x j dx

=‖(�k Du(0, ·))t‖2
L2(IR2)

+
2∑

i, j=1

∫

IR2
ai j (v, Dv)(0, ·)(�k Du(0, ·))xi (�

k Du(0, ·))x j dx

+
2∑

i, j=1

∫ t

0

∫

IR2

∂bi j (v, Dv)(τ , ·)
∂τ

(�k Du(τ , ·))xi (�
k Du(τ , ·))x j dxdτ

− 2
2∑

i, j=1

∫ t

0

∫

IR2

∂bi j (v, Dv)(τ , ·)
∂xi

(�k Du(τ , ·))x j (�
k Du(τ , ·))τ dxdτ

− 2
2∑

j=1

∫ t

0

∫

IR2

∂a0 j (v, Dv)(τ , ·)
∂x j

(�k Du(τ , ·))τ (�k Du(τ , ·))τ dxdτ

+ 2
∫ t

0

∫

IR2
Gk(τ , ·)(�k Du(τ , ·))τ dxdτ + 2

∫ t

0

∫

IR2
gk(τ , ·)(�k Du(τ , ·))τ dxdτ

def.= ‖(�k Du(0, ·))t‖2
L2(IR2)

+
2∑

i, j=1

∫

IR2
ai j (v, Dv)(0, ·)(�k Du(0, ·))xi (�

k Du(0, ·))x j dx

+ I + II + III + IV + V, (10.2.53)

http://dx.doi.org/10.1007/978-3-662-55725-9_9
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where

Gk =
2∑

i, j=1

{(
�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j

)

+bi j (v, Dv)
(
�k Duxi x j − (�k Du)xi x j )

}

+2
2∑

j=1

{(
�k D(a0 j (v, Dv)utx j ) − a0 j (v, Dv)�k Dutx j

)

+a0 j (v, Dv)
(
�k Dutx j − (�k Du)t x j

)}
, (10.2.54)

gk = �k DF(v, Dv) +
∑

|l|≤|k|
B̃kl�

l F̂(v, Dv, Dx Du), (10.2.55)

and F̂(v, Dv, Dx Du) is given by (10.2.12), B̃kl are some constants.
In what follows we only explain briefly those estimates similar to Sect. 9.2 in

Chap. 9.
Noticing α = 1 and Lemma 10.2.2, using the estimates about product functions

and composite functions in Chap. 5, we get

|I|, |II|, |III| ≤ C
∫ t

0
‖(v, Dv, D2v)(τ , ·)‖L∞(IR2)dτ · D2

S,T (u)

≤ C E
∫ t

0
g(τ )(1 + τ )−

1
2 dτ · D2

S,T (u)

≤ C Eg(t)(1 + t)
1
2 D2

S,T (u) ≤ C R(E, T )D2
S,T (u). (10.2.56)

Now we estimate the L2 norm of Gk(τ , ·).
First, we have

‖bi j (v, Dv)
(
�k Duxi x j − (�k Du)xi x j

)
(τ , ·)‖L2(IR2)

≤ C‖bi j (v, Dv)(τ , ·)‖L∞(IR2) · ‖(�k Duxi x j − (�k Du)xi x j

)
(τ , ·)‖L2(IR2)

≤ C Eg(τ )(1 + τ )−
1
2 ‖D2u(τ , ·)‖�,S,2

≤ C Eg(τ )(1 + τ )−
1
2 DS,T (u). (10.2.57)

Second, we have

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j

)
(τ , ·)‖L2(IR2)

≤ ‖(�k(bi j (v, Dv))Duxi x j − bi j (v, Dv)�k Duxi x j

)
(τ , ·)‖L2(IR2)

http://dx.doi.org/10.1007/978-3-662-55725-9_9
http://dx.doi.org/10.1007/978-3-662-55725-9_5


230 10 Cauchy Problem of Two-Dimensional Nonlinear Wave Equations

+‖�k(Dbi j (v, Dv))uxi x j )(τ , ·)‖L2(IR2)

≤ C(1 + τ )−
1
2 ‖(v, Dv, D2v)(τ , ·)‖�,S,2‖D2u(τ , ·)‖�,S,2

≤ C Eg(τ )(1 + τ )−
1
2 DS,T (u). (10.2.58)

We have similar estimates for the terms composed of a0 j in Gk . Therefore, we have

‖Gk(τ , ·)‖L2(IR2) ≤ C Eg(τ )(1 + τ )−
1
2 DS,T (u), ∀τ ∈ [0, T ], (10.2.59)

then we get
|IV| ≤ C R(E, T )D2

S,T (u). (10.2.60)

Similarly, we have

‖gk(τ , ·)‖L2(IR2) ≤ C
(
‖DF(v, Dv)(τ , ·)‖�,S,2 + ‖F(v, Dv)(τ , ·)‖�,S,2

+
2∑

i, j=1

‖bi j (v, Dv)uxi x j (τ , ·)‖�,S,2 + 2
2∑

j=1

‖a0 j (v, Dv)utx j (τ , ·)‖�,S,2

)

≤ C Eg(τ )(1 + τ )−
1
2 (E + DS,T (u)), ∀τ ∈ [0, T ], (10.2.61)

then
|V| ≤ C R(E, T )(E DS,T (u) + D2

S,T (u)). (10.2.62)

Hence, by (10.2.53), and noting (10.1.20) and (10.1.15), we obtain

sup
0≤t≤T

∑
|k|≤S

‖D�k Du(t, ·)‖2
L2(IR2) ≤ C

{
ε2 + R(E, T )(E DS,T (u) + D2

S,T (u))
}
,

(10.2.63)
then, by Corollary 3.1.1 in Chap. 3 we get

sup
0≤t≤T

‖D2u(t, ·)‖�,S,2 ≤ C
{
ε + √

R(E, T )(E + DS,T (u))
}
. (10.2.64)

Moreover, for any given multi-index k(|k| ≤ S), from (9.2.56) in Chap. 9 we also
have the following energy integral formula:

‖(�ku(t, ·))t‖2
L2(IR2) +

2∑
i, j=1

∫

IR2
ai j (v, Dv)(t, ·)(�ku(t, ·))xi (�

ku(t, ·))x j dx

=‖(�ku(0, ·))t‖2
L2(IR2) +

2∑
i, j=1

∫

IR2
ai j (v, Dv)(0, ·)(�ku(0, ·))xi (�

ku(0, ·))x j dx

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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+
2∑

i, j=1

∫ t

0

∫

IR2

∂bi j (v, Dv)(τ , ·)
∂τ

(�ku(τ , ·))xi (�
ku(τ , ·))x j dxdτ

− 2
2∑

i, j=1

∫ t

0

∫

IR2

∂bi j (v, Dv)(τ , ·)
∂xi

(�ku(τ , ·))x j (�
ku(τ , ·))τ dxdτ

− 2
2∑

j=1

∫ t

0

∫

IR2

∂a0 j (v, Dv)(τ , ·)
∂x j

(�ku(τ , ·))τ (�ku(τ , ·))τ dxdτ

+ 2
∫ t

0

∫

IR2
Gk(τ , ·)(�ku(τ , ·))τ dxdτ + 2

∫ t

0

∫

IR2
gk(τ , ·)(�ku(τ , ·))τ dxdτ ,

(10.2.65)

where

Gk =
2∑

i, j=1

{(
�k(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�kuxi x j

)

+bi j (v, Dv)
(
�kuxi x j − (�ku)xi x j )

}

+2
2∑

j=1

{(
�k(a0 j (v, Dv)utx j ) − a0 j (v, Dv)�kutx j

)

+a0 j (v, Dv)
(
�kutx j − (�ku)t x j

)}
, (10.2.66)

gk = �k F(v, Dv) +
∑

|l|≤|k|−1

Bkl�
l F̂(v, Dv, Dx Du), (10.2.67)

and F̂(v, Dv, Dx Du) is given by (10.2.12), Bkl are some constants.
Using similar arguments as in the proof of (10.2.64), we obtain

sup
0≤t≤T

‖Du(t, ·)‖�,S,2 ≤ C
{
ε + √

R(E, T )(E + DS,T (u))
}
. (10.2.68)

Combining (10.2.52), (10.2.64) and (10.2.68), we obtain the desired (10.2.21).
The proof of Lemma 10.2.5 is finished.

Lemma 10.2.6 can be proved similarly to Sect. 9.2.4 in Chap. 9, we do not go into
details here.

http://dx.doi.org/10.1007/978-3-662-55725-9_9
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10.3 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (10.1.14)–(10.1.15) (The
Case α ≥ 2)

In this section, we will consider the life-span of classical solutions to Cauchy problem
(10.1.14)–(10.1.15) of two-dimensional second-order quasi-linear hyperbolic equa-
tions and prove the lower bound estimates given by the first formula in (10.1.11)
when α = 2 and formula (10.1.12) when α ≥ 3, while, the lower bound estimate
given by the last formula in (10.1.11) will be proved in Sect. 10.3. For narrative sim-
plicity, in what follows we emphasize only the difference with the proof in Sect. 10.2,
and obviously it suffices to consider the two cases α = 2 and α = 3.

10.3.1 Metric Space XS,E,T . Main Results

For any given integer S ≥ 6, and any given real number E(≤ E0) T (0 < T ≤
+∞), we still introduce the set of functions, X S,E,T , by (10.2.2), whereas

DS,T (v) =
2∑

i=1

sup
0≤t≤T

‖Div(t, ·)‖�,S,2 + D̃S,T (v), (10.3.1)

where, when α = 2 and 3, we take

D̃S,T (v) = sup
0≤t≤T

(1 + t)−( 1
2 − 1

1+α )‖v(t, ·)‖�,S,2,χ1 + sup
0≤t≤T

(1 + t)
1
2 − 1

1+α ‖v(t, ·)‖�,S,1+α,2,χ2 ,

(10.3.2)

and χ1 is the characteristic function of set
{
(t, x)

∣∣|x | ≤ 1+t
2

}
, χ2 = 1 − χ1.

It is easy to prove

Lemma 10.3.1 Introduce the following metric in X S,E,T :

ρ(v, v) = DS,T (v − v), ∀v, v ∈ X S,E,T . (10.3.3)

Then, when ε > 0 is suitably small, X S,E,T is a non-empty complete metric space.

Lemma 10.3.2 When S ≥ 6, for any given v ∈ X S,E,T , we have

‖v(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)−

1
2 , ∀t ∈ [0, T ], (10.3.4)

‖(Dv, D2v)(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)−

1
2 , ∀t ∈ [0, T ], (10.3.5)

where C is a positive constant.
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Proof Noting S ≥ 6, by (3.4.30) in Chap. 3, and noticing the definition of X S,E,T ,
similarly to (10.2.7), (10.3.5) follows immediately.

Still by (3.4.30) in Chap. 3 (in which we take n = 2, p = 1 + α, N = [ S
2 ] + 1,

and s = 1), noting S ≥ 6, when α = 2 and 3 we have

‖v(t, ·)‖�,[ S
2 ]+1,∞ ≤ C(1 + t)−

1
1+α ‖v(t, ·)‖�,S−1,1+α, (10.3.6)

and

‖v(t, ·)‖�,S−1,1+α ≤ ‖v(t, ·)‖�,S−1,1+α,χ1 + ‖v(t, ·)‖�,S−1,1+α,χ2 , (10.3.7)

where χ1 is the characteristic function of set
{
(t, x)

∣∣|x | ≤ 1+t
2

}
, and χ2 = 1 − χ1.

By (3.4.13) in Chap. 3 (in which we take n = 2, p = 2, q = 1 + α, N = S − 1,
and s = 1), we get

(1 + t)−
1

1+α ‖v(t, ·)‖�,S−1,1+α,χ1 ≤ C(1 + t)−
α

1+α ‖v(t, ·)‖�,S,2,χ1 . (10.3.8)

While, using the Sobolev embedding theorem on a sphere (i.e., 1◦ in Theorem 3.2.1
of Chap. 3, in which we take n = 2, p = 2, s = 1), for α = 2, 3 it is easy to show
that

‖v(t, ·)‖�,S−1,1+α,χ2 ≤ C‖v(t, ·)‖�,S,1+α,2,χ2 . (10.3.9)

Thus, using (10.3.8) and (10.3.9), by (10.3.6) and noting (10.3.2), we have

‖v(t, ·)‖�,[ S
2 ]+1,∞ ≤

{
(1 + t)−

α
1+α ‖v(t, ·)‖�,S,2,χ1 + (1 + t)−

1
1+α ‖v(t, ·)‖�,S,1+α,2,χ2

}

≤ C E(1 + t)−
1
2 . (10.3.10)

This proves (10.3.4). �

The main result of this section is the following

Theorem 10.3.1 Let n = 2 and α ≥ 2. Under assumptions (10.1.5)–(10.1.6) and
(10.1.17)–(10.1.21), for any given integer S ≥ 6, there exist positive constants ε0 and
C0 with C0ε0 ≤ E0, and for any given ε ∈ (0, ε0], there exists a positive number T (ε),
such that Cauchy problem (10.1.14)–(10.1.15) admits a unique classical solution
u ∈ X S,C0ε,T (ε) on [0, T (ε)], and T (ε) can be taken as

T (ε) =
{

bε−b − 1, α = 2,

+∞, α ≥ 3,
(10.3.11)

where b is a positive constant independent of ε. Moreover, after a possible change
of values for t on a zero-measure set of [0, T (ε)], we have (10.2.9)–(10.2.11).

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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10.3.2 Framework to Prove Theorem 10.3.1—The Global
Iteration Method

Similarly to Sect. 10.2.2, the following two lemmas are crucial to the proof of
Theorem 10.3.1.

Lemma 10.3.3 Under the assumptions of Theorem10.3.1, for α = 2 and 3, when
E > 0 is suitably small, for any given v ∈ X S,E,T , u = Mv satisfies

DS,T (u) ≤ C1{ε + (R + √
R)(E + DS,T (u))}, (10.3.12)

where C1 is a positive constant, and

R = R(E, T )
def.=

{
E2(1 + T )

1
3 , α = 2,

E3, α = 3.
(10.3.13)

Lemma 10.3.4 Under the assumptions of Lemma10.3.3, for any given v̄, ¯̄v ∈
X S,E,T , if both ū = M v̄ and ¯̄u = M ¯̄v satisfy ū, ¯̄u ∈ X S,E,T , then we have

DS−1,T (ū − ¯̄u) ≤ C2(R + √
R)

(
DS−1,T (ū − ¯̄u) + DS−1,T (v̄ − ¯̄v)

)
, (10.3.14)

where C2 is a positive constant, and R = R(E, T ) is still defined by (10.3.13).

10.3.3 Proof of Lemmas 10.3.3 and 10.3.4

We first estimate D̃S,T (u).
By (10.2.12)–(10.2.13), for α = 2 and 3, using Corollary 4.5.3 in Chap. 4 (in

which we tatk n = 2, p = 1 + α, N = S, s = 1
2 − 1

p = 1
2 − 1

1+α
), we have

(1 + t)
1
2 − 1

1+α ‖u(t, ·)‖�,S,1+α,2,χ2

≤ C
{
ε +

∫ t

0

(
‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,γ,χ1

+(1 + τ )−( 1
2 − 1

1+α )‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2

)
dτ

}
,

(10.3.15)

where
1

γ
= 1

2
+ 1

2

(1

2
+ 1

1 + α

) def.= 1

2
+ α

H
. (10.3.16)

http://dx.doi.org/10.1007/978-3-662-55725-9_4
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Noting (10.3.16), using the estimates about product functions and composite func-
tions in Chap. 5, we have

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,γ,χ1

≤ C
{
‖(v, Dv)(τ , ·)‖α

�,[ S
2 ],H,χ1

‖(υ, Dυ, Dx Du)(τ , ·)‖�,S,2,χ1

+‖Dx Du(τ , ·)‖�,[ S
2 ],H,χ1

‖(v, Dv)(τ , ·)‖α−1
�,[ S

2 ],H,χ1
‖(v, Dv)(τ , ·)‖�,S,2,χ1

}
.

(10.3.17)

Using 2◦ in Corollary 3.4.1 of Chap. 3 (in which we take n = 2, N = [ S
2 ], p = 2,

q = H , and s = 1), and noticing the definition of X S,E,T , from the above formula
we easily have

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,γ,χ1

≤ C(1 + τ )−α+ 1
2 + 1

1+α ‖(v, Dv)(τ , ·)‖α
�,S,2,χ1

‖(v, Dv, Dx Du)(τ , ·)‖�,S,2,χ1

≤ C(1 + τ )−
α
2 + 1

1+α Eα
(
E + DS,T (u)

)
. (10.3.18)

Moreover, noting Lemma 10.3.2 and using Hölder inequality, from the estimates
about product functions and composite functions in Chap. 5, it is easy to know that,
to estimate the norm ‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,,χ2 , it suffices to estimate the
corresponding norms of v1+α, (Dv)1+α, vα Dx Du and (Dv)α Dx Du.

First, from the estimates about product functions in Chap. 5, using the Sobolev
embedding theorem on a sphere (see 1◦ in Theorem 3.2.1 of Chap. 3, in which we
take n = 2, p = 2, and s > 1

2 ), and noticing (10.3.2), we have

‖v1+α(τ , ·)‖�,S,1,2,χ2 ≤ C‖v(τ , ·)‖α
�,[ S

2 ],1+α,∞,χ2
‖v(τ , ·)‖�,S,1+α,2,χ2

≤ C‖v(τ , ·)‖1+α
�,S,1+α,2,χ2

≤ C(1 + τ )−
α−1

2 E1+α. (10.3.19)

Second, from the Sobolev embedding theorem on a sphere, and using Corollary
3.4.4 in Chap. 3 (in which we take N = [ S

2 ], n = 2, p = 2, and s > 1), noting
(10.3.1), we have

‖(Dv)1+α(τ , ·)‖�,S,1,2,χ2 ≤ C‖Dv(τ , ·)‖α−1
�,[ S

2 ],∞‖Dv(τ , ·)‖�,[ S
2 ],2,∞‖Dv(τ , ·)‖�,S,2

≤ C(1 + τ )−
α−1

2 ‖Dv(τ , ·)‖1+α
�,S,2

≤ C(1 + τ )−
α−1

2 E1+α. (10.3.20)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Third, from the estimates about product functions in Chap. 5, it is clear that

‖vα Dx Du(τ , ·)‖�,S,1,2,χ2

≤ C
{
‖v(τ , ·)‖α

�,[ S
2 ],2α,∞,χ2

‖Dx Du(τ , ·)‖�,S,2

+‖v(τ , ·)‖α−1
�,[ S

2 ],1+α,∞,χ2
‖Dx Du(τ , ·)‖�,[ S

2 ],1+α,∞‖v(τ , ·)‖�,S,1+α,2,χ2

}
.

(10.3.21)

Using the obvious estimate

‖ f ‖L2α =
(∫

| f |2α

) 1
2α

=
(∫

| f |α−1| f |1+α

) 1
2α

≤ ‖ f ‖ α−1
2α

L∞ ‖ f ‖ α+1
2α

L1+α ,

it is easy to show that

‖v(τ , ·)‖�,[ S
2 ],2α,∞,χ2

≤ ‖v(τ , ·)‖ α−1
2α

�,[ S
2 ],∞,χ2

‖v(τ , ·)‖ α+1
2α

�,[ S
2 ],1+α,∞,χ2

. (10.3.22)

Using Corollary 3.4.4 in Chap. 3 (in which we take n = 2, N = [ S
2 ], p = 1 + α, and

s = 1), we have

‖v(τ , ·)‖�,[ S
2 ],∞,χ2

≤ C(1 + τ )−
1

1+α ‖v(τ , ·)‖�,[ S
2 ]+1,1+α,χ2

, (10.3.23)

Then, noting furthermore that L1+α,∞(Rn) ⊂ L1+α(Rn) is a continuous embedding,
we have

‖v(τ , ·)‖�,[ S
2 ],∞,χ2

≤ C(1 + τ )−
1

1+α ‖v(τ , ·)‖�,[ S
2 ]+1,1+α,∞,χ2

. (10.3.24)

Using the Sobolev embedding theorem on a sphere (see 1◦ in Theorem 3.2.1 of
Chap. 3, in which we take n = 2, p = 2, and s = 1), we have

‖v(τ , ·)‖�,[ S
2 ]+1,1+α,∞,χ2

≤ C‖v(τ , ·)‖�,[ S
2 ]+2,1+α,2,χ2

. (10.3.25)

Thus, by (10.3.22) and noting the definition of X S,E,T , it is easy to get

‖v(τ , ·)‖�,[ S
2 ],2α,∞,χ2

≤ C(1 + τ )−( 1
1+α − 1

2α )‖v(τ , ·)‖�,S,1+α,2,χ2

≤ C(1 + τ )−
α−1
2α E . (10.3.26)

Similarly, we have

‖v(τ , ·)‖�,[ S
2 ],1+α,∞,χ2

≤ C‖v(τ , ·)‖�,S,1+α,2,χ2

≤ C(1 + τ )−( 1
2 − 1

1+α )E . (10.3.27)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Moreover, using the obvious estimate

‖ f ‖1+α =
(∫

| f |1+α

) 1
1+α

=
(∫

| f |α−1| f |2
) 1

1+α

≤ ‖ f ‖
α−1
α+1
L∞ ‖ f ‖

2
1+α

L2 ,

we have

‖Dx Du(τ , ·)‖�,[ S
2 ],1+α,∞ ≤ ‖Dx Du(τ , ·)‖

α−1
1+α

�,[ S
2 ],∞‖Dx Du(τ , ·)‖

2
1+α

�,[ S
2 ],2,∞.

(10.3.28)
Using Corollary 3.4.4 in Chap. 3 (in which we take n = 2, N = [ S

2 ], p = 2, and
s = 2), we have

‖Dx Du(τ , ·)‖�,[ S
2 ],∞ ≤ C(1 + τ )−

1
2 ‖Dx Du(τ , ·)‖�,S,2, (10.3.29)

and using the Sobolev embedding theorem on a sphere, we have

‖Dx Du(τ , ·)‖�,[ S
2 ],2,∞ ≤ C‖Dx Du(τ , ·)‖�,S,2. (10.3.30)

Then, by (10.3.28) and noting (10.3.1), we get

‖Dx Du(τ , ·)‖�,[ S
2 ],1+α,∞ ≤ C(1 + τ )−( 1

2 − 1
1+α ) DS,T (u). (10.3.31)

Substituting (10.3.26)–(10.3.27) and (10.3.31) into (10.3.21) and noticing the defin-
ition of X S,E,T , we obtain

‖vα Dx Du(τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
α−1

2 Eα DS,T (u). (10.3.32)

Finally, we have

‖(Dv)α Dx Du(τ , ·)‖�,S,1,2,χ2

≤ C
{
‖Dv(τ , ·)‖�,[ S

2 ],2,∞‖Dv(τ , ·)‖α−1
�,[ S

2 ],∞‖Dx Du(τ , ·)‖�,S,2

+ ‖Dv(τ , ·)‖�,S,2‖Dv(τ , ·)‖α−1
�,[ S

2 ],∞‖Dx Du(τ , ·)‖�,[ S
2 ],2,∞

}
.

(10.3.33)

By Corollary 3.4.4 in Chap. 3 (in which we take n = 2, N = [ S
2 ], p = 2, and s = 2),

we have
‖Dv(τ , ·)‖�,[ S

2 ],∞ ≤ C(1 + τ )−
1
2 ‖Dv(τ , ·)‖�,S,2, (10.3.34)

and from the Sobolev embedding theorem on a sphere we have

‖Dv(τ , ·)‖�,[ S
2 ],2,∞ ≤ C‖Dv(τ , ·)‖�,S,2 (10.3.35)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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and a similar estimate for ‖Dx Du(τ , ·)‖�,[ S
2 ],2,∞. Then, from (10.3.33) we get

‖(Dv)α Dx Du(τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
α−1

2 Eα DS,T (u). (10.3.36)

Thus, using (10.3.19)–(10.3.20), (10.3.32) and (10.3.36) we obtain

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
α−1

2 Eα(E + DS,T (u)). (10.3.37)

Plugging (10.3.18) and (10.3.37) in (10.3.15), we finally obtain

(1 + t)
1
2 − 1

1+α ‖u(t, ·)‖�,S,1+α,2,χ2 ≤ C
{
ε + (1 + t)1− α

2 + 1
1+α Eα

(
E + DS,T (u)

)}
,

(10.3.38)
then, when α = 2 and 3, noting (10.3.13), we get

(1 + t)
1
2 − 1

1+α ‖u(t, ·)‖�,S,1+α,2,χ2 ≤ C
{
ε + R(E, T )

(
E + DS,T (u)

)}
. (10.3.39)

This finishes the estimates on the second term in D̃S,T (u).
Now we estimate the first term in D̃S,T (u).
From (4.5.18) in Corollary 4.5.1 of Chap. 4 (in which we take N = S, σ = 1

2 −
1

1+α
, and q satisfies 1

q = 1 − σ
2 = 3

4 + 1
2(1+α)

), it is easy to get

(1 + t)−( 1
2 − 1

1+α )‖u(t, ·)‖�,S,2,χ1

≤ C
{
ε +

∫ t

0

(
‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,q,χ1

+ (1 + τ )−( 1
2 − 1

1+α )‖F̂(v, Dv, Dx Du(τ , ·))‖�,S,1,2,χ2

)
dτ

}
.

(10.3.40)

Since the estimate for the second term on the right-hand side of the above formula
can be found in (10.3.37), it remains to estimate the first term.

Noticing Lemma 10.3.2 and using Hölder inequality, by the estimates on product
functions and composite functions in Chap. 5, it is easy to show that

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,q,χ1

≤ C
{
‖(v, Dv)(τ , ·)‖α

�,[ S
2 ],�,χ1

‖(v, Dv, Dx Du)(τ , ·)‖�,S,2,χ1

+‖Dx Du(τ , ·)‖�,[ S
2 ],�,χ1

‖(v, Dv)(τ , ·)‖α−1
�,[ S

2 ],�,χ1
‖(v, Dv)(τ , ·)‖�,S,2,χ1

}
,

(10.3.41)

where l is determined by 1
q = 1

2 + α
l . Using 2◦ in Corollary 3.4.1 of Chap. 3 (in

which we take n = 2, N = [ S
2 ], p = 2, q = l, and s = 1), and noting the definition

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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of X S,E,T , similarly to (10.3.18), we have

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,q,χ1

≤ C(1 + τ )−2α( 1
2 − 1

l )‖(v, Dv)(τ , ·)‖α
�,S,2,χ1

‖(v, Dv, Dx Du)(τ , ·)‖�,S,2,χ1

≤ C(1 + τ )−( α
2 − 1

1+α )Eα
(
E + DS,T (u)

)
. (10.3.42)

Plugging (10.3.37) and (10.3.42) in (10.3.40) and noticing the definition (10.3.13)
of R(E, T ) when α = 2 and 3, it follows immediately that

(1 + t)−( 1
2 − 1

1+α )‖u(t, ·)‖�,S,2,χ1 ≤ C
{
ε + R(E, T )

(
E + DS,T (u)

)}
. (10.3.43)

Combining (10.3.39) and (10.3.43), we obtain

D̃S,T (u) ≤ C
{
ε + R(E, T )

(
E + DS,T (u)

)}
. (10.3.44)

Now we estimate ‖(Du, D2u)(t, ·)‖�,S,2.
We still have (10.2.53)–(10.2.55). When α = 2 and 3, using Lemma 10.3.2 and

noting (10.3.13), it is obvious that

|I|, |II|, |III| ≤ C
∫ t

0
‖(v, Dv, D2v)(τ , ·)‖α

L∞(R2)dτ · D2
S,T (u)

≤ C R(E, T )D2
S,T (u). (10.3.45)

Now we estimate the L2 norm of Gk(τ , ·).
Similarly to (10.2.57), from Lemma 10.3.2 we have

‖bi j (v, Dv)
(
�k Duxi x j − (�k Du)xi x j

)
(τ , ·)‖L2(IR2)

≤ C‖bi j (v, Dv)(τ , ·)‖L∞(IR2)‖D2u(τ , ·)‖�,S,2

≤ C(1 + τ )−
α
2 Eα DS,T (u). (10.3.46)

By estimate (5.1.19) about product functions in Chap. 5, using (3.4.30) in Chap. 3
(in which we take N = [ S

2 ], p = 2, s = 2), it is clear that

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IR2)

≤ C
{
‖Dbi j (v, Dv)(τ , ·)‖�,S,2‖D2u(τ , ·)‖�,[ S

2 ],∞

+‖D2u(τ , ·)‖�,S,2‖bi j (v, Dv)(τ , ·)‖�,[ S
2 ],∞

}

≤ C
{
(1 + τ )−

1
2 ‖Dbi j (v, Dv)(τ , ·)‖�,S,2

+‖bi j (v, Dv)(τ , ·)‖�,[ S
2 ],∞

}
· ‖D2u(τ , ·)‖�,S,2. (10.3.47)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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From Lemma 10.3.2, it is easy to know that

‖bi j (v, Dv)(τ , ·)‖�,[ S
2 ],∞ ≤ C(1 + τ )−

α
2 Eα. (10.3.48)

In addition, using Lemma 10.3.2, from the estimates about product functions in
Chap. 5 we easily have

‖Dbi j (v, Dv)(τ , ·)‖�,S,2

≤ C
{
‖(v, Dv, D2v)(τ , ·)‖α−1

�,[ S
2 ],∞‖(Dv, D2v)(τ , ·)‖�,S,2

+ ‖(v, Dv, D2v)(τ , ·)‖α−1
�,[ S

2 ],∞,χ1
‖v(τ , ·)‖�,S,2,χ1

+ ‖(v, Dv, D2v)(τ , ·)‖α−1
�,[ S

2 ],2(1+α),∞,χ2
‖v(τ , ·)‖�,S,1+α,2,χ2

}
, (10.3.49)

where χ1 is the characteristic function of set {(t, x)
∣∣|x | ≤ 1+t

2 }, and χ2 = 1 − χ1.
Using the obvious estimate

‖ f ‖L2(1+α) ≤ ‖ f ‖ 1
2
L∞‖ f ‖ 1

2

L1+α ,

similarly to the proof of (10.3.26), and noticing the definition of X S,E,T , we have

‖v(τ , ·)‖�,[ S
2 ],2(1+α),∞,χ2

≤ ‖v(τ , ·)‖ 1
2

�,[ S
2 ],∞,χ2

‖v(τ , ·)‖ 1
2

�,[ S
2 ],1+α,∞,χ2

≤ C(1 + τ )
− 1

2(1+α) ‖v(τ , ·)‖�,S,1+α,2,χ2

≤ C(1 + τ )
− α

2(1+α) E . (10.3.50)

Meanwhile, similarly to the proof of (10.3.31), and noticing the definition of X S,E,T ,
we also have

‖(Dv, D2v)(τ , ·)‖
�,[ S

2 ],2(1+α),∞ ≤ ‖(Dv, D2v)(τ , ·)‖
α

1+α

�,[ S
2 ],∞‖(Dv, D2v)(τ , ·)‖

1
1+α

�,[ S
2 ],2,∞

≤ C(1 + τ )
− α

2(1+α) ‖(Dv, D2v)(τ , ·)‖�,S,2

≤ C(1 + τ )
− α

2(1+α) E . (10.3.51)

Thus, using Lemma 10.3.2 and noticing the definition of X S,E,T , from (10.3.49) we
get

‖Dbi j (v, Dv)(τ , ·)‖�,S,2 ≤ C
{
(1 + τ )−

α−1
2 + (1 + τ )−

α−1
2 +( 1

2 − 1
1+α )

}
Eα

≤ C(1 + τ )−
α−1

2 +( 1
2 − 1

1+α )Eα. (10.3.52)

Substituting (10.3.48) and (10.3.52) into (10.3.47), and using (3.4.30) in Chap. 3 (in
which we take N = [ S

2 ], p = 2, s = 2), we obtain

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IR2)

≤ C(1 + τ )−
1
2

{
(1 + τ )−

α−1
2 − 1

1+α + (1 + τ )−
α
2

}
Eα DS,T (u)

≤ C(1 + τ )−
α
2 − 1

1+α Eα DS,T (u). (10.3.53)

Combining (10.3.46) and (10.3.53), and using similar estimates about the terms
involving a0 j (v, Dv) in (10.2.54), it yields

‖Gk(τ , ·)‖L2(IR2) ≤ C(1 + τ )−
α
2 Eα DS,T (u), (10.3.54)

then, noting (10.3.13), when α = 2 and 3 we have

|IV| ≤ C R(E, T )D2
S,T (u). (10.3.55)

Similarly, we can estimate ‖gk(τ , ·)‖L2(IR2), then, when α = 2 and 3 we have

|V| ≤ C R(E, T )(E + DS,T (u))DS,T (u). (10.3.56)

Using (10.3.45) and (10.3.55)–(10.3.56), from (10.2.53) we easily get

sup
0≤t≤T

‖D2u(t, ·)‖�,S,2 ≤ C{ε + √
R(E, T )(E + DS,T (u))}. (10.3.57)

By (10.2.65)–(10.2.67), similarly we obtain

sup
0≤t≤T

‖Du(t, ·)‖�,S,2 ≤ C{ε + √
R(E, T )(E + DS,T (u))}. (10.3.58)

Combining (10.3.44) and (10.3.57)–(10.3.58), the desired (10.3.12) is proved.
The proof of Lemma 10.3.3 is finished.

The proof of Lemma 10.3.4 is similar, we omit the details here.

10.4 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (10.1.14)–(10.1.15) (The
Cases α = 1 and 2) (Continued)

In this section, we will prove, for the life-span of classical solutions to Cauchy prob-
lem (10.1.14)–(10.1.15) of two-dimensional second-order quasi-linear hyperbolic
equations, the lower bounds estimates given by the last formula in (10.1.9) when
α = 1 and the last formula in (10.1.11) when α = 2. At this moment, the conditions
imposed on F(u, Du) can be expressed by (10.1.22) and (10.1.23), respectively, or
unified as follows: when α = 1 and 2,
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∂1+α
u F(0, 0) = · · · = ∂2α

u F(0, 0) = 0. (10.4.1)

To simplify description, in what follows we emphasize only on the difference of the
proof with that in Sects. 10.2–10.3.

10.4.1 Metric Space XS,E,T . Main Results

For any given integer S ≥ 8, for any given real numbers E(≤ E0) and T (> 0), we
still introduce X S,E,T , the set of functions, by (10.2.2), whereas

DS,T (v) =
2∑

i=1

sup
0≤t≤T

‖Div(t, ·)‖�,S,2 + DS,T (v), (10.4.2)

where

DS,T (v) = sup
0≤t≤T

(1 + t)
1
2 ‖v(t, ·)‖�,[ S

2 ]+1,∞ + sup
0≤t≤T

(1 + t)−
1
2 ‖v(t, ·)‖�,S,2.

(10.4.3)
It is easy to prove

Lemma 10.4.1 Introduce the following metric in X S,E,T :

ρ(v, v) = DS,T (v − v), ∀v, v ∈ X S,E,T . (10.4.4)

Then, when ε > 0 is suitably small, X S,E,T is a non-empty complete metric space.

Lemma 10.4.2 When S ≥ 8, for any given v ∈ X S,E,T , we have

‖(v, Dv, D2v)(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)−

1
2 , ∀t ∈ [0, T ]. (10.4.5)

Denote by X̃ S,E,T a subset of X S,E,T , which is composed of all the elements of
X S,E,T , having support with respect to x , included in

{
x
∣∣|x | ≤ t + ρ

}
for any given

t ∈ [0, T ], and ρ > 0 is the constant appearing in (10.1.6).
The main result of this section is the following

Theorem 10.4.1 Let n = 2 and α = 1 or 2. Under assumptions (10.1.5)–(10.1.6)
and (10.1.17)–(10.1.21), we furthermore assume (10.1.22)–(10.1.23) (i.e., (10.4.1)),
for any given integer S ≥ 8, there exist positive constants ε0 and C0 with C0ε0 ≤ E0,
and for any given ε ∈ (0, ε0], there exists a positive number T (ε) such that Cauchy
problem (10.1.14)–(10.1.15) admits a unique classical solution u ∈ X̃ S,C0ε,T (ε) on
[0, T (ε)], and T (ε) can be taken as
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T (ε) =
{

bε−2 − 1, α = 1,

exp{aε−2} − 1, α = 2,
(10.4.6)

where a and b are positive constants depending possibly on ρ but not on ε. Moreover,
after a possible change of values for t on a zero-measure set of [0, T (ε)], (10.2.9)–
(10.2.11) hold.

10.4.2 Framework to Prove Theorem10.4.1—The Global
Iteration Method

Similarly to Sect. 10.2.2, the following two lemmas are crucial to the proof of The-
orem 10.4.1.

Lemma 10.4.3 Under the assumptions of Theorem10.4.1, when E > 0 is suitably
small, for any given v ∈ X̃ S,E,T , u = Mv satisfies

DS,T (u) ≤ C1
{
ε + (

R2 + R + √
R
)(

E + DS,T (u)
)}

, (10.4.7)

where C1 is a positive constant, and

R = R(E, T )
def.=

{
E

(
1 + T

) 1
2 , α = 1;

E2 ln(1 + T ), α = 2.
(10.4.8)

Lemma 10.4.4 Under the assumptions of Lemma10.4.3, for any given v, v ∈
X̃ S,E,T , if both u = Mv and u = Mv satisfy u, u ∈ X̃ S,E,T , then we have

DS−1,T (u − u) ≤ C2
(
R2 + R + √

R
)(

DS−1,T (u − u) + DS−1,T (v − v)
)
,

(10.4.9)
where C2 is a positive constant, and R = R(E, T ) is still defined by (10.4.8).

10.4.3 Proof of Lemmas 10.4.3 and 10.4.4

In what follows we only give the key points in the proof of Lemma 10.4.3, and the
proof of Lemma 10.4.4 is similar.

First, we estimate DS,T (u).
For this we first estimate ‖u(t, ·)‖�,S,2.
Noting that

bi j (v, Dv)uxi x j = bi j (v, 0)uxi x j + (bi j (v, Dv) − bi j (v, 0))uxi x j

= ∂

∂xi

(
bi j (v, 0)ux j

) − ∂bi j (v, 0)

∂xi
ux j + (bi j (v, Dv) − bi j (v, 0))uxi x j
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and

F(v, Dv) =F(v, 0) + (F(v, Dv) − F(v, 0))

=F(v, 0) + F̃(v, Dv)Dv

=F(v, 0) + F̃(v, 0)Dv + (F̃(v, Dv) − F̃(v, 0))Dv

=F(v, 0) +
2∑

i=0

F̃i (v, 0)∂iv + (F̃(v, Dv) − F̃(v, 0))Dv

=F(v, 0) +
2∑

i=0

∂i G̃i (v, 0) + (F̃(v, Dv) − F̃(v, 0))Dv,

where G̃i (v, 0) are primitive functions of F̃i (v, 0) (i = 0, 1, 2), using (10.1.18)–
(10.1.19) and the additional assumption (10.4.1), F̂(v, Dv, Dx Du) defined by
(10.2.12) can be rewritten as

F̂(v, Dv, Dx Du) =
2∑

i=0

∂i Ĝi (v, Du) +
2∑

i, j=0

Âi j (v)vxi ux j

+
2∑

i, j,m=0
j+m≥1

B̂i jm(v, Dv)vxi ux j xm +
2∑

i, j=0

Ĉi j (v, Dv)vxi vx j + F(v), (10.4.10)

where, in a neighborhood of the origin, we have

F(v)
def.= F(v, 0) = O(|v|2α+1), (10.4.11)

Ĝi (λ) = O(|λ|α+1), i = 0, 1, 2, λ = (v, Du), (10.4.12)

and Ĝi (v, Du)(i = 0, 1, 2) are affine with respect to Du,

Âi j (v) = O(|v|α−1), i, j = 0, 1, 2 (10.4.13)

and

B̂i jm (̃λ), Ĉi j (̃λ) = O(|̃λ|α−1), i, j, m = 0, 1, 2, λ̃ = (v, Dv). (10.4.14)

Thus, the solution u = Mv to Cauchy problem (10.1.14)–(10.1.15) can be written
as

u = u1 + u2 + u3, (10.4.15)

where u1 is the solution of equation

�u1 =
2∑

i=0

∂i Ĝi (v, Du) (10.4.16)
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with the zero initial condition, and u2 is the solution of

�u2 = Q(v, Dv, Du, Dx Du) (10.4.17)

with the same initial condition (10.1.15) as u, where

Q(v, Dv, Du, Dx Du)

=
2∑

i, j=0

Âi j (v)vxi ux j +
2∑

i, j,m=0
j+m≥1

B̂i jm(v, Dv)vxi ux j xm +
2∑

i, j=0

Ĉi j (v, Dv)vxi vx j ,

(10.4.18)

while, u3 is the solution of equation

�u3 = F(v) (10.4.19)

with the zero initial condition.
In addition, it is easy to know that u1 can be written as

u1 =
2∑

i=0

∂i ui + u1, (10.4.20)

where, for i = 0, 1, 2, ui is the solution of equation

�ui = Ĝi (v, Du) (10.4.21)

with the zero initial condition, and u1 is the solution of equation

�u1 = 0 (10.4.22)

with corresponding non-zero initial condition (of order O(ε2)).
By 1◦ in Theorem 4.3.1 of Chap. 4, and noticing Lemma 3.1.5 in Chap. 3, it is

easy to show that
‖u1(t, ·)‖�,S,2 ≤ Cε2

√
ln(2 + t). (10.4.23)

From the energy estimates of wave equation (see Lemma 4.5.2 in Chap. 4) and
Lemma 3.1.5 in Chap. 3, and noting (10.4.12), we have

‖Dui (t, ·)‖�,S,2 ≤ C
(
ε2 +

∫ t

0
‖Ĝi (v, Du)(τ , ·)‖�,S,2dτ

)
, i = 0, 1, 2.

(10.4.24)
Thus, by (10.4.20) we get

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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‖u1(t, ·)‖�,S,2 ≤ C
(
ε2

√
ln(2 + t) +

2∑
i=0

∫ t

0
‖Ĝi (v, Du)(τ , ·)‖�,S,2dτ

)
. (10.4.25)

Noticing Lemma 10.4.2, from the estimates about composite functions in Chap. 5,
we have

2∑
i=0

‖Ĝi (v, Du)(τ , ·)‖�,S,2

≤ C
{
‖v(τ , ·)‖α

�,[ S
2 ],∞‖(v, Du)(τ , ·)‖�,S,2 + ‖v(τ , ·)‖α−1

�,[ S
2 ],∞‖Du(τ , ·)‖

�,[ S
2 ],∞‖v(τ , ·)‖�,S,2

}
.

(10.4.26)

From Corollary 3.4.4 in Chap. 3 (in which we take n = 2, N = [ S
2 ], p = 2, and

s = 2), and noticing the definition of X S,E,T , we have

‖Du(τ , ·)‖�,[ S
2 ],∞ ≤ C(1 + τ )−

1
2 ‖Du(τ , ·)‖�,S,2 ≤ C(1 + τ )−

1
2 DS,T (u).

(10.4.27)
Using Lemma 10.4.2, and noting the definition of X S,E,T , from (10.4.26) we get

2∑
i=0

‖Ĝi (v, Du)(τ , ·)‖�,S,2 ≤ C Eα(1 + τ )−
α
2 (E(1 + τ )

1
2 + DS,T (u)), (10.4.28)

then, noticing (10.4.8), it is easy to know that

2∑
i=0

∫ t

0
‖Ĝi (v, Du)(τ , ·)‖�,S,2dτ ≤ C(1 + t)

1
2 R(E, T )(E + DS,T (u)),

(10.4.29)
then from (10.4.25) we obtain

‖u1(t, ·)‖�,S,2 ≤ C(1 + t)
1
2
{
ε2 + R(E, T )(E + DS,T (u))

}
. (10.4.30)

From (4.5.18) in Corollary 4.5.1 of Chap. 4 (in which we take N = S,σ = 1
3 ,

and q is determined by 1
q = 1 − σ

2 as 6
5 ), we easily have

‖u2(t, ·)‖�,S,2 ≤ C(1 + t)
1
3

{
ε +

∫ t

0

(‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S, 6
5 ,χ1

+(1 + τ )−
1
3 ‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S,1,2,χ2

)
dτ

}
.

(10.4.31)

Utilizing the estimates about composite functions in Chap. 5, and noting (10.4.13),
we can estimate ‖ Âi j (v)vxi ux j (τ , ·)‖�,S, 6

5 ,χ1
.

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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In fact, when α = 1 we have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S, 6
5 ,χ1

= C
{
‖Dv(τ , ·)‖�,[ S

2 ],3,χ1
‖Du(τ , ·)‖�,S,2 + ‖Dv(τ , ·)‖�,S,2‖Du(τ , ·)‖�,[ S

2 ],3,χ1

}
.

(10.4.32)

From 2◦ in Corollary 3.4.1 of Chap. 3 (in which we take n = 2, N = [ S
2 ], q = 3, p =

2, and s = 1), we have

‖Dv(τ , ·)‖�,[ S
2 ],3,χ1

≤ C(1 + τ )−
1
3 ‖Dv(τ , ·)‖�,S,2 (10.4.33)

and similar estimates for Du. Noting also the definition of X S,E,T , from (10.4.32)
we get

‖ Âi j (v)vxi ux j (τ , ·)‖�,S, 6
5 ,χ1

≤ C(1 + τ )−
1
3 E DS,T (u). (10.4.34)

While, when α = 2 we have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S, 6
5 ,χ1

≤ C
{
‖vDv(τ , ·)‖

�,[ S
2 ],3,χ1

‖Du(τ , ·)‖�,S,2 + ‖vDv(τ , ·)‖�,S,2‖Du(τ , ·)‖
�,[ S

2 ],3,χ1

}

≤ C
{
‖v(τ , ·)‖

�,[ S
2 ],∞‖Dv(τ , ·)‖

�,[ S
2 ],3,χ1

‖Du(τ , ·)‖�,S,2 + ‖vDv(τ , ·)‖�,S,2‖Du(τ , ·)‖
�,[ S

2 ],3,χ1

}
.

(10.4.35)

From (1.31) in Lemma 5.1.4 of Chap. 5, we obtain

‖vDv(τ , ·)‖�,S,2 ≤ Cρ

{
‖v(τ , ·)‖

�,[ S
2 ],∞‖Dv(τ , ·)‖�,S,2 + ‖Dv(τ , ·)‖�,S,2‖Dv(τ , ·)‖

�,[ S
2 ]+1,∞

}
,

(10.4.36)

where Cρ is a positive constant depending onρ (see (10.1.6)). Hence, by Lemma 10.4.2,
(10.4.33) and similar estimates for Du, and noting the definition of X S,E,T , from
(10.4.35) and (10.4.36) we get

‖ Âi j (v)vxi ux j (τ , ·)‖�,S, 6
5 ,χ1

≤ C(1 + τ )−
1
2 − 1

3 E2 DS,T (u). (10.4.37)

When α = 1 and 2, (10.4.34) and (10.4.37) can be combined as

‖ Âi j (v)vxi ux j (τ , ·)‖�,S, 6
5 ,χ1

≤ C(1 + τ )−
α−1

2 − 1
3 Eα DS,T (u). (10.4.38)

Similarly, utilizing the estimates about composite functions in Chap. 5, and
noting (10.4.14), we can estimate ‖B̂i jm(v, Dv)vxi ux j xm (τ , ·)‖�,S, 6

5 ,χ1
and

‖Ĉi j (v, Dv)vxi vx j (τ , ·)‖�,S, 6
5 ,χ1

, and obtain, when α = 1 and 2,

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_5


248 10 Cauchy Problem of Two-Dimensional Nonlinear Wave Equations

‖B̂i jm(v, Dv)vxi ux j xm (τ , ·)‖�,S, 6
5 ,χ1

≤ C(1 + τ )− α−1
2 − 1

3 Eα DS,T (u)

(10.4.39)

and

‖Ĉi j (v, Dv)vxi vx j (τ , ·)‖�,S, 6
5 ,χ1

≤ C(1 + τ )−
α−1

2 − 1
3 Eα+1. (10.4.40)

Combining (10.4.38)–(10.4.40), we get

‖Q(v, Dv, Du, Dx Du)(τ , ·)‖
�,S, 6

5 ,χ1
≤ C(1 + τ )

− α−1
2 − 1

3 Eα(E + DS,T (u)). (10.4.41)

Now we estimate ‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S,1,2,χ2 .

First, by using the estimates about composite functions in Chap. 5, and noting
(10.4.13), we estimate ‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1,2,χ2 .

When α = 1, using the Sobolev embedding theorem on a sphere (see 1◦ in
Theorem 3.2.1 of Chap. 3, in which we take n = 2, p = 2, and s = 1), and noticing
the definition of X S,E,T , we have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1,2,χ2

≤ C{‖Dv(τ , ·)‖�,S,2‖Du(τ , ·)‖
�,[ S

2 ],2,∞,χ2
+ ‖Dv(τ , ·)‖

�,[ S
2 ],2,∞,χ2

‖Du(τ , ·)‖�,S,2}
≤ C{‖Dv(τ , ·)‖�,S,2‖Du(τ , ·)‖

�,[ S
2 ]+1,2 + ‖Dv(τ , ·)‖

�,[ S
2 ]+1,2‖Du(τ , ·)‖�,S,2}

≤ C‖Dv(τ , ·)‖�,S,2‖Du(τ , ·)‖�,S,2 ≤ C E DS,T (u). (10.4.42)

While, when α = 2, we have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1,2,χ2

≤ C{‖vDv(τ , ·)‖�,S,2‖Du(τ , ·)‖
�,[ S

2 ],2,∞,χ2
+ ‖vDv(τ , ·)‖

�,[ S
2 ],2,∞,χ2

‖Du(τ , ·)‖�,S,2}
≤ C{‖vDv(τ , ·)‖�,S,2‖Du(τ , ·)‖

�,[ S
2 ],2,∞,χ2

+ ‖v(τ , ·)‖
�,[ S

2 ],∞‖Dv(τ , ·)‖
�,[ S

2 ],2,∞,χ2
‖Du(τ , ·)‖�,S,2}.

(10.4.43)

Using the Sobolev inequality on a sphere and Lemma 10.4.2, and noticing (10.4.36)
and the definition of X S,E,T , we obtain

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )
1
2 E2 DS,T (u). (10.4.44)

When α = 1 and 2, (10.4.42) and (10.4.44) can be combined as

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
α−1

2 Eα DS,T (u). (10.4.45)

Similarly, we have

‖B̂i jm(v, Dv)vxi ux j xm (τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
α−1

2 Eα DS,T (u) (10.4.46)
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and

‖Ĉi j (v, Dv)vxi vx j (τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
α−1

2 Eα+1. (10.4.47)

Combining (10.4.45)–(10.4.47), we get

‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )
− α−1

2 Eα

(E + DS,T (u)). (10.4.48)

Plugging (10.4.41) and (10.4.48) in (10.4.31), and noting (10.4.8), we obtain

‖u2(t, ·)‖�,S,2 ≤ C(1 + t)
1
2 {ε + R(E, T )(E + DS,T (u))}. (10.4.49)

By 2◦ in Corollary 4.5.1 of Chap. 4 (in which we take N = S,σ = 1
3 , and q = 6

5 ),
from (10.4.19) we get

‖u3(t, ·)‖�,S,2 ≤ C(1 + t)
1
3

{
ε +

∫ t

0

(
‖F(v)(τ , ·)‖�,S, 6

5 ,χ1
+ (1 + τ )−

1
3 ‖F(v)(τ , ·)‖�,S,1,2,χ2

)
dτ

}
.

(10.4.50)

Noting (10.4.12), from the estimates about composite functions in Chap. 5, and
using Lemma 10.4.2, the estimates similar to (10.4.33) for v and the definition of
X S,E,T , when α = 1 and α = 2, we have

‖F(v)(τ , ·)‖�,S, 6
5 ,χ1

≤ C‖v(τ , ·)‖2α−1
�,[ S

2 ],∞‖v(τ , ·)‖�,[ S
2 ],3,χ1

‖v(τ , ·)‖�,S,2

≤ C(1 + τ )−
2α−1

2 +1− 1
3 E2α+1. (10.4.51)

Meanwhile, using the Sobolev estimates on a sphere, we have

‖F(v)(τ , ·)‖�,S,1,2,χ2 ≤ C‖v(τ , ·)‖2α−1
�,[ S

2 ],∞‖v(τ , ·)‖�,[ S
2 ],2,∞,χ2

‖v(τ , ·)‖�,S,2

≤ C‖v(τ , ·)‖2α−1
�,[ S

2 ],∞‖v(τ , ·)‖2
�,S,2

≤ C(1 + τ )−
2α−1

2 +1 E2α+1. (10.4.52)

Substituting (10.4.51)–(10.4.52) into (10.4.50), we get

‖u3(t, ·)‖�,S,2 ≤ C(1 + t)
1
3 {ε + E2α+1

∫ t

0
(1 + τ )−

2α−1
2 +1− 1

3 dτ }

≤ C(1 + t)
1
2 {ε + E2α+1

∫ t

0
(1 + τ )−α+1dτ }. (10.4.53)

By (10.4.8), when α = 1 we have

http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_5


250 10 Cauchy Problem of Two-Dimensional Nonlinear Wave Equations

E2α

∫ t

0
(1 + τ )−α+1dτ ≤ E2(1 + t) ≤ R2(E, T );

while, when α = 2 we have

E2α

∫ t

0
(1 + τ )−α+1dτ ≤ E4 ln(1 + t) ≤ R2(E, T ).

Hence, from (10.4.53) we get

‖u3(t, ·)‖�,S,2 ≤ C(1 + t)
1
2 (ε + R2(E, T )E). (10.4.54)

Combining (10.4.30), (10.4.49) and (10.4.54), it follows from (10.4.15) that

‖u(t, ·)‖�,S,2 ≤ C(1 + t)
1
2 {ε + (R2(E, T ) + R(E, T ))(E + DS,T (u))}.

(10.4.55)
Second, we estimate ‖u(t, ·)‖�,[ S

2 ]+1,∞.

By Corollary 4.6.4 in Chap. 4 (in which we take n = 2, N = [ S
2 ] + 1, thus when

S ≥ 8, N + n + 1 ≤ S), u1, as the solution of Eq. (10.4.16) with the zero initial
condition, should satisfy

‖u1(t, ·)‖
�,[ S

2 ]+1,∞ ≤ C(1 + t)− 1
2

{
ε +

2∑
i=0

∫ t

0

(
(1 + τ )

1
2 ‖Ĝi (v, Du)(τ , ·)‖

�,[ S
2 ]+1,∞

+(1 + τ )− 3
2 ‖Ĝi (v, Du)(τ , ·)‖�,S,1

)
dτ

}
.

(10.4.56)

Similarly to (10.4.26), noticing Lemma 10.4.2, the definition of X S,E,T and the
estimates similar to (10.4.27), we have

2∑
i=0

‖Ĝi (v, Du)(τ , ·)‖�,[ S
2 ]+1,∞ ≤ C‖v(τ , ·)‖α

�,[ S
2 ]+1,∞‖(v, Du)(τ , ·)‖�,[ S

2 ]+1,∞

≤ C(1 + τ )−
α+1

2 Eα(E + DS,T (u)) (10.4.57)

and

2∑
i=0

‖Ĝi (v, Du)(τ , ·)‖�,S,1 ≤ C‖v(τ , ·)‖α−1
�,[ S

2 ],∞‖v(τ , ·)‖�,S,2(‖Du(τ , ·)‖�,S,2 + ‖v(τ , ·)‖�,S,2)

≤ C(1 + τ )−
α−1

2 +1 Eα(E + DS,T (u)). (10.4.58)

Thus, noticing (10.4.8), from (10.4.56) we obtain
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‖u1(t, ·)‖�,[ S
2 ]+1,∞ ≤ C(1 + t)− 1

2 {ε + R(E, T )(E + DS,T (u))}. (10.4.59)

Similarly, according to Corollary 4.6.3 in Chap. 4, u2, as the solution of
Eq. (10.4.17) with the same initial value (10.1.15) as u, should satisfy

‖u2(t, ·)‖�,[ S
2 ]+1,∞ ≤ C(1 + t)−

1
2 {ε +

∫ t

0
(1 + τ )−

1
2 ‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S,1dτ }.

(10.4.60)

Utilizing the estimates about composite functions in Chap. 5, and noting (10.4.13),
we can estimate ‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1.

In fact, when α = 1, by the definition of X S,E,T , it is easy to have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1 ≤ C‖Dv(τ , ·)‖�,S,2‖Du(τ , ·)‖�,S,2 ≤ C E DS,T (u); (10.4.61)

while, when α = 2, noting (10.4.36) and the definition of X S,E,T , and using Lemma
10.4.2, it is easy to obtain

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1

≤ C‖vDv(τ , ·)‖�,S,2‖Du(τ , ·)‖�,S,2

≤ Cρ

(
‖v(τ , ·)‖

�,[ S
2 ],∞‖Dv(τ , ·)‖�,S,2 + ‖Dv(τ , ·)‖�,S,2‖Dv(τ , ·)‖

�,[ S
2 ]+1,∞

)
‖Du(τ , ·)‖�,S,2

≤ C E2(1 + τ )−
1
2 DS,T (u). (10.4.62)

Combining (10.4.61) and (10.4.62), when α = 1 and 2, we have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1 ≤ C(1 + τ )−
α−1

2 Eα DS,T (u). (10.4.63)

Utilizing the estimates about composite functions in Chap. 5, and noting (10.4.14),
when α = 1 and 2, we obtain, similarly,

‖B̂i jm(v, Dv)vxi ux j xm (τ , ·)‖�,S,1 ≤ C(1 + τ )−
α−1

2 Eα DS,T (u) (10.4.64)

and
‖Ĉi j (v, Dv)vxi vx j (τ , ·)‖�,S,1 ≤ C(1 + τ )−

α−1
2 Eα+1. (10.4.65)

Combining (10.4.63)–(10.4.65), we get

‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S,1 ≤ C(1 + τ )−
α−1

2 Eα(E + DS,T (u)). (10.4.66)

Thus, from (10.4.60) and noting (10.4.8), it follows that

‖u2(t, ·)‖�,[ S
2 ]+1,∞ ≤ C(1 + t)−

1
2 {ε + R(E, T )(E + DS,T (u))}. (10.4.67)
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Similarly to (10.4.60), we have

‖u3(t, ·)‖�,[ S
2 ]+1,∞ ≤ C(1 + t)−

1
2 {ε +

∫ t

0
(1 + τ )−

1
2 ‖F(v)(τ , ·)‖�,S,1dτ }.

(10.4.68)
Utilizing the estimates about composite functions in Chap. 5, and noting (10.4.12),

Lemma 10.4.2 and the definition of X S,E,T , we get

‖F(v)(τ , ·)‖�,S,1 ≤ C‖v(τ , ·)‖2α−1
�,[ S

2 ],∞‖v(τ , ·)‖2
�,S,2

≤ C(1 + τ )−
2α−1

2 +1 E2α+1, (10.4.69)

thus, by (10.4.68) and noting (10.4.8), it is easy to deduce

‖u3(t, ·)‖�,[ S
2 ]+1,∞ ≤ C(1 + t)−

1
2 (ε + R2(E, T )E). (10.4.70)

Combining (10.4.59), (10.4.67) and (10.4.70), from (10.4.15) we get

‖u(t, ·)‖�,[ S
2 ]+1,∞ ≤ C(1 + t)−

1
2 {ε + (R2(E, T ) + R(E, T ))(E + DS,T (u))}.

(10.4.71)
Finally, we estimate ‖D2u(t, ·)‖�,S,2 and ‖Du(t, ·)‖�,S,2, respectively.
We still have (10.2.53)–(10.2.55). Similarly to (10.3.45), when α = 1 and 2 we

have

|I|, |II|, |III| ≤ C R(E, T )D2
S,T (u). (10.4.72)

Now we estimate the L2 norm of Gk(τ , ·).
Similarly to (10.3.46), we have

‖bi j (v, Dv)(�k Duxi x j − (�k Du)xi x j )(τ , ·)‖L2(IR2) ≤ C(1 + τ )− α
2 Eα DS,T (u).

(10.4.73)

At this moment, (10.3.47) still holds, namely,

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Dux j xi )(τ , ·)‖L2(IR2)

≤C
{
(1 + τ )− 1

2 ‖Dbi j (v, Dv)(τ , ·)‖�,S,2 + ‖bi j (v, Dv)(τ , ·)‖
�,[ S

2 ],∞
}

‖D2u(τ , ·)‖�,S,2.

(10.4.74)

It is easy to know, from Lemma 10.4.2, that

‖bi j (v, Dv)(τ , ·)‖�,[ S
2 ],∞ ≤ C(1 + τ )−

α
2 Eα. (10.4.75)
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By the estimates about composite functions in Chap. 5, and using Lemma 10.4.2 and
the definition of X S,E,T , when α = 1 we have

‖Dbi j (v, Dv)(τ , ·)‖�,S,2 ≤ C‖(Dv, D2v)(τ , ·)‖�,S,2 ≤ C E; (10.4.76)

while, when α = 2 we have

‖Dbi j (v, Dv)(τ , ·)‖�,S,2

≤ C(‖v(Dv, D2v)(τ , ·)‖�,S,2 + ‖Dv(τ , ·)‖�,[ S
2 ],∞‖(Dv, D2v)(τ , ·)‖�,S,2)

≤ C(‖v(Dv, D2v)(τ , ·)‖�,S,2 + (1 + τ )−
1
2 E2), (10.4.77)

then, noticing that, similarly to (10.4.36), we have

‖v(Dv, D2v)(τ , ·)‖�,S,2

≤ Cρ{‖v(τ , ·)‖
�,[ S

2 ],∞‖(Dv, D2v)(τ , ·)‖�,S,2 + ‖Dv(τ , ·)‖�,S,2‖(Dv, D2v)(τ , ·)‖
�,[ S

2 ]+1,∞}
≤ C(1 + τ )−

1
2 E2, (10.4.78)

we finally get
‖Dbi j (v, Dv)(τ , ·)‖�,S,2 ≤ C(1 + τ )−

1
2 E2. (10.4.79)

Combining (10.4.76) and (10.4.79), we then have

‖Dbi j (v, Dv)(τ , ·)‖�,S,2 ≤ C(1 + τ )−
α−1

2 Eα. (10.4.80)

Hence, from (10.4.74) we get

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Dux j xi )(τ , ·)‖L2(IR2) ≤ C(1 + τ )−
α
2 Eα DS,T (u).

(10.4.81)
We can estimate the terms involving a0 j in Gk similarly. Then, we obtain

‖Gk(τ , ·)‖L2(IR2) ≤ C(1 + τ )−
α
2 Eα DS,T (u). (10.4.82)

So, noting (10.4.8), we have

|IV| ≤ C R(E, T )DS,T (u). (10.4.83)

Now we estimate the L2 norm of gk(τ , ·).
To this end, we write gk , given by (10.2.55), as

gk = g(1)
k + g(2)

k , (10.4.84)
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where
g(2)

k =
∑

|l|≤|k|
B̃kl�

l F̃(v, 0, 0), (10.4.85)

and g(1)
k stands for other terms.

Using similar arguments for dealing with Dbi j (v, Dv) to estimating the L2 norm
of Gk , we obtain

‖g(1)
k (τ , ·)‖L2(R2) ≤ C(1 + τ )−

α
2 Eα(E + DS,T (u)). (10.4.86)

Noting F̃(v, 0, 0) = F(v, 0) = F(v) and (10.4.12), by Lemma 10.4.2 and the defi-
nition of X S,E,T , it is easy to show that

‖g(2)
k (τ , ·)‖L2(IR2) ≤ C‖v(τ , ·)‖2α

�,[ S
2 ],∞‖v(τ , ·)‖�,S,2

≤ C(1 + τ )−α+ 1
2 E2α+1. (10.4.87)

From (10.4.86)–(10.4.87) and noting (10.4.8), we get

|V | ≤ C(R2(E, T ) + R(E, T ))(E + DS,T (u))DS,T (u). (10.4.88)

Thus, combining (10.4.72), (10.4.83) and (10.4.88), similarly to the arguments in
Sects. 10.2 and 10.3, we then obtain

sup
0≤t≤T

‖D2u(t, ·)‖�,S,2 ≤ C{ε + (R(E, T ) + √
R(E, T ))(E + DS,T (u))}.

(10.4.89)
By (10.2.65), similarly we have

sup
0≤t≤T

‖Du(t, ·)‖�,S,2 ≤ C{ε + (R(E, T ) + √
R(E, T ))(E + DS,T (u))}.

(10.4.90)
Combining (10.4.55), (10.4.71) and (10.4.89)–(10.4.90), and noting the definition

of X S,E,T , Lemma 10.4.3 is proved.



Chapter 11
Cauchy Problem of Four-Dimensional
Nonlinear Wave Equations

11.1 Introduction

In this chapter we furthermore consider the following Cauchy problem of four-
dimensional nonlinear wave equations with small initial data:

�u = F(u, Du, Dx Du), (11.1.1)

t = 0 : u = εϕ(x), ut = εψ(x), (11.1.2)

where

� = ∂2

∂t2
−

4∑

i=1

∂2

∂x2
i

(11.1.3)

is the four-dimensional wave operator,

Dx =
(

∂

∂x1
, · · · ,

∂

∂x4

)
, D =

(
∂

∂t
,

∂

∂x1
, · · · ,

∂

∂x4

)
, (11.1.4)

ϕ and ψ are sufficiently smooth functions with compact support, we may assume
that

ϕ,ψ ∈ C∞
0 (IR4) (11.1.5)

with
supp {ϕ,ψ} ⊆ {x ||x | ≤ ρ} (ρ > 0 is a constant), (11.1.6)

and ε > 0 is a small parameter.
Denote

λ̂ = (
λ; (λi ), i = 0, 1, · · · , 4; (λi j ), i, j = 0, 1, · · · , 4, i + j ≥ 1

)
. (11.1.7)
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Suppose that in a neighborhood of λ̂ = 0, say, for |λ̂| ≤ ν0, the nonlinear term F(λ̂)

is a sufficiently smooth function satisfying

F(λ̂) = O(|λ̂|2). (11.1.8)

In Chap.9, we already proved that: there exists a suitably small positive number
ε0 such that for any given ε ∈ (0, ε0], the life-span T̃ (ε) of the classical solution
u = u(t, x) to Cauchy problem (11.1.1)–(11.1.2) satisfies the following lower bound
estimate:

T̃ (ε) ≥ exp{aε−1}, (11.1.9)

where a is a positive constant independent of ε (see Hörmander 1991). But then we
already pointed out that this result will be improved as

T̃ (ε) ≥ exp{aε−2}. (11.1.10)

In fact, this improved result was first given by Li Tatsien and ZhouYi (1995b, 1995c),
then, Lindblad and Sogge (1996) simplified the related proof. In this chapter, we will
give amuch simpler proof to obtain estimate (11.1.10) by using a new L2 estimate (see
Sect. 4.4 in Chap.4) based on results in Hidano et al. (2009), which was established
for solutions of the wave equation.

Thanks to the counter-example given by H. Takamura and K. Wakasa in recent
years (see Takamura and Wakasa 2011), (11.1.10), same as other results in previous
chapters, is sharp. See Chap.14 for details.

Due to Chap.7, to prove (11.1.10) for Cauchy problem (11.1.1)–(11.1.2) of four-
dimensional nonlinear wave equations, essentially it suffices to consider the fol-
lowing Cauchy problem of four-dimensional second-order quasi-linear hyperbolic
equations:

�u =
4∑

i, j=1

bi j (u, Du)uxi x j + 2
4∑

j=1

a0 j (u, Du)utx j + F(u, Du),

(11.1.11)

t = 0 : u = εϕ(x), ut = εψ(x), (11.1.12)

where, ϕ,ψ ∈ C∞
0 (IR4) still satisfy condition (11.1.6), and ε > 0 is a small parame-

ter.
Let

λ̃ = (λ; (λi ), i = 0, 1, · · · , 4) . (11.1.13)

Assume that when |̃λ| ≤ ν0, bi j (̃λ), a0 j (̃λ) and F (̃λ) are all sufficiently smooth
functions satisfying
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http://dx.doi.org/10.1007/978-3-662-55725-9_4
http://dx.doi.org/10.1007/978-3-662-55725-9_14
http://dx.doi.org/10.1007/978-3-662-55725-9_7


11.1 Introduction 257

bi j (̃λ) = b ji (̃λ) (i, j = 1, · · · , 4), (11.1.14)

bi j (̃λ), a0 j (̃λ) = O(|̃λ|) (i, j = 1, · · · , 4), (11.1.15)

F (̃λ) = O(|̃λ|2) (11.1.16)

and
4∑

i, j=1

ai j (̃λ)ξiξ j ≥ m0|ξ|2, ∀ ξ ∈ IR4, (11.1.17)

where, m0 is a positive constant, and

ai j (̃λ) = δi j + bi j (̃λ) (i, j = 1, · · · , 4), (11.1.18)

in which δi j is the Kronecker symbol.

11.2 Lower Bound Estimates on the Life-Span of Classical
Solutions to Cauchy Problem (11.1.11)–(11.1.12)

11.2.1 Metric Space XS,E,T . Main Results

According to the Sobolev embedding theorem, there exists a suitably small E0 > 0,
such that

‖ f ‖L∞(IR4) ≤ ν0, ∀ f ∈ H 3(IR4), ‖ f ‖H 3(IR4) ≤ E0. (11.2.1)

For any given integer S ≥ 8, and for any given positive numbers E(≤ E0) and
T ,introduce the set of functions

X S,E,T =
{
v(t, x)

∣∣∣ DS,T (v) ≤ E, ∂l
t v(0, x) = u(0)

l (x) (l = 0, 1, · · · , S + 1)
}

,

(11.2.2)

where

DS,T (v) =
2∑

i=0

sup
0≤t≤T

‖Div(t, ·)‖�,S,2, (11.2.3)

while, u(0)
0 (x) = εϕ(x), u(0)

1 (x) = εψ(x), and when l = 2, · · · , S + 1, u(0)
l (x) are

values of ∂l
t u(t, x) at t = 0, which are uniquely determined by Eq. (11.1.11) and

initial condition (11.1.12).Obviously,u(0)
l (x)(l = 0, 1 · · · , S + 1) are all sufficiently

smooth functions with compact support (see (11.1.6)).
Similarly to the previous three chapters, it is easy to prove

Lemma 11.2.1 Introduce the following metric in X S,E,T :
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ρ(v, v) = DS,T (v − v), ∀v, v ∈ X S,E,T , (11.2.4)

then when ε > 0 is suitably small, X S,E,T is a non-empty complete metric space.

Lemma 11.2.2 When S ≥ 8, for any given v ∈ X S,E,T , we have

‖(v, Dv, D2v)(t, ·)‖�,[ S
2 ]+1,∞ ≤ C E(1 + t)

− 3
2
, ∀t ∈ [0, T ], (11.2.5)

where C is a positive constant.

Proof When S ≥ 8, from (3.4.30) in Chap.3 (in which we take n = 4, p = 2, N =[
S
2

] + 1, and s = 3), and noting the definition of X S,E,T , (11.2.5) follows immedi-
ately.

Denote by X̃ S,E,T a subset of X S,E,T , which is composed of all the elements in
X S,E,T with compact support with respect to x included in {x | |x | ≤ t + ρ} for any
given t ∈ [0, T ], and ρ > 0 is the constant appearing in (11.1.6).

The main result of this chapter is the following

Theorem 11.2.1 Let n = 4. Under assumptions (11.1.5)–(11.1.6) and (11.1.14)–
(11.1.18), for any given integer S ≥ 8, there exist positive constants ε0 and C0 satis-
fying C0ε0 ≤ E0, and for any given ε ∈ (0, ε0], there exists a positive number T (ε)
such that Cauchy problem (11.1.11)–(11.1.12) admits a unique classical solution
u ∈ X̃ S,C0ε0,T (ε) on [0, T (ε)], and

T (ε) = exp{aε−2} − 2, (11.2.6)

where a is a positive constant independent of ε.
Moreover, after a possible change of values for t on a zero-measure set of [0, T (ε)],

we have

u ∈ C
([0, T (ε)]; H S+1(IR4)

)
, (11.2.7)

ut ∈ C
([0, T (ε)]; H S(IR4)

)
, (11.2.8)

utt ∈ C
([0, T (ε)]; H S−1(IR4)

)
. (11.2.9)

11.2.2 Framework to Prove Theorem11.2.1—The Global
Iteration Method

To prove Theorem11.2.1, for any given v ∈ X̃ S,E,T , same as in the previous three
chapters, by solving the following Cauchy problem of linear hyperbolic equations:

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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�u = F̂(v, Dv, Dx Du)
def.=

4∑

i, j=1

bi j (v, Dv)uxi x j + 2
4∑

j=1

a0 j (v, Dv)utx j + F(v, Dv),

(11.2.10)

t = 0 : u = εϕ(x), ut = εψ(x), (11.2.11)

we define a mapping
M : v → u = Mv. (11.2.12)

We want to prove that: when ε > 0 is suitably small, we can find a positive constant
C0 such that when E = C0ε and T = T (ε) is defined by (11.2.6), M admits a unique
fixed point in X̃ S,E,T , which is exactly the classical solution to Cauchy problem
(11.1.11)–(11.1.12) on 0 ≤ t ≤ T (ε).

Similarly to the previous three chapters, it is easy to prove the following two
lemmas.

Lemma 11.2.3 When E > 0 is suitably small, for any given v ∈ X̃ S,E,T , after a
possible change of values for t on a zero-measure set, we have

u = Mv ∈ C
([0, T ]; H S+1(IR4)

)
, (11.2.13)

ut ∈ C
([0, T ]; H S(IR4)

)
, (11.2.14)

utt ∈ L∞ (
0, T ; H S−1(IR4)

)
. (11.2.15)

Lemma 11.2.4 For u = u(t, x) = Mv, the values of ∂l
t u(0, ·) (l = 0, 1, · · · , S +

2) do not depend on the choice of v ∈ X̃ S,E,T , and

∂l
t u(0, x) = u(0)

l (x) (l = 0, 1, · · · , S + 1). (11.2.16)

Moreover,
‖u(0, ·)‖�,S+2,p ≤ Cε, (11.2.17)

where 1 ≤ p ≤ +∞, and C is a positive constant.

Similarly as in the previous three chapters, the crucial points to prove
Theorem11.2.1 are the following two lemmas.

Lemma 11.2.5 Under the assumptions of Theorem11.2.1, when E > 0 is suitably
small, for any given v ∈ X̃ S,E,T , u = Mv satisfies

DS,T (u) ≤ C1

{
ε + (R + √

R)(E + DS,T (u))
}

, (11.2.18)

where C1 is a positive constant, and

R = R(E, T )
def.= E

√
ln(2 + T ). (11.2.19)



260 11 Cauchy Problem of Four-Dimensional Nonlinear Wave Equations

Lemma 11.2.6 Under the assumptions of Lemma11.2.5, for any given v, v ∈
X̃ S,E,T , if both u = Mv and u = Mv satisfy u, u ∈ X̃ S,E,T , then we have

DS−1,T (u − u) ≤ C2(R + √
R)(DS−1,T (u − u) + DS−1,T (v − v)), (11.2.20)

where C2 is a positive constant, and R = R(E, T ) is still defined by (11.2.19).

11.2.3 Proof of Lemmas11.2.5 and 11.2.6

Now we prove Lemma11.2.5. Lemma11.2.6 can be proved similarly, we omit the
details here.

The key point is to estimate ‖u(t, ·)‖�,S,2.
For any given multi-index k(|k| ≤ S), similarly to (10.2.27) in Chap.10, we have

��ku =
∑

|l|≤|k|
Ckl�

l F̂(v, Dv, Dx Du), (11.2.21)

where Ckl are constants, and the initial values satisfied by �ku can be deter-
mined uniquely by u(0)

l (x) (l = 0, 1, · · · , S + 1). Thus, according to Theorem4.4.1

in Chap.4 (in which we take n = 4, s = 3
4 , and then from 1

q = 1
2 + 3

2 −s
n we can

determine q = 16
11 ), it is easy to know that

‖u(t, ·)‖�,S,2 ≤ Cρ

{
ε +

(∫ t

0
(1 + τ )

3
2 ‖F̂(v, Dv, Dx Du)(τ , ·)‖2

�,S, 1611 ,χ1
dτ

) 1
2

+
(∫ t

0
(1 + τ )−1‖F̂(v, Dv, Dx Du)(τ , ·)‖2�,S,1,2,χ2

dτ

) 1
2

}
,

(11.2.22)

where χ1(t, x) is the characteristic function of set {(t, x)
∣∣ |x | ≤ 1+t

2 }, χ2 = 1 − χ1,
and Cρ is a positive constant possibly depending on ρ.

Noticing Lemma11.2.2, using the estimates about product functions and com-
posite functions in Chap.5, it is easy to show that

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S, 1611 ,χ1
≤ C

{
‖(v, Dv)(τ , ·)‖

�,[ S
2 ], 163 ,χ1

‖(v, Dv, Dx Du)(τ , ·)‖�,S,2

+‖(v, Dv)(τ , ·)‖�,S,2‖Dx Du(τ , ·)‖
�,[ S

2 ], 163 ,χ1

}
.

(11.2.23)

Due to 2◦ in Corollary3.4.1 of Chap.3 (in which we take n = 4, p = 2, N =[
S
2

]
, q = 16

3 , and s = n
p = 2), it is clear that
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‖(v, Dv, Dx Du)(τ , ·)‖�,[ S
2 ], 163 ,χ1

≤ C(1 + τ )−
5
4 ‖(v, Dv, Dx Du)(τ , ·)‖�,S,2.

(11.2.24)

Hence, noticing the definition of X S,E,T , from (11.2.23) we get

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S, 1611 ,χ1
≤ C(1 + τ )−

5
4 E(E + DS,T (u)). (11.2.25)

Similarly to (11.2.23), we have

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2 ≤ C
{
‖(v, Dv)(τ , ·)‖

�,[ S
2 ],2,∞,χ2

‖(v, Dv, Dx Du)(τ , ·)‖�,S,2

+‖(v, Dv)(τ , ·)‖�,S,2‖Dx Du(τ , ·)‖
�,[ S

2 ],2,∞,χ2

}
.

(11.2.26)

Due to the Sobolev embedding theorem on a sphere (see 1◦ in Theorem3.2.1 of
Chap.3, in which we take n = 4, p = 2, s = 2), it is easy to know that

‖(v, Dv, Dx Du)(τ , ·)‖�,[ S
2 ],2,∞ ≤ C‖(v, Dv, Dx Du)(τ , ·)‖�,[ S

2 ]+2,2

≤ C‖(v, Dv, Dx Du)(τ , ·)‖�,S,2. (11.2.27)

Hence, noticing the definition of X S,E,T , from (11.2.26) we get

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S,1,2,χ2 ≤ C E(E + DS,T (u)). (11.2.28)

Plugging (11.2.25) and (11.2.28) in (11.2.22), we have

‖u(t, ·)‖�,S,2 ≤ C

{
ε +

(∫ t

0
(1 + τ )−1dτ

) 1
2

E(E + DS,T (u))

}

= C
{
ε + √

ln(1 + t)E(E + DS,T (u))
}

, (11.2.29)

then, noting (11.2.19), we get

sup
0≤t≤T

‖u(t, ·)‖�,S,2 ≤ C
{
ε + R(E, T )(E + DS,T (u))

}
. (11.2.30)

Now we estimate ‖(Du, D2u)(t, ·)‖�,S,2.
For any given multi-index k(|k| ≤ S), the energy integral formula (9.2.41) in

Chap.9 still holds.
From Lemma11.2.2, it is easy to show, for terms therein, that

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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|I|, |II|, |III| ≤ C E
∫ t

0
(1 + τ )−

3
2 dτ · D2

S,T (u)

≤ C E D2
S,T (u) ≤ C R(E, T )D2

S,T (u). (11.2.31)

Now we estimate the L2 norm of Gk(τ , ·) therein.
Similarly to (9.2.43) in Chap.9, noting (11.1.15), Lemma11.2.2 and the definition

of X S,E,T , from Lemmas5.2.5 and 5.2.6 in Chap.5 (in which we take n = 4, and
r = 2, then p = +∞) we get

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IR4)

≤ C(1 + τ )−
3
2 ‖(v, Dv, D2v(τ , ·)‖�,S,2‖D2u(τ , ·)‖�,S,2

≤ C(1 + τ )−
3
2 E DS,T (u), ∀τ ∈ [0, T ]. (11.2.32)

Moreover, similarly to (9.2.44) in Chap.9, noticing (11.1.15), Lemma11.2.2 and the
definition of X S,E,T , and using Corollary3.1.1 in Chap.3, we then have

‖bi j (v, Dv)(�k Duxi x j − (�k Du)xi x j )(τ , ·)‖L2(IR4) ≤ C(1 + τ )−
3
2 E DS,T (u), ∀τ ∈ [0, T ].

(11.2.33)

For terms involving a0 j in Gk , we have similar estimates. Therefore, we have

‖Gk(τ , ·)‖L2(IR4) ≤ C(1 + τ )−
3
2 E DS,T (u), ∀τ ∈ [0, T ], (11.2.34)

then we get
|IV| ≤ C R(E, T )D2

S,T (u). (11.2.35)

Similarly, we obtain

|V| ≤ C R(E, T )(E + DS,T (u))DS,T (u). (11.2.36)

So, similarly to (9.2.51) in Chap.9, we get

sup
0≤t≤T

‖D2u(t, ·)‖�,S,2 ≤ C{ε + √
R(E, T )(E + DS,T (u))}. (11.2.37)

Moreover, similarly to (9.2.52) in Chap.9, we also have

sup
0≤t≤T

‖Du(t, ·)‖�,S,2 ≤ C{ε + √
R(E, T )(E + DS,T (u))}. (11.2.38)

Combining (11.2.30) and (11.2.37)–(11.2.38), we obtain the desired (11.2.18).
The proof of Lemma11.2.5 is finished.
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Chapter 12
Null Condition and Global Classical
Solutions to the Cauchy Problem of
Nonlinear Wave Equations

12.1 Introduction

In the previous chapters, we already studied systematically the classical solution and
the lower bound estimates of its life-span for the Cauchy problem of nonlinear wave
equations with small initial data. It is shown by the results therein that: when the
space dimension n and the power 1 + α (or α) of the nonlinear terms on the right-
hand side are large enough, we can obtain the global classical solution; otherwise,
we only obtain the local classical solution. In the latter case, when n and α are still
quite large, as ε → 0 (ε is the order of initial data), the life-span ˜T (ε) of the classical
solution will increase exponentially with respect to ε−1, so it is called the almost
global classical solution; while, when n and α are quite small, as ε → 0, the life-
span ˜T (ε) of the classical solution will increase only in the power of ε−1, which will
result in a blow-up phenomenon in practical applications.

It is also shown in the previous chapters that: when the nonlinear term
F(u, Du, Dx Du) on the right-hand side satisfies some special conditions, espe-
cially in the case that the nonlinear term on the right-hand side does not depend on u
explicitly, the estimate on the life-span˜T (ε)of the classical solutionwill be somewhat
or even significantly improved, for instance, it can be improved to the exponential
growth from the power growth of ε−1 (see the case that n = 3 and α = 1, and the
case that n = 2 and α = 2), or, it can be improved to the global existence from the
exponential growth (see the case that n = 4 and α = 1); But in the case that n = 1
and α ≥ 1 and in the case that n = 2 and α = 1, the improvement is not obvious (for
example, the latter is only improved to the power ε−2 from the power ε−1).

The above discussion is about the general nonlinear term F(u, Du, Dx Du) on
the right-hand side. Just as shown in Sect. 1.2 of Chap.1, even if the global existence
of classical solutions is not ensured for general nonlinear term F(u, Du, Dx Du) on
the right-hand side, it is still possible to obtain the global classical solution for some
specially chosen nonlinear terms on the right-hand side, in particular, when there
exists a certain consistency between the nonlinear term on the right-hand side and
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the wave operator. The null condition to be introduced in this chapter is a kind of
important additional requirements which is put forward on the nonlinear term on the
right-hand side to ensure the global existence of classical solutions, and it has a lot
of significant applications.

The notion of null condition was first introduced by S. Klainerman when studying
the following Cauchy problem of three-dimensional nonlinear wave equations with
small initial data:

�u = Q(Du, Dx Du), (12.1.1)

t = 0 : u = εϕ(x), ut = εψ(x), (12.1.2)

where the nonlinear term Q on the right-hand side does not depend on u explicitly,
and is a quadratic form of Du and Dx Du (i.e., the corresponding α = 1, and it
does not include terms of higher degree). Thanks to the results in Chap.9, the above
Cauchy problem admits a unique almost global classical solution on t ≥ 0 with the
life-span ˜T (ε) satisfying

˜T (ε) ≥ exp{aε−1}, (12.1.3)

where a is a positive constant independent of ε. In his talk (see Klainerman 1983)
at the international congress of mathematicians held in Warsaw, Poland in 1983, S.
Klainerman conjectured that: If Q satisfies the null condition, then Cauchy problem
(12.1.1)–(12.1.2) admits a unique global classical solution. This conjecture was ver-
ified by Christodoulou (1986) and Klainerman (1986), respectively. We will present
the details for this case in Sect. 12.2 of this chapter.

According to Chap.7, in order to investigate the Cauchy problem of nonlinear
wave equations with small initial data, it essentially suffices to consider the following
Cauchy problem of second-order quasi-linear hyperbolic equations

�u =
n

∑

i, j=1

bi j (u, Du)uxi x j + 2
n

∑

j=1

a0 j (u, Du)utx j + F(u, Du)

def.= F̂(u, Du, Dx Du) (12.1.4)

with small initial data (12.1.2). Therefore, in what follows the discussion regarding
the null condition as well as the global existence of classical solutions when the
null condition is satisfied will be focused on the quasi-linear wave equations of the
form (12.1.4).

In this chapter, we will give the forms of null conditions in the case that n = 3
and α = 1 and in the case that n = 2 and α = 2, respectively, and prove accordingly
the global existence of corresponding classical solutions. Regarding these two cases,
since the global existence of classical solutions is already established for both the case
that n = 3 and α ≥ 2 and the case that n = 2 and α ≥ 3, the null condition is only

http://dx.doi.org/10.1007/978-3-662-55725-9_9
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required on the lowest-degree term on the right-hand side (namely, the quadratic term
in the case that n = 3 andα = 1, and the cubic term in the case that n = 2 andα = 2),
while, no any other additional assumptions are needed for the higher-degree terms.

12.2 Null Condition and Global Existence of Classical
Solutions to the Cauchy Problem of
Three-Dimensional Nonlinear Wave Equations

12.2.1 Null Condition of Three-Dimensional Nonlinear
Wave Equations

Consider the three-dimensional nonlinear wave equation

�u = F̂(u, Du, Dx Du), (12.2.1)

where � = ∂2

∂t2 −
3

∑

i=1

∂2

∂xi 2
is the three-dimensional wave operator, D = ( ∂

∂t ,
∂
∂x1

,

∂
∂x2

, ∂
∂x3

), Dx = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), and

F̂(u, Du, Dx Du) =
3

∑

i, j=1

bi j (u, Du)uxi x j + 2
3

∑

j=1

a0 j (u, Du)utx j + F(u, Du).

(12.2.2)

Denote

λ̃ = (λ; (λi ), i = 0, 1, 2, 3). (12.2.3)

Suppose that in a neighborhood of λ̃ = 0, say, for |λ̃| ≤ ν0, bi j (λ̃), a0 j (λ̃) and F(λ̃)

are sufficiently smooth functions satisfying

bi j (λ̃) = b ji (λ̃) (i, j = 1, 2, 3), (12.2.4)

bi j (λ̃), a0 j (λ̃) = O(|λ̃|) (i, j = 1, 2, 3), (12.2.5)

F(λ̃) = O(|λ̃|2) (12.2.6)

and

3
∑

i, j=1

ai j (λ̃)ξiξ j ≥ m0|ξ|2, ∀ξ ∈ IR3, (12.2.7)
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where, m0 is a positive constant, and

ai j (λ̃) = δi j + bi j (λ̃) (i, j = 1, 2, 3), (12.2.8)

where δi j is the Kronecker symbol.
Let

F̂(u, Du, Dx Du) = N (u, Du, Dx Du) + H(u, Du, Dx Du), (12.2.9)

where N (u, Du, Dx Du) is the quadratic form of involving variables and is affine
with respect to Dx Du, while H(u, Du, Dx Du) is the term of higher degree. Denote

λ̂ = (λ; (λi ), i = 0, 1, 2, 3; (λi j ), i, j = 0, 1, 2, 3, i + j ≥ 1). (12.2.10)

H(u, Du, Dx Du) satisfies, in a neighborhood of λ̂ = 0,

H(λ̂) = O(|λ̂|3). (12.2.11)

The null condition, as an additional condition, will be imposed on the lowest-
degree term (the quadratic term) N (u, Du, Dx Du) in F̂(u, Du, Dx Du). It requires
that: for three-dimensional homogeneous wave equation

�u = 0, (12.2.12)

its any plane wave solution

u(t, x) = U (s), (12.2.13)

where

s = y0t +
3

∑

i=1

yi xi (12.2.14)

and y = (y0, y1, y2, y3) is a constant vector, and

U (0) = U ′(0) = 0, (12.2.15)

must be a solution to the three-dimensional nonlinear wave equation

�u = N (u, Du, Dx Du), (12.2.16)

i.e., it satisfies
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N (U, DU, Dx DU ) ≡ 0. (12.2.17)

Plugging (12.2.13)–(12.2.14) in (12.2.12), we have

(y20 − y21 − y22 − y23 )U
′′(s) = 0. (12.2.18)

Noting (12.2.15) we get: to make (12.2.13) to be a nontrivial plane wave solution of
(12.2.12), it suffices that the vector y = (y0, y1, y2, y3) satisfies

y20 − y21 − y22 − y23 = 0. (12.2.19)

Such a vector y is called the null vector. Now, it is easy to know that

N (U, DU, Dx DU ) = N (U, yU ′, ỹ yU ′′), (12.2.20)

where y = (y0, y1, y2, y3) is a null vector, and ỹ = (y1, y2, y3). Therefore, it is said
to satisfy the null condition if and only if: for any given null vector y satisfying
(12.2.19) and for any given real numbers p, q and r , we have

N (p, qy, r ỹ y) = 0. (12.2.21)

Denote

N0( f, g) = ∂0 f ∂0g −
3

∑

i=1

∂i f ∂ig (12.2.22)

and

Nab( f, g) = ∂a f ∂bg − ∂b f ∂ag. (12.2.23)

Hereinafter, a, b, c = 0, 1, 2, 3; i, j, k = 1, 2, 3, and ∂0 = − ∂
∂t , ∂i = ∂

∂xi
. It is easy

to verify that: Nab(∂i u, u), N0(∂i u, u) and N0(u, u) (They all do not depend on u
explicitly!) all satisfy the above null condition, collectively called the null form.
Meanwhile, we can prove

Lemma 12.2.1 If the quadratic form N (u, Du, Dx Du) of u, Du and Dx Du in
(12.2.9) is affine with respect to Dx Du and satisfies the null condition, then N must
be a linear combination of the null forms Nab(∂i u, u), N0(∂i u, u) and N0(u, u),
namely, we have

N (u, Du, Dxu) =
∑

i,a,b

ciabNab(∂i u, u) +
∑

i

ci N0(∂i u, u) + cN0(u, u),

(12.2.24)

where ciab, ci and c (a, b = 0, 1, 2, 3; i = 1, 2, 3) are all constants.
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Proof We first prove that: if the null condition is satisfied, then N (u, Du, Dxu) does
not depend on u explicitly.

Taking specially in (12.2.21) y = 0, it is clear that N (u, Du, Dxu) does not have
terms of u2. Then we can assume that

N (u, Du, Dx Du) =
∑

a

dau∂au +
∑

a,i

dai u∂a∂i u + N (Du, Dx Du), (12.2.25)

where da and dai (a = 0, 1, 2, 3; i = 1, 2, 3) are constants, and N (Du, Dx Du) is a
quadratic form of its variables.

Taking specially in (12.2.21) r = 0, and p and q are not zero, but |q| is small
enough such that tending to zero finally, from (12.2.25) we easily get

∑

a

da ya = 0. (12.2.26)

Taking the null vector y = (1,±1, 0, 0) in the above formula, we obtain

d0 ± d1 = 0,

then d0 = d1 = 0. Similarly we have d2 = d3 = 0. Then, (12.2.25) can be rewritten
as

N (u, Du, Dx Du) =
∑

a,i

dai u∂a∂i u + N (Du, Dx Du), (12.2.27)

and we may assume that

di j = d ji (i, j = 1, 2, 3). (12.2.28)

Taking specially in (12.2.21) q = 0, and p and r are not zero, from (12.2.27) we
immediately have

∑

a,i

dai ya yi = 0. (12.2.29)

Taking the null vector y = (1,±1, 0, 0) in the above formula, we obtain

d01 ± d11 = 0,

then d01 = d11 = 0. Similarly we have d0i = dii = 0 (i = 1, 2, 3). Thus, noting
(12.2.28), (12.2.29) can be reduced to

∑

i< j

di j yi y j = 0.
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Taking the null vector y = (
√
2, 1, 1, 0) in the above formula, we get

d12 = 0;

similarly we have di j = 0 (i, j = 1, 2, 3; i < j). Then, finally (12.2.27) can be writ-
ten as

N (u, Du, Dx Du) = N (Du, Dx Du), (12.2.30)

and N (Du, Dx Du) is a quadratic form of Du and Dx Du. This proves that N does
not depend on u explicitly: N = N (Du, Dx Du).

Since N (Du, Dx Du) is affine with respect to Dx Du, we can set

N (Du, Dx Du) = N1(Du, Dx Du) + N2(Du), (12.2.31)

where

N1(Du, Dx Du) =
∑

i,a,b

eiab∂i∂au∂bu (12.2.32)

and

N2(Du) =
∑

a,b

eab∂au∂bu, (12.2.33)

where eiab and eab (a, b = 0, 1, 2, 3; i = 1, 2, 3) are constants, and, without loss of
generality, we may assume that

e jib = ei jb (12.2.34)

and

eab = eba . (12.2.35)

Noticing that q and r in (12.2.21) are two independent real numbers, from the fact
that N satisfies the null condition, it is obvious that both N1 and N2 satisfy the null
condition.

Since N2 satisfies the null condition, by the corresponding (12.2.21) we obtain
that: for any given null vector y = (y0, y1, y2, y3) satisfying (12.2.19), we always
have

∑

a,b

eab ya yb = 0. (12.2.36)
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Since for any given null vector y = (y0, y1, y2, y3), ŷ = (−y0, y1, y2, y3) is also a
null vector, if we substitute y and ŷ into (12.2.36), respectively, the sign-changing
terms must vanish. Then, noting (12.2.35), we have

∑

i

e0i y0yi = 0,

then, taking y0 
= 0, we get: for any given non-null vector y = (y1, y2, y3), we have

∑

i

e0i yi = 0.

Therefore, we have

e0i = 0 (i = 1, 2, 3).

Similarly, we get

eab = 0 (a, b = 0, 1, 2, 3; a 
= b).

Thus, we have

N2(Du) =
∑

a

eaa(∂au)2, (12.2.37)

and the corresponding null condition is

∑

a

eaa y
2
a = 0.

Taking specially y = (1, 1, 0, 0) in the above formula, we obtain

e00 + e11 = 0;

furthermore, taking specially y = (
√
2, 1, 1, 0), we obtain

2e00 + e11 + e22 = 0.

Thus, we have

e11 = e22 = −e00.

Generally speaking, we obtain

eii = −e00 (i = 1, 2, 3).



12.2 Null Condition and Global Existence … 271

Then from (12.2.37) we obtain

N2(Du) = e00N0(u, u). (12.2.38)

On the other hand, it is easy to rewrite N1 as

N1(Du, Dx Du) =
∑

i,a,b

1

2
(eiab + eiba)∂i∂au∂bu +

∑

i,a,b

1

2
(eiab − eiba)∂i∂au∂bu

=
∑

i,a,b

ẽiab∂i∂au∂bu +
∑

i,a,b

êiabNab(∂i u, u), (12.2.39)

where ẽabi and êabi are some constants, and

ẽiab = ẽiba (12.2.40)

and

ẽi jb = ẽ j ib. (12.2.41)

Noting that Nab(∂i u, u) already satisfies the null condition, since N1(Du, Dx Du)

satisfies the null condition,

N3(Du, Dx Du) =
∑

i,a,b

ẽiab∂i∂au∂bu (12.2.42)

should also satisfy the null condition. From the corresponding (12.2.21), similarly,
we obtain that: for any given null vector y = (y0, y1, y2, y3) satisfying (12.2.19), we
always have

∑

i,a,b

ẽiab yi ya yb = 0. (12.2.43)

Since for any given null vector y = (y0, y1, y2, y3), ŷ = (−y0, y1, y2, y3) is also a
null vector, if we substitute y and ŷ into (12.2.43), respectively, then its sign-changing
terms must vanish. Then, noting (12.2.40), we have

∑

i, j

ẽi j0yi y j y0 = 0.

Taking y0 
= 0, we obtain from the above formula that: for any given non-null vector
ỹ = (y1, y2, y3), we have

∑

i, j

ẽi j0yi y j = 0.
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Noting (12.2.41), from this we immediately have

ẽi j0 = 0 (i, j = 1, 2, 3). (12.2.44)

Similarly, since for any given null vector y = (y0, y1, y2, y3), ˆ̂y = (y0,−y1,
y2, y3) is also a null vector, if we substitute y and ˆ̂y into (12.2.43), then its sign-
changing terms must vanish. Then, noting (12.2.40) and (12.2.44), it is clear that

ẽ111y
3
1 +

∑

a,b 
=1

ẽ1ab y1ya yb + 2
∑

i, j 
=1

ẽi j1y1yi y j = 0,

then we have

ẽ111y
2
1 +

∑

a,b 
=1

ẽ1ab ya yb + 2
∑

i, j 
=1

ẽi j1yi y j = 0.

Inserting the null vectors y = (y0, y1, y2, y3) and (y0, y1,−y2, y3) in the above
formula, respectively, the corresponding sign-changing terms should vanish. Then,
noting (12.2.40) and (12.2.41), we obtain

ẽ123 + ẽ231 + ẽ312 = 0.

Generally speaking, we obtain that: for any given i, j, k which are not equal to each
other, we have

ẽi jk + ẽ jki + ẽki j = 0.

Noting furthermore (12.2.40) and (12.2.41), we get

ẽi jk = 0 (i, j, k = 1, 2, 3; i, j, k are distinct from each other). (12.2.45)

From (12.2.44) and (12.2.45), we obtain

N3(Du, Dx Du) =
∑

i,a

ẽiaa∂i∂au∂au, (12.2.46)

and the corresponding null condition becomes

∑

i,a

ẽiaa yi y
2
a = 0.

Inserting the null vectors y = (y0, y1, y2, y3) and ˆ̂y = (y0,−y1, y2, y3) into the
above formula, respectively, the corresponding sign-changing terms must vanish.
Then, for any given null vector y, we have
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∑

a

ẽ1aa y
2
a = 0.

Similarly, we have

∑

a

ẽiaa y
2
a = 0 (i = 1, 2, 3).

Thus, completely similar to the derivation of (12.2.38) from (12.2.37), from the above
formula we get

N3(Du, Dx Du) =
∑

i

ẽi00N0(∂i u, u). (12.2.47)

Combining (12.2.31), (12.2.38)–(12.2.39), (12.2.42) and (12.2.47), the proof of
Lemma12.2.1 is finished. ��
Remark 12.2.1 Ni j (∂0u, u) = ∂i∂0u∂ j u − ∂ j∂0u∂i u also satisfy the null condition.
It apparently is not of the form of Nab(∂i u, u), but since

Ni j (∂0u, u) = (∂i∂0u∂ j u − ∂i∂ j u∂0u) + (∂i∂ j u∂0u − ∂ j∂0u∂i u)

= N0 j (∂i u, u) − N0i (∂ j u, u),

Ni j (∂0u, u) is in fact a linear combination of the null form Nab(∂i u, u).

12.2.2 Some Properties of the Null Form

Now, for functions N0( f, g) and Nab( f, g), defined by (12.2.22) and (12.2.23) and
used to generate the null form, we list some important properties which will be used
in what follows.

Lemma 12.2.2 For any given functions f = f (t, x) and g = g(t, x), we have

|N0( f, g)(t, x)|, |Nab( f, g)(t, x)|
≤ C(1 + t)−1(|Df (t, x)||�g(t, x)| + |� f (t, x)||Dg(t, x)|),

∀t ∈ IR+, x ∈ IRn, (12.2.48)

where C is a positive constant, and � is defined by (3.1.18) in Chap.3.

Proof Due to (12.2.22) and (12.2.23), it is obvious that

|N0( f, g)(t, x)|, |Nab( f, g)(t, x)| ≤ C1|Df (t, x)||Dg(t, x)|, (12.2.49)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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where C1 is a positive constant. Thus, to prove (12.2.48), it suffices to prove that

|N0( f, g)(t, x)|, |Nab( f, g)(t, x)|
≤ C2t

−1(|Df (t, x)||�g(t, x)| + |� f (t, x)||Dg(t, x)|), ∀t > 0, (12.2.50)

where C2 is a positive constant.
Noting (3.1.8) and (3.1.11)–(3.1.12) in Chap.3, we have

L0 = t∂t +
∑

i

xi∂i ,

�i j = xi∂ j − x j∂i

and

Li = �0i = t∂i + xi∂t ,

then we have

t N0( f, g) = t (∂t f ∂tg −
∑

i

∂i f ∂ig)

= L0 f ∂tg −
∑

i

(xi∂i f ∂tg + t∂i f ∂ig)

= L0 f ∂tg −
∑

i

(∂i f Lig), (12.2.51)

t Ni j ( f, g) = t (∂i f ∂ jg − ∂ j f ∂ig)

= Li f ∂ jg − xi∂t f ∂ jg − L j f ∂ig + x j∂t f ∂ig

= Li f ∂ jg − L j f ∂ig − ∂t f �i jg (12.2.52)

and

t N0i ( f, g) = −t∂t f ∂ig + t∂i f ∂tg = −∂t f Lig + Li f ∂tg. (12.2.53)

By (12.2.51)–(12.2.53), and noting the definition of � (see (3.1.18) in Chap.3), we
immediately obtain the desired (12.2.50). The proof is finished. ��

Denoting by N ( f, g), for convenience, the null forms N0( f, g) and Nab( f, g), we
define

{�, N ( f, g)} = �N ( f, g) − N (� f, g) − N ( f, �g). (12.2.54)

We have

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Lemma 12.2.3 We have

{∂a, N0( f, g)} = 0, (12.2.55)

{�ab, N0( f, g)} = 0, (12.2.56)

{L0, N0( f, g)} = −2N0( f, g), (12.2.57)

{∂c, Nab( f, g)} = 0, (12.2.58)

{�cd , Nab( f, g)} = ηacNbd( f, g) − ηad Nbc( f, g) − ηbcNad( f, g) + ηbd Nac( f, g),

(12.2.59)

{L0, Nab( f, g)} = −2Nab( f, g), (12.2.60)

where (ηab)4×4 = diag{−1, 1, 1, 1} is the Lorentz metric.
Proof Due to (12.2.22) and (12.2.23), it is easy to show (12.2.55) and (12.2.58).

Now we first prove the seemingly most complicated (12.2.59).
We have

�cd Nab( f, g)

= �cd(∂a f ∂bg − ∂b f ∂ag)

= �cd∂a f · ∂bg + ∂a f · �cd∂bg − (a|b)
= [�cd , ∂a] f · ∂bg + ∂a f · [�cd , ∂b]g + ∂a�cd f · ∂bg + ∂a f · ∂b�cdg − (a|b)
= [�cd , ∂a] f · ∂bg + ∂a f · [�cd , ∂b]g − [�cd , ∂b] f · ∂ag − ∂b f · [�cd , ∂a]g
+ Nab(�cd f, g) + Nab( f,�cdg),

hereinafter we denote by (a|b), for convenience, the result by exchanging a and b in
the previous terms. Using Lemma 3.1.1 in Chap.3, and noting (12.2.54), we obtain

{�cd , Nab( f, g)}
= [�cd , ∂a] f · ∂bg + ∂a f · [�cd , ∂b]g − [�cd , ∂b] f · ∂ag − ∂b f · [�cd , ∂a]g
= ηda∂c f ∂bg − ηca∂d f ∂bg + ηdb∂a f ∂cg − ηcb∂a f ∂dg

− ηdb∂c f ∂ag + ηcb∂d f ∂ag − ηda∂b f ∂cg + ηca∂b f ∂dg

= ηacNbd( f, g) − ηad Nbc( f, g) − ηbcNad( f, g) + ηbd Nac( f, g).

This is exactly (12.2.59).
Now we prove (12.2.60).
We have

L0Nab( f, g) = L0(∂a f ∂bg − ∂b f ∂ag)

= L0∂a f · ∂bg + ∂a f · L0∂bg − (a|b)
=[L0, ∂a] f · ∂bg + ∂a f · [L0, ∂b]g + ∂a L0 f · ∂bg + ∂a f · ∂bL0g − (a|b)
=[L0, ∂a] f · ∂bg + ∂a f · [L0, ∂b]g − [L0, ∂b] f · ∂ag − ∂b f · [L0, ∂a]g
+Nab(L0 f, g) + Nab( f, L0g).

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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Similarly, using Lemma 3.1.1 in Chap.3, we get

{L0, Nab( f, g)} = [L0, ∂a] f · ∂bg + ∂a f · [L0, ∂b]g − [L0, ∂b] f · ∂ag − ∂b f · [L0, ∂a]g
= − ∂a f ∂bg − ∂a f ∂bg + ∂b f ∂ag + ∂b f ∂ag

= − 2Nab( f, g).

This is just (12.2.60).
Now we prove (12.2.56).
Noticing that

�abN0( f, g)

= �ab(∂0 f ∂0g −
∑

i

∂i f ∂ig)

= �ab∂0 f · ∂0g −
∑

i

�ab∂i f · ∂ig + ∂0 f · �ab∂0g −
∑

i

∂i f · �ab∂ig

= [�ab, ∂0] f · ∂0g −
∑

i

[�ab, ∂i ] f · ∂ig + ∂0 f · [�ab, ∂0]g −
∑

i

∂i f · [�ab, ∂i ]g

+ ∂0�ab f · ∂0g −
∑

i

∂i�ab f · ∂ig + ∂0 f · ∂0�abg −
∑

i

∂i f · ∂i�abg

=[�ab, ∂0] f · ∂0g −
∑

i

[�ab, ∂i ] f · ∂ig + ∂0 f · [�ab, ∂0]g −
∑

i

∂i f · [�ab, ∂i ]g

+ N0(�ab f, g) + N0( f,�abg),

similarly we have

{�ab, N0( f, g)}
= [�ab, ∂0] f · ∂0g −

∑

i

[�ab, ∂i ] f · ∂ig + ∂0 f · [�ab, ∂0]g −
∑

i

∂i f · [�ab, ∂i ]g

= (ηb0∂a f ∂0g − ηa0∂b f ∂0g) −
∑

i

(ηbi∂a f ∂ig − ηai∂b f ∂ig)

+ (ηb0∂0 f ∂ag − ηa0∂0 f ∂bg) −
∑

i

(ηbi∂i f ∂ag − ηai∂i f ∂bg).

It is easy to show that the right-hand side of the above formula always vanishes for
all the possible cases like a, b = 0, 1, . . . , n and a 
= b. This proves (12.2.56).

Finally we prove (12.2.57).
Noting that

L0N0( f, g) = L0(∂0 f ∂0g −
∑

i

∂i f ∂ig)

= L0∂0 f · ∂0g −
∑

i

L0∂i f · ∂ig + ∂0 f · L0∂0g −
∑

i

∂i f · L0∂ig

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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=[L0, ∂0] f · ∂0g −
∑

i

[L0, ∂i ] f · ∂ig + ∂0 f · [L0, ∂0]g −
∑

i

∂i f · [L0, ∂i ]g

+ ∂0L0 f · ∂0g −
∑

i

∂i L0 f · ∂ig + ∂0 f · ∂0L0g −
∑

i

∂i f · ∂i L0g

=[L0, ∂0] f · ∂0g −
∑

i

[L0, ∂i ] f · ∂ig + ∂0 f · [L0, ∂0]g −
∑

i

∂i f · [L0, ∂i ]g

+ N0(L0 f, g) + N0( f, L0g),

similarly we have

{L0, N0( f, g)} = [L0, ∂0] f · ∂0g −
∑

i

[L0, ∂i ] f · ∂ig + ∂0 f · [L0, ∂0]g −
∑

i

∂i f · [L0, ∂i ]g

= − 2(∂0 f ∂0g −
∑

i

∂i f ∂ig)

= − 2N0( f, g).

This is exactly (12.2.57). ��

12.2.3 Metric Space XS,E. Main Results

Consider the Cauchy problem of the three-dimensional quasi-linear wave equation

�u = F̂(u, Du, Dx Du)

def.=
3

∑

i, j=1

bi j (u, Du)uxi x j + 2
3

∑

j=1

a0 j (u, Du)utx j + F(u, Du) (12.2.61)

with the initial data

t = 0 : u = εϕ(x), ut = εψ(x). (12.2.62)

Suppose that (12.2.4)–(12.2.8) hold, and

ϕ,ψ ∈ C∞
0 (IR3) (12.2.63)

with

supp{ϕ,ψ} ⊆ {x ||x | ≤ ρ} (ρ > 0 is a constant), (12.2.64)

where ε > 0 is a small parameter.
From the results in Chap.9, for Cauchy problem (12.2.61)–(12.2.62), in general,

the life-span of its classical solution has only the following lower bound estimate:

http://dx.doi.org/10.1007/978-3-662-55725-9_9
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˜T (ε) ≥ bε−2, (12.2.65)

where b is a positive constant independent of ε; even if the nonlinear term on the
right-hand side does not depend on u explicitly:

F̂ = F̂(Du, Dx Du), (12.2.66)

the life-span of its classical solution has only the following exponential lower bound
estimate:

˜T (ε) ≥ exp{aε−1}, (12.2.67)

where a is a positive constant independent of ε. However, next we will prove that: if
the quadratic nonlinear part N (u, Du, Dx Du) of the term F̂(u, Du, Dx Du) on the
right-hand side satisfies the above-mentioned null condition, then the global existence
of classical solutions of Cauchy problem (12.2.61)–(12.2.62) will be guaranteed.

By Sobolev embedding theorem, there exists a suitably small E0 > 0, such that

‖ f ‖L∞(IR3) ≤ ν0, ∀ f ∈ H 2(IR3), ‖ f ‖H 2(IR3) ≤ E0. (12.2.68)

For any given integer S ≥ 14 and any given positive number E (≤ E0), introduce
the set of functions

XS,E = {v(t, x)|DS(v) ≤ E, ∂l
tv(0, x) = u(0)

l (x) (l = 0, 1, . . . , S + 1)},
(12.2.69)

where

DS(v) = sup
t≥0

(1 + t)−σ‖(Dv, D2v)(t, ·)‖�,S,2 + sup
t≥0

‖v(t, ·)‖�,S−1,2, (12.2.70)

in which σ is a suitably small positive number (say, we can take σ = 1
100 ), u

(0)
0 (x) =

εϕ(x),u(0)
1 (x) = εψ(x), andwhen l = 2, . . . , S + 1,u(0)

l (x) are values of∂l
t u(t, x) at

t = 0,which are determined uniquely byEq. (12.2.61) and initial condition (12.2.62).
Obviously, u(0)

l (l = 0, 1, . . . , S + 1) are all sufficiently smooth functions with com-
pact support.

Remark 12.2.2 By Theorem 3.4.2 in Chap.3 (in which we take n = 3, p = 2 and
s = 2), it is easy to show that

∑

|k|≤S−4

sup
t≥0

(1 + t)‖(1 + |t − | · ||) 1
2 �kv(t, ·)‖L∞(IR3) ≤ CDS(v), (12.2.71)

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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then we have

(1 + t)‖v(t, ·)‖�,S−4,∞ ≤ CDS(v), ∀t ≥ 0. (12.2.72)

Introduce the following metric in XS,E :

ρ(v̄, ¯̄v) = DS(v̄ − ¯̄v), ∀v̄, ¯̄v ∈ XS,E . (12.2.73)

When ε > 0 is suitably small, XS,E is a non-empty complete metric space. Denote by
˜XS,E a subset of XS,E , which is composed of all the elements in XS,E with support,
with respect to x , not surpassing {x ||x | ≤ t + ρ} for any given t ≥ 0.

The main result of this section is the following

Theorem 12.2.1 Under the above assumptions, suppose furthermore that
F̂(u, Du, Dx Du) satisfies the above-mentioned null condition, i.e., the quadratic
form N (u, Du, Dx Du) therein (see (12.2.9)) is a linear combination of null forms,
expressed by (12.2.24). Then for any given integer S ≥ 14, there exist positive con-
stants ε0 and C0, depending on ρ > 0, such that C0ε0 ≤ E0, and for any given
ε ∈ (0, ε0], Cauchy problem (12.2.61)–(12.2.62) admits a unique global classical
solution u = u(t, x) ∈ ˜XS,C0ε on t ≥ 0. Moreover, after a possible change of values
for t on a zero-measure set of [0,+∞), we have

u ∈ C
(

[0,+∞); HS+1(IR3)
)

, (12.2.74)

ut ∈ C
(

[0,+∞); HS(IR3)
)

, (12.2.75)

utt ∈ C
(

[0,+∞); HS−1(IR3)
)

. (12.2.76)

In order to prove Theorem12.2.1 by using the global iteration method, for any
given v ∈ ˜XS,E , by solving the Cauchy problem of the following linear hyperbolic
equation

�u = F̂(v, Dv, Dx Du)

def.=
3

∑

i, j=1

bi j (v, Dv)uxi x j + 2
3

∑

j=1

a0 j (v, Dv)utx j + F(v, Dv) (12.2.77)

with initial condition (12.2.62), we define a mapping

M : v −→ u = Mv. (12.2.78)

We want to prove that: when ε > 0 is suitably small, we can find a positive constant
C0 such that when E = C0ε, M admits a unique fixed point in ˜XS,E , which is exactly
the global classical solution of Cauchy problem (12.2.61)–(12.2.62) on t ≥ 0.

To prove the above conclusion, it is crucial to prove the following two lemmas.
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Lemma 12.2.4 Under the assumptions of Theorem12.2.1, when E > 0 is suitably
small, for any given v ∈ ˜XS,E , u = Mv satisfies

DS(u) ≤ C1{ε + √
E(E + DS(u))}, (12.2.79)

where C1 is a positive constant independent of ε > 0 but possibly depending on
ρ > 0.

Lemma 12.2.5 Under the assumptions of Lemma12.2.4, for any given v̄, ¯̄v ∈ ˜XS,E ,
if both ū = M v̄ and ¯̄u = M ¯̄v satisfy ū, ¯̄u ∈ ˜XS,E , then we have

DS−1(ū − ¯̄u) ≤ C2

√
E(DS−1(ū − ¯̄u) + DS−1(v̄ − ¯̄v)), (12.2.80)

where C2 is a positive constant independent of ε > 0 but possibly depending on
ρ > 0.

12.2.4 Proof of Lemmas12.2.4 and 12.2.5

Here we only prove Lemma12.2.4. Lemma12.2.5 can be proved similarly.
We first estimate ‖u(t, ·)‖�,S−1,2.
From Von Wahl inequality (see (4.5.8) in Chap.4), it is easy to know that

‖u(t, ·)‖�,S−1,2 ≤ Cε +
∫ t

0
‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S−1, 65

dτ . (12.2.81)

To estimate ‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S−1, 65
, we first estimate the quadratic term

N (Dv, Dx Du) in F̂ , which does not depend on v explicitly due to the null condition.
Noting that N (Dv, Dx Du) is affine with respect to Dx Du, and involves the first-
order partial derivatives of v, by Lemma12.2.1, it should be a linear combination
of terms N0(∂i u, v), Nab(∂i u, v) and N0(v, v). Therefore, we only need to estimate
‖N0(∂i u, v)(τ , ·)‖�,S−1, 65

, ‖Nab(∂i u, v)(τ , ·)‖�,S−1, 65
and ‖N0(v, v)(τ , ·)‖�,S−1, 65

.
Denote by N (∂i u, v), unitedly, N0(∂i u, v) and Nab(∂i u, v). From Lemma12.2.3,

it is easy to show that

‖N (∂i u, v)‖�,S−1, 65
≤ C

∑

|k1|+|k2|≤S−1

‖N (�k1∂i u, �k2v)‖
L

6
5 (IR3)

, (12.2.82)

and from Lemma12.2.2 we have

|N (�k1∂i u, �k2v)(τ , x)|
≤ C(1 + τ )−1{|��k1∂i u(τ , x)||D�k2v(τ , x)| + |D�k1∂i u(τ , x)||��k2v(τ , x)|}.

(12.2.83)

http://dx.doi.org/10.1007/978-3-662-55725-9_4
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When |k1| ≥ |k2|, we have |k2| ≤ [ S−1
2 ], then by Hölder inequality we have

I
def.= ‖|��k1∂i u||D�k2v|(τ , ·)‖

L
6
5 (IR3)

+ ‖|D�k1∂i u||��k2v|(τ , ·)‖
L

6
5 (IR3)

≤ C‖Du‖�,S,2‖v‖�,[ S−1
2 ]+1,3.

Using the interpolation inequality (Lemma 5.2.4 in Chap.5), we then have

I ≤ C‖Du‖�,S,2‖v‖ 1
3

�,[ S−1
2 ]+1,∞‖v‖ 2

3

�,[ S−1
2 ]+1,2

.

Thus, using Corollary 3.4.4 in Chap.3 (in which we take n = 3, N = [ S−1
2 ] + 1,

p = 2, s = 2), and noting that when S ≥ 14, [ S−1
2 ] + 3 ≤ S − 1, we have

I ≤ C(1 + τ )−
1
3 ‖Du‖�,S,2‖v‖�,[ S−1

2 ]+3,2

≤ C(1 + τ )−
1
3 ‖Du‖�,S,2‖v‖�,S−1,2

≤ C(1 + τ )−
1
3+σEDS(u). (12.2.84)

When |k1| ≤ |k2|, we have |k1| ≤ [ S−1
2 ]. Noting (3.1.26) in Chap.3, and using

again Corollary 3.4.4 in Chap. 3, we obtain

II
def.= ‖|��k1∂i u||D�k2v|(τ , ·)‖

L
6
5 (IR3)

≤ C‖��k1∂i u‖L3(IR3)‖D�k2v‖L2(IR3)

≤ C‖Du‖�,[ S−1
2 ]+1,3‖Dv‖�,S,2

≤ C‖Du‖ 1
3

�,[ S−1
2 ]+1,∞‖Du‖ 2

3

�,[ S−1
2 ]+1,2

‖Dv‖�,S,2

≤ C(1 + τ )−
1
3 ‖Du‖�,[ S−1

2 ]+3,2‖Dv‖�,S,2

≤ C(1 + τ )−
1
3 ‖Du‖�,S,2‖Dv‖�,S,2

≤ C(1 + τ )−
1
3+2σEDS(u). (12.2.85)

On the other hand, when |k1| ≤ |k2|, from Lemma 5.1.3 in Chap. 5, and noting
(3.1.26) in Chap.3 and the interpolation inequality (see Lemma 5.2.4 in Chap.5), it
is easy to get

III
def.= ‖|D�k1∂i u||��k2v|(τ , ·)‖

L
6
5 (IR3)

≤ C‖��k1∂i u‖L3(IR3)‖D��k2v‖L2(IR3)

≤ C‖Du‖ 1
3

�,[ S−1
2 ]+1,∞‖Du‖ 2

3

�,[ S−1
2 ]+1,2

‖Dv‖�,S,2.

Using again Corollary 3.4.4 in Chap.3, when S ≥ 14 we obtain

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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III ≤ C(1 + τ )−
1
3 ‖Du‖�,S,2‖Dv‖�,S,2 ≤ C(1 + τ )−

1
3+2σEDS(u). (12.2.86)

Thus, from (12.2.82)–(12.2.83) we get

‖N0(∂i u, v)(τ , ·)‖�,S−1, 65
, ‖Nab(∂i u, v)(τ , ·)‖�,S−1, 65

≤ C(1 + τ )−
4
3+2σEDS(u).

(12.2.87)

Similarly, we obtain

‖N0(v, v)(τ , ·)‖�,S−1, 65
≤ C(1 + τ )−

4
3+2σE2. (12.2.88)

Combining (12.2.87) and (12.2.88), we have

‖N (Dv, Dx Du)(τ , ·)‖�,S−1, 65
≤ C(1 + τ )−

4
3+2σE(E + DS(u)).� (12.2.89)

Now we denote

H(v, Dv, Dx Du) = F̂(v, Dv, Dx Du) − N (Dv, Dx Du), (12.2.90)

which contains all the terms higher than quadratic. Noting (12.2.77), it can be specif-
ically written as

H(v, Dv, Dx Du) =
3

∑

i, j=1

b̄i j (v, Dv)uxi x j + 2
3

∑

j=1

ā0 j (v, Dv)utx j + F(v, Dv),

(12.2.91)

where b̄i j (λ̃), ā0 j (λ̃) and F(λ̃) are sufficiently smooth in a neighborhood of λ̃ =
(λ; (λi ), i = 0, 1, 2, 3) = 0, and satisfy

b̄i j (λ̃) = b̄ j i (λ̃) (i, j = 1, 2, 3 (12.2.92)

b̄i j (λ̃), ā0 j (λ̃) = O(|λ̃|2) (i, j = 1, 2, 3), (12.2.93)

F(λ̃) = O(|λ̃|3). (12.2.94)

Utilizing the estimates for product functions and composite functions in Chap. 5,
we have

‖H(v, Dv, Dx Du)(τ , ·)‖
�,S−1, 65

≤ C‖(v, Dv)‖
�,[ S−1

2 ],6
(‖D2u‖�,S−1,2

‖(v, Dv)‖
�,[ S−1

2 ],6 + ‖(v, Dv)‖�,S−1,2‖ (v, Dv, D2u)‖
�,[ S−1

2 ],6
)

. (12.2.95)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Using the interpolation inequality (see Lemma5.2.4 in Chap.5) and Corollary 3.4.4
in Chap.3, and noting S ≥ 14, we have

‖(v, Dv)(τ , ·)‖�,[ S−1
2 ],6 ≤ C‖(v, Dv)‖ 2

3

�,[ S−1
2 ],∞‖(v, Dv)‖ 1

3

�,[ S−1
2 ],2

≤ C(1 + τ )−
2
3 ‖(v, Dv)‖�,[ S−1

2 ],2

≤ C(1 + τ )−
2
3 ‖(v, Dv)(τ , ·)‖�,S−1,2

≤ C(1 + τ )−
2
3 +σE,

and, similarly, we have

‖D2u(τ , ·)‖�,[ S−1
2 ],6 ≤ C(1 + τ )−

2
3 +σDS(u).

Thus, (12.2.95) easily yields

‖H(v, Dv, Dx Du)(τ , ·)‖�,S−1, 65
≤ C(1 + τ )−

4
3+3σE2(E + DS(u)). (12.2.96)

From (12.2.88) and (12.2.95), we finally obtain

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S−1, 65
≤ C(1 + τ )−

4
3+3σE(E + DS(u)), (12.2.97)

then from (12.2.80) we get

‖u(t, ·)‖�,S−1,2 ≤ C{ε + E(E + DS(u))}. � (12.2.98)

Finally, we estimate ‖(Du, Dx Du)(t, ·)‖�,S,2.
For any given multi-index k (|k| ≤ S), we have the energy integral formula

(9.2.41) in Chap.9, in which Gk and gk are given by (9.2.39) and (9.2.40) in Chap.9,
respectively (taking n = 3 in (12.2.39)–(12.2.41)).

Noting (3.1.26) in Chap.3 and S ≥ 14, it is clear that

|I|, |II|, |III| ≤ C
∫ t

0
‖(Dv, D2v)(τ , ·)‖L∞(IR3)‖D2u(τ , ·)‖2�,S,2dτ

≤ C
∫ t

0
‖v(τ , ·)‖�,2,∞‖D2u(τ , ·)‖2�,S,2dτ

≤ C
∫ t

0
(1 + τ )−1‖v(τ , ·)‖�,S−1,2‖D2u(τ , ·)‖2�,S,2dτ

≤ C
∫ t

0
(1 + τ )−1+2σED2

S(u)dτ

≤ C(1 + t)2σED2
S(u). (12.2.99)

Now we estimate the L2 norm of Gk(τ , ·).

http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_9
http://dx.doi.org/10.1007/978-3-662-55725-9_9
http://dx.doi.org/10.1007/978-3-662-55725-9_9
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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From the estimates about product functions and composite functions in Chap.5,
using (12.2.72) in Remark12.2.2 and noting that [ S2 ] + 3 ≤ S − 4 when S ≥ 14, it
is easy to show that

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IR3)

≤ C(‖(Dv, D2v)‖�,[ S
2 ],∞‖D2u‖�,S,2 + ‖(Dv, D2v)‖�,S,2‖D2u‖�,[ S

2 ]+1,∞)

≤ C(‖v‖�,[ S
2 ]+2,∞‖D2u‖�,S,2 + ‖(Dv, D2v)‖�,S,2‖u‖�,[ S

2 ]+3,∞)

≤ C(1 + τ )−1+σEDS(u). (12.2.100)

In addition, similarly we have

‖(bi j (v, Dv)(�k Duxi x j ) − (�k Du)xi x j )(τ , ·)‖L2(IR3)

≤ C‖bi j (v, Dv)‖L∞(IR3)‖D2u‖�,S,2

≤ C‖(v, Dv)‖L∞(IR3)‖D2u‖�,S,2

≤ C(1 + τ )−1+σEDS(u). (12.2.101)

We can similarly estimate those terms involving a0 j in Gk to have

‖Gk(τ , ·)‖L2(IR3) ≤ C(1 + τ )−1+σEDS(u), (12.2.102)

then

|IV| ≤ C(1 + t)2σED2
S(u). (12.2.103)

Finally, we estimate the L2 norm of gk(τ , ·).
For this, we rewrite (9.2.40) in Chap.9 as

gk = �k DF(v, Dv) +
∑

|l|≤|k|
˜Bkl�

l (F̂(v, Dv, Dx Du) − F(v, 0)) +
∑

|l|≤|k|
˜Bkl�

l F(v, 0)

= �k DF(v, Dv) +
∑

|l|≤|k|
˜Bkl�

l
{

3
∑

i, j=1

bi j (v, Dv)uxi x j + 2
3

∑

j=1

a0 j (v, Dv)utx j

+ (F(v, Dv) − F(v, 0))
}

+
∑

|l|≤|k|
˜Bkl�

l F(v, 0)

def.= I1 + I2 + I3. (12.2.104)

Using the estimates about product functions and composite functions, especially
Lemma 5.1.4, in Chap.5, we have

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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‖I1‖L2(IR3) ≤ C‖DF(v, Dv)(τ , ·)‖�,S,2

≤ C
(‖(v, Dv)(τ , ·)‖�,[ S

2 ],∞‖(Dv, D2v)(τ , ·)‖�,S,2

+ ‖(Dv, D2v)(τ , ·)‖�,S,2‖(v, Dv)(τ , ·)‖�,[ S
2 ]+1,∞

)

. (12.2.105)

By (12.2.72) in Remark12.2.2, and noticing S ≥ 14, we have

‖(v, Dv)(τ , ·)‖�,[ S
2 ]+1,∞ ≤ C‖v‖�,[ S

2 ]+2,∞ ≤ C‖v‖�,S−4,∞ ≤ C(1 + τ )−1E,

then we get

‖I1‖L2(IR3) ≤ C(1 + τ )−1+σE2. (12.2.106)

Similarly, we have

‖I2‖L2(IR3)

≤ C
{‖(v, Dv)(τ , ·)‖�,[ S

2 ],∞(‖D2u(τ , ·)‖�,S,2 + ‖Dv(τ , ·)‖�,S,2)

+ ‖(Dv, D2v)(τ , ·)‖�,S,2(‖Du(τ , ·)‖�,[ S
2 ]+1,∞ + ‖v(τ , ·)‖�,[ S

2 ]+1,∞)
}

≤ C(1 + τ )−1+σE(E + DS(u)). (12.2.107)

Moreover, by the null condition (see Lemma12.2.1) it is obvious that

F(v, 0) = O(|v|3), (12.2.108)

therefore

‖I3‖L2(IR3) ≤ C‖F(v, 0)(τ , ·)‖�,S,2 ≤ C
∑

|k1 |+|k2 |+|k3 |≤S
|k1 |≤|k2 |≤|k3 |

‖�k1v · �k2v · �k3v(τ , ·)‖L2(IR3).

(12.2.109)

By (12.2.71) in Remark12.2.2, and noticing that |k1| + |k2| ≤ [ S2 ] ≤ S − 4 when
S ≥ 14, we have

|�kv(t, x)| ≤ C(1 + t)−1(1 + |t − |x ||)− 1
2 DS(v)

≤ C(1 + t)−1(1 + |t − |x ||)− 1
2 E ( in which k = k1, k2),

then, using (5.1.28) in Lemma 5.1.3 of Chap.5, we have

‖I3‖L2(IR3) ≤ C(1 + τ )−2E2
∥

∥

∥

�k3v(τ , ·)
1 + |τ − | · ||

∥

∥

∥

L2(IR3)

≤ C(1 + τ )−2E2‖Dv(τ , ·)‖�,S,2

≤ C(1 + τ )−2+σE3. (12.2.110)

Combining (12.2.106)–(12.2.107) and (12.2.110), it follows from (12.2.104) that

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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‖gk(τ , ·)‖L2(IR3) ≤ C(1 + τ )−1+σE(E + DS(u)), (12.2.111)

thus

|V| ≤ C(1 + t)2σEDS(u)(E + DS(u)). (12.2.112)

Similarly to Chap.9, using (12.2.99), (12.2.103) and (12.2.112), we get

‖D2u(t, ·)‖�,S,2 ≤ C(1 + t)σ{ε + √
E(E + DS(u))}. (12.2.113)

Moreover, using similar arguments as in Chap. 9, we obtain

‖Du(t, ·)‖�,S,2 ≤ C(1 + t)σ{ε + √
E(E + DS(u))}. (12.2.114)

Combining (12.2.98) and (12.2.113)–(12.2.114), we get the desired (12.2.79).
The proof of Lemma12.2.4 is finished.

12.3 Null Condition and Global Existence of Classical
Solutions to the Cauchy Problem of Two-Dimensional
Nonlinear Wave Equations

12.3.1 Introduction

Consider the two-dimensional nonlinear wave equation

�u = F̂(u, Du, Dx Du), (12.3.1)

where � = ∂2

∂t2 −
2

∑

i=1

∂2

∂xi 2
is the two-dimensional wave operator, D = ( ∂

∂t ,
∂
∂x1

, ∂
∂x2

),

Dx = ( ∂
∂x1

, ∂
∂x2

), and

F̂(u, Du, Dx Du) =
2

∑

i, j=1

bi j (u, Du)uxi x j + 2
2

∑

j=1

a0 j (u, Du)utx j + F(u, Du).

(12.3.2)

Denote

λ̃ = (λ; (λi ), i = 0, 1, 2). (12.3.3)

http://dx.doi.org/10.1007/978-3-662-55725-9_9
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Assume that in a neighborhood of λ̃ = 0, say, for |λ̃| ≤ ν0, bi j (λ̃), a0 j (λ̃) and F(λ̃)

are sufficiently smooth functions and satisfy

bi j (λ̃) = b ji (λ̃) (i, j = 1, 2), (12.3.4)

bi j (λ̃), a0 j (λ̃) = O(|λ̃|2) (i, j = 1, 2), (12.3.5)

F(λ̃) = O(|λ̃|3) (12.3.6)

and

2
∑

i, j=1

ai j (λ̃)ξiξ j ≥ m0|ξ|2, ∀ξ ∈ IR2, (12.3.7)

where, m0 is a positive constant, and

ai j (λ̃) = δi j + bi j (λ̃) (i, j = 1, 2), (12.3.8)

where δi j is the Kronecker symbol.
Under the above assumptions, (12.3.1) is a two-dimensional quasi-linear wave

equation with nonlinearity of (at least) third order (correspondingly, α = 2). Denote

F̂(u, Du, Dx Du) = C(u, Du, Dx Du) + H(u, Du, Dx Du), (12.3.9)

where, C(u, Du, Dx Du) denotes a cubic function of its variables and is affine with
respect to Dx Du, while, H(u, Du, Dx Du) is composed of higher order terms.Noting
(12.3.2), H(u, Du, Dx Du) can be written as

H(u, Du, Dx Du) =
2

∑

i, j=1

b̄i j (u, Du)uxi x j + 2
2

∑

j=1

ā0 j (u, Du)utx j + F(u, Du),

(12.3.10)

where b̄i j (λ̃), ā0 j (λ̃) and F(λ̃) are sufficiently smooth in a neighborhood of λ̃ =
(λ; (λi ), i = 0, 1, 2) = 0 and satisfy

b̄i j (λ̃) = b̄ j i (λ̃) (i, j = 1, 2), (12.3.11)

b̄i j (λ̃), ā0 j (λ̃) = O(|λ̃|3) (i, j = 1, 2), (12.3.12)

F(λ̃) = O(|λ̃|4). (12.3.13)

(12.3.10) can be rewritten as

H(u, Du, Dx Du) = H1(u, Du)Dx Du + H2(u, Du)Du + H3(u), (12.3.14)
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where

H1(u, Du)Dx Du =
2

∑

i, j=1

b̄i j (u, Du)uxi x j + 2
2

∑

j=1

ā0 j (u, Du)utx j , (12.3.15)

H2(u, Du)Du = F(u, Du) − F(u, 0) (12.3.16)

and
H3(u) = F(u, 0). (12.3.17)

From (12.3.12)–(12.3.13) we have

H1(λ̂) = O(|λ̂|3), H2(λ̃) = O(|λ̃|3) (12.3.18)

and

H3(λ) = O(|λ|4), (12.3.19)

in which λ̂ = (λ; (λi ), i = 0, 1, 2; (λi j ), i, j = 0, 1, 2, i + j ≥ 1) and
λ̃ = (λ; (λi ), i = 0, 1, 2).

For the two-dimensional quasi-linear wave equations (12.3.1) with nonlinearity
of (at least) third order (α = 2), consider its Cauchy problem with the small initial
data

t = 0 : u = εϕ(x), ut = εψ(x), (12.3.20)

where

ϕ,ψ ∈ C∞
0 (IR2) (12.3.21)

with

supp{ϕ,ψ} ⊆ {x ||x | ≤ ρ} (ρ > 0 is a constant), (12.3.22)

and ε > 0 is a small parameter.
Following the results in Chap.10, when n = 2 and α = 2, the life-span of the

classical solution to Cauchy problem (12.3.1) and (12.3.20) has only the following
lower bound estimate in general:

˜T (ε) ≥ bε−6, (12.3.23)

where b is a positive constant independent of ε; even when the nonlinear term on the
right-hand side does not depend on u explicitly:

http://dx.doi.org/10.1007/978-3-662-55725-9_10
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F̂ = F̂(Du, Dx Du), (12.3.24)

the life-span of the classical solution has only the following exponential lower bound
estimate:

˜T (ε) ≥ exp{aε−2}, (12.3.25)

where a is a positive constant independent of ε. However, in what follows we
will prove that: as long as the cubic nonlinear part C(u, Du, Dx Du) of the term
F̂(u, Du, Dx Du) on the right-hand side satisfies a suitable null condition, Cauchy
problem (12.3.1) and (12.3.20) admits a global classical solution. This result first
appeared in the Ph.D dissertation of Zhou Yi in 1992, but was not published. Later,
A. Hoshiga gave a corresponding proof in 1995 (see Hoshiga 1995).

According to (12.2.24) in Lemma12.2.1, the null condition satisfied by the cubic
term C(u, Du, Dx Du) is given as follows:

C(u, Du, Dxu) =
∑

i,a,b

ciab(u, Du)Nab(∂i u, u) +
∑

i

ci (u, Du)N0(∂i u, u)

+ c(u, Du, Dx Du)N0(u, u), (12.3.26)

hereinafter a, b, · · · = 0, 1, 2; i, j, · · · = 1, 2, N0 and Nab are defined by (12.2.22)
and (12.2.23), respectively, and ciab, ci and c are all linear homogeneous func-
tions of its variables. Moreover, for the expression (12.3.14) of higher order term
H(u, Du, Dx Du), on this occasion we have

H3(u) = F(u, 0) = F(u, 0)
def.= F(u), (12.3.27)

and we furthermore assume that

H1(λ, 0), H2(λ, 0) = O(|λ|4) (12.3.28)

and

F(λ) = H3(λ) = O(|λ|6). (12.3.29)

Remark 12.3.1 For Cauchy problem (12.3.1) and (12.3.20) of the two-dimensional
quasi-linear wave equation with (at least) quadratic nonlinearity (correspondingly,
α = 1) and small initial data, it follows from the results in Chap.10 that, even under
special condition (12.3.24), the life-span of its classical solution has only the follow-
ing lower bound estimate:

˜T (ε) ≥ bε−2, (12.3.30)

http://dx.doi.org/10.1007/978-3-662-55725-9_10
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where b is a positive constant independent of ε. On this occasion, it is more difficult
to study the corresponding null condition, and the only result up to now belongs to
S. Alinhac in a special case, see Sect. 15.2.1 in Chap.15 (cf. Alinhac 2001).

12.3.2 Metric Space XS,E. Main Results

Due to the Sobolev embedding theorem, there exists a suitably small E0 > 0, such
that

‖ f ‖L∞(IR2) ≤ ν0, ∀ f ∈ H 2(IR2), ‖ f ‖H 2(IR2) ≤ E0. (12.3.31)

For any given integer S ≥ 8 and any given positive number E (≤ E0), introduce
the set of functions

XS,E = {v(t, x)|DS(v) ≤ E, ∂l
tv(0, x) = u(0)

l (x) (l = 0, 1, . . . , S + 1)},
(12.3.32)

where

DS(v) = sup
t≥0

(1 + t)−σ‖(Dv, D2v)(t, ·)‖�,S,2

+ sup
t≥0

(1 + t)−
1
2 −2σ‖v(t, ·)‖�,S,2 + sup

t≥0
(1 + t)

1
2 ‖v(t, ·)‖�,S−2,∞,

(12.3.33)

in which σ is a suitably small positive number (we can take, say, σ = 1
100 ), u

(0)
l (x)

(l = 0, 1, . . . , S + 1) are defined as in Sect. 12.2.3.
Introduce the following metric in XS,E :

ρ(v̄, ¯̄v) = DS(v̄ − ¯̄v), ∀v̄, ¯̄v ∈ XS,E . (12.3.34)

When ε > 0 is suitably small, XS,E is a non-empty complete metric space. Denote
by ˜XS,E a subset of XS,E , composed of all the elements in XS,E with support with
respect to x , contained in {x ||x | ≤ t + ρ} for any given t ≥ 0.

The main result of this section is the following

Theorem 12.3.1 Under assumptions (12.3.4)–(12.3.8) and (12.3.21)–(12.3.22),
assume furthermore that the nonlinear term F̂(u, Du, Dx Du) on the right-hand side
satisfies the above-mentioned null condition, that is, the cubic termC(u, Du, Dx Du)

is given by (12.3.26), and the higher order term H(u, Du, Dx Du) satisfies (12.3.28)–
(12.3.29). Then for any given integer S ≥ 8, there exist positive constants ε0 and C0

depending on ρ > 0 and satisfying C0ε0 ≤ E0, such that for any given ε ∈ (0, ε0],
Cauchy problem (12.3.1) and (12.3.20) admits a unique global classical solution

http://dx.doi.org/10.1007/978-3-662-55725-9_15
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u = u(t, x) ∈ ˜XS,C0ε on t ≥ 0. Moreover, after possible change of values for t on a
zero-measure set, for any given T > 0, we have

u ∈ C
(

[0, T ]; HS+1(IR2)
)

, (12.3.35)

ut ∈ C
(

[0, T ]; HS(IR2)
)

, (12.3.36)

utt ∈ C
(

[0, T ]; HS−1(IR2)
)

. � (12.3.37)

In order to adopt the global iteration method to prove Theorem12.3.1, for any
given v ∈ ˜XS,E , by solving the Cauchy problem of the following linear hyperbolic
equation

�u = F̂(v, Dv, Dx Du)
def.=

2
∑

i, j=1

bi j (v, Dv)uxi x j + 2
2

∑

j=1

a0 j (v, Dv)utx j + F(v, Dv)

(12.3.38)

with initial condition (12.3.20), we define a mapping

M : v −→ u = Mv. (12.3.39)

We want to prove that: when ε > 0 is suitably small, we can find a positive constant
C0, such that when E = C0ε, M admits a unique fixed point in ˜XS,E , which is just
the global classical solution to the Cauchy problem (12.3.1) and (12.3.20) on t ≥ 0.

To prove the above conclusion, it is crucial to prove the following two lemmas.

Lemma 12.3.1 Under the assumptions of Theorem12.3.1, when E > 0 is suitably
small, for any given v ∈ ˜XS,E , u = Mv satisfies

DS(u) ≤ C1{ε + E(E + DS(u))}, (12.3.40)

where C1 is a positive constant independent of ε but possibly depending on ρ > 0.

Lemma 12.3.2 Under the assumptions of Lemma12.3.1, for any given v̄, ¯̄v ∈ ˜XS,E ,
if both ū = M v̄ and ¯̄u = M ¯̄v satisfy ū, ¯̄u ∈ ˜XS,E , then we have

DS−1(ū − ¯̄u) ≤ C2E(DS−1(ū − ¯̄u) + DS−1(v̄ − ¯̄v)), (12.3.41)

where C2 is a positive constant independent of ε but possibly depending on ρ > 0.

12.3.3 Proof of Lemmas12.3.1 and 12.3.2

Now we prove Lemma12.3.1 only. The proof of Lemma12.3.2 can be conducted
similarly.
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We first estimate ‖u(t, ·)‖�,S−2,∞.
From the L1-L∞ estimates for solutions to the wave equation (see Theorem 4.6.1

and Theorem 4.6.2 in Chap.4, in which we take n = 2, l = 0), it is easy to show that

‖u(t, ·)‖�,S−2,∞ ≤ C(1 + t)− 1
2

(

ε +
∫ t

0
(1 + τ )− 1

2 ‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S−1,1dτ
)

.

(12.3.42)

To estimate ‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S−1,1, we first estimate
‖C(v, Dv, Dx Du)(τ , ·)‖�,S−1,1. By (12.3.26), it suffices to estimate

‖(v, Dv)N (∂i u, v)(τ , ·)‖�,S−1,1 and ‖(v, Dv, Dx Du)N0(v, v)(τ , ·)‖�,S−1,1,

in which we still denote by N (∂i u, v) the null forms N0(∂i u, v) and Nab(∂i u, v).
From the estimates about product functions and composite functions in Chap.5,

we have

‖(v, Dv)N (∂i u, v)(τ , ·)‖�,S−1,1

≤ C(‖(v, Dv)‖
�,[ S−1

2 ],∞‖N (∂i u, v)‖�,S−1,1 + ‖(v, Dv)‖�,S−1,2‖N (∂i u, v)‖�,S−1,2).

(12.3.43)

By Lemma12.2.3, we have

‖N (∂i u, v)‖�,S−1,1 ≤ C
∑

|k1|+|k2|≤S−1

‖N (�k1∂i u, �k2v)‖L1(IR2), (12.3.44)

and due to Lemma12.2.2, we still have (12.2.81). Then, similarly to the proof of
(12.2.86), when S ≥ 8 we get

‖N (∂i u, v)(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+2σEDS(u). (12.3.45)

Similarly, we can prove

‖N (∂i u, v)(τ , ·)‖�,S−1,2 ≤ C(1 + τ )−
3
2 +2σEDS(u). (12.3.46)

Hence, by (12.3.43), and noting that when S ≥ 8 we have

‖(v, Dv)(τ , ·)‖�,[ S−1
2 ],∞ ≤ C‖v‖�,[ S−1

2 ]+1,∞ ≤ C‖v‖�,S−2,∞ ≤ C(1 + τ )−
1
2 E,

(12.3.47)

we obtain

‖(v, Dv)N (∂i u, v)(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+4σE2DS(u). (12.3.48)

http://dx.doi.org/10.1007/978-3-662-55725-9_4
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Similarly we have

‖(v, Dv, Dx Du)N0(v, v)(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+4σE2(E + DS(u)).

(12.3.49)

Thus, we have

‖C(v, Dv, Dx Du)(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+4σE2(E + DS(u)). � (12.3.50)

Now we estimate ‖H(v, Dv, Dx Du)(τ , ·)‖�,S−1,1.
By (12.3.14) and noting (12.3.27), we have

H(v, Dv, Dx Du)

= H1(v, Dv)Dx Du + H2(v, Dv)Dv + F(v)

= (H1(v, Dv) − H1(v, 0))Dx Du + (H2(v, Dv) − H2(v, 0))Dv

+ H1(v, 0)Dx Du + H2(v, 0)Dv + F(v)

def.= H1(v, Dv)DvDx Du + H2(v, Dv)(Dv)2 + H1(v, 0)Dx Du + H2(v, 0)Dv + F(v), (12.3.51)

where

H 1(λ̃), H 2(λ̃) = O(|λ̃|2). (12.3.52)

Using the estimates about product functions and composite functions, especially
Lemma 5.1.4, in Chap.5, we have

‖H1(v, Dv)DvDx Du‖�,S−1,1

≤ C‖(v, Dv)2Dv‖�,S−1,2‖D2u‖�,S−1,2

≤ C(‖(v, Dv)2‖
�,[ S−1

2 ],∞‖Dv‖�,S−1,2 + ‖(v, Dv)(Dv, D2v)‖�,S−1,2‖v‖
�,[ S−1

2 ]+1,∞)‖D2u‖�,S,2,

Similarly, we have

‖(v, Dv)(Dv, D2v)‖�,S−1,2

≤ C
(‖(v, Dv)‖

�,[ S−1
2 ],∞‖(Dv, D2v)‖�,S−1,2 + ‖(Dv, D2v)‖�,S−1,2‖(v, Dv)‖

�,[ S−1
2 ]+1,∞

)

.

Noting that ‖(v, Dv)2‖�,[ S−1
2 ],∞ ≤ C‖(v, Dv)‖2

�,[ S−1
2 ],∞, and that [ S−1

2 ] + 2 ≤ S − 2

when S ≥ 8, we get

‖H 1(v, Dv)DvDx Du(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+2σE3DS(u). (12.3.53)

Similarly, we have

‖H 2(v, Dv)(Dv)2(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+2σE4. (12.3.54)

http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Moreover, using Lemma 3.1.4 in Chap.3, and noting assumption (12.3.28), we
have

‖H1(v, 0)Dx Du(τ , ·)‖�,S−1,1 ≤ C(‖v4‖
�,[ S−1

2 ],2‖D2u‖�,S−1,2 + ‖v3Dv‖�,S−1,2‖Du‖
�,[ S−1

2 ]+1,2).

Repeatedly using Lemma 3.1.4 in Chap.3, we have

‖v3Dv‖�,S−1,2 ≤ C‖v‖3
�,[ S−1

2 ]+1,∞‖Dv‖�,S−1,2;

moreover, it is obvious that

‖v4‖�,[ S−1
2 ],2 ≤ C‖v‖3

�,[ S−1
2 ],∞‖v‖�,[ S−1

2 ],2.

Then, noting S ≥ 8, it is easy to get

‖H1(v, 0)Dx Du(τ , ·)‖�,S−1,1 ≤ C‖v‖3�,S−2,∞(‖v‖�,S,2 + ‖Dv‖�,S,2)‖Du‖�,S,2

≤ C(1 + τ )−1+3σE4DS(u). (12.3.55)

Similarly, we have

‖H2(v, 0)Dv(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+3σE5. (12.3.56)

Finally, by assumption (12.3.29), we have

‖F(v)(τ , ·)‖�,S−1,1 ≤ C‖v‖4
�,[ S−1

2 ],∞‖v‖2�,S,2 ≤ C(1 + τ )−1+4σE6. (12.3.57)

Combining (12.3.53)–(12.3.57), we get

‖H(v, Dv, Dx Du)(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+4σE3(E + DS(u)). (12.3.58)

Noting (12.3.50), we have

‖F̂(v, Dv, Dx Du)(τ , ·)‖�,S−1,1 ≤ C(1 + τ )−1+4σE2(E + DS(u)),

then from (12.3.42) we obtain

‖u(t, ·)‖�,S−2,∞ ≤ C(1 + t)−
1
2 {ε + E2(E + DS(u))}. � (12.3.59)

Now we estimate ‖u(t, ·)‖�,S,2.
Noting α = 2, and that assumption (12.3.29) leads to (10.1.23) in Chap.10 easily,

F̂(v, Dv, Dx Du) can be written in the form of (10.4.10) in Chap.10, namely,

http://dx.doi.org/10.1007/978-3-662-55725-9_3
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F̂(v, Dv, Dx Du) =
2

∑

i=0

∂i Ĝi (v, Du) +
2

∑

i, j=0

Âi j (v)vxi ux j

+
2

∑

i, j,m=0
j+m≥1

B̂i jm(v, Dv)vxi ux j xm +
2

∑

i, j=0

Ĉi j (v, Dv)vxi vx j + F(v),

(12.3.60)

and we also have the corresponding (10.4.12)–(10.4.14) in Chap.10, that is

Ĝi (λ̄) = O(|λ̄|3), i = 0, 1, 2; λ̄ = (v, Du), (12.3.61)

and Ĝi (v, Du)(i = 0, 1, 2) are affine with respect to Du,

Âi j (v) = O(|v|), i, j = 0, 1, 2 (12.3.62)

and

B̂i jm(λ̃), Ĉi j (λ̃) = O(|λ̃|), i, j,m = 0, 1, 2; λ̃ = (v, Dv), (12.3.63)

but (10.4.11) in Chap.10 should be replaced by (12.3.29) in this section.
Thus, similarly to Sect. 10.4 in Chap.10, the solution u = Mv to Cauchy problem

(12.3.38) and (12.3.20) can be written as

u = u1 + u2 + u3, (12.3.64)

where u1 is the solution to the equation

�u1 =
2

∑

i=0

∂i Ĝi (v, Du) (12.3.65)

with the zero initial condition, u2 is the solution to the equation

�u2 = Q(v, Dv, Du, Dx Du) (12.3.66)

with the same initial value (12.3.20) as u, where

Q(v, Dv, Du, Dx Du)

=
2

∑

i, j=0

Âi j (v)vxi ux j +
2

∑

i, j,m=0
j+m≥1

B̂i jm(v, Dv)vxi ux j xm +
2

∑

i, j=0

Ĉi j (v, Dv)vxi vx j ,

(12.3.67)

http://dx.doi.org/10.1007/978-3-662-55725-9_10
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while, u3 is the solution to the equation

�u3 = F(v) (12.3.68)

with the zero initial condition.
Same as (10.4.25)–(10.4.26) in Chap.10, we get

‖u1(t, ·)‖�,S,2 ≤ C
(

ε2
√

ln(2 + t) +
2

∑

i=0

∫ t

0
‖Ĝi (v, Du)(τ , ·)‖�,S,2dτ

)

(12.3.69)

and

2
∑

i=0

‖Ĝi (v, Du)(τ , ·)‖�,S,2

≤ C(‖v(τ , ·)‖2
�,[ S2 ],∞‖(v, Du)(τ , ·)‖�,S,2 + ‖v(τ , ·)‖

�,[ S2 ],∞‖Du(τ , ·)‖
�,[ S2 ],∞‖v(τ , ·)‖�,S,2).

(12.3.70)

Noticing that when S ≥ 8,

‖v(τ , ·)‖�,[ S
2 ],∞ ≤ C‖v(τ , ·)‖�,S−2,∞ ≤ C(1 + τ )−

1
2 E

and

‖Du(τ , ·)‖
�,[ S2 ],∞ ≤ C‖u(τ , ·)‖

�,[ S2 ]+1,∞ ≤ C‖u(τ , ·)‖�,S−2,∞ ≤ C(1 + τ )−
1
2 DS(u),

we have

2
∑

i=0

‖Ĝi (v, Du)(τ , ·)‖�,S,2 ≤ C(1 + τ )−
1
2 +2σE2(E + DS(u)), (12.3.71)

then from (12.3.69) we obtain

‖u1(t, ·)‖�,S,2 ≤ C(1 + t)
1
2 +2σ{ε + E2(E + DS(u))}. � (12.3.72)

Moreover, by (10.4.31) in Chap.10, we have

‖u2(t, ·)‖�,S,2 ≤ C(1 + t)
1
3
{

ε +
∫ t

0

(‖Q(v, Dv, Du, Dx Du)(τ , ·)‖
�,S, 65 ,χ1

+ (1 + τ )
− 1

3 ‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S,1,2,χ2

)

dτ
}

,

(12.3.73)

where χ1 is the characteristic function of the set {(t, x)∣∣|x | ≤ 1+t
2 }, χ2 = 1 − χ1,

and Q(v, Dv, Du, Dx Du) is given by (10.4.18) in Chap.10.
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By (10.4.35) in Chap.10, we have

‖ Âi j (v)vxi ux j (τ , ·)‖
�,S, 65 ,χ1

≤ C{‖v(τ , ·)‖
�,[ S2 ],∞‖Dv(τ , ·)‖

�,[ S2 ],3,χ1‖Du(τ , ·)‖�,S,2 + ‖vDv(τ , ·)‖�,S,2‖Du(τ , ·)‖
�,[ S2 ],3,χ1 }.
(12.3.74)

Using the interpolation inequality (see Lemma 5.2.4 in Chap.5), and 1◦ in Corollary
3.4.1 of Chap. 3 (in which we take n = 2, p = 2, N = [ S2 ], s = 2), we have

‖Dv(τ , ·)‖�,[ S
2 ],3,χ1

≤ C‖Dv(τ , ·)‖ 1
3

�,[ S
2 ],∞,χ1

‖Dv(τ , ·)‖ 2
3

�,[ S
2 ],2,χ1

≤ C(1 + τ )−
1
3 ‖Dv(τ , ·)‖�,[ S

2 ]+2,2,χ1

≤ C(1 + τ )−
1
3 ‖Dv(τ , ·)‖�,S,2.

Similarly, we have

‖Du(τ , ·)‖�,[ S
2 ],3,χ1

≤ C(1 + τ )−
1
3 ‖Du(τ , ·)‖�,S,2.

Noting (10.4.36) in Chap.10, from (12.3.74) we finally obtain

‖ Âi j (v)vxi ux j (τ , ·)‖�,S, 65 ,χ1
≤ C(1 + τ )−

5
6+2σE2DS(u). (12.3.75)

Similarly, we have

‖B̂i jm(v, Dv)vxi ux j xm (τ , ·)‖�,S, 65 ,χ1
≤ C(1 + τ )−

5
6+2σE2DS(u) (12.3.76)

and

‖Ĉi j (v, Dv)vxi vx j (τ , ·)‖�,S, 65 ,χ1
≤ C(1 + τ )−

5
6+2σE3. (12.3.77)

Thus, we have

‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S, 65 ,χ1
≤ C(1 + τ )−

5
6+2σE2(E + DS(u)).

(12.3.78)

From (10.4.43) in Chap.10, we have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1,2,χ2

≤ C{‖vDv(τ , ·)‖�,S,2‖Du(τ , ·)‖
�,[ S2 ],2,∞,χ2

+ ‖v(τ , ·)‖
�,[ S2 ],∞‖Dv(τ , ·)‖

�,[ S2 ],2,∞,χ2
‖Du(τ , ·)‖�,S,2}. (12.3.79)

http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_10
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Using the Sobolev estimates on sphere (see 1◦ in Theorem 3.2.1 of Chap.3, in which
we take n = 2, p = 2, s = 1), we have

‖Dv(τ , ·)‖�,[ S
2 ],2,∞,χ2

≤ C‖Dv(τ , ·)‖�,[ S
2 ]+1,2 ≤ C‖Dv(τ , ·)‖�,S,2 ≤ C(1 + τ )σE

and

‖Du(τ , ·)‖�,[ S
2 ],2,∞,χ2

≤ C‖Du(τ , ·)‖�,S,2 ≤ C(1 + τ )σDS(u).

Noting (10.4.36) in Chap.10, from (12.3.79) we then have

‖ Âi j (v)vxi ux j (τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
1
2 +2σE2DS(u). (12.3.80)

Similarly, we have

‖B̂i jm(v, Dv)vxi ux j xm (τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
1
2 +2σE2DS(u) (12.3.81)

and

‖Ĉi j (v, Dv)vxi vx j (τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
1
2 +2σE3. (12.3.82)

Thus, we have

‖Q(v, Dv, Du, Dx Du)(τ , ·)‖�,S,1,2,χ2 ≤ C(1 + τ )−
1
2 +2σE2(E + DS(u)).

(12.3.83)

Plugging (12.3.78) and (12.3.83) in (12.3.73), it is easy to get

‖u2(t, ·)‖�,S,2 ≤ C(1 + t)
1
2 +2σ{ε + E2(E + DS(u))}. � (12.3.84)

Finally, we estimate ‖u3(t, ·)‖�,S,2.
By (10.4.50) in Chap.10 we have

‖u3(t, ·)‖�,S,2 ≤C(1 + t)
1
3
{

ε +
∫ t

0
(‖F(v)(τ , ·)‖

�,S, 65 ,χ1
+ (1 + τ )

− 1
3 ‖F(v)(τ , ·)‖�,S,1,2,χ2 )dτ

}

.

(12.3.85)

Using the estimates about product functions and composite functions in Chap.5,
the interpolation inequality and 1◦ in Corollary 3.4.1 of Chap.3 (in which we take
n = 2, p = 2, s = 2), we obtain

‖F(v)(τ , ·)‖�,S, 65 ,χ1
≤ C‖v(τ , ·)‖4

�,[ S
2 ],∞‖v(τ , ·)‖�,[ S

2 ],3,χ1
‖v(τ , ·)‖�,S,2

≤ C‖v(τ , ·)‖4
�,[ S

2 ],∞‖v(τ , ·)‖ 1
3

�,[ S
2 ],∞,χ1

‖v(τ , ·)‖ 5
3
�,S,2

http://dx.doi.org/10.1007/978-3-662-55725-9_3
http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_5
http://dx.doi.org/10.1007/978-3-662-55725-9_3
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≤ C(1 + τ )−
1
3 ‖v(τ , ·)‖4

�,[ S
2 ],∞‖v(τ , ·)‖2�,S,2

≤ C(1 + τ )−
4
3+4σE6. (12.3.86)

Meanwhile, using again the Sobolev estimates on sphere, similarly we have

‖F(v)(τ , ·)‖�,S,1,2,χ2 ≤ C‖v(τ , ·)‖4
�,[ S

2 ],∞‖v(τ , ·)‖�,[ S
2 ],2,∞,χ2

‖v(τ , ·)‖�,S,2

≤ C‖v(τ , ·)‖4
�,[ S

2 ],∞‖v(τ , ·)‖2�,S,2

≤ C(1 + τ )−1+4σE6. (12.3.87)

Plugging (12.3.86) and (12.3.87) in (12.3.85), it is easy to get

‖u3(t, ·)‖�,S,2 ≤ C(1 + t)
1
2 +2σ(ε + E6). (12.3.88)

Combining (12.3.72), (12.3.84) and (12.3.88), we obtain

‖u(t, ·)‖�,S,2 ≤ C(1 + t)
1
2 +2σ{ε + E2(E + DS(u))}. � (12.3.89)

Finally, we estimate ‖(Du, Dx Du)(t, ·)‖�,S,2.
For any given multi-index k (|k| ≤ S), we still have the energy integral formula

(10.2.53) in Chap.10, where Gk and gk are given by (10.2.54) and (10.2.55) in
Chap.10, respectively.

When α = 2, it is easy to show that

|I|, |II|, |III| ≤ C
∫ t

0
‖(v, Dv, D2v)(τ , ·)‖2L∞(IR2)‖D2u(τ , ·)‖2�,S,2dτ

≤ C
∫ t

0
‖v(τ , ·)‖2�,S,∞‖D2u(τ , ·)‖2�,S,2dτ

≤ C(1 + τ )2σE2D2
S(u). (12.3.90)

Now we estimate the L2 norm of Gk(τ , ·).
By the estimates about product functions and composite functions in Chap.5,

when S ≥ 8 it is clear that

‖(�k D(bi j (v, Dv)uxi x j ) − bi j (v, Dv)�k Duxi x j )(τ , ·)‖L2(IR2)
≤ C‖(Dv, D2v)‖

�,[ S2 ],∞(‖(Dv, D2v)‖
�,[ S2 ],∞‖D2u‖�,S,2 + ‖(Dv, D2v)‖�,S,2‖D2u‖

�,[ S2 ],∞)

≤ C‖v‖
�,[ S2 ]+2,∞(‖v‖

�,[ S2 ]+2,∞‖D2u‖�,S,2 + ‖(Dv, D2v)‖�,S,2‖u‖
�,[ S2 ]+2,∞)

≤ C‖v‖�,S−2,∞(‖v‖�,S−2,∞‖D2u‖�,S,2 + ‖(Dv, D2v)‖�,S,2‖u‖�,S−2,∞)

≤ C(1 + τ )−1+σE2DS(u). (12.3.91)

http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Similarly, we have

‖bi j (v, Dv)(�k Duxi x j − (�k Du)xi x j )(τ , ·)‖L2(IR2) ≤ C(1 + τ )−1+σE2DS(u).

(12.3.92)

All the terms involving a0 j in Gk can be estimated similarly, then we have

‖Gk(τ , ·)‖L2(IR2) ≤ C(1 + τ )−1+σE2DS(u), (12.3.93)

therefore

|IV| ≤ C(1 + τ )2σE2D2
S(u). (12.3.94)

At last, we estimate the L2 norm of gk(τ , ·).
To this end, we still rewrite (10.2.55) of Chap.10 in the form of (10.2.104).
Using the estimates about product functions and composite functions, especially

Lemma 5.1.4, in Chap.5, and noting α = 2 and S ≥ 8, we have

‖I1‖L2(IR2) ≤ C‖DF(v, Dv)(τ , ·)‖�,S,2 ≤ C‖(v, Dv)2 · (Dv, D2v)(τ , ·)‖�,S,2

≤ C(‖(v, Dv)2‖
�,[ S2 ],∞‖(Dv, D2v)‖�,S,2 + ‖(v, Dv)(Dv, D2v)‖�,S,2‖(v, Dv)‖

�,[ S2 ]+1,∞)

≤ C‖(v, Dv)‖2
�,[ S2 ]+1,∞‖(Dv, D2v)‖�,S,2 ≤ C‖v‖2�,S−2,∞‖(Dv, D2v)‖�,S,2

≤ C(1 + τ )−1+σE3. (12.3.95)

Similarly, we have

‖I2‖L2(IR2) ≤ C(1 + τ )−1+σE2(E + DS(u)). (12.3.96)

Moreover, from assumption (12.3.29) we have

‖I3‖L2(IR2) ≤ C‖F(v, 0)(τ , ·)‖�,S,2 ≤ C‖v‖5
�,[ S

2 ],∞‖v‖�,S,2

≤ C‖v‖5�,S−2,∞‖v‖�,S,2 ≤ C(1 + τ )−2+2σE6. (12.3.97)

Thus, we obtain

‖gk(τ , ·)‖L2(IR2) ≤ C(1 + τ )−1+σE2(E + DS(u)), (12.3.98)

then

|V| ≤ C(1 + τ )2σE2DS(u)(E + DS(u)). (12.3.99)

http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_5
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Similarly to Chap.10, using (12.3.90), (12.3.94) and (12.3.99), we get

‖D2u(t, ·)‖�,S,2 ≤ C(1 + t)σ{ε + E(E + DS(u))}. (12.3.100)

By similar arguments we obtain

‖Du(t, ·)‖�,S,2 ≤ C(1 + t)σ{ε + E(E + DS(u))}. (12.3.101)

Combining (12.3.59), (12.3.89) and (12.3.100)–(12.3.101), we get the desired
(12.3.40).

The proof of Lemma12.3.1 is finished.

http://dx.doi.org/10.1007/978-3-662-55725-9_10


Chapter 13
Sharpness of Lower Bound Estimates
on the Life-Span of Classical Solutions
to the Cauchy Problem—The Case
that the Nonlinear Term F = F(Du, DxDu)
on the Right-Hand Side Does not Depend
on u Explicitly

13.1 Introduction

Consider the following Cauchy problem of nonlinear wave equations with small
initial data:

�u = F(Du, Dx Du), (13.1.1)

t = 0 : u = εϕ(x), ut = εψ(x), (13.1.2)

where

� = ∂2

∂t2
−

n∑

i=1

∂2

∂x2i
(13.1.3)

is the n−dimensional wave operator,

Dx =
(

∂

∂x1
, . . . ,

∂

∂xn

)
, D =

(
∂

∂t
,

∂

∂x1
, . . . ,

∂

∂xn

)
, (13.1.4)

ϕ and ψ are sufficiently smooth functions with compact support, without loss of
generality, we assume that

ϕ,ψ ∈ C∞
0 (IRn) (13.1.5)

with

supp{ϕ,ψ} ⊆ {x ||x | ≤ ρ} (ρ > 0 is a constant), (13.1.6)

and ε > 0 is a small parameter.
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Denote

λ̂ = ((λi ), i = 0, 1, . . . , n; (λi j ), i, j = 0, 1, . . . , n, i + j ≥ 1). (13.1.7)

Assume that in a neighborhood of λ̂ = 0, the nonlinear term F(λ̂) on the right-hand
side is a sufficiently smooth function satisfying

F(λ̂) = O(|λ̂|1+α), (13.1.8)

where α ≥ 1 is an integer.
In Chaps. 8–10, we established lower bound estimates for the life-span T̃ (ε) of

classical solutions to Cauchy problem (13.1.1)–(13.1.2). In addition to proving the
global existence of classical solutions (namely, T̃ (ε) = +∞), lower bound estimates
for the life-span of classical solutions are listed below, respectively:

(1) When n = 1, for any given integer α ≥ 1, we have

T̃ (ε) ≥ bε−α. (13.1.9)

(2) When n = 2, for α = 1, we have

T̃ (ε) ≥ bε−2; (13.1.10)

while, for α = 2, we have

T̃ (ε) ≥ exp{aε−2}. (13.1.11)

(3) When n = 3, for α = 1, we have

T̃ (ε) ≥ exp{aε−1}. (13.1.12)

In (13.1.9)–(13.1.12), a and b are both positive constants independent of ε.
In this chapter we will show the sharpness of the above lower bound estimates on

the life-span, i.e., the estimates cannot be improved in general. For this, it suffices to
prove that for some specially chosen nonlinear term F(Du, Dxu) on the right-hand
side and initial functions ϕ(x) and ψ(x), the life-span of corresponding classical
solutions has the upper bound estimates of the same type. Except the case that n = 2
andα = 2, the sharpness of these lower bound estimates on the life-span was already
established earlier, see Lax (1964) (for the case that n = 1 and α = 1), John (1984)
(for the case that n = 2, 3 and α = 1), Kong (1992) (for the case n = 1 and α ≥ 1)
and Zhou (2001) (for the case that n ≥ 1, and α ≥ 1 is odd), while, when n = 2 and
α = 2, the corresponding result is due to the recent work of Zhou and Han (2011).

In this chapter, we will consider, as an example, the Cauchy problem of the semi-
linear wave equation

http://dx.doi.org/10.1007/978-3-662-55725-9_8
http://dx.doi.org/10.1007/978-3-662-55725-9_10
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�u = u1+α
t (13.1.13)

with the initial data (13.1.2), and prove in a unified way that: for some initial func-
tions ϕ(x) and ψ(x) satisfying certain conditions, the life-span of the corresponding
classical solution has the following upper bound estimates:

(1) When n = 1, for any given α ≥ 1 we have

T̃ (ε) ≤ b̄ε−α. (13.1.14)

(2) When n = 2, for α = 1 we have

T̃ (ε) ≤ b̄ε−2; (13.1.15)

while, for α = 2 we have

T̃ (ε) ≤ exp{āε−2}. (13.1.16)

(3) When n = 3, for α = 1 we have

T̃ (ε) ≤ exp{āε−1}. (13.1.17)

In (13.1.14)–(13.1.17), ā and b̄ are both positive constants independent of ε.
For this, first, in Sect. 13.2 we will give the upper bound estimates on the life-span

of classical solutions to the Cauchy problem of the semi-linear wave equation

�u = |ut |1+β (13.1.18)

with initial value (13.1.2), where β is a positive number. Then, following the results
in Sect. 13.2, we prove the desired conclusions (13.1.14)–(13.1.17) in Sect. 13.3, in
which some special skills will be adopted in the proof of conclusion (13.1.16).

13.2 Upper Bound Estimates on the Life-Span of Classical
Solutions to the Cauchy Problem of a Kind
Of Semi-linear Wave Equations

In this section, we consider the following Cauchy problem of semi-linear wave
equation with small initial data:

�u = |ut |1+β, (13.2.1)

t = 0 : u = εϕ(x), ut = εψ(x), (13.2.2)
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where β is a positive number, ε > 0 is a small parameter, other assumptions are the
same as given in (13.1.3) and (13.1.5)–(13.1.6), moreover, we assume that

ϕ(x) ≥ 0, ψ(x) ≥ 0, and ψ(x) �≡ 0. (13.2.3)

We want to prove

Lemma 13.2.1 Suppose that Cauchy problem (13.2.1)–(13.2.2) admits a solution
u = u(t, x) on 0 ≤ t < T̃ (ε), such that all the derivations in the proof of this lemma
are valid, for instance,

u ∈ C([0, T̃ (ε)); H 1(IRn)), (13.2.4)

ut ∈ C([0, T̃ (ε)); Lq(IRn)) (13.2.5)

with

q = max(2, 1 + β), (13.2.6)

and

supp{u} ⊆ {(t, x)||x | ≤ t + ρ}. (13.2.7)

Then when the initial functionsϕ(x) and ψ(x) satisfy (13.1.5)–(13.1.6) and (13.2.3),
we have the following conclusions:

(1) When β < 2
n−1 , there exists a positive constant b̄ independent of ε, such that

T̃ (ε) ≤ b̄ε− β
1−(n−1)β/2 . (13.2.8)

(2) When β = 2
n−1 , there exists a positive constant ā independent of ε, such that

T̃ (ε) ≤ exp{āε−β}. (13.2.9)

Remark 13.2.1 Another result similar to Lemma 13.2.1 and a different proof can be
found in Zhou (2001).

Proof of Lemma 13.2.1 Introduce the function F(x) in the following way: when
n = 1, we take

F(x) = ex + e−x ; (13.2.10)

while, when n ≥ 2, we take

F(x) =
∫

Sn−1
ex ·ωdω, (13.2.11)
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where ω = (ω1, . . . ,ωn) and |ω| = 1.
Obviously, we have

F(x) > 0 (13.2.12)

and

�F(x) = F(x), (13.2.13)

where � =
n∑

i=1

∂2

∂x2i
is the n−dimensional Laplace operator.

When n ≥ 2, denoting ω̃ = (ω2, . . . ,ωn), from the rotational invariance we have

F(x) =
∫

Sn−1
e|x |ω1dω =

∫

ω2
1+ω̃2=1

e|x |ω1dω.

Cutting the unit sphere Sn−1 by planes perpendicular to theω1 axis, the above integral
can be reduced to the superposition of the integrals over strip sphere element with

height dω1 and radius
√
1 − ω2

1 along the ω1 direction, then it is easy to show that

F(x) = C
∫ 1

−1
e|x |ω1(1 − ω2

1)
n−3
2 dω1

= C

( ∫ 1

0
e|x |ω1(1 − ω2

1)
n−3
2 dω1 +

∫ 0

−1
e|x |ω1(1 − ω2

1)
n−3
2 dω1

)

= C

( ∫ 1

0
e|x |ω1(1 − ω2

1)
n−3
2 dω1 +

∫ 1

0
e−|x |ω1(1 − ω2

1)
n−3
2 dω1

)
.

Noting n ≥ 2, we have

F(x) ≤ C
∫ 1

0
e|x |ω1(1 − ω2

1)
n−3
2 dω1 + C0 (C0 is a certain positive constant)

≤ Ce|x |
∫ 1

0
e−|x |(1−ω1)(1 − ω2

1)
n−3
2 dω1 + C0

= Ce|x ||x |− n−1
2

∫ |x |

0
e−λλ

n−3
2 dλ + C0 (let λ = |x |(1 − ω1))

≤ Ce|x ||x |− n−1
2

∫ ∞

0
e−λλ

n−3
2 dλ + C0

= C1e
|x ||x |− n−1

2 , (13.2.14)

where C1 is a positive constant. On the other hand, it is obvious that
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F(x) ≤ e|x |
∫

Sn−1
dω = C2e

|x |, (13.2.15)

where C2 is a positive constant.
Combining (13.2.14) and (13.2.15), and noting (13.2.12), when n ≥ 2, we have

0 < F(x) ≤ C̃e|x |(1 + |x |)− n−1
2 , (13.2.16)

where C̃ is a positive constant. While, when n = 1, the above formula follows obvi-
ously from (13.2.10).

Now let

G(t, x) = e−t F(x). (13.2.17)

From (13.2.13) it is easy to show that

�xG(t, x) = G(t, x) (13.2.18)

and

Gt (t, x) = −G(t, x). (13.2.19)

Multiplying both sides of Eq. (13.2.1) by G(t, x), and integrating with respect to
x , we get

∫

IRn

G(utt − �u)dx =
∫

IRn

G|ut |1+βdx . (13.2.20)

Noticing (13.2.18), we have

∫

IRn

G�udx =
∫

IRn

�G · udx =
∫

IRn

Gudx,

then (13.2.20) can be rewritten as

∫

IRn

G(utt − u)dx =
∫

IRn

G|ut |1+βdx . (13.2.21)

Noting (13.2.19), we have

d

dt

∫

IRn

Gutdx =
∫

IRn

G(utt − ut )dx (13.2.22)

and
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d

dt

∫

IRn

Gudx =
∫

IRn

G(ut − u)dx, (13.2.23)

then form (13.2.21) we get

d

dt

∫

IRn

G(ut + u)dx =
∫

IRn

G|ut |1+βdx . (13.2.24)

Thus, integrating with respect to t and using the initial value (13.2.2), we obtain

∫

IRn

G(ut + u)dx = ε

∫

IRn

F(x)(ϕ(x) + ψ(x))dx +
∫ t

0

∫

IRn

G|uτ |1+βdxdτ .

(13.2.25)

Adding (13.2.21) and (13.2.25), we get

∫

IRn

G(utt + ut )dx = ε

∫

IRn

F(x)(ϕ(x) + ψ(x))dx +
∫

IRn

G|ut |1+βdx

+
∫ t

0

∫

IRn

G|uτ |1+βdxdτ .

Noting (13.2.19), the above formula can be rewritten as

d

dt

∫

IRn

Gutdx + 2
∫

IRn

Gutdx

= ε

∫

IRn

F(x)(ϕ(x) + ψ(x))dx +
∫

IRn

G|ut |1+βdx +
∫ t

0

∫

IRn

G|uτ |1+βdxdτ .

(13.2.26)

Denote

H(t) =
∫

IRn

Gutdx − 1

2

∫ t

0

∫

IRn

G|uτ |1+βdxdτ − ε

2

∫

IRn

F(x)ψ(x)dx . (13.2.27)

From (13.2.3) and (13.2.12) we have

H(0) = ε

2

∫

IRn

F(x)ψ(x)dx > 0. (13.2.28)

By (13.2.26), and noticing (13.2.3) and (13.2.12), we have
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d

dt
H(t) + 2H(t) = d

dt

∫

IRn

Gutdx + 2
∫

IRn

Gutdx − 1

2

∫

IRn

G|ut |1+βdx

−
∫ t

0

∫

IRn

G|uτ |1+βdxdτ − ε

∫

IRn

F(x)ψ(x)dx

= 1

2

∫

IRn

G|ut |1+βdx + ε

∫

IRn

F(x)ϕ(x)dx ≥ 0,

then

d

dt

(
e2t H(t)

)
≥ 0.

Therefore, from (13.2.28) we have

H(t) > 0,

then

∫

IRn

Gutdx ≥ ε

2

∫

IRn

F(x)ψ(x)dx + 1

2

∫ t

0

∫

IRn

G|uτ |1+βdxdτ . (13.2.29)

Let

I (t) = ε

2

∫

IRn

F(x)ψ(x)dx + 1

2

∫ t

0

∫

IRn

G|uτ |1+βdxdτ . (13.2.30)

It is clear that I (t) > 0, and from (13.2.29) we have

I (t) ≤
∫

IRn

Gutdx . (13.2.31)

Using Hölder inequality, and noting (13.2.7), it follows from the above formula that

I (t) ≤
∫

IRn

G
β

1+β

(
G

1
1+β ut

)
dx

≤
(∫

IRn

Gdx

) β
1+β

(∫

IRn

G|ut |1+βdx

) 1
1+β

=
(∫

|x |≤t+ρ

Gdx

) β
1+β

(∫

|x |≤t+ρ

G|ut |1+βdx

) 1
1+β

. (13.2.32)

From (13.2.17) we have

∫

|x |≤t+ρ

Gdx = e−t
∫

|x |≤t+ρ

F(x)dx .
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Using (13.2.16) we have

∫

|x |≤t+ρ

F(x)dx ≤ C
∫ t+ρ

0
er (1 + r)−

n−1
2 rn−1dr

≤ C(1 + t)
n−1
2

∫ t+ρ

0
erdr

≤ C(1 + t)
n−1
2 et+ρ,

then
∫

|x |≤t+ρ

Gdx ≤ C(1 + t)
n−1
2 . (13.2.33)

In addition, from (13.2.30) we have

I ′(t) = 1

2

∫

IRn

G|ut |1+βdx . (13.2.34)

Then, noting (13.2.33), from (13.2.32) we get

I ′(t) ≥ C
I 1+β(t)

(1 + t)
(n−1)β

2

,

that is

− d

dt
(I−β(t)) ≥ C̃(1 + t)−

(n−1)β
2 ,

then it is easy to get

I (t) ≥ (I−β(0) − C̃
∫ t

0
(1 + τ )−

(n−1)β
2 dτ )

− 1
β .

Thus, noting (13.2.30) we have

I (t) ≥ (ε−β − ˜̃C
∫ t

0
(1 + τ )−

(n−1)β
2 dτ )

− 1
β , (13.2.35)

where C̃ and ˜̃C are some positive constants. The conclusion of Lemma 13.2.1 can
be drawn easily from (13.2.35). The proof is finished.



312 13 Sharpness of Lower Bound Estimates on the Life-Span …

13.3 Proof of the Main Results

In this section, we consider the following Cauchy problem of semi-linear wave
equation with small initial data:

�u = u1+α
t , (13.3.1)

t = 0 : u = εϕ(x), ut = εψ(x), (13.3.2)

where α ≥ 1 is an integer, and ε > 0 is a small parameter. Assume that

(n − 1)α

2
≤ 1, (13.3.3)

in other words, the values of n and α correspond to the following cases of the main
results (13.1.14)–(13.1.17):

n = 1, α ≥ 1 is any given integer;
n = 2, α = 1 or α = 2;
n = 3, α = 1.

Theorem 13.3.1 Let n = 1 and α ≥ 1 be any given integer. Suppose that the initial
functions ϕ(x) and ψ(x) satisfy not only (13.1.5)–(13.1.6) and (13.2.3), but also,
when α is even,

ϕ(x) ≡ 0. (13.3.4)

Then there exists a positive constant b̄ independent of ε, such that there is the following
upper bound estimate on the life-span T̃ (ε) of the classical solution u = u(t, x) to
Cauchy problem (13.3.1)–(13.3.2):

T̃ (ε) ≤ b̄ε−α, (13.3.5)

i.e., (13.1.14) holds.

Proof Consider the Cauchy problem of the following one-dimensional semi-linear
wave equation

utt − uxx = |ut |1+α (13.3.6)

with the same initial data (13.3.2). By (13.2.8) in Lemma 13.2.1 (in which we take
n = 1 and β = α), the life-span of its classical solution satisfies (13.3.5).

If α is odd, |ut |1+α = u1+α
t , the desired conclusion for Cauchy problem (13.3.1)–

(13.3.2) follows immediately.
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If α is even, noting assumption (13.3.4), by D’Alembert formula, the solution to
Cauchy problem (13.3.6) and (13.3.2) can be written as

u(t, x) = ε

2

∫ x+t

x−t
ψ(ξ)dξ + 1

2

∫ t

0

∫ x+(t−τ )

x−(t−τ )

|uτ (τ , y)|1+αdydτ .

Differentiating with respect to t and noting (13.2.3), we get

ut (t, x) = ε

2
(ψ(x + t) + ψ(x − t)) + 1

2

∫ t

0
(|uτ (τ , x + t − τ )|1+α

+ |uτ (τ , x − t + τ )|1+α)dτ ≥ 0,

then we still have |ut |1+α = u1+α
t , the desired conclusion can be drawn similarly.

The proof is finished. �
Theorem 13.3.2 Let n = 2 and 3, and α = 1. Suppose that the initial functions
ϕ(x) and ψ(x) satisfy (13.1.5)–(13.1.6) and (13.2.3). Then we have the following
upper bound estimates on the life-span T̃ (ε) of the classical solution u = u(t, x) to
Cauchy problem (13.3.1)–(13.3.2):

(1) When n = 2, there exists a positive constant b̄ independent of ε, such that

T̃ (ε) ≤ b̄ε−2, (13.3.7)

i.e., (13.1.15) holds.
(2) When n = 3, there exists a positive constant ā independent of ε, such that

T̃ (ε) ≤ exp{āε−1}, (13.3.8)

i.e., (13.1.17) holds.

Proof In (13.2.8) of Lemma 13.2.1, specially taking n = 2 and β = α = 1, we get
(13.3.7); while, in (13.2.9) of Lemma 13.2.1, specially taking n = 3 and β = α = 1,
we get (13.3.8). Since when α = 1, |ut |1+α = u1+α

t = u2t , Theorem 13.3.2 follows
immediately from Lemma 13.2.1. �
Theorem 13.3.3 (See Zhou and Han 2011) Let n = 2 and α = 2. Suppose that the
initial functions ϕ(x) and ψ(x) satisfy not only (13.1.5)–(13.1.6) and (13.3.4), but
also

ψ(x) = ψ(|x |) ≥ 0, and ψ(x) �≡ 0. (13.3.9)

Then there exists a positive constant ā independent of ε, such that the life-span T̃ (ε)
of the classical solution u = u(t, x) to Cauchy problem (13.3.1)–(13.3.2) has the
following upper bound estimate:

T̃ (ε) ≤ exp{āε−2}, (13.3.10)
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i.e., (13.1.16) holds.

Proof Now Eq. (13.3.1) is the two-dimensional semi-linear wave equation

�u = u3t . (13.3.11)

Nestwewill prove that: the solution u = u(t, x) toCauchy problem (13.3.1)–(13.3.2)
will always satisfy, on the domain |x | ≥ t ,

u ≥ 0, ut ≥ 0. (13.3.12)

From the existence and uniqueness of local solution, the solution u = u(t, x) to
Cauchy problem (13.3.1)–(13.3.2) can be obtained by the following Picard iteration:

u(0)(t, x) ≡ 0, (13.3.13)

and

�u(m) =
(
u(m−1)
t

)3
, (13.3.14)

t = 0 : u(m) = 0, u(m)
t = εψ(|x |). (13.3.15)

Using the mathematical induction we can prove that: on the domain |x | ≥ t we
have

u(m) ≥ 0, u(m)
t ≥ 0. (13.3.16)

In fact, (13.3.16) is obvious when m = 0. Now we suppose that u(m−1) satisfies
(13.3.16), then, from thepositivity of the fundamental solutionof the two-dimensional
wave equation (see Sect. 2.1.1 and Remark 2.2.2 in Chap.2), and noting (13.3.9), it
follows immediately that thefirst formula of (13.3.16) holds on the domain |x | ≥ t . To
prove the second formula of (13.3.16) on the domain |x | ≥ t , noting ψ(x) = ψ(|x |),
from the radial symmetry we have

u(m)(t, x) = u(m)(t, r), (13.3.17)

where r = |x |. Thus, Cauchy problem (13.3.14)–(13.3.15) can be rewritten as

u(m)
t t − u(m)

rr − 1

r
u(m)
r =

(
u(m−1)
t

)3
, (13.3.18)

t = 0 : u = 0, ut = εψ(r). (13.3.19)

From this it is easy to get

http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_2
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(
∂2
t − ∂2

r

) (
r

1
2 u(m)(t, r)

)
= 1

4
r− 3

2 u(m) + r
1
2

(
u(m−1)
t

)3
, (13.3.20)

t = 0 : r 1
2 u(m) = 0,

(
r

1
2 u(m)

)

t
= εr

1
2 ψ(r). (13.3.21)

(13.3.20)–(13.3.21) canbe regarded as aCauchyproblemwith respect to r
1
2 u(m)(t, r)

of a one-dimensionalwave equationwith anon-negative right-hand side.ByD’Alembert
formula, similarly to the proof in Theorem 13.3.1, we have, on the domain r ≥ t ,

r
1
2 u(m)

t ≥ 0,

then the second formula in (13.3.16) is proved. This proves (13.3.12).
Similarly to (13.3.20)–(13.3.21), rewriting the Cauchy problem of the two-

dimensional semi-linear wave equation (13.3.11) with the initial data

t = 0 : u = 0, ut = εψ(|x |) (13.3.22)

as

(∂2
t − ∂2

r )(r
1
2 u) = 1

4
r− 3

2 u + r
1
2 u3t , (13.3.23)

t = 0 : r 1
2 u = 0, (r

1
2 u)t = εr

1
2 ψ(r), (13.3.24)

where u = u(t, r). By d’Alembert formula, on the domain r ≥ t we have

r
1
2 u(t, r) = ε

2

∫ r+t

r−t
�(ξ)dξ + 1

2

∫ t

0

∫ r+(t−τ )

r−(t−τ )

(1
4
λ− 3

2 u(τ ,λ) + λ
1
2 u3τ (τ ,λ)

)
dλdτ ,

(13.3.25)

where we denote

�(r) = r
1
2 ψ(r), (13.3.26)

and from (13.3.9) we have

� ≥ 0, and � �≡ 0. (13.3.27)

Differentiating (13.3.25) with respect to t , on the domain r ≥ t we obtain
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r
1
2 ut (t, r) = ε

2
(�(r + t) + �(r − t))

+ 1

8

∫ t

0

[(
λ− 3

2 u(τ ,λ)
)∣∣∣

λ=r+t−τ
+

(
λ− 3

2 u(τ ,λ)
)∣∣∣

λ=r−t+τ

]
dτ

+ 1

2

∫ t

0

[(
λ

1
2 u3τ (τ ,λ)

)∣∣∣
λ=r+t−τ

+
(
λ

1
2 u3τ (τ ,λ)

)∣∣∣
λ=r−t+τ

]
dτ ,

then, noting (13.3.12) and (13.3.27), we have

r
1
2 ut (t, r) ≥ ε

2
�(r − t) + 1

2

∫ t

0

(
λ

1
2 u3τ (τ ,λ)

)∣∣∣
λ=r−t+τ

dτ . (13.3.28)

Due to (13.3.27), there exists a point σ0 > 0, such that

�(σ0) > 0. (13.3.29)

Let

v(t) = (t + σ0)
1
2 ut (t, t + σ0). (13.3.30)

Checking (13.3.28) on r = t + σ0, we get

v(t) ≥ ε

2
�(σ0) + 1

2

∫ t

0
(τ + σ0)

−1v3(τ )dτ . (13.3.31)

Let

w(t) = ε

2
�(σ0) + 1

2

∫ t

0
(τ + σ0)

−1v3(τ )dτ . (13.3.32)

It is obvious that

v(t) ≥ w(t). (13.3.33)

From (13.3.32), and noticing (13.3.33), we have

w′(t) = 1

2
(t + σ0)

−1v3(t) ≥ 1

2
(t + σ0)

−1w3(t) (13.3.34)

and

w(0) = ε

2
�(σ0) > 0. (13.3.35)

From this it is easy to show that
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w(t) ≥
[(ε

2
�(σ0)

)−2 − ln
( t + σ0

σ0

)]− 1
2
,

then we get the desired (13.3.10). The proof is finished. �



Chapter 14
Sharpness of Lower Bound Estimates
on the Life-Span of Classical Solutions
to the Cauchy Problem—The Case that
the Nonlinear Term F = F(u, Du, DxDu)
on the Right-Hand Side Depends
on u Explicitly

14.1 Introduction

We consider the following Cauchy problem of nonlinear wave equations with small
initial data:

�u = F(u, Du, Dx Du), (14.1.1)

t = 0 : u = εϕ(x), ut = εψ(x), (14.1.2)

where x = (x1, . . . , xn),

� = ∂2

∂t2
−

n∑

i=1

∂2

∂x2i
(14.1.3)

is the n-dimensional wave operator,

Dx =
( ∂

∂x1
, . . . ,

∂

∂xn

)
, D =

( ∂

∂t
,

∂

∂x1
, . . . ,

∂

∂xn

)
, (14.1.4)

ϕ and ψ are sufficiently smooth functions with compact support, without loss of
generality, we assume that

ϕ,ψ ∈ C∞
0 (IRn) (14.1.5)

with

supp{ϕ,ψ} ⊆ {x ||x | ≤ ρ} (ρ > 0 is a constant), (14.1.6)

and ε > 0 is a small parameter.
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Denote

λ̂ = (λ; (λi ), i = 0, 1, . . . , n; (λi j ), i, j = 0, 1, . . . , n, i + j ≥ 1). (14.1.7)

Suppose that in a neighborhood of λ̂ = 0, the nonlinear term F(λ̂) on the right-hand
side is a sufficiently smooth function satisfying

F(λ̂) = O(|λ̂|1+α), (14.1.8)

where α ≥ 1 is an integer.
In Chaps. 8–11, we established lower bound estimates on the life-span T̃ (ε) of

the classical solution u = u(t, x) to Cauchy problem (14.1.1)–(14.1.2). In addition
to proving the global existence of classical solutions (namely, T̃ (ε) = +∞), the
related lower bound estimates on the life-span of classical solutions are listed below,
respectively:

(1) When n = 1, for any given integer α ≥ 1, we have

T̃ (ε) ≥ bε− α
2 ; (14.1.9)

when
∫

IR
ψ(x) dx = 0, (14.1.10)

we have

T̃ (ε) ≥ bε− α(1+α)

2+α ; (14.1.11)

while, when

∂β
u F(0, 0, 0) = 0, ∀1 + α ≤ β ≤ 2α, (14.1.12)

we have

T̃ (ε) ≥ bε−α. (14.1.13)

(2) When n = 2 and α = 1, we have

T̃ (ε) ≥ be(ε), (14.1.14)

where e(ε) is defined by

ε2e2(ε) ln
(
1 + e(ε)

) = 1; (14.1.15)

http://dx.doi.org/10.1007/978-3-662-55725-9_8
http://dx.doi.org/10.1007/978-3-662-55725-9_11
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when
∫

IR2
ψ(x) dx = 0, (14.1.16)

we have

T̃ (ε) ≥ bε−1; (14.1.17)

while, when

∂2
u F(0, 0, 0) = 0, (14.1.18)

we have

T̃ (ε) ≥ bε−2. (14.1.19)

(3) When n = 2 and α = 2, we have

T̃ (ε) ≥ bε−6; (14.1.20)

while, when

∂β
u F(0, 0, 0) = 0, β = 3, 4, (14.1.21)

we have

T̃ (ε) ≥ exp{aε−2}. (14.1.22)

(4) When n = 3 and α = 1, we have

T̃ (ε) ≥ bε−2; (14.1.23)

while, when (14.1.18) is satisfied, we have

T̃ (ε) ≥ exp{aε−1}. (14.1.24)

(5) When n = 4 and α = 1, we have

T̃ (ε) ≥ exp{aε−2}. (14.1.25)

Here both a and b are positive constants independent of ε.
In this chapter, we are going to prove the sharpness of the above lower bound esti-

mates on the life-span, that is, the estimates cannot be improved in general. For this,
it suffices to prove that: for some specially chosen nonlinear term F(u, Du, Dx Du)
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on the right-hand side and some specially chosen initial functionsϕ(x) andψ(x), the
corresponding life-span of the classical solution has the upper bound estimate of the
same type. Due to the results of the previous chapter, among the above lower bound
estimates of the life-span, we do not have to worry about the sharpness of (14.1.13),
(14.1.19), (14.1.22) and (14.1.24), and we only need to show the sharpness of the
lower bound estimates (14.1.9), (14.1.11), (14.1.14), (14.1.17), (14.1.20), (14.1.23)
and (14.1.25). Except the case that n = 4 and α = 1, the sharpness of these lower
bound estimates was already obtained earlier, see John (1979), Lindblad (1990a) and
Zhou (1992, 1993, 1992), while, the sharpness of (14.1.25) when n = 4 and α = 1
was recently obtained (see Takamura and Wakasa 2011 and the simplified proof of
Zhou and Han 2014).

In this chapter, we will consider, as an example, the Cauchy problem of the
following semi-linear wave equation

�u = u1+α (α ≥ 1 is an integer) (14.1.26)

with the initial value (14.1.2), and prove, in a unifiedway, that: for the initial functions
ϕ(x) and ψ(x) satisfying a certain conditions, the life-span of the corresponding
classical solution has the following upper bound estimates:

(1) When n = 1, for any given integer α ≥ 1, we have

T̃ (ε) ≤ b̄ε− α
2 ; (14.1.27)

while, when (14.1.10) is satisfied, we have

T̃ (ε) ≤ b̄ε− α(1+α)

2+α . (14.1.28)

(2) When n = 2 and α = 1, we have

T̃ (ε) ≤ b̄e(ε), (14.1.29)

where e(ε) is defined by (14.1.15); while, when (14.1.16) is satisfied, we have

T̃ (ε) ≤ b̄ε−1. (14.1.30)

(3) When n = 2 and α = 2, we have

T̃ (ε) ≤ b̄ε−6. (14.1.31)

(4) When n = 3 and α = 1, we have

T̃ (ε) ≤ b̄ε−2. (14.1.32)
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(5) When n = 4 and α = 1, we have

T̃ (ε) ≤ exp{āε−2}. (14.1.33)

Here both ā and b̄ are positive constants independent of ε.
To this end, in Sects. 14.3 and 14.4, we first give the upper bound estimates on

the life-span of classical solutions to the Cauchy problem of the semi-linear wave
equation of the form

�u = |u|p (14.1.34)

with the initial value (14.1.2), where p > 1 is a real number. Then in Sect. 14.5, we
first use the results in Sect. 14.3 to prove (14.1.27)–(14.1.32), then use the results
in Sect. 14.4 to prove (14.1.33). To obtain the results in Sects. 14.3 and 14.4, as
preliminaries, we first give some lemmas on differential inequalities in Sect. 14.2. In
addition, for the need of Sect. 14.4, we give an appendix about Fuchs-type differential
equations in Sect. 14.6.

14.2 Some Lemmas on Differential Inequalities

In this section, for the needs of the coming parts, we will give two lemmas about
differential inequalities.

Lemma 14.2.1 (see Sideris 1984) Suppose that the function I = I (t) satisfies the
following differential inequalities:

I (t) ≥ δ(1 + t)a, (14.2.1)

I
′′
(t) ≥ C(1 + t)−b I p(t), (14.2.2)

where p > 1, a ≥ 1 and b ≥ 0 are all real numbers, and satisfy

(p − 1)a > b − 2, (14.2.3)

and δ > 0 is a small parameter, C is a positive constant. Then I = I (t) must blow
up in a finite time, and its life-span satisfies

T̃ (δ) ≤ C0δ
−K, (14.2.4)

where

K = p − 1

(p − 1)a − b + 2
, (14.2.5)

and C0 is a positive constant independent of δ.
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Proof We first prove that I = I (t) must blow up in a finite time.
Substituting (14.2.1) into (14.2.2), we get

I
′′
(t) ≥ C1(1 + t)pa−b, (14.2.6)

hereinafter, Ci (i = 1, 2, . . . ) all stand for positive constants.
Noting that from (14.2.3) and a ≥ 1, we have

pa − b > a − 2 ≥ −1,

integrating (14.2.6) we get

I ′(t) ≥ C2(1 + t)pa−b+1 − |I ′(0)|,

then there exists a T1 > 0, such that when t ≥ T1,

I ′(t) ≥ 0. (14.2.7)

Thus, when t ≥ T1, multiplying both sides of (14.2.2) by I ′(t), and noting b ≥ 0, it
is easy to get

(
I ′2(t)

)′ ≥ C3(1 + t)−b
(
I p+1(t)

)′

= C3
(
(1 + t)−b I p+1(t)

)′ + C3b(1 + t)−b−1 I p+1(t)

≥ C3
(
(1 + t)−b I p+1(t)

)′
,

then, noticing (14.2.1), we have

I ′2(t) ≥ C3(1 + t)−b I p+1(t) − C4 ≥ C3

2
(1 + t)−b I b+1(t) + C5(1 + t)(p+1)a−b − C4.

Noticing that, from a ≥ 1 and (14.2.3) we have (p + 1)a − b > 0, then, there exists
a T2 ≥ T1, such that when t ≥ T2, we have

I ′2(t) ≥ C6(1 + t)−b I p+1(t),

so, when t ≥ T2 we have

I ′(t) ≥ C7(1 + t)−
b
2 I

p+1
2 (t). (14.2.8)

Let

I (t) = (1 + t)a J (t). (14.2.9)
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From (14.2.1) we have

J (t) ≥ δ. (14.2.10)

Plugging (14.2.9) in (14.2.8), and noting (14.2.10), we get

J ′(t) ≥ C7(1 + t)− b
2+ (p−1)

2 a J
p+1
2 (t) − a

1 + t
J (t)

= J (t)

[
C7(1 + t)− b

2+ (p−1)
2 a J

p−1
2 (t) − a(1 + t)−1

]

≥ J (t)

[
C7

2
(1 + t)− b

2+ (p−1)
2 a J

p−1
2 (t) + C7

2
δ

p−1
2 (1 + t)− b

2+ (p−1)
2 a − a(1 + t)−1

]
.

Noticing that from (14.2.3) we have − b
2 + (p−1)

2 a > −1, then there exists a T3 ≥ T2,
such that when t ≥ T3 we have

J ′(t) ≥ C8(1 + t)−
b
2 + (p−1)

2 a J
p+1
2 (t). (14.2.11)

Noting p > 1, it is clear that J (t) and then I (t) must blow up in a finite time.
Now we prove the upper bound estimate (14.2.4) on the life-span.
Let

1 + τ = δ
p−1

(p−1)a−b+2 (1 + t) (14.2.12)

and

H(τ ) = δ
b−2

(p−1)a−b+2 I (t). (14.2.13)

By (14.2.1)–(14.2.2), it is easy to know that

H(τ ) ≥ (1 + τ )a, (14.2.14)

H
′′
(τ ) ≥ C(1 + τ )−bH p(τ ). (14.2.15)

From the above discussion, H(τ )must blow up in a finite time, then (14.2.4) follows
immediately from (14.2.12). The proof is finished. �

Lemma 14.2.2 (See Zhou and Han 2014) Suppose that the C2 functions h = h(t)
and k = k(t) satisfy, on 0 ≤ t < T ,

a(t)h
′′
(t) + h′(t) ≤ b(t)h1+α(t), (14.2.16)

a(t)k
′′
(t) + k ′(t) ≥ b(t)k1+α(t), (14.2.17)
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where α ≥ 0 is a real number, and

a(t), b(t) > 0, 0 ≤ t < T . (14.2.18)

If

k(0) > h(0), (14.2.19)

k ′(0) ≥ h′(0), (14.2.20)

then we have

k ′(t) > h′(t), 0 < t < T, (14.2.21)

hence

k(t) > h(t), 0 ≤ t < T . (14.2.22)

Proof Without loss of generality, we may assume that

k ′(0) > h′(0). (14.2.23)

If not, assume k ′(0) = h′(0), then from (14.2.16)–(14.2.17) and noticing (14.2.18)–
(14.2.19), it is clear that

k
′′
(0) > h

′′
(0),

then there exists a δ0 > 0, such that

k ′(t) > h′(t), ∀0 < t ≤ δ0,

then, noting (14.2.19), we have

k(t) > h(t), ∀0 ≤ t ≤ δ.

Thus, we only need to take t = δ0 as the initial time in later discussion.
We prove by contradiction. If (14.2.21) does not hold, then noticing (14.2.23), by

continuity, there exists a t∗ > 0, such that

k ′(t) > h′(t), 0 ≤ t < t∗, (14.2.24)

and

k ′(t∗) = h′(t∗), (14.2.25)
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then we have

k
′′
(t∗) ≤ h

′′
(t∗). (14.2.26)

On the other hand, noting (14.2.19), by (14.2.24)–(14.2.25) we get

k(t) > h(t), 0 ≤ t ≤ t∗,

in particular, we have

k(t∗) > h(t∗). (14.2.27)

Thus, from (14.2.16)–(14.2.17) and (14.2.18), and noting (14.2.25) and (14.2.27), it
is easy to show that

k
′′
(t∗) > h

′′
(t∗). (14.2.28)

This contradicts (14.2.26). The proof is finished. �

14.3 Upper Bound Estimates on the Life-Span of Classical
Solutions to the Cauchy Problem of a Kind of
Semi-linear Wave Equations—The Subcritical Case

In this section, we consider the following Cauchy problem of semi-linear wave
equations with small initial data:

�u = |u|p, (14.3.1)

t = 0 : u = εϕ(x), ut = εψ(x), (14.3.2)

where p > 1 is a real number, ε > 0 is a small parameter, other assumptions are the
same as given in (14.1.3) and (14.1.5)–(14.1.7).

We first give the following

Lemma 14.3.1 (See Yordanov and Zhang 2006) Suppose that Cauchy problem
(14.3.1)–(14.3.2) admits a solution u = u(t, x) on 0 ≤ t < T̃ (ε), such that all the
derivations in the proof of this lemma are valid, for instance,

u ∈ C([0, T̃ (ε)); H 1(IRn) ∩ L p(IRn)), (14.3.3)

ut ∈ C([0, T̃ (ε)); L2(IRn)) (14.3.4)
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and

supp{u} ⊆ {(t, x)||x | ≤ t + ρ}. (14.3.5)

Suppose furthermore that the initial functions ϕ(x) and ψ(x) satisfy

∫

IRn

F(x)ϕ(x)dx > 0,
∫

IRn

F(x)ψ(x)dx ≥ 0, (14.3.6)

where F(x) is defined by (13.2.10)–(13.2.11) in Chap.13, i.e.,

F(x) =
{
ex + e−x , n = 1,∫
Sn e

x ·ωdω, n ≥ 2.
(14.3.7)

Then, when 0 ≤ t < T̃ (ε), we have

∫

IRn

|u(t, x)|pdx ≥ C0ε
p(1 + t)n−1− n−1

2 p, (14.3.8)

where C0 is a positive constant.

Proof From Sect. 13.2 in Chap.13, F(x) satisfies

�F(x) = F(x) (14.3.9)

and

0 < F(x) ≤ C̃e|x |(1 + |x |)− n−1
2 , (14.3.10)

where C̃ is a positive constant.
Similarly to Sect. 13.2 in Chap.13, let

G(t, x) = e−t F(x). (14.3.11)

We have

Gt (t, x) = −G(t, x), Gtt (t, x) = G(t, x) (14.3.12)

and

�xG(t, x) = Gtt (t, x). (14.3.13)

Multiplying both sides of Eq. (14.3.1) by G(t, x), and integrating with respect to
x , we have

http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_13
http://dx.doi.org/10.1007/978-3-662-55725-9_13
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∫

IRn

G(t, x)(utt − �u)(t, x)dx =
∫

IRn

G(t, x)|u(t, x)|pdx .

Noting (14.3.13), by Green formula we get

∫

IRn

G�udx =
∫

IRn

�G · udx =
∫

IRn

Gttudx,

then we get

∫

IRn

(Gutt − Gttu)dx =
∫

IRn

G|u|pdx,

i.e.,

d

dt

∫

IRn

(Gut − Gtu)dx =
∫

IRn

G|u|pdx .

Noticing the first formula in (14.3.12), from the above formula we have

d

dt

∫

IRn

(Gut + Gu)dx =
∫

IRn

G|u|pdx . (14.3.14)

Noting that G > 0, integrating the above formula with respect to t and using the
initial value (14.3.2), we have

∫

IRn

(Gut + Gu)dx ≥ ε

∫

IRn

F(x)(ϕ(x) + ψ(x))dx,

then, using again the first formula in (14.3.12), we obtain

d

dt

∫

IRn

Gudx + 2
∫

IRn

Gudx ≥ ε

∫

IRn

F(x)(ϕ(x) + ψ(x))dx,

i.e.,

d

dt

(
e2t

∫

IRn

Gudx

)
≥ εe2t

∫

IRn

F(x)(ϕ(x) + ψ(x))dx .

Then it yields

∫

IRn

Gudx ≥εe−2t
∫

IRn

F(x)ϕ(x)dx + ε

2
(1 − e−2t )

∫

IRn

F(x)(ϕ(x) + ψ(x))dx .
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Hence, it is easy to show by assumption (14.3.6) that

∫

IRn

Gudx ≥ Cε, 0 ≤ t < T̃ (ε), (14.3.15)

hereinafter, C stands for a certain positive constant which may take different values
at different places.

On the other hand, from Hölder inequality, and noting (14.3.5), we have

∫

IRn

Gudx ≤
(∫

IRn

|u|pdx
) 1

p
(∫

|x |≤t+ρ

G
p

p−1 dx

) p−1
p

. (14.3.16)

But from (14.3.10), it is clear that

∫

|x |≤t+ρ

G
p

p−1 dx ≤ C
∫ t+ρ

0
e− p

p−1 (t−r)
(1 + r)n−1− n−1

2
p

p−1 dr. (14.3.17)

�

To estimate the integral on the right-hand side of (14.3.17), we will use the fol-
lowing

Remark 14.3.1 For any given positive number q1 and real number q2, we have the
following estimate:

∫ t+ρ

0
e−q1(t−r)(1 + r)q2dr ≤ C0(1 + t)q2 , (14.3.18)

where ρ > 0 is a given constant, and C0 is positive constant.

Proof of Remark 14.3.1

The left-hand side of (14.3.18)

=
∫ t+ρ

2

0
e−q1(t−r)(1 + r)q2dr +

∫ t

t+ρ
2

e−q1(t−r)(1 + r)q2dr

≤C

(
e− q1

2 t
∫ t+ρ

2

0
(1 + r)q2dr + (1 + t)q2

∫ t

t+ρ
2

e−q1(t−r)dr

)

≤C0(1 + t)q2 .

Using Remark 14.3.1, from (14.3.17) we obtain

∫

|x |≤t+ρ

G
p

p−1 dx ≤ C(1 + t)n−1− n−1
2

p
p−1 . (14.3.19)
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Thus, from (14.3.16) and noting (14.3.15), we obtain

∫

IRn

|u(t, x)|pdx ≥ (
∫
IRn Gudx)p

(
∫
|x |≤t+ρ G

p
p−1 dx)p−1

≥ Cεp(1 + t)n−1− n−1
2 p, 0 ≤ t < T̃ (ε).

The proof of Lemma 14.3.1 is finished. �

Remark 14.3.2 In Lemma 14.3.1, if condition (14.3.6) is weakened to

∫

IRn

F(x)ϕ(x)dx ≥ 0,
∫

IRn

F(x)ψ(x)dx ≥ 0,

and these two are not simultaneously zero, then when 1 ≤ t < T̃ (ε), (14.3.8) holds.

In this section, for p > 1, we consider only the subcritical case, i.e., we assume
that

p < p0(n), (14.3.20)

where p0(n) is the positive root of the quadratic equation

(n − 1)p2 − (n + 1)p − 2 = 0. (14.3.21)

While, the critical case

p = p0(n) (14.3.22)

will be discussed in the next section.

Remark 14.3.3 When n = 1, Eq. (14.3.21) has no positive root, therefore, any given
real number p > 1 belongs to the subcritical case.

Remark 14.3.4 When n > 1, it is clear that when 1 < p < p0(n),

(n − 1)p2 − (n + 1)p − 2 < 0; (14.3.23)

while, when n = 1, for any given p > 1, obviously, the above formula is true as
well.

Lemma 14.3.2 (See Sideris 1984) When p > 1 satisfies the subcritical condition
(14.3.20), suppose that Cauchy problem (14.3.1)–(14.3.2) admits on 0 ≤ t < T̃ (ε) a
solution u = u(t, x) satisfying (14.3.3)–(14.3.5), and that the initial functions ϕ(x)
and ψ(x) satisfy not only the requirements given in Remark 14.3.2, but also

∫

IRn

ϕ(x)dx ≥ 0,
∫

IRn

ψ(x)dx ≥ 0. (14.3.24)
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Then there exists a positive constant b̄ independent of ε, such that

T̃ (ε) ≤ b̄ε−γ, (14.3.25)

where

γ = 2p(p − 1)

2 + (n + 1)p − (n − 1)p2
. (14.3.26)

Proof Let

I (t) =
∫

IRn

u(t, x)dx . (14.3.27)

Integrating Eq. (14.3.1) with respect to x , it is easy to get

I ′′(t) =
∫

IRn

|u(t, x)|pdx . (14.3.28)

From Hölder inequality, and noting (14.3.5), we have

|I (t)| ≤
(∫

IRn
|u(t, x)|pdx

) 1
p

(∫

|x |≤t+ρ
dx

) p−1
p ≤ C(1 + t)

n(p−1)
p

(∫

IRn
|u(t, x)|pdx

) 1
p

,

then from (14.3.28) we get

I ′′(t) ≥ C
|I (t)|p

(1 + t)n(p−1)
. (14.3.29)

On the other hand, from Remark 14.3.2 and noting (14.3.28), when 1 ≤ t < T̃ (ε)
we have

I ′′(t) ≥ Cεp(1 + t)n−1− n−1
2 p,

then, noting (14.3.28), we have

I ′′(t) ≥
{
0, 0 ≤ t < 1,
Cεp(1 + t)n−1− n−1

2 p, 1 ≤ t < T̃ (ε).
(14.3.30)

It is easy to prove that: when n ≥ 1 and 1 < p < p0(n), we always have

n − 1 − n − 1

2
p > −1.
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Integrating (14.3.30) with respect to t starting from 0, and using (14.3.24), we obtain:
when 1 ≤ t < T̃ (ε), we have

I (t) ≥ C̃εp(1 + t)n+1− n−1
2 p, (14.3.31)

where C̃ is a positive constant.
Taking δ = C̃εp and a = n+1− n−1

2 p > 1, b = n(p−1) > 0 in Lemma 14.2.1,
and noting (14.3.23), it is easy to verify that

(p − 1)a − (b − 2) > 0,

then the desired (14.3.25) follows from (14.3.29) and (14.3.31). �

Lemma 14.3.3 Let n = 1, and p > 1 be any given real number. Suppose that
Cauchy problem (14.3.1)–(14.3.2) has a solution u = u(t, x) on 0 ≤ t < T̃ (ε), such
that all the derivations in the proof of this lemma are valid, for instance,

u ∈ C([0, T̃ (ε)); H 1(IR)) (14.3.32)

and (14.3.4)–(14.3.5) hold. If the initial function ψ(x) satisfies

∫

IR
ψ(x)dx > 0, (14.3.33)

then there must exist a positive constant b̄ independent of ε, such that

T̃ (ε) ≤ b̄ε− p−1
2 . (14.3.34)

Proof We still denote

I (t) =
∫ ∞

−∞
u(t, x)dx . (14.3.35)

By (14.3.29) we have

I ′′(t) ≥ C
|I (t)|p

(1 + t)p−1
, (14.3.36)

in particular,

I ′′(t) ≥ 0.
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Integrating the above formula twice, we get

I (t) ≥ ε

[(∫ ∞

−∞
ψ(x)dx

)
t +

∫ ∞

−∞
ϕ(x)dx

]
.

Due to assumption (14.3.33), there must exist a t0 ≥ 0 depending only on∫ ∞
−∞ ϕ(x)dx and

∫ ∞
−∞ ψ(x)dx , such that

I (t) ≥ ε

2

(∫ ∞

−∞
ϕ(x)dx

)
t, t ≥ t0. (14.3.37)

Taking δ = C̄ε (C̄ is a certain positive constant) and a = 1, b = p − 1 in
Lemma 14.2.1, it is easy to verify that

(p − 1)a − b + 2 = 2 > 0,

then the desired estimate (14.3.34) follows immediately from (14.3.36)
and (14.3.37). �
Lemma 14.3.4 Let n = 2 and p = 2. Suppose that the initial functions ϕ(x) of
ψ(x) in Cauchy problem (14.3.1)–(14.3.2) satisfy not only (14.1.5)–(14.1.7) but also

ϕ(x) ≡ 0, ψ(x) ≥ 0 and ψ(x) �≡ 0. (14.3.38)

Then there exists a positive constant b̄ independent of ε, such that the life-span T̃ (ε)
of the classical solution u = u(t, x) to the Cauchy problem satisfies

T̃ (ε) ≤ b̄e(ε), (14.3.39)

where e(ε) is defined by

ε2e2(ε) ln(1 + e(ε)) = 1. (14.3.40)

Remark 14.3.5 When n = 2, p = 2 < p0(2) belongs to the subcritical case.

Proof of Lemma 14.3.4 From the positiveness of the fundamental solution to the
wave equation for n = 2 (see Sect. 2.1.1 and Remark 2.2.2 in Chap.2), it is easy to
know that

u(t, x) ≥ εu0(t, x), 0 ≤ t < T̃ (ε), x ∈ IR2, (14.3.41)

and u0(t, x) on the right-hand side satisfies

�u0(t, x) = 0, (14.3.42)

t = 0 : u0 = 0, ∂t u0 = ψ(x). (14.3.43)

http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_2
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From the expression of the solution to the Cauchy problem of the wave equation
for n = 2 (see (2.1.62) and (2.1.64) in Chap.2), we have

u0(t, x) = C
∫

|y−x |≤t

ψ(y)√
t2 − |y − x |2 dy. (14.3.44)

From the compact support assumption of ψ(x), we can assume in the above
formula that |y| ≤ ρ. Thus, when t − |x | ≥ 2ρ, for |y − x | ≤ t we have

t2 − |y − x |2 = (t − |y − x |)(t + |y − x |)
≤ 2t (t − |y − x |)
≤ 2t (t − |x | + |y|)
≤ 2t (t − |x | + ρ).

Then, from (14.3.44) and noting (14.3.38), we obtain: when t − |x | ≥ 2ρ, we have

u0(t, x) ≥ Ct−
1
2 (t − |x | + ρ)−

1
2 , (14.3.45)

where C is a positive constant depending only on ψ(x).
Thus, noticing (14.3.41), we have

∫

IRn

u2(t, x)dx ≥
∫

t−|x |≥2ρ
u2(t, x)dx

≥ ε2
∫

t−|x |≥2ρ
u20(t, x)dx

≥ Cε2
∫

t−|x |≥2ρ
t−1(t − |x | + ρ)−1dx

≥ Cε2t−1
∫ t−2ρ

0
(t − r + ρ)−1rdr. (14.3.46)

Noting that

∫ t−2ρ

0

r

t − r + ρ
dr = − (t − 2ρ) + (t + ρ)

∫ t−2ρ

0

1

t − r + ρ
dr

= − (t − 2ρ) + (t + ρ) ln
t + ρ

3ρ
,

when t ≥ 2ρ, it yields from (14.3.46) that

∫

IR2
u2(t, x)dx ≥ Cε2 ln t. (14.3.47)

http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_2
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Let

I (t) =
∫

IR2
u(t, x)dx . (14.3.48)

From (14.3.28), and noticing that now p = 2 and (14.3.47) holds, we obtain: when
t ≥ 2ρ, we have

I ′′(t) ≥ Cε2 ln(1 + t).

By (14.3.28), from t ≥ 0 we always have I ′′(t) ≥ 0. Using similar arguments as
in obtaining (14.3.31), integrating twice with respect to t starting from zero, and
noticing (14.3.38), it is easy to get: when t ≥ 2ρ, we have

I (t) ≥ C̃ε2(1 + t)2 ln(1 + t). (14.3.49)

On the other hand, from (14.3.29), and noticing that now n = 2 and p = 2, we have

I ′′(t) ≥ ˜̃C
|I (t)|2
(1 + t)2

. (14.3.50)

Here, C̃ and ˜̃C are some positive constants.
Introducing a new variable τ from

1 + t = e(ε)τ (14.3.51)

where e(ε) is defined by (14.3.40). Thus,when ε > 0 is suitably small, from (14.3.49)
we obtain: when τ ≥ 2, we have

I (τ ) ≥ C̃ε2e2(ε)(ln e(ε) + ln τ )τ 2, (14.3.52)

then noticing (14.3.40), it is easy to know that when τ ≥ 2, we have

I (τ ) ≥ C̃
ln e(ε)

ln(1 + e(ε))
τ 2 ≥ C̃1(1 + τ )2. (14.3.53)

Moreover, when τ ≥ 2, (14.3.50) can be written as

I ′′(τ ) ≥ ˜̃C
|I (τ )|2

τ 2
≥ ˜̃C2

|I (τ )|2
(1 + τ )2

. (14.3.54)

Here, C̃1 and ˜̃C2 are some positive constants.
From Lemma 14.2.1 (in which we take δ = C̃1, p = a = b = 2), it is clear that

the life-span of I (τ ) is finite, then it follows the desired (14.3.39) from (14.3.51).
The proof is finished.
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14.4 Upper Bound Estimates on the Life-Span of Classical
Solutions to the Cauchy Problem of a Kind of
Semi-linear Wave Equations—The Critical Case

In this section, according to Zhou and Han (2014), we continue to consider Cauchy
problem (14.3.1)–(14.3.2) mentioned in Sect. 14.3 with emphasis only on the critical
case of the exponent p, in other words, we consider only the case that n ≥ 2 and
p = p0(n), where p0(n) is the positive root of the quadratic equation (14.3.21).

For this purpose, we first consider, on the domain {(t, x)|t ≥ 0, |x | ≤ t}, the
n-dimensional wave equation

�� = 0 (14.4.1)

and find its solution of the following form:

� = �q = (t + |x |)−qhq

(
2|x |

t + |x |
)

, (14.4.2)

where q > 0.
Denoting r = |x |, and noticing that for the radial function R = R(r), the n-

dimensional Laplace operator can be written as

�x R = n − 1

r
R′ + R′′, (14.4.3)

by plugging (14.4.2) in (14.4.1), it is not hard to prove that h = hq(z) (z = 2|x |
t+|x | )

satisfies the following ordinary differential equation

z(1 − z)h′′(z) +
[
n − 1 −

(
q + n + 1

2

)
z
]
h′(z) − n − 1

2
qh(z) = 0. (14.4.4)

That is to say, h = hq(z) satisfies the hypergeometric equation

z(1 − z)h′′(z) + [γ − (α + β + 1)z]h′(z) − αβh(z) = 0. (14.4.5)

in the case that α = q, β = n−1
2 and γ = n − 1.

It is known that (see Wang and Guo 1979), the hypergeometric series

h = F(α,β, γ; z) def.=
∞∑

k=0

(α)k(β)k

k!(γ)k
zk, (14.4.6)

which is convergent when |z| < 1, is a solution of (14.4.5), where

⎧
⎨

⎩

(λ)0 = 1,

(λ)k = λ(λ + 1) · · · (λ + k − 1) = �(λ + k)

�(λ)
(k ≥ 1).

(14.4.7)
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Then we take, in (14.4.2),

h = hq(z) = F
(
q,

n − 1

2
, n − 1; z

)
. (14.4.8)

Proposition 14.4.1 When γ > β > 0, we have

F(α,β, γ; z) = �(γ)

�(β)�(γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1(1 − zt)−αdt (|z| < 1).

(14.4.9)

Proof When γ > β > 0, noting (2.4.7) with (2.4.5)–(2.4.6) in Chap.2, it yields
from (14.4.6) that

F(α,β, γ; z) = �(γ)

�(β)�(γ − β)

∞∑

k=0

(α)k�(β + k)�(γ − β)

k!�(γ + k)
zk

= �(γ)

�(β)�(γ − β)

∞∑

k=0

(α)k

k! B(β + k, γ − β)zk

= �(γ)

�(β)�(γ − β)

∞∑

k=0

(α)k

k!
∫ t

0
tβ+k−1(1 − t)γ−β−1dt · zk

= �(γ)

�(β)�(γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1

∞∑

k=0

(α)k

k! (zt)kdt

= �(γ)

�(β)�(γ − β)

∫ 1

0
tβ−1(1 − t)γ−β−1(1 − zt)−αdt.

�

From proposition 14.4.1, we have

hq(z) = �(n − 1)

�2( n−1
2 )

∫ 1

0
t
n−3
2 (1 − t)

n−3
2 (1 − zt)−qdt, (14.4.10)

then
hq(z) > 0, 0 ≤ z < 1. (14.4.11)

Proposition 14.4.2 When

0 < q <
n − 1

2
, (14.4.12)

http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_2
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we have
C̃1 ≤ hq(z) ≤ C1, 0 ≤ z ≤ 1; (14.4.13)

while, when

q >
n − 1

2
, (14.4.14)

we have

C̃2(1 − z)
n−1
2 −q ≤ hq(z) ≤ C2(1 − z)

n−1
2 −q , 0 ≤ z ≤ 1, (14.4.15)

where C1, C̃1,C2 and C̃2 are positive constants.

Proof The hypergeometric equation (14.4.5) is of the standard form of Fuchs-type
differential equation with three regular singular points z = 0, z = 1 and z = ∞ (see
Sect. 14.6).

Near the singular point z = 0, the solution h = h(z) can be written in the from

h(z) = zρ
∞∑

n=0

cnz
n, (14.4.16)

where c0 �= 0, and ρ is called the index of h(z) at z = 0. Plugging (14.4.16) in
(14.4.5), noting that

h′(z) = ρzρ−1
∞∑

n=0

cnz
n + zρ

∞∑

n=1

ncnz
n−1,

h′′(z) = ρ(ρ − 1)zρ−2
∞∑

n=0

cnz
n + 2ρzρ−1

∞∑

n=1

ncnz
n−1 + zρ

∞∑

n=2

n(n − 1)cnz
n−2,

and comparing the coefficients of the leading term zρ−1, we obtain the index equation
which can be used to determine ρ:

ρ(ρ − 1) + γρ = 0. (14.4.17)

It has two roots
ρ = 0 and ρ = 1 − γ. (14.4.18)

Similarly, near the singular point z = 1, the solution h = h(z) can be written to
the form of

h(z) = (z − 1)ρ
∞∑

n=0

cn(z − 1)n, (14.4.19)

where c0 �= 0, and ρ is called the index of h(z) at z = 1. Plugging (14.4.19) in
(14.4.5), comparing the coefficients of the leading term (z − 1)ρ−1, we obtain that
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the index equation to determine ρ is

ρ(ρ − 1) − (γ − (α + β + 1))ρ = 0. (14.4.20)

It has two roots
ρ = 0 and ρ = γ − α − β. (14.4.21)

Nowwe specifically study the hypergeometric equation (14.4.4), in which α = q,
β = n−1

2 and γ = n−1.At this moment, the hypergeometric series solution (14.4.8)
is the solution corresponding to the index ρ = 0 near z = 0.

When q satisfies (14.4.12), due to (14.4.10), hq(z) is convergent at z = 1, and
hq(1) > 0, then, noting that γ − α − β = n−1

2 − q > 0, its index ρ at z = 1 is also
0. Thus, noting (14.4.11), hq(z), for real z, is continuous and positive on 0 ≤ z ≤ 1
so (14.4.13) follows.

When q satisfies (14.4.14), from (14.4.11) we know that hq(z), for real z, is
continuous and positive on 0 ≤ z < 1 and hq(z) is divergent at z = 1, so its index
at z = 1 is impossible to be zero, and must be

γ − α − β = n − 1

2
− q < 0.

This proves (14.4.15). �

Proposition 14.4.3 For the function �q(t, x) defined by (14.4.2), we have

∂�q(t, x)

∂t
= −q�q+1(t, x). (14.4.22)

Proof It is easy to know from (14.4.2) that, to prove (14.4.22) it suffices to prove

qhq(z) + zh′
q(z) = qhq+1(z). (14.4.23)

From (14.4.6) and noting α = q, β = n−1
2 and γ = n − 1, we have

qhq(z) + zh′
q(z) = q

∞∑

k=0

(q)k(
n−1
2 )k

k!(n − 1)k
zk +

∞∑

k=1

(q)k(
n−1
2 )k

(k − 1)!(n − 1)k
zk

=
∞∑

k=0

(q + k)(q)k(
n−1
2 )k

k!(n − 1)k
zk = q

∞∑

k=0

(q + 1)k( n−1
2 )k

k!(n − 1)k
= qhq+1(z).

The proof is finished. �

Now we continue to consider Cauchy problem (14.3.1)–(14.3.2), where ε > 0 is
a small parameter, and suppose that (14.1.5)–(14.1.7) still hold.
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Lemma 14.4.1 Assume that n ≥ 2, p = p0(n), and the initial functions satisfy

ϕ(x) ≥ 0, ψ(x) ≥ 0 and ψ(x) �≡ 0. (14.4.24)

Suppose that Cauchy problem (14.3.1)–(14.3.2) has a solution u = u(t, x) on 0 ≤
t < T̃ (ε), such that all the derivations in the proof of this lemma are valid, and

supp{u} ⊆ {(t, x)||x | ≤ t + ρ}. (14.4.25)

Denote

G(t) =
∫ t

0
(t − τ )(1 + τ )

∫

IRn

�̃q(τ , x)|u(τ , x)|pdxdτ , (14.4.26)

where

q = n − 1

2
− 1

p
(14.4.27)

and
�̃q(t, x) = �q(t + ρ + 1, x). (14.4.28)

Then we have

G ′(t) ≥ K0(2 + t)(ln(2 + t))−(p−1)
( ∫ t

0
(2 + τ )−3G(τ )dτ

)p
, 1 ≤ t < T̃ (ε),

(14.4.29)

where K0 is a positive constant independent of ε.

Remark 14.4.1 For n ≥ 2 and p = p0(n), it is easy to show that, for the q defined
by (14.4.27), we have q > 0.

Remark 14.4.2 From the definition of �̃q(t, x), its domain of definition is
{(t, x)||x | ≤ t + ρ + 1}. Then, noting (14.4.25), all the integrals over the whole
space IRn in the following proof make sense.

Proof of Lemma 14.4.1 From (14.4.26), we have

G ′(t) =
∫ t

0
(1 + τ )

∫

IRn

�̃q(τ , x)|u(τ , x)|pdxdτ (14.4.30)

and

G ′′(t) = (1 + t)
∫

IRn

�̃q(t, x)|u(t, x)|pdx . (14.4.31)

Multiplying both sides of Eq. (14.3.1) by �̃q(t, x) and integrating with respect to
x , we have
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∫

IRn

�̃q(utt − �u)dx =
∫

IRn

�̃q |u|pdx . (14.4.32)

Noting that �̃q satisfies the wave equation (14.4.1), using Green formula, we have

∫

IRn

�̃q�udx =
∫

IRn

��̃q · udx =
∫

IRn

�̃qtt udx,

then
∫

IRn

�̃q(utt − �u)dx =
∫

IRn

(�̃qutt − �̃qtt u)dx = d

dt

∫

IRn

(�̃qut − �̃qtu)dx .

(14.4.33)

But using Proposition 14.4.3, we have

∫

IRn

(�̃qut − �̃qtu)dx = d

dt

∫

IRn

�̃qudx − 2
∫

IRn

�̃qtudx

= d

dt

∫

IRn

�̃qudx + 2q
∫

IRn

�̃q+1udx . (14.4.34)

Plugging (14.4.33) and (14.4.34) in (14.4.32), we get

d2

dt2

∫

IRn

�̃qudx + 2q
d

dt

∫

IRn

�̃q+1udx =
∫

IRn

�̃q |u|pdx . (14.4.35)

Integrating the above formula with respect to t starting from 0, and noticing that
the value of

d

dt

∫

IRn

�̃qudx + 2q
∫

IRn

�̃q+1udx =
∫

IRn

(�̃qtu + �̃qut )dx + 2q
∫

IRn

�̃q+1udx

=
∫

IRn

(q�̃q+1u + �̃qut )dx

at t = 0 is

ε

∫

IRn

(q�̃q+1(0, x)ϕ(x) + �̃q(0, x)ψ(x))dx,

we have

d

dt

∫

IRn

�̃qudx + 2q
∫

IRn

�̃q+1udx

= ε

∫

IRn

(q�̃q+1(0, x)ϕ(x) + �̃q(0, x)ψ(x))dx +
∫ t

0

∫

IRn

�̃q |u|pdxdτ .

(14.4.36)
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Integrating the above formula with respect to t starting from 0, we obtain

∫

IRn

�̃qudx + 2q
∫ t

0

∫

IRn

�̃q+1udxdτ

= ε

∫

IRn

�̃q(0, x)ϕ(x)dx + εt
∫

IRn

(q�̃q+1(0, x)ϕ(x) + �̃q(0, x)ψ(x))dx

+
∫ t

0
(t − τ )

∫

IRn

�̃q |u|pdxdτ . (14.4.37)

Integrating again the above formula with respect to t starting from 0, we have

∫ t

0

∫

IRn

�̃qudxdτ + 2q
∫ t

0
(t − τ )

∫

IRn

�̃q+1udxdτ

= εt
∫

IRn

�̃q(0, x)ϕ(x)dx + 1

2

∫ t

0
(t − τ )2

∫

IRn

�̃q |u|pdxdτ

+ ε

2
t2

∫

IRn

(q�̃q+1(0, x)ϕ(x) + �̃q(0, x)ψ(x))dx . (14.4.38)

From this and noticing (14.4.11) and assumption (14.4.24), we get

∫ t

0

∫

IRn
�̃qudxdτ + 2q

∫ t

0
(t − τ )

∫

IRn
�̃q+1udxdτ ≥ 1

2

∫ t

0
(t − τ )2

∫

IRn
�̃q |u|pdxdτ .

(14.4.39)

Using Hölder inequality and the expression (14.4.30) of G ′(t), and noting
(14.4.25), we have

∫ t

0

∫

IRn

�̃qudxdτ

=
∫ t

0

∫

IRn

(
(1 + τ )

1
p �̃

1
p
q u

)
·
(
(1 + τ )

− 1
p �̃

1
p′
q

)
dxdτ

≤
( ∫ t

0

∫

IRn

(1 + τ )�̃q |u|pdxdτ
) 1

p
( ∫ t

0

∫

|x |≤τ+ρ

(1 + τ )
− p′

p �̃qdxdτ
) 1

p′

= (G ′(t))
1
p

( ∫ t

0

∫

|x |≤τ+ρ

(1 + τ )
− p′

p �̃qdxdτ
) 1

p′
, (14.4.40)

where 1
p + 1

p′ = 1.

From (14.4.27), it is obvious that 0 < q < n−1
2 , then it is easy to know from

Proposition 14.4.2 that

C1(1 + τ )−q ≤ �̃q(τ , x) ≤ C2(1 + τ )−q , (14.4.41)
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where C1 and C2 are positive constants. Thus, we have

∫ t

0

∫

|x |≤τ+ρ

(1 + τ )
− p′

p �̃qdxdτ ≤ C
∫ t

0
(1 + τ )

n−q− p′
p dτ .

But from p = p0(n) and the definition (14.4.27) of q, it is easy to know that

n − q − p′

p
= 1 + p′

p
,

then from (14.4.40) we get

∫ t

0

∫

IRn

�̃qudxdτ ≤ C(G ′(t))
1
p (1 + t)2−

1
p . (14.4.42)

Moreover, from (14.4.27) and noting p > 1, it is obvious that q + 1 > n−1
2 , then

it is easy to know from Proposition 14.4.2 that

C3(1 + τ )−
n−1
2 (1 + ρ + τ − |x |)−(q+1− n−1

2 )

≤ �̃q+1(τ , x) ≤ C4(1 + τ )−
n−1
2 (1 + ρ + τ − |x |)−(q+1− n−1

2 ), (14.4.43)

where C3 and C4 are positive constants. Then, using Hölder inequality and the ex-
pression (14.4.30) of G ′(t), and noting (14.4.25), we obtain

∫ t

0
(t − τ )

∫

IRn

�̃q+1udxdτ

=
∫ t

0

∫

IRn

(
(1 + τ )

1
p �̃

1
p
q u

)(
(t − τ )�̃

1
p′
q

( �̃q+1

�̃q

)
(1 + τ )

− 1
p

)
dxdτ

≤ (G ′(t))
1
p

( ∫ t

0
(t − τ )p

′
∫

|x |≤τ+ρ

�̃q

( �̃q+1

�̃q

)p′
(1 + τ )

− p′
p dxdτ

) 1
p′
. (14.4.44)

While, from Propositions 14.4.2 and 14.4.3, it is easy to show that

∫

|x |≤τ+ρ

�̃q

(
�̃q+1

�̃q

)p′

(1 + τ )
− p′

p dx

≤C(1 + τ )
n−1+q(p′−1)− n−1

2 p′− p′
p

∫ τ+ρ

0
(1 + ρ + τ − r)−p′(q+1− n−1

2 )dr. (14.4.45)

From (14.4.27) and noting p = p0(n), it is easy to get

p′
(
q + 1 − n − 1

2

)
= 1
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and

n − 1 + q(p′ − 1) − n − 1

2
p′ − p′

p
= 0,

then

∫

|x |≤τ+ρ
�̃q

(
�̃q+1

�̃q

)p′
(1 + τ )

− p′
p dx ≤ C

∫ τ+ρ

0
(1 + ρ + τ − r)−1dr ≤ C ln(2 + τ ).

(14.4.46)

Then it follows easily from (14.4.44) that

∫ t

0
(t − τ )

∫

IRn

�̃q+1udxdτ ≤ C(G ′(t))
1
p (1 + t)2−

1
p (ln(2 + t))

1
p′ . (14.4.47)

Plugging (14.4.42) and (14.4.47) in (14.4.39), and noting (14.4.31), we get

(G ′(t))
1
p (1 + t)2−

1
p (ln(2 + t))1−

1
p ≥ C

∫ t

0
(t − τ )2(1 + τ )−1G ′′(τ )dτ . (14.4.48)

Integrating by parts, and noting that G ′(0) = G(0) = 0, we have

∫ t

0
(t − τ )2(1 + τ )−1G ′′(τ )dτ = −

∫ t

0
∂τ [(t − τ )2(1 + τ )−1]G ′(τ )dτ

=
∫ t

0
∂2

τ [(t − τ )2(1 + τ )−1]G(τ )dτ .

Since

∂2
τ [(t − τ )2(1 + τ )−1] = 2(1 + t)2(1 + τ )−3,

from (14.4.48) it follows

(G ′(t))
1
p (1 + t)2−

1
p (ln(2 + t))1−

1
p ≥ C(1 + t)2

∫ t

0
(1 + τ )−3G(τ )dτ ,

that is,

G ′(t) ≥ C(1 + t)(ln(2 + t))−(p−1)

(∫ t

0
(1 + τ )−3G(τ )dτ

)p

.

From this we immediately get the desired (14.4.29). The proof of Lemma 14.4.1 is
finished.

Lemma 14.4.2 Under the assumptions of Lemma 14.4.1, we assume furthermore
that ϕ(x) �≡ 0, then for Cauchy problem (14.3.1)–(14.3.2), there exists a positive
constant ā independent of ε, such that
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T̃ (ε) ≤ exp{āε−p(p−1)}. (14.4.49)

Proof Let

H(t) =
∫ t

0
(2 + τ )−3G(τ )dτ , (14.4.50)

where G(t) is defined by (14.4.26). We have

H ′(t) = (2 + t)−3G(t), (14.4.51)

i.e.,

G(t) = (2 + t)3H ′(t). (14.4.52)

Then, (14.4.29) can be rewritten as

((2 + t)3H ′(t))′ ≥ K0(2 + t)(ln(2 + t))−(p−1)H p(t). (14.4.53)

From the definition (14.4.26) of G(t), noting (14.4.41) and using Lemma 14.3.1,
we have

G(t) =
∫ t

0
(t − τ )(1 + τ )

∫

IRn

�̃q(τ , x)|u(τ , x)|pdxdτ

≥ C
∫ t

0
(t − τ )(1 + τ )1−q

∫

IRn

|u(τ , x)|pdxdτ

≥ Cεp
∫ t

0
(t − τ )(1 + τ )1−q+n−1− n−1

2 pdτ . (14.4.54)

From (14.4.27) and p = p0(n), it is clear that

1 − q + n − 1 − n − 1

2
p = 0,

then from the above formula we get

G(t) ≥ Cεpt2.

So, from (14.4.50) and (14.4.51), when t ≥ 1 we obtain

H(t) ≥ Cεp
∫ t

0
(2 + τ )−3τ 2dτ ≥ Cεp

∫ t

1
(2 + τ )−3τ 2dτ

≥ Cεp
∫ t

1
(2 + τ )−1dτ ≥ C0ε

p ln(2 + t) (14.4.55)
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and

H ′(t) ≥ Cεp(2 + t)−3t2 ≥ C0ε
p(2 + t)−1, (14.4.56)

where C0 is a certain positive constant.
From (14.4.53) we have

(2 + t)2H ′′(t) + 3(2 + t)H ′(t) ≥ K0(ln(2 + t))−(p−1)H p(t). (14.4.57)

Taking the change of variables

τ = ln(2 + t), (14.4.58)

and denoting

H0(τ ) = H(t) = H(eτ − 2), (14.4.59)

we have

H ′
0(τ ) = (2 + t)H ′(t), (14.4.60)

H ′′
0 (τ ) = (2 + t)2H ′′(t) + (2 + t)H ′(t). (14.4.61)

Then, (14.4.57) and (14.4.55)–(14.4.56) can be rewritten, respectively, as

H ′′
0 (τ ) + 2H ′

0(τ ) ≥ K0τ
−(p−1)H p

0 (τ ), (14.4.62)

H0(τ ) ≥ C0ε
pτ , (14.4.63)

H ′
0(τ ) ≥ C0ε

p. (14.4.64)

Denoting

H1(s) = εp(p−2)H0(ε
−p(p−1)s), (14.4.65)

we obtain correspondingly that

εp(p−1)H ′′
1 (s) + 2H ′

1(s) ≥ K0s
−(p−1)H p

1 (s), (14.4.66)

H1(s) ≥ C0s, (14.4.67)

H ′
1(s) ≥ C0. (14.4.68)

Now we take positive constants s0 and δ independent of ε, such that the positive
constants K0 and C0 appearing in (14.4.66)–(14.4.68) satisfy

K0,C0  s0  1

δ
. (14.4.69)
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Let

H2(s) = sH3(s), (14.4.70)

and H3(s) be determined by solving the following Cauchy problem of ordinary
differential equation:

H ′
3(s) = δH

p+1
2

3 (s), s ≥ s0, (14.4.71)

H3(s0) = C0

4
. (14.4.72)

Then, when s ≥ s0 it is easy to know that

H ′
2(s) = H3(s) + δsH

p+1
2

3 (s), (14.4.73)

H ′′
2 (s) = 2δH

p+1
2

3 (s) + 1

2
(p + 1)δ2sH p

3 (s), (14.4.74)

so, when s ≥ s0 we have

εp(p−1)H ′′
2 (s) + 2H ′

2(s)

=1

2
(p + 1)δ2εp(p−1)s−(p−1)H p

2 (s) + 2δεp(p−1)H
p+1
2

3 (s) + 2δsH
p+1
2

3 (s) + 2H3(s).

(14.4.75)

Noting that from (14.4.71)–(14.4.72) we have

H3(s) ≥ C0

4
, s ≥ s0, (14.4.76)

when s ≥ s0 we have

1

4
K0s

−(p−1)H p
2 (s) = 1

4
K0sH

p
3 (s) ≥ 1

4
K0s0

(C0

4

)p−1
H3(s).

Therefore, as long as s0 is large enough, we have 1
4K0s0

(
C0
4

)p−1
> 1, so, when

s ≥ s0,

H3(s) ≤ 1

4
K0s

−(p−1)H p
2 (s). (14.4.77)

Moreover, noting (14.4.76), as long as δ > 0 is small enough, when s ≥ s0, we have

2δεp(p−1)H
p+1
2

3 (s) + 2δsH
p+1
2

3 (s) ≤ 1

4
K0sH

p
3 (s) = 1

4
K0s

−(p−1)H p
2 (s), (14.4.78)



14.4 Upper Bound Estimates … 349

and it is obvious that

1

2
(p + 1)δ2εp(p−1) ≤ K0

4
. (14.4.79)

Thus, from (14.4.75) we get

εp(p−1)H ′′
2 (s) + 2H ′

2(s) ≤ K0s
−(p−1)H p

2 (s). (14.4.80)

Moreover, from (14.4.72)–(14.4.73) it is easy to know that, when δ > 0 is small
enough, we have

H2(s0) ≤ C0s0, (14.4.81)

H ′
2(s0) ≤ C0. (14.4.82)

Hence, using Lemma 14.2.2, from (14.4.66)–(14.4.68) and (14.4.80)–(14.4.82)
we immediately have: when s ≥ s0,

H1(s) ≥ H2(s) = sH3(s). (14.4.83)

Noting that H3(s) is the solution to the Riccati equation (14.4.71), there must exists
a value s1(> 0) independent of ε, such that when s = s1, H3(s) and then H2(s)
tend to the infinity, then, from (14.4.83), the life-span of H1(s) has an upper bound
s1. By (14.4.65), the life-span of H0(s) has an upper bound ε−p(p−1)s1, then with
(14.4.59), the life-span of H(t) has an upper bound exp{ε−p(p−1)s1}. This proves the
conclusion in Lemma 14.4.2. �

14.5 Proof of the Main Results

In this section, we consider the following Cauchy problem of semi-linear wave
equation with small initial data:

�u = u1+α, (14.5.1)

t = 0 : u = εϕ(x), ut = εψ(x), (14.5.2)

where α ≥ 1 is an integer, ε > 0 is a small parameter, and the initial functions ϕ(x)
and ψ(x) satisfy (14.1.5) and (14.1.7).

We first look at the case n = 1. We have

Theorem 14.5.1 Let n = 1, and α ≥ 1 be any give integer. Denote by T̃ (ε) the
life-span of the classical solution u = u(t, x) to Cauchy problem (14.5.1)–(14.5.2).
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(1) If

ϕ(x) ≥ 0, ψ(x) ≥ 0 (14.5.3)

and
∫

IR
ψ(x)dx > 0, (14.5.4)

then

T̃ (ε) ≤ b̄ε− α
2 . (14.5.5)

(2) If

ϕ(x) ≥ 0 with ϕ(x) �≡ 0, and ψ(x) ≡ 0, (14.5.6)

then

T̃ (ε) ≤ b̄ε− α(1+α)

2+α . (14.5.7)

In (14.5.5) and (14.5.7), b̄ is a positive constant independent of ε. This proves the
desired (14.1.27) and (14.1.28), respectively.

Proof We consider the Cauchy problem of the following one-dimensional semi-
linear wave equation

utt − uxx = |u|1+α (14.5.8)

with the same initial value (14.5.2).
Due to D’Alembert formula, the solution to Cauchy problem (14.5.8) and (14.5.2)

can be expressed by

u(t, x) = ε

2
(ϕ(x + t) + ϕ(x − t)) + ε

2

∫ x+t

x−t
ψ(ξ)dξ + 1

2

∫ t

0

∫ x+(t−τ )

x−(t−τ )
|u(τ , y)|1+αdydτ .

Under assumption (14.5.3), it is clear from the above formula that

u(t, x) ≥ 0,

then the solution to Cauchy problem (14.5.8) and (14.5.2) is exactly the solution to
Cauchy problem (14.5.1)–(14.5.2).

Taking p = 1 + α in Lemma 14.3.1, and noting (14.5.4), we get (14.5.5) imme-
diately, which proves the conclusion in (1).
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Moreover, taking n = 1 and p = 1 + α in Lemma 14.3.2, and noting (14.5.6),
we get (14.5.7) immediately, which proves the conclusion in (2). �

Now we look at the case n = 2. We have

Theorem 14.5.2 Let n = 2 and α = 1. Denoting by T̃ (ε) the life-span of the
classical solution u = u(t, x) to Cauchy problem (14.5.1)–(14.5.2).

(1) If

ϕ(x) ≡ 0, ψ(x) ≥ 0 and ψ(x) �≡ 0, (14.5.9)

then

T̃ (ε) ≤ b̄e(ε), (14.5.10)

where e(ε) is defined by

ε2e2(ε) ln(1 + e(ε)) = 1. (14.5.11)

(2) If

∫

IR2
ϕ(x)dx > 0,

∫

IR2
ψ(x)dx = 0, (14.5.12)

then

T̃ (ε) ≤ b̄ε−1. (14.5.13)

In (14.5.10) and (14.5.13), b̄ is a positive constant independent of ε. This proves the
desired (14.1.29) and (14.1.30), respectively.

Proof When α = 1, Cauchy problem (14.5.1)–(14.5.2) is exactly the Cauchy prob-
lem of the semi-linear wave equation

�u = |u|1+α (14.5.14)

with the same initial value (14.5.2).
Thus, the desired (14.5.10) in (1) follows immediately fromLemma 14.3.4; while,

taking n = 2 and p = 1 + α = 2 in Lemma 14.3.1, and noting that p < p0(2) =
3+√

17
2 , which belongs to the subcritical case, the desired (14.5.13) in (2) follows

immediately. �

Theorem 14.5.3 Let n = 2 and α = 2. If (14.5.9) holds, then there exists a positive
constant b̄ independent of ε, such that the life-span T̃ (ε) of the classical solution
u = u(t, x) to Cauchy problem (14.5.1)–(14.5.2) has the following upper bound
estimate:
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T̃ (ε) ≤ b̄ε−6. (14.5.15)

This proves the desired (14.1.31).

Proof Consider the Cauchy problem of the two-dimensional semi-linear wave equa-
tion

�u = |u|3 (14.5.16)

with the initial value (14.5.2). From the positiveness of the fundamental solution to
the wave equation for n = 2 (see Sect. 2.1.1 and Remark 2.2.2 in Chap.2), under
assumption (14.5.9), the solution u = u(t, x) to the Cauchy problem must satisfy

u(t, x) ≥ 0,

then it is also the solution to the corresponding Cauchy problem (14.5.1)–(14.5.2).
Taking n = 2 and p = 1 + α = 3 in Lemma 14.3.1, and noticing that

p < p0(2) = 3+√
17

2 , which belongs to the subcritical case, the desired (14.5.15)
follows immediately. �

Now we look at the case n = 3. We have

Theorem 14.5.4 Let n = 3 and α = 1. If

ϕ(x) ≥ 0, ψ(x) ≥ 0, (14.5.17)

and ϕ(x) and ψ(x) are not identically equal to zero simultaneously, then there exists
a positive constant b̄ independent of ε, such that the life-span of the classical solution
u = u(t, x) to Cauchy problem (14.5.1)–(14.5.2) satisfies

T̃ (ε) ≤ b̄ε−2. (14.5.18)

This proves the desired (14.1.32).

Proof Due to α = 1, Cauchy problem (14.5.1)–(14.5.2) is exactly Cauchy problem
(14.5.14) and (14.5.2). Taking n = 3 and p = 1 + α = 2 in Lemma 14.3.2, and
noting that p < p0(3) = 1 + √

2, which belongs to the subcritical case, the desired
(14.5.18) follows immediately. �

Finally we look at the case that n = 4 and α = 1. Since now p = 1 + α =
p0(n) = 2, which belongs to the critical case, we need to use the result in Sect. 14.4.
We have

Theorem 14.5.5 Let n = 4 and α = 1. If (14.5.17) holds, and ϕ(x) �≡ 0, then there
exists a positive constant ā independent of ε, such that the life-span of the classical
solution u = u(t, x) to Cauchy problem (14.5.1)–(14.5.2) satisfies

http://dx.doi.org/10.1007/978-3-662-55725-9_2
http://dx.doi.org/10.1007/978-3-662-55725-9_2
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T̃ (ε) ≤ exp{āε−2}. (14.5.19)

This proves (14.1.33).

Proof Due to α = 1, Cauchy problem (14.5.1)–(14.5.2) is exactly Cauchy problem
(14.5.14) and (14.5.2). Taking n = 4 and p = p0(n) = 2 in Lemma 14.4.2, we
immediately obtain the desired estimate. �

14.6 Appendix—Fuchs-Type Differential Equations
and Hypergeometric Equations

14.6.1 Regular Singular Points of Second-Order Linear
Ordinary Differential Equations

We consider the following second-order linear ordinary differential equation

w′′ + p(z)w′ + q(z)w = 0, (14.6.1)

wherew = w(z) is the unknown function, and the coefficients p(z) and q(z), except
for finite number of isolated singular points, are single-valued analytic functions of z.

Let z = z0 be a singular point of p and q. If

(z − z0)p(z) and (z − z0)
2q(z) (14.6.2)

are analytic in a neighborhood of z = z0, i.e., z = z0 is noworse than a first-order pole
of p(z) and a second-order pole of q(z), then z = z0 is called a regular singular
point of Eq. (14.6.1). At this moment, we can find a solution (called a regular
solution) of the following form, to Eq. (14.6.1) in a neighborhood of z = z0:

w(z) = (z − z0)
ρ

∞∑

n=0

cn(z − z0)
n =

∞∑

n=0

cn(z − z0)
ρ+n, (14.6.3)

where ρ and the coefficients cn (n = 0, 1, 2, . . .) are all constants to be determined,
and c0 �= 0.

Equation (14.6.1) can be rewritten as

(z − z0)
2w′′ + (z − z0)p1(z)w

′ + q1(z)w = 0, (14.6.4)
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where ⎧
⎪⎪⎨

⎪⎪⎩

p1(z)
def.= (z − z0)p(z) =

∞∑
k=0

ak(z − z0)k,

q1(z)
def.= (z − z0)2q(z) =

∞∑
k=0

bk(z − z0)k .
(14.6.5)

Plugging (14.6.3) in (14.6.4), removing the common factor (z − z0)ρ, we have

∞∑

n=0

cn(ρ + n)(ρ + n − 1)(z − z0)
n

+
∞∑

k=0

ak(z − z0)
k ·

∞∑

n=0

cn(ρ + n)(z − z0)
n

+
∞∑

k=0

bk(z − z0)
k ·

∞∑

n=0

cn(z − z0)
n = 0. (14.6.6)

Setting the lowest-order term (i.e., the term not containing z − z0) in the above
formula to be 0, and noticing c0 �= 0, we obtain

ρ(ρ − 1) + a0ρ + b0 = 0,

that is,

ρ2 + (a0 − 1)ρ + b0 = 0. (14.6.7)

This is the equation to determine ρ, called the index equation.
Now setting the coefficients of (z − z0)n (n ≥ 1) in (14.6.6) to be 0, respectively,

we obtain the following recursive relations:

[(ρ + n)(ρ + n − 1) + a0(ρ + n) + b0]cn +
n∑

k=1

[ak(ρ + n − k) + bk ]cn−k = 0 (n = 1, 2, · · · ).

(14.6.8)

Suppose that ρ is a root of the index equation (14.6.7), and for any given integer
n ≥ 1, ρ + n is no longer a root of the index equation (14.6.7), in other words,

(ρ + n)(ρ + n − 1) + a0(ρ + n) + b0 �= 0 (n = 1, 2, . . .), (14.6.9)

then using the recursive relations (14.6.8), all the cn (n = 1, 2, . . .) can be determined
in turn by c0. Since (14.6.1) is a linear equation, according to the superposition
principle, we can always take c0 = 1 in advance, therefore, all the coefficients cn
(n = 0, 1, 2, . . .) can be determined in turn. Thus, we obtain a regular solution of
the form (14.6.3) to Eq. (14.6.1).
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Hence, if the difference between two roots ρ1 and ρ2 of the index equation (14.6.7)
is not an integer, we can use the abovemethod to find two linearly independent regular
solutions of the form (14.6.3) to Eq. (14.6.1) in a neighborhood of z0. Their linear
combination constitutes the general solution to Eq. (14.6.1).

If the difference between two roots ρ1 and ρ2 of the index equation (14.6.7) is an
integer(including the case of multiple roots), we can only find one regular solution
of the form (14.6.3) by using the above method. But we can prove that: if there exists
a m ∈ {0, 1, 2, . . .}, such that

ρ1 − ρ2 = m, (14.6.10)

then in addition to the regular solution

w1 = (z − z0)
ρ1

∞∑

n=0

cn(z − z0)
n (c0 �= 0) (14.6.11)

of the form (14.6.3) by using the above method for ρ1, we can also obtain another
regular solution of the form

w2 = (z − z0)
ρ2

∞∑

n=0

dn(z − z0)
n + γw1 ln(z − z0) (d0 �= 0), (14.6.12)

where γ is a constant, which may be 0 in some special cases. The linear combination
of these two solutions constitutes the general solution to Eq. (14.6.1).

The two roots ρ1 and ρ2 of the index equation (14.6.7) are called the index of the
regular singular point z = z0, denoted by (ρ1, ρ2).

What we investigate up to now is the case that z = z0 is a finite regular singular
point. Whether the infinity is a regular singular point will be determined by whether
t = 0 is a regular singular point of the equation under the transform

z = 1

t
. (14.6.13)

It is easy to know that Eq. (14.6.1) is reduced to the following equation under the
transform (14.6.13):

t4
d2w

dt2
+

[
2t3 − t2 p

(1
t

)]dw

dt
+ q

(1
t

)
w = 0. (14.6.14)

Thus, t = 0 is the regular singular point of Eq. (14.6.14) provided that t p̄(t) and
t2q̄(t) are analytic in a neighborhood of t = 0, where

p̄(t) = 2

t
− 1

t2
p
(1
t

)
, q̄(t) = 1

t4
q
(1
t

)
. (14.6.15)
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Then, p
(
1
t

)
and q

(
1
t

)
should have the following expansions:

p
(1
t

)
= d1t + d2t

2 + · · · ,

q
(1
t

)
= d ′

2t + d ′
3t

2 + · · · ,

so, p(z) and q(z) should have the following expansions near z = ∞:

⎧
⎪⎪⎨

⎪⎪⎩

p(z) = d1
z

+ d2
z2

+ · · · ,

q(z) = d ′
2

z2
+ d ′

3

z3
+ · · · ,

(14.6.16)

that is, zp(z) and z2q(z) are analytic near z = ∞, in other words, z = ∞ is at least
a first-order zero of p(z) and a second-order zero of q(z).

Noting that, now for Eq. (14.6.14), we have a0 = 2− d1 and b0 = d ′
2 in the index

equation (14.6.7) at the point t = 0, so when z = ∞ is a regular singular point, the
corresponding index equation is

ρ2 + (1 − d1)ρ + d ′
2 = 0. (14.6.17)

14.6.2 Fuchs-Type Differential Equations

Equation (14.6.1) whose singular points (the total number is supposed to be finite)
are all regular singular points is called a Fuchs-type differential equation. For later
use, here we always assume that z = ∞ is a regular singular point, and that all the
finite regular singular points of the equation are α1, . . . ,αn .

From the definition of regular singular points, p(z) is at most first-order for poles
z = αi (i = 1, . . . , n) and is zero at z = ∞, and then it can be written in the form
of rational fraction

p(z) = p̄(z)

(z − α1) · · · (z − αn)
, (14.6.18)

where p̄(z) is a polynomial of order (n − 1) at most. Similarly, q(z) is at most
second-order for poles z = αi (i = 1, . . . , n), and is zero of at least second-order at
z = ∞, so

q(z) = q̄(z)

(z − α1)2 · · · (z − αn)2
, (14.6.19)
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where q̄(z) is a polynomial of order (2n−2) at most. Decomposing the rational frac-
tions (14.6.18)–(14.6.19) into the simplest fractions,we obtain the general expression
for the coefficients of the Fuchs-type differential equation as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p(z) =
n∑

k=1

Ak

z − αk
,

q(z) =
n∑

k=1

[ Bk

(z − αk)2
+ Ck

z − αk

]
,

(14.6.20)

where Ak, Bk and Ck (k = 1, . . . , n) are constants, and since q(z) is zero of at least
second-order at z = ∞, we have

n∑

k=1

Ck = 0. (14.6.21)

From the above discussion, it is easy to know that the index equation at z = αk is

ρ2 + (Ak − 1)ρ + Bk = 0 (k = 1, . . . , n). (14.6.22)

Moreover, noting that

1

z − αk
= 1

z

1

1 − αk

z

= αk

z2
+ α2

k

z3
+ · · · ,

it is easy to know that the index equation at z = ∞ is

ρ2 +
(
1 −

n∑

k=1

Ak

)
ρ +

n∑

k=1

(Bk + αkCk) = 0. (14.6.23)

From (14.6.22) and (14.6.23) we know that the sum of the indexes of all the
regular singular points is equal to

n −
n∑

k=1

Ak +
n∑

k=1

Ak − 1 = n − 1, (14.6.24)

i.e., the number of finite regular singular points minus 1.

14.6.3 Hypergeometric Equations

Now we consider specifically the Fuchs-type differential equation with three regular
singular points z = a, b and ∞. The corresponding indexes of these three points are
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denoted by (α1,α2), (β1,β2) and (γ1, γ2), respectively. From (14.6.24) we have

α1 + α2 + β1 + β2 + γ1 + γ2 = 1, (14.6.25)

i.e., the sum of all the indexes is 1.
Due to (14.6.20), now the coefficients of the equation can be written as

⎧
⎪⎪⎨

⎪⎪⎩

p(z) = A1

z − a
+ A2

z − b
,

q(z) = B1

(z − a)2
+ C1

z − a
+ B2

(z − b)2
+ C2

z − b
,

(14.6.26)

and

C1 + C2 = 0. (14.6.27)

By (14.6.22)–(14.6.23), the corresponding index equations can be written as

⎧
⎨

⎩

ρ2 + (A1 − 1)ρ + B1 = 0,
ρ2 + (A2 − 1)ρ + B2 = 0,
ρ2 + (1 − A1 − A2)ρ + (B1 + B2 + aC1 + bC2) = 0.

(14.6.28)

By Vièta theorem, we have

⎧
⎨

⎩

α1 + α2 = 1 − A1, α1α2 = B1,

β1 + β2 = 1 − A2, β1β2 = B2,

γ1 + γ2 = A1 + A2 − 1, γ1γ2 = B1 + B2 + aC1 + bC2.

(14.6.29)

Noting (14.6.27), from this we obtain that

⎧
⎪⎨

⎪⎩

A1 = 1 − α1 − α2, A2 = 1 − β1 − β2,

B1 = α1α2, B2 = β1β2,

C1 = −C2 = γ1γ2 − α1α2 − β1β2

a − b
,

(14.6.30)

then the corresponding Fuchs-type differential equations can be written as

w′′ +
{
1 − α1 − α2

z − a
+ 1 − β1 − β2

z − b

}
w′

+ 1

(z − a)(z − b)

{
α1α2(a − b)

z − a
+ β1β2(b − a)

z − b
+ γ1γ2

}
w = 0. (14.6.31)

Thus, the form of the Fuchs-type differential equation under consideration can be
determined completely by its regular singular points a, b,∞ and their corresponding
indexes. Then, all the solutions to Eq. (14.6.31) can be denoted by



14.6 Appendix—Fuchs-Type Differential Equations … 359

w = P

⎧
⎨

⎩

a, b, ∞
α1, β1, γ1 ; z
α2, β2, γ2

⎫
⎬

⎭ . (14.6.32)

This notation was first introduced by Riemann.
Now we explain why we can always assume, without loss of generality, that

a = 0, b = 1 (14.6.33)

and

α1 = β1 = 0. (14.6.34)

At this moment, due to (14.6.34), and noting (14.6.25), we can take

⎧
⎨

⎩

α1 = 0, α2 = 1 − γ,

β1 = 0, β2 = γ − α − β,

γ1 = α, γ2 = β.

(14.6.35)

Thus, Eq. (14.6.31) can be simplified to

w′′ +
(

γ

z
+ 1 − γ + α + β

z − 1

)
w′ + αβw

z(z − 1)
= 0

or

z(z − 1)w′′ + [γ − (α + β + 1)z]w′ − αβw = 0, (14.6.36)

and its solutions can be expressed by

w = P

⎧
⎨

⎩

0, 1, ∞
0, 0, α ; z

1 − γ, γ − α − β, β

⎫
⎬

⎭ . (14.6.37)

We first claim that we can always assume (14.6.33).
Under suitable fractional linear transformation of the independent variables

ζ = Az + B

Cz + D
,

we can always reduce the three singular points to ζ = 0, 1 and ∞. In the original
case that the singular points are z = a, b and∞, this fractional linear transformation
can be taken as, say,
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ζ = b − a

z − a
. (14.6.38)

It turns z = a into ζ = ∞, z = b into ζ = 1, and z = ∞ into ζ = 0. Under this
transformation, it is easy to prove that Eq. (14.6.31) is turned into

w′′ +
{
1 − γ1 − γ2

ζ
+ 1 − β1 − β2

ζ − 1

}
w′ + 1

ζ(ζ − 1)

{
−γ1γ2

ζ
+ β1β2

ζ − 1
+ α1α2

}
w = 0.

(14.6.39)

It has three singular points ζ = 0, 1 and ∞, and is a Fuchs-type differential equation
with index (γ1, γ2) at ζ = 0, index (β1,β2) at ζ = 1 and index (α1,α2) at ζ = ∞.
This explains why we can assume (14.6.33). This also states that the corresponding
indices are invariant under the fractional linear transformation (14.6.38).

Now we claim that we can always assume (14.6.34).
When (14.6.33) holds, Eq. (14.6.31) can be written as

w′′ +
{
1 − α1 − α2

z
+ 1 − β1 − β2

z − 1

}
w′ + 1

z(z − 1)

{
−α1α2

z
+ β1β2

z − 1
+ γ1γ2

}
w = 0.

(14.6.40)

Perform the transformation of unknown functions

w = z p(z − 1)qu. (14.6.41)

It is easy to verify directly that: the equation of the unknown function u still has
three regular singular points z = 0, 1 and ∞, but the index at z = 0 is turned from
(α1,α2) into (α1 − p,α2 − p), the index at z = 1 is turned from (β1,β2) into
(β1 − q,β2 − q), and correspondingly, the index at z = ∞ is turned from (γ1, γ2)
into (γ1 + p+q, γ2 + p+q). Therefore, taking specially p = α1 and q = β1 allows
(14.6.34) to hold for the equation of u.

Hence, for the Fuchs-type differential equation with three regular singular points,
it suffices to investigate the equation of the form (14.6.36). It is called the hypergeo-
metric equation or theGauss equation, whose solutions are expressed by (14.6.37).
An analytic solution to hypergeometric equation (14.6.36) in a neighborhoodof z = 0
can be expressed by a hypergeometric series as

w =F(α,β, γ; z)
def.= 1 + αβ

1!γ z + α(α + 1)β(β + 1)

2!γ(γ + 1)
z2 + · · · +

+ α(α + 1) · · · (α + n − 1)β(β + 1) · · · (β + n − 1)

n!γ(γ + 1) · · · (γ + n − 1)
zn

+ · · · , (14.6.42)
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or denoted, for convenience, as

w = F(α,β, γ; z) def.=
∞∑

n=0

(α)n(β)n

n!(γ)n
zn, (14.6.43)

where
⎧
⎨

⎩

(λ)0 = 1,

(λ)n = λ(λ + 1) · · · (λ + n − 1) = �(λ + n)

�(λ)
(n ≥ 1).

(14.6.44)

The above series is convergent when |z| < 1, and it is obvious that

F(α,β, γ; z) = F(β,α, γ; z). (14.6.45)



Chapter 15
Applications and Developments

15.1 Applications

The results obtained above in this book can be widely applied, a few illustrative
examples are given here.

15.1.1 Potential Solutions to Compressible Euler Equations

Under the isentropic hypothesis, the compressible Euler equations are composed of
conservation laws of mass and momentum, with the following form (see Chap.2 in
Li and Qin 2012):

∂ρ

∂t
+ div(ρu) = 0, (15.1.1)

∂(ρu)

∂t
+ div(ρu ⊗ u + pI ) = 0, (15.1.2)

where ρ > 0 is the density, u = (u1, . . . , un) is the velocy, n = 2 or 3 is the space
dimension, u ⊗ u is the tensor product expressed by (uiu j ), and p = p(ρ) is the
pressure given by the equation of state of the fluid, and we usually have

p′(ρ) > 0, ∀ρ > 0. (15.1.3)

Writing (15.1.1)–(15.1.2) in the form of components, we have

∂ρ

∂t
+

n∑

i=1

∂(ρui )

∂xi
= 0, (15.1.4)
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∂(ρui )

∂t
+

n∑

k=1

∂(ρuiuk)

∂xk
+ ∂p(ρ)

∂xi
= 0, i = 1, . . . , n. (15.1.5)

By (15.1.4), (15.1.5) can be rewritten as

∂ui
∂t

+
n∑

k=1

uk
∂ui
∂xk

+ 1

ρ

∂p

∂xi
= 0, i = 1, . . . , n. (15.1.6)

Letting f = f (ρ) satisfy

f ′(ρ) = p′(ρ)

ρ
, (15.1.7)

(15.1.6) can be written as

∂ui
∂t

+
n∑

k=1

uk
∂ui
∂xk

+ ∂ f

∂xi
= 0, i = 1, . . . , n. (15.1.8)

Consider the Cauchy problem of Euler equations (15.1.4) and (15.1.8) with the
initial data

t = 0 : ρ = ρ0(x), u = u0(x), (15.1.9)

where both ρ0(x) and u0(x) are sufficiently smooth functions.

Proposition 15.1.1 If there is no vacuum at the initial time t = 0, i.e.,

ρ0(x) > 0, x ∈ IRn, (15.1.10)

then the vacuum will never occur in the whole domain of existence for classical
solutions to the Cauchy problem of Euler equations (15.1.4) and (15.1.8) with initial
value (15.1.9), that is,

ρ(t, x) > 0, t ≥ 0, x ∈ IRn. (15.1.11)

Proof Rewriting Eq. (15.1.4) as

∂ρ

∂t
+ u · gradρ + (divu)ρ = 0,

i.e.,

dρ

dt
+ (divu)ρ = 0, (15.1.12)
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where

d

dt
= ∂

∂t
+

n∑

k=1

uk
∂

∂xk
(15.1.13)

stands for the derivative with respective to t when fixing the fluid particle. There-
fore, along the motion law xk = xk(t) (k = 1, . . . , n) of any fixed fluid particle, ρ

satisfies a homogeneous ordinary differential equation, which yields the conclusion
of Proposition 15.1.1 immediately. �

Proposition 15.1.2 If the initial velocity field u0(x) is irrotational, i.e.,

rotu0(x) ≡ 0, x ∈ IRn, (15.1.14)

then, the whole velocity field u(t, x) keeps irrotational in the whole domain of exis-
tence of classical solutions to the Cauchy problem of Euler equations (15.1.4) and
(15.1.8) with initial value (15.1.9):

rotu(t, x) ≡ 0, t ≥ 0, x ∈ IRn. (15.1.15)

Proof When n = 2, u = (u1, u2) and

rotu = ∂u1
∂x2

− ∂u2
∂x1

def.= r. (15.1.16)

Differentiating the first formula in (15.1.8) with respect to x2, and differentiating the
second formula in (15.1.8) with respect to x1, then substracting from each other, it
is easy to get the equation satisfied by r = rotu:

∂r

∂t
+ u · gradr + (divu)r = 0,

i.e.,

dr

dt
+ (divu)r = 0, (15.1.17)

where
d

dt
is defined by (15.1.13). Therefore, along the motion law xk = xk(t)

(k = 1, 2) of any fixed fluid particle, r satisfies a homogeneous linear ordinary dif-
ferential equation, from this the conclusion of Proposition15.1.2 for n = 2 follows
immediately.

When n = 3, u = (u1, u2, u3) and

rotu =
(

∂u2
∂x3

− ∂u3
∂x2

,
∂u3
∂x1

− ∂u1
∂x3

,
∂u1
∂x2

− ∂u2
∂x1

)
def.= (r1, r2, r3). (15.1.18)
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Differentiating the first formula in (15.1.8) with respect to x2, differentiating the
second formula in (15.1.8) with respect to x1, then substracting from each other, it
is easy to obtain that

∂r3
∂t

+ u · gradr3 + (divu)r3 − ∂u
∂x3

· rotu = 0.

Similar formulas can be obtained for r1 and r2. Combining these three formulas we
obtain the following system of differential equations satisfied by rotu:

∂(rotu)

∂t
+ u · grad rotu + (divu)rotu − gradu · rotu = 0,

i.e.,

d(rotu)

dt
+ (divu)rotu − gradu · rotu = 0, (15.1.19)

where
d

dt
is still defined by (15.1.13). This shows that along the motion law xk =

xk(t) (k = 1, 2, 3) of any fixed fluid particle, rotu satisfies a homogeneous linear
system of ordinary differential equations, from this the conclusion of Proposition
15.1.2 for n = 3 follows immediately. �

From Propositions 15.1.1 and 15.1.2, we can always assume that ρ(t, x) > 0 (no
vacuum occurs), and that the velocity field u(t, x) is irrotational, that is, there exists
a potential function φ(t, x) such that

u = −grad φ, (15.1.20)

where grad stands for the gradient with respect to x = (x1, . . . , xn)T , i.e.,

ui (t, x) = −∂φ(t, x)

∂xi
, i = 1, . . . , n. (15.1.21)

Then, from Eq. (15.1.4) we get

∂ρ

∂t
−

n∑

i=1

∂(ρφxi )

∂xi
= 0, (15.1.22)

while, it yields easily, from Eq. (15.1.8), the following Bernoulli law:

−φt + 1

2
|gradφ|2 + f (ρ) = C, (15.1.23)

where C is a constant.
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Noting that the f (ρ) defined by (15.1.7) can be different up to an arbitrary con-
stant, we can absorb the constant C into the definition of f (ρ), then (15.1.23) can
be simplified as

f (ρ) = φt − 1

2
|gradφ|2. (15.1.24)

Denoting by H the inverse function of f , we obtain

ρ = H

(
φt − 1

2
|gradφ|2

)
, (15.1.25)

and noting ρ > 0 and (15.1.3), it is easy to get

H(0) > 0, H ′(0) > 0. (15.1.26)

Plugging (15.1.27) in (15.1.22),we obtain the partial differential equation satisfied
by φ = φ(t, x):

(
H(φt − 1

2
|gradφ|2)

)

t

−
n∑

i=1

(
H(φt − 1

2
|gradφ|2)φxi

)

xi

= 0. (15.1.27)

It is easy to know that, near φ = 0, this equation is a nonlinear wave equation which
does not depend on φ explicitly, and the value of α corresponding to the term
F(Dφ, Dx Dφ) on the right-hand side is α = 1. Considering its Cauchy problem
with small initial data

t = 0 : φ = εϕ(x), φt = εψ(x), (15.1.28)

where ε > 0 is a small parameter, and ϕ(x), ψ(x)∈ C∞
0 (IRn), we can give the lower

bound estimates on the life-span T̃ (ε) of its classical solutions by using previous
results.

Specifically speaking, when n = 2, from the results in Sect. 10.4 of Chap. 10, we
have

T̃ (ε) ≥ bε−2, (15.1.29)

where b is a positive constant independent of ε; while,when n = 3, form the results
in Sect. 15.3, we have

T̃ (ε) ≥ exp{aε−1}, (15.1.30)

where a is a positive constant independent of ε.

Remark 15.1.1 For the above result, we refer the reader to Sideris (1985, 1992) and
Alinhac (1993).

http://dx.doi.org/10.1007/978-3-662-55725-9_4
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15.1.2 Time-Like Minimal Hypersurface in Minkowski Space

We consider the following functional in Minkowski space

L(φ) =
∫∫ √√√√1 − φ2

t +
n∑

k=1

φ2
xk dxdt, (15.1.31)

its corresponding Euler-Lagrange equation is

(
φt

(
1 − φ2

t +
n∑

k=1

φ2
xk

)−1/2
)

t

−
n∑

i=1

(
φxi

(
1 − φ2

t +
n∑

k=1

φ2
xk

)−1/2
)

xi

= 0, (15.1.32)

where φ = φ(t, x1, . . . , xn). The solution φ = φ(t, x1, . . . , xn) of (15.1.32) is called
the time-like minimal hypersurface.

It is clear that (15.1.32) is a nonlinear wave equation with the term on the right-
hand side not depending on φ:

�φ = F(Dφ, Dx Dφ), (15.1.33)

and in a neighborhood of φ = 0, the value of α corresponding to the term F on
the right-hand side is α = 2. In addition, neglecting the higher order terms, the
corresponding term on the right-hand side can be written as

F̃(Dφ, Dx Dφ) = −φt Q0(φ, φt ) +
n∑

i=1

φxi Q0(φ, φxi ), (15.1.34)

where

Q0( f, g) = ft gt −
n∑

k=1

fxk gxk . (15.1.35)

We consider the Cauchy problem of Eq. (15.1.32) with the initial data

t = 0 : φ = εφ0(x1, . . . , xn), φt = εφ1(x1, . . . , xn), (15.1.36)

where ε > 0 is a small parameter, and φ0, φ1 ∈ C∞
0 (IRn).

From Chap.9, when n ≥ 3, Cauchy (15.1.32) and (15.1.36) must have global
classical solutions. When n = 2, noting (15.1.34), from Sect. 12.3 in Chap.12,
Eq. (15.1.32) satisfies the corresponding null condition, then its Cauchy problem

http://dx.doi.org/10.1007/978-3-662-55725-9_9
http://dx.doi.org/10.1007/978-3-662-55725-9_12
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with the initial value (15.1.36) must have global classical solutions as well. While,
when n = 1, from Chap.8, the life-span T̃ (ε) of classical solutions to the Cauchy
problem (15.1.32) and (15.1.36) has the following lower bound estimate:

T̃ (ε) ≥ aε−2, (15.1.37)

where a is a positive constant independent of ε.

Remark 15.1.2 For the above results, we refer the reader to Lindblad (2004).

15.2 Some Further Results

15.2.1 Further Results When n = 2

When n = 2 and α = 2, from Chap.10, if we assume that

∂β
u F(0, 0, 0) = 0 (β = 3, 4), (15.2.1)

then for the corresponding Cauchy problemwith small initial data, the life-span T̃ (ε)

of classical solutions has the following lower bound estimate:

T̃ (ε) ≥ exp{aε−2}, (15.2.2)

where a is a positive constant independent of ε, that is to say, nowwe have the almost
global classical solution.

Instead of (15.2.1), if we only assume that

∂3
u F(0, 0, 0) = 0, (15.2.3)

Katayama (2001) already proved that the corresponding life-span of classical solu-
tions has the lower bound estimate

T̃ (ε) ≥ bε−18, (15.2.4)

where b is a positive constant independent of ε. The sharpness of this lower bound
estimate was already proved by Han and Zhou (2014). Moreover, when n = 2 and
α = 2, in Sect. 12.3 of Chap.12, under the additional assumption that the lowest
order term (cubic term) on the right-hand side satisfies the null condition, the global
existence of classical solutions has been proved for the Cauchy problem with small
initial data. But when n = 2 and α = 1, if the corresponding lowest order term
(quadratic term) on the right-hand side satisfies the null condition, can the original

http://dx.doi.org/10.1007/978-3-662-55725-9_8
http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_12
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lower bound estimate (see (10.1.9) inChap.10) on the Life-span of classical solutions
life-span of classical solutions be obviously improved? Focusing on this point, S.
Alinhac considered the following Cauchy problem of quasi-linear wave equation
with small initial data (see Alinhac 2001):

�u +
2∑

μ,ν=0

gμν(Du)∂μνu = 0, (15.2.5)

t = 0 : u = εϕ(x), ut = εψ(x), (15.2.6)

where ϕ, ψ∈ C∞
0 (IR2), gμν(0) = 0 (μ, ν = 0, 1, 2), and ε > 0 is a small parameter.

For this kind of second-order quasi-linear wave equation with special form (corre-
spondingly, α = 1), he proved that: when the quadratic term of the equation satisfies
the null condition, the life-span of its classical solution has the same lower bound
estimate (15.2.2) as in the case α = 2, while, when both the quadratic and cubic
terms of the equation satisfy the null conditions, the corresponding Cauchy problem
admits a global classical solution. The extension of this result to the general case is
still open.

15.2.2 Further Results When n = 3

When n = 3 and α = 1, from the discussion in Sect. 12.2 of Chap.12, if the quasi-
linear wave equation under consideration satisfies the null condition, then the corre-
spondingCauchy problemwith small initial datamust have global classical solutions.
This shows that the null condition is a sufficient condition to ensure the global ex-
istence of classical solutions, but this condition is not always necessary. Sometime
even the null condition is not satisfied, the corresponding Cauchy problemwith small
initial data may still have global classical solutions. Lindblad (1992, 2004), Alinhac
(2003) considered the Cauchy problem of the following quasi-linear wave equation

3∑

μ,ν=1

gμν(u)∂μνu = 0 (15.2.7)

with small initial value (15.2.6), where

(gμν(0)) = diag{−1, 1, 1, 1}, (15.2.8)

and proved the global existence of classical solutions. How to fit this result under
special occasions in a general framework is an interesting problem (see Sect. 15.3.2).

http://dx.doi.org/10.1007/978-3-662-55725-9_10
http://dx.doi.org/10.1007/978-3-662-55725-9_12
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15.3 Some Important Developments

The ideas and methods for solving the Cauchy problem of nonlinear wave equations
with small initial data can also be applied to some other important equations or
systems in physics, such as three-dimensional nonlinear elastodynamics equations
and Einstein equation in a vacuum, and so on. Even if these applications are beyond
the scope of this book, we can learn and then continue in-depth study of related
references and contents on a very good basis as long as we master the contents
and methods in this book. In this section, we only give a brief description on these
developments and applications.

15.3.1 Three-Dimensional Nonlinear Elastodynamics
Equations

Suppose that the elastic body is in the state of nature before deformation (at a
certain moment, say, t = 0), and has a unit density, with the position coordinate
x = (x1, x2, x3)T of any given particle. Suppose that after this moment, the elastic
body deforms with the motion law depicted by

y(t, x) = (y1(t, x), y2(t, x), y3(t, x))
T ,

where y = y(t, x) stands for the position coordinate of the particle at time t , which
is located at position x at time t = 0. The deformation of the elastic body at time t

is described by the deformation gradient tensor F =
(

∂yi
∂x j

)
.

For small deformation, we can assume that

y = x + u, (15.3.1)

where u = (u1, u2, u3)T is a sufficiently small vector. Thus, we have

F = I + ∇u. (15.3.2)

Due to the conservation law of momentum, in the case without external force, the
corresponding nonlinear elastodynamics equations can be written as (see (5.74) in
Chap.5 of Li and Qin 2012)

∂2ui
∂t2

−
3∑

j=1

∂pi j (∇u)

∂x j
= 0, i = 1, 2, 3, (15.3.3)

where P = (pi j ) is the Piola stress tensor.
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Denote

� = F−1P. (15.3.4)

It is called the second Piola stress tensor, and is a symmetric tensor. It is known
that (see Theorem 5.5 in Chap.5 of Li and Qin 2012)

� = λ(trẼ)I + 2μẼ + o(|Ẽ|), (15.3.5)

where λ and μ are the Lamé constants, o(|Ẽ|) stands for the higher order term of
|Ẽ|, and noting (15.3.2),

Ẽ = 1

2
(FTF − I) = 1

2

(∇u + (∇u)T
) + o(|∇u|) = E + o(|∇u|), (15.3.6)

in which

E = 1

2

(∇u + (∇u)T
)

(15.3.7)

is the Cauchy strain tensor in the linear elastic case. Thus, from (15.3.5) we have

� = λ(trE)I + 2μE + o(|∇u|), (15.3.8)

then from (15.3.4) and noting (15.3.2), we have

P = λ(trE)I + 2μE + o(|∇u|). (15.3.9)

Plugging (15.3.9) in (15.3.3), it is easy to get

∂2u
∂t2

− a22
u − (a21 − a22)∇divu = F(∇u,∇2u), (15.3.10)

where a21 and a
2
2 are determined by

λ + μ = a21 − a22, μ = a22, (15.3.11)

and F(∇u,∇2u) is the term of second or above order, which is linear with respect to
∇2u. a1 and a2 are the propagation speed of the longitudinal wave and the transverse
wave, respectively, and it can always be assumed that a1 > a2 > 0.

As a quasi-linear hyperbolic system with double wave speeds, the nonlinear elas-
todynamics equations can be studied using arguments similar to those for the wave
equation, although it cannot be dealt with by being reduced directly to the corre-
sponding wave equation.
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For the Cauchy problem of system (15.3.10) with small initial data

t = 0 : u = εϕ(x), ut = εψ(x), (15.3.12)

where ϕ(x), ψ(x) ∈ (C∞
0 (IR3))3, and ε > 0 is a small parameter, the almost global

existence of classical solutions can be proved, in other words, its life-span T̃ (ε)

satisfies

T̃ (ε) ≥ exp{aε−1}, (15.3.13)

where a is a positive constant independent of ε, see John (1988), Klainerman and
Sideris (1996).

To obtain the global existence of classical solutions to Cauchy problem (15.3.10)
and (15.3.12), it is necessary to prescribe some appropriate null conditions to the
term F(∇u,∇2u) on the right-hand side of system (15.3.10).

To specify this, we furthermore assume that thematerial under consideration is the
isotropic hyperelastic material. By the hyperelastic assumption of the material (see
Definition 5.3 in Chap.5 of Li and Qin 2012), there exists a stored-energy function
W = Ŵ (F) = W (∇u) such that the Piola stress tensor

pi j = ∂W (∇u)

∂ui j
, (15.3.14)

where we denote

ui j = ∂ui
∂x j

. (15.3.15)

Then system (15.3.3) can be written as

∂2ui
∂t2

−
3∑

j,k,l=1

ai jkl(∇u)
∂2uk

∂x j∂xl
= 0, i = 1, 2, 3, (15.3.16)

where

ai jkl = ∂2W

∂ui j∂ukl
. (15.3.17)

Using Taylor expansion, the coefficients ai jkl in system (15.3.16) can be written as

ai jkl(∇u) = ai jkl(0) +
3∑

m,n=1

bi jklmnumn + o(|∇u|), (15.3.18)
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where

bi jklmn = ∂3W

∂ui j∂ukl∂umn
(0). (15.3.19)

Thus, system (15.3.16) can be written as

∂2ui
∂t2

−
3∑

j,k,l=1

ai jkl (0)
∂2uk

∂x j∂xl
=

3∑

j,k,l,m,n=1

bi jklmnumn
∂2uk

∂x j∂xl
+ f̃i (∇u,∇2u), i = 1, 2, 3,

(15.3.20)

where f̃i (∇u,∇2u) (i = 1, 2, 3) are terms of third or above order, which are linear
with respect to ∇2u. Obviously, the left-hand side of (15.3.20) should be the same
as that of (15.3.10).

From the isotropic assumption of the material, the stored-energy function W is a
function of the principal values k1, k2 and k3 of the matrix FTF − I (see Sect. 5.4.3
in Chap.5 of Li and Qin 2012), and these principal values k1, k2 and k3 can all
be explicitly given by (ui j ), therefore, the dependence of W on ∇u = (ui j ) can be
realized by the dependence on these principal values, then the derivatives of W with
respect to ui j can be expressed by

∂W

∂ui j
=

3∑

l=1

∂W

∂kl

∂kl
∂ui j

and so on. Thus, the first term on the right-hand side of (15.3.20) can be written as

3∑

j,k,l,m,n=1

bi jklmnumn
∂2uk

∂x j∂xl
= 2(2W111(0) + 3W11(0))∇(divu)2 + . . . ,

(15.3.21)

where, except the first term on the right-hand side, all the other unwritten terms can
be properly treated when doing energy estimates. Assuming that

2W111(0) + 3W11(0) = 0, (15.3.22)

where

W11(0) = ∂2W

∂k21
(0), W111(0) = ∂3W

∂k31
(0), (15.3.23)

the global existence of classical solutions canbeproved forCauchyproblem (15.3.20)
and (15.3.12) with small initial data, see Sideris (2000), Agemi (2000), Xin (2002).

Equation (15.3.22) is just the null condition for the nonlinear elastodynamics
equations in the case of isotropic hyperelastic material.
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15.3.2 Einstein Equation in a Vacuum

According to the general relativity, the space-time is a four-dimensional pseudo-
Riemannian manifold with the metric

ds2 = gμν(x)dx
μdxν, (15.3.24)

where x = (x0, x1, x2, x3), μ, ν = 0, 1, 2, 3, which is also the case for values of
other Greek indices, the summation convention is adopted for the same superscript
and subscript, and g = (gμν) is a second-order covariant symmetric tensor with the
symbol (−1, 1, 1, 1).

Introduce Christoffel notation

μδν = 1

2

(
∂gδν

∂xμ
+ ∂gδμ

∂xν
− ∂gμν

∂xδ

)
= νδμ (15.3.25)

and

 λ
μ ν = gλδμδν =  λ

ν μ, (15.3.26)

where (gλδ), the inverse matrix of (gμν), is a second-order contravariant symmetric
tensor. The corresponding Riemann curvature tensor is given by:

R λ
μ νβ = ∂ λ

μ ν

∂xβ
− ∂ λ

μ β

∂xν
+  λ

ρ β ρ
μ ν −  λ

ρ ν
ρ

μ β (15.3.27)

and

Rμανβ = gαλR
λ

μ νβ, (15.3.28)

and the Ricci curvature tensor is the contraction of the Riemann curvature tensor:

Rμν = R α
μ να, (15.3.29)

which is a second-order covariant tensor. Contracting once more the Ricci curvature
tensor, we get the curvature scalar:

R = gμνRμν. (15.3.30)

The Einstein tensor which is very useful for the general relativity is defined by

Gμν = Rμν − 1

2
gμνR, (15.3.31)

and the Einstein equation in a vacuum can be written as
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Gμν = 0, μ, ν = 0, 1, 2, 3. (15.3.32)

Noting (15.3.31), by contracting (15.3.32) we immediately obtain

R = 0, (15.3.33)

so the Einstein equation in a vacuum can be written as

Rμν = 0, μ, ν = 0, 1, 2, 3. (15.3.34)

It is a system of second-order partial differential equations satisfied by the metric
tensor (gμν).

Obviously, Eq. (15.3.34) has a solution given by the flat metric

(mμν) = diag{−1, 1, 1, 1}, (15.3.35)

called the Minkowski space-time. The stability of the Minkowski space-time
(15.3.35) is a highly significant and challenging problem, that is, when the ini-
tial value is a small perturbation of the Minkowski metric (15.3.35) in some sense,
whether the corresponding Cauchy problem of the Einstein equation (15.3.34) in a
vacuumexists a global classical solution close to theMinkowski space-time (15.3.35)
in some sense. D. Christodoulou and S. Klainerman proved at considerable length in
1993 the stability of the Minkowski space-time, see Christodoulou and Klainerman
(1993). Later, H. Lindblad and I. Rodnianski gave a simplified proof of this result in
2005, see Lindblad and Rodnianski (2005, 2010). Here we briefly sketch the proof
of the latter.

We first point out that, since (Rμν) is a tensor, Eq. (15.3.34) is invariant under
any given reversible coordinate transformation, therefore, solutions to Eq. (15.3.34)
(even if under given initial conditions) are not unique. To ensure the uniqueness of
solutions to equation (15.3.34), we need to find a special coordinate system and to
discuss the subject under this system. For Einstein equation, we usually take the
so-called harmonic coordinates (now called the wave coordinates), namely, the
coordinates xμ (μ = 0, 1, 2, 3) are required to satisfy

�gx
μ = 0, μ = 0, 1, 2, 3, (15.3.36)

where �g is the Laplace–Beltrami operator corresponding to g = (gμν). Under the
local coordinates,

�g = 1√|g|∂μ(gμν
√|g|∂ν), (15.3.37)

where |g| = det(gμν).



15.3 Some Important Developments 377

By the definition of the determinant, it is easy to know that

∂|g|
∂gμν

= |g|gμν,

then we have

∂|g|
∂xμ

= ∂|g|
∂gνγ

∂gνγ

∂xμ
= |g|gνγ ∂gνγ

∂xμ
. (15.3.38)

Since

gλδg
δν = δν

λ,

where δν
λ is the Kronecker symbol, it is easy to get

∂gμν

∂xγ
= −gμλ ∂gλδ

∂xγ
gδν, (15.3.39)

then

∂gμν

∂xμ
= −gμλ ∂gλδ

∂xμ
gδν . (15.3.40)

Using (15.3.38) and (15.3.40), (15.3.37) can be rewritten as

�g = gμν ∂2

∂xμ∂xν
− gμν δ

μ ν

∂

∂xδ
, (15.3.41)

where  δ
μ ν is the Christoffel symbol defined by (15.3.26).

It follows immediately from (15.3.36) and (15.3.41) that under the wave coordi-
nates we always have

gμν α
μ ν = 0, α = 0, 1, 2, 3, (15.3.42)

then under the wave coordinates, the Laplace–Beltrami operator is reduced to

�g = gμν ∂2

∂xμ∂xν
. (15.3.43)

In addition, noting (15.3.25)–(15.3.26), from (15.3.42) we obtain

gμνμγν = 1

2
gμν

(
∂gγμ

∂xν
+ ∂gγ ν

∂xμ
− ∂gμν

∂xγ

)
= 0, γ = 0, 1, 2, 3,
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that is,

gμν ∂gμγ

∂xν
= 1

2
gμν ∂gμν

∂xγ
, γ = 0, 1, 2, 3, (15.3.44)

or by (15.3.39) we equivalently have

∂gμν

∂xν
= 1

2
gνγ g

μλ ∂gνγ

∂xλ
. (15.3.45)

Now we write specifically the Einstein equation (15.3.34) in a vacuum under the
wave coordinates.

First, from (15.3.25) it is clear that

∂gαμ

∂xβ
= βαμ + βμα, (15.3.46)

then differentiating the following formula equivalent to (15.3.26):

μαν = gαλ
λ

μ ν

once with respect to xβ , we get

gαλ

∂ λ
μ ν

∂xβ
= ∂μαν

∂xβ
− (

βαλ + βλα

)
 λ

μ ν. (15.3.47)

Thus, noticing αλβ = βλα , from (15.3.27)–(15.3.28) we get

Rμανβ = gαλ

(
∂ λ

μ ν

∂xβ
− ∂ λ

μ β

∂xν
+  λ

ρ β ρ
μ ν −  λ

ρ ν
ρ

μ β

)

= ∂μαν

∂xβ
− ∂μαβ

∂xν
+ νλα λ

μ β − αλβ λ
μ ν, (15.3.48)

then

Rμν = gαβ

(
∂μαν

∂xβ
− ∂μαβ

∂xν
+ νλα λ

μ β − αλβ λ
μ ν

)

= gαβ

(
∂μαν

∂xβ
− ∂μαβ

∂xν
+ νλα λ

μ β

)
, (15.3.49)

in which we used (15.3.42) under the wave coordinates to obtain the last formula.
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Differentiating (15.3.44) once, and using (15.3.39), we obtain

gαβ

(
∂2gβν

∂xμ∂xα
− 1

2

∂2gαβ

∂xμ∂xν

)
= −∂gαβ

∂xμ

(
∂gβν

∂xα
− 1

2

∂gαβ

∂xν

)

= gαα′
gββ ′ ∂gα′β ′

∂xμ

(
∂gβν

∂xα
− 1

2

∂gαβ

∂xν

)
, (15.3.50)

then from (15.3.25) it is easy to show that

gαβ

(
∂μαν

∂xβ
− ∂μαβ

∂xν

)

= −1

2
gαβ ∂2gμν

∂xα∂xβ
+ 1

2
gαβ

(
∂2gβν

∂xα∂xμ
+ ∂2gμα

∂xν∂xβ
− ∂2gβα

∂xν∂xμ

)

= −1

2
gαβ ∂2gμν

∂xα∂xβ
+ 1

2
gαα′

gββ ′
(

∂gα′β ′

∂xμ

∂gβν

∂xα
+ ∂gα′β ′

∂xν

∂gβμ

∂xα
− ∂gα′β ′

∂xν

∂gαβ

∂xμ

)
.

(15.3.51)

Noting (15.3.44), we have

gαα′
gββ ′ ∂gα′β ′

∂xμ

∂gβν

∂xα

=gαα′
gββ ′ ∂gα′β ′

∂xα

∂gβν

∂xμ
+ gαα′

gββ ′
(

∂gα′β ′

∂xμ

∂gβν

∂xα
− ∂gα′β ′

∂xα

∂gβν

∂xμ

)

=1

2
gαα′

gββ ′ ∂gα′α

∂xβ ′
∂gβν

∂xμ
+ gαα′

gββ ′
(

∂gα′β ′

∂xμ

∂gβν

∂xα
− ∂gα′β ′

∂xα

∂gβν

∂xμ

)

=1

2
gαα′

gββ ′ ∂gα′α

∂xμ

∂gβν

∂xβ ′

+ gαα′
gββ ′

[
1

2

(
∂gα′α

∂xβ ′
∂gβν

∂xμ
− ∂gα′α

∂xμ

∂gβν

∂xβ ′

)
+

(
∂gα′β ′

∂xμ

∂gβν

∂xα
− ∂gα′β ′

∂xα

∂gβν

∂xμ

)]

=1

4
gαα′

gββ ′ ∂gαα′

∂xμ

∂gββ ′

∂xν

+ gαα′
gββ ′

[
1

2

(
∂gα′α

∂xβ ′
∂gβν

∂xμ
− ∂gα′α

∂xμ

∂gβν

∂xβ ′

)
+

(
∂gα′β ′

∂xμ

∂gβν

∂xα
− ∂gα′β ′

∂xα

∂gβν

∂xμ

)]
.

(15.3.52)

Thus, the second term on the right-hand side of (15.3.51) can be written as

1

2
gαα′

gββ ′
(

∂gα′β ′

∂xμ

∂gβν

∂xα
+ ∂gα′β ′

∂xν

∂gβμ

∂xα
− ∂gα′β ′

∂xν

∂gαβ

∂xμ

)

=gαα′
gββ ′

(
1

4

∂gαα′

∂xμ

∂gββ ′

∂xν
− 1

2

∂gα′β ′

∂xν

∂gαβ

∂xμ

)
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+ 1

2
gαα′

gββ ′
[(

∂gα′β ′

∂xμ

∂gβν

∂xα
− ∂gα′β ′

∂xα

∂gβν

∂xμ

)
+

(
∂gα′β ′

∂xν

∂gβμ

∂xα
− ∂gα′β ′

∂xα

∂gβμ

∂xν

)]

+ 1

4
gαα′

gββ ′
[(

∂gα′α

∂xβ ′
∂gβν

∂xμ
− ∂gα′α

∂xμ

∂gβν

∂xβ ′

)
+

(
∂gα′α

∂xβ ′
∂gβμ

∂xν
− ∂gα′α

∂xν

∂gβμ

∂xβ ′

)]
.

(15.3.53)

On the other hand, we have

gαβνλα λ
μ β

=1

4
gαβ

(
∂gλν

∂xα
+ ∂gλα

∂xν
− ∂gνα

∂xλ

)
gλγ

(
∂gγμ

∂xβ
+ ∂gγβ

∂xμ
− ∂gμβ

∂xγ

)

=1

4
gαα′

gββ ′
(

∂gαβ

∂xν
+ ∂gαν

∂xβ
− ∂gβν

∂xα

)(
∂gα′β ′

∂xμ
+ ∂gα′μ

∂xβ ′ − ∂gβ ′μ

∂xα′

)

=1

4
gαα′

gββ ′ ∂gαβ

∂xν

∂gα′β ′

∂xμ
+ 1

2
gαα′

gββ ′
(

∂gβμ

∂xα

∂gβ ′ν

∂xα′ − ∂gβμ

∂xα

∂gα′ν

∂xβ ′

)

=gαα′
gββ ′

(
1

4

∂gαβ

∂xν

∂gα′β ′

∂xμ
+ 1

2

∂gβμ

∂xα

∂gβ ′ν

∂xα′ − 1

2

∂gβμ

∂xβ ′
∂gα′ν

∂xα

)

− 1

2
gαα′

gββ ′
(

∂gβμ

∂xα

∂gα′ν

∂xβ ′ − ∂gβμ

∂xβ ′
∂gα′ν

∂xα

)

=gαα′
gββ ′

(
1

4

∂gαβ

∂xν

∂gα′β ′

∂xμ
− 1

8

∂gββ ′

∂xμ

∂gαα′

∂xν
+ 1

2

∂gβμ

∂xα

∂gβ ′ν

∂xα′

)

− 1

2
gαα′

gββ ′
(

∂gβμ

∂xα

∂gα′ν

∂xβ ′ − ∂gβμ

∂xβ ′
∂gα′ν

∂xα

)
, (15.3.54)

in which we used (15.3.44) under the wave coordinates to obtain the last formula.
Plugging (15.3.51)–(15.3.54) in (15.3.49), we obtain

Rμν = − 1

2
gαβ ∂2gμν

∂xα∂xβ
+ gαα′

gββ ′
(

− 1

4

∂gαβ

∂xν

∂gα′β ′
∂xμ

+ 1

8

∂gββ ′
∂xμ

∂gαα′
∂xν

)

+ 1

2
gαα′

gββ ′ ∂gβμ

∂xα

∂gβ ′ν
∂xα′ − 1

2
gαα′

gββ ′
(

∂gβμ

∂xα

∂gα′ν
∂xβ ′ − ∂gβμ

∂xβ ′
∂gα′ν
∂xα

)

+ 1

2
gαα′

gββ ′
[(

∂gα′β ′
∂xμ

∂gβν

∂xα
− ∂gα′β ′

∂xα

∂gβν

∂xμ

)
+

(
∂gα′β ′
∂xν

∂gβμ

∂xα
− ∂gα′β ′

∂xα

∂gβμ

∂xν

)]

+ 1

4
gαα′

gββ ′
[(

∂gα′α
∂xβ ′

∂gβν

∂xμ
− ∂gα′α

∂xμ

∂gβν

∂xβ ′

)
+

(
∂gα′α
∂xβ ′

∂gβμ

∂xν
− ∂gα′α

∂xν

∂gβμ

∂xβ ′

)]
.

(15.3.55)

Thus, under the wave coordinates, the Einstein equation (15.3.34) in a vacuum is
finally written as

�ggμν = P(∂μg, ∂νg) + Qμν(∂g, ∂g), (15.3.56)
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where �g is the coupled wave operator given by (15.3.43), and

P(∂μg, ∂νg) = 1

4
gαα′ ∂gαα′

∂xμ
gββ ′ ∂gββ ′

∂xν
− 1

2
gαα′

gββ ′ ∂gαβ

∂xμ

∂gα′β ′

∂xν
, (15.3.57)

Qμν(∂g, ∂g) = ∂gβμ

∂xα
gαα′

gββ ′ ∂gβ ′ν
∂xα′ − gαα′

gββ ′
(

∂gβμ

∂xα

∂gα′ν
∂xβ ′ − ∂gβμ

∂xβ ′
∂gα′ν
∂xα

)

+ gαα′
gββ ′

(
∂gα′β ′

∂xμ

∂gβν

∂xα
− ∂gα′β ′

∂xα

∂gβν

∂xμ

)
+ gαα′

gββ ′
(

∂gα′β ′

∂xν

∂gβμ

∂xα
− ∂gα′β ′

∂xα

∂gβμ

∂xν

)

+ 1

2
gαα′

gββ ′
(

∂gα′α
∂xβ ′

∂gβν

∂xμ
− ∂gα′α

∂xμ

∂gβν

∂xβ ′

)
+ 1

2
gαα′

gββ ′
(

∂gα′α
∂xβ ′

∂gβμ

∂xν
− ∂gα′α

∂xν

∂gβμ

∂xβ ′

)
.

(15.3.58)

It is clear that the right-hand side of Eq. (15.3.56) is a quadratic term with respect to
∂g, whose coefficients are smooth functions of g.

To consider the small perturbation of the Minkowski space-time (15.3.35), we
write the unknown metric g as

gμν = mμν + hμν, μ, ν = 0, 1, 2, 3, (15.3.59)

then from (15.3.56) we know that under the wave coordinates, h = (hμν) should
satisfy the equation

�m+hhμν = Fμν(h)(∂h, ∂h), (15.3.60)

where Fμν(h)(∂h, ∂h) is a quadratic term with respect to ∂h, and its coefficients are
smooth functions of h. Specifically, we have

Fμν(h)(∂h, ∂h) = F(∂μh, ∂νh) + Gμν(∂h, ∂h) + Hμν(h)(∂h, ∂h), (15.3.61)

where

F(∂μh, ∂νh) = 1

4
mαα′ ∂hαα′

∂xμ
mββ ′ ∂hββ ′

∂xν
− 1

2
mαα′

mββ ′ ∂hαβ

∂xμ

∂hα′β ′

∂xν
, (15.3.62)

Gμν(∂h, ∂h)

= ∂hβμ

∂xα
mαα′

mββ ′ ∂hβ ′ν
∂xα′ − mαα′

mββ ′
(

∂hβμ

∂xα

∂hα′ν
∂xβ ′ − ∂hβμ

∂xβ ′
∂hα′ν
∂xα

)

+ mαα′
mββ ′

(
∂hα′β ′

∂xμ

∂hβν

∂xα
− ∂hα′β ′

∂xα

∂hβν

∂xμ

)
+ mαα′

mββ ′
(

∂hα′β ′

∂xν

∂hβμ

∂xα
− ∂hα′β ′

∂xα

∂hβμ

∂xν

)

+ 1

2
mαα′

mββ ′
(

∂hα′α
∂xβ ′

∂hβν

∂xμ
− ∂hα′α

∂xμ

∂hβν

∂xβ ′

)
+ 1

2
mαα′

mββ ′
(

∂hα′α
∂xβ ′

∂hβμ

∂xν
− ∂hα′α

∂xν

∂hβμ

∂xβ ′

)
,

(15.3.63)
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and Hμν(h)(∂h, ∂h), being the higher order term, is a quadratic term with respect
to ∂h, whose coefficients are smooth functions of h, and Hμν(h)(∂h, ∂h) vanishes
when h = 0: Hμν(0)(∂h, ∂h) = 0.

Gμν(∂h, ∂h) given by (15.3.63) satisfies the null condition, however, P(∂μh, ∂νh)

given by (15.3.62) does not satisfy the null condition. Let

h̄ = mμνhμν. (15.3.64)

From (15.3.60) we know that h̄ is the solution to the following equation satisfying
the null condition:

gαβ ∂2h̄

∂xα∂xβ
= G(∂h, ∂h) + H(h)(∂h, ∂h), (15.3.65)

where G(∂h, ∂h) is a quadratic term with respect to ∂h, and H(h)(∂h, ∂h), being
the higher order term, is a quadratic term with respect to ∂h, whose coefficients are
smooth functions of h, and H(h)(∂h, ∂h) vanishes when h = 0: H(0)(∂h, ∂h) = 0.
We can call h̄ the good component. By (15.3.62), the first term on the right-hand
side of F(∂μh, ∂νh) is a quadratic term with respect to the good component h̄, while,
the second term needs further analysis which is omitted here. As for �m+hhμν , it
can be treated by using the same arguments dealing with Eq. (15.2.7). Combining
all these factors, we can obtain the global existence of h = (hμν) with small initial
data, and then the stability of the Minkowski space-time (15.3.35) (see Lindblad and
Rodnianski 2005 for details).
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