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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 12(5), 471-501 (1987)

Long-time behaviour of solutions of
a system of nonlinear wave equations
MIKHAIL KOVALYOV
Department of Mathematics
Purdue University

West Lafayette, IN 47907

In this paper, we will study long-time behaviour of solutions of the

following initial-value problem:

¢20%u; — Au; = Fy(u',ul), 1< <o, z € R? (1a)

u(0,z) = ef(z), u4(0,z) = eg(z) (1b)

where u = (u1,...,u;,) is a vector-function of t > 0 and z € R?; v/, u”, ul,
u! denote correspondingly all the first and second derivatives of u or its i-th
scalar component and the F; are smooth functions of (u’,u}) independent of
uy; and linear in higher derivatives of u. Moreover, we assume that the F;
vanish at zero with all their derivatives of order less than p. The initial data

is C8° and ¢ is a small parameter.

We chose R? because it seems to be the most difficult case. The same

method with less technicalities can be used for any R™.

Given f, g and F, we define the life-span T, (¢) to be the supremum over
all T > 0 such that a C®-solution of (1a) exists forallz € R*, 0 <t < T
and satisfies the initial conditions (Ib). The following theorem asserts that

T.>0.

471
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THEOREM 1. (Local existence). [10]

Assume that the initial data is C§° and satisfies the condition Xn: |9;u(0, z)] -
1. Then there exists a number T > 0 and a unique Vector-functi;zou(z,t) €
C® for all z € R™® and 0 < ¢t < T which satisfies (la) forz € R*, 0 <t < T
and the initial conditions (1b).

b

Elementary analysis of the proof shows that 7T, > —, where A is a
€

constant depending on f, g and F.

A similar scalar problem (i.e. 3o = 1) for one space dimension was
considered by P. Lax [19] and for three and more space dimensions by S.
Klainerman and F. John [7], [6]. Their results are summarized in the fol-

lowing table for e sufficiently small.

value of # of space lower bound | upper bound
p dimensions for T. for T,
A A, T
2 1 Z o
€ €
|
A A
2 3 Aexp — A.exp —
€ €
2 >4 solution exists globally
>3 >3

The case of two space dimensions was left open. Here we derive lower
bounds for T, for the 2-dimensional case; moreover, we derive them for
nonscalar case i.e. o > 1.1 More elaborate analysis and history of the

problem are given in [18].

1Recently L. Hormander rederived estimates of Klainerman and John and obtained esti-
mates similar to ours for the scalar case.
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In this paper, we will use the following notations:

— J . . — 9 ; — . _ .1 2
aov—at, 8,—82:{ for z—1,2, Q== 82—.’13 81 (23.)
lellm= > ZHa“ﬂ uillz2(r2) (2b)
la|+b<m i=1
MRS S Dl TP (2¢)
lal+b<m i=1

ip 1
w(t,r,p) = (r+ 1) p/z Z ]-;Il(|c,-t |+ 1) (2d)

lal=

Hulllme = D lew (¢, [z}, p)8° 0 ui(t, 3)|| 2 (o) (2e)

la |+b<m i=1

[ulmp = D ZII (t, 2], p)$0° Qui(t, 2) | = (r2) (2f)

la|+b<m i=1

where a = (ag, @1, a;) is a multi-index. Moreover we will assume that

(1)

(3)

If » depends on a parameter ¢ , then putting ¢ at the end of the row
of indices means taking the supremum of the corresponding norm

on the interval [0,¢]; for example,
ulg: = sup |u(r,z
i,z ogy (r, )i (28)

Omitting index of a vector means summation over that index; for

example,
|0ulr = > _|0iuylx (2h)
12%)
For two vectors z1,...,2, and a;,...,a,

=[]=¢ (21)
(¥
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(4) C will stand for a constant, which may vary from step to step. (2j)

Without loss of generality, we may assume that each F; has the following form

Fi(uw',ul) = Z g% (u")0,0pu; + Z g2 (u")Bqus (3a)
a+b>0 2,b>0

with g¢?, gf, € C™ and satisfying

8’ ¥, 1 ‘
'(au')fg?b +‘(6u’)79bi < Coufrm (30)
Yl W)l < 5 (3¢)
a,b,i

for [fu/ <1and 0L j<p-1

Our main results are given in Theorems 2 and 3.

THEOREM 2. (Decay estimates)

Let w be as defined in (2) and F as defined in (3). Then for any 0 <
1
7 < 2’ there is a constant A depending only on f, g, F, ¢; and ~ such that
the corresponding solution of (1) verifies the following decay estimates on

the interval of existence:

Afe + |[|F[]s,p,e}

|0u;(t, z)| < (cit + [2] + 1)95=(Jz] + 1) ([est — |z]| + 1)0°5
if p>3 (4a)
y A{e+en(2+ )T +1|[|F]|]ls, ) : —9
|6 ;(t,fl?)l < (c,-t—l—|x]+1)0‘5_7(‘1|+1)7(]Cit‘I;H'*'l)o‘s if P =«
(4b)

We will prove this theorem in section 2.
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THEOREM 3. (Long-time existence).

Let the F; be as determined by (3). Then there exists an eo and a
constant A depending only on f, g and F such that for all 0 < € < gg, the
life-span T, of the corresponding solution of (1)

A
a) exceeds the number —— if p=2 (5a)
2
e2(tn=)
€
A
b) exceeds the number Aexp —, if p=3 (5b)
€
¢) equals to oo, i.e., the solution exists globally, if p > 3 (5¢)

Remark 1: Similar decay estimates and long-time existence results can
be proved if we allow the F; to depend on v and require that each of the F;
could be written in the divergence form, i.e. F; = > 8, fia(u, %) + f; where
the f; vanish at 0 along with their first p deriva’cive;z and the f;, vanish at O

along with their first p — 1 derivatives.

We will need the following theorem and lemma which will be proved in

section 1.

THEOREM 4. (Energy estimates).

There exist constants By for all integers N > 0, depending only on
F(u’,u") with the following property: Whenever u(t,z) is a C*-solution of
(1) and f; QulP~lds < 1:

10u(t, z)|| v < By||8u(0, )| n (6)
LEMMA 1. Let u € C$° and the F; be as defined in (3). Then

17 lllm,p < ClOuls, 0w lmss (7)
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Proof of Theorem 3: (Part a).

Combining (4b) and (7), we obtain with p =1

[auh’l,t < C{é‘ + ZTL(2 + t)\/ 1+ t[au]l,l,tHBuH5,t} (8)

Let T be the largest number 0 < T < T, such that ||Ou|js,r < ke and
|6u|o,r < 1 for some number k which will be determined later. Then either

1, . 1
V1+Tin(2+7T) > kel T which case v/1+ Tufn(2+ 1) > TheC

sufficiently small € and part a) of the Theorem 3 follows or /1 + T¢n(2+7T) <

for all

1 .
SheC” In the latter case, (8) yields

[31/.]1,1,,5 < Ce (9)

which implies that

T T
/ [Bu(s)iy ds < [3u]1,1,T/ = < ik
o] 0

Then (6) and (9) imply with possibly a different constant C,
18ulls,r < Ce

and

|Oulo,r < Ce

If k is chosen such that C' < g- and Ce < —;, we have |ju||s,7 < %ks and

1
[Ou|o,r < 3 which contradict the choice of T and thus /1 +Tén(2+T) >
1
2keC’

Parts b and c:

Combining (4a) and (7), we obtain with p > 2
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[Oul1,p,e < Cle +[0ulf ]| 0ulls 1} (10)
By (6) ||0ulls,: < Ce provided that
t t
/o |Oulf ™ ds < C[Bulf,;?tfo (1+s)7Pds <1 (11)
Let T be the largest number such that
T
C[au]’f;,lt/ (1+s8)'Pds<1 and [Ou;r<1
0
Substituting (11) into (10) we obtain:
[8u]y,r < Ce{l + [Oulf 1 (12)
. ) 1
Using that |du|;,7 < 1, we obtain for € < —2—6’

[0ul1p,r < 2Ce

Then either

T T
1
C[Bu]f;}T/ (1+8) Pds < Csp_lf (1+8)'"Pds < 5 (13)
0 0
or
T 1
csP”/ (1+s)!7Pds > 5 (14)
0

For ¢ sufficiently small and p > 4, (13) always holds and thus |Qu|,,7+ < —;—
which contradicts the choice of T, unless T = co. For ¢ sufficiently small and
p = 3, either (14) holds and part b) follows or (13) holds and |8u|;,r < ~21u and
thus, we can continue the solution beyond T which contradicts the choice of

T and therefore, (14) must hold.
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1. ENERGY ESTIMATES

In this section, we will prove theorems 4 and lemma 1.

We will use the following lemma which is proved in [10].

LEMMA 2. Consider the equation

v =Av— Y by(t,2)d:0;v = h(2,1)
i+7>0

such that for a;; = §;; + b;;; 1 <1, 7 < n and a constant m

%!612 < i o (t, ©) €& < miéf?

i,7=1

KOVALYOQV

(1.2)

holds uniformly in t > 0, z € R% Then the following inequality is true.

|8v(t, z)]o < C {HBU(O,&:)HO +/O ||h(s,1:)||ods} eXpC/O |8b(s, z)|odz

(1.3)

Applying lemma 2 to (1) with F in the form (3) we obtain for v =

82NPu;y:

cidiv — Av = Z 983,050 + haps
a+b>0

1
where 1 <k <1p,0<a,b <2, Elg?l’lSE and

a,b,i

hapr = h:xﬁk + hiﬁk + hiﬁk

(1.4)

(1.5a)
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héﬂk = }:{aaﬂﬁ(gibaaabuk) - gzbaaﬂﬁaaabuk] (1.5b)
a,b

hegr = Z{gﬁb(aaﬂﬁaaab% ~ 820,0%0Puy)] (1.5¢)
a,b

hapr = Zaaﬂﬁ(ggkabua)l (1.5d)
a,b

By virtue of lemma 2 applied to (1.4)

t t
[0v(t,2)]o < C(100(0,3) o+ [ [hasnlzsds exp [ [6glods
0 0

and hence for some positive constants Cp:
t ¢ .
0u(t, )y < O ([0u(0,2) s+ [ [1h(s)ods) exp O [ 0wz "ds (1)
0 0

where

Ihllo= > Y > Iklalo (1.5¢)

atPSN  1<k<io  1S9<3

Now we use the following lemma which will be proved later on in this

section.

LEMMA 3. Let ||h|lo be as defined in (1.5). Then
Ikfo < Cloul™ | oullw (1.7)
Combining (1.3), (1.7) and f; |0uf~1ds < 1, we obtain

10u(t, 7)l|v < C([|0u(0,2)l|w +/O [0u(s, z)|7 7 (|9u(s, z) || v ds)

which is equivalent to

1T order to aveid ambiguity we again clarify the difference between da and

8
%180 = 5, 8% = [Togr.
k
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' t
%/o 18u(s) 2 |ou(s) | wds exp(—C/O \Bu(r)|P1dr)

SHé’U(O)IIN|f3’U(?f)l’1"1exp(C/ |9u(r) ™" dr)
0
(1.8)

Integrating this, we obtain

t
[ 1ue)Eou(s) s <
© (1.9)

¢ ¢
< HBu(O)HN/ |8u ()P ds expC’/ |Bu(s)|F~ ds
0 0
(1.9) and the fact that fg |8u(s)E7 ds < 1 imply

1u(t)ln < Cllou(0)in (1 + eXPC'/Ot |Bu(s)|7 " ds).
This yields (6).
Now we want to prove lemmas 1 and 3. Their proofs are based on the
following propositions which will be discussed later on in this section.
We will use the following notation in the propositions:

2 means either dx of Qe = ™8y — ¢0,m, k,m,£ > 0;

D* = Ha;:* H Qon¢, where Zak + T = |af.
k21 e>m>1 k>1

Sometimes we write D" instead of D%, |a| = N.

PROPOSITION A1l. For a function u € C§°(R"™) and |a| =1 < k, we

have

1Dullo,ze(rmy < Cllullg Lo (mmy el e (rm)

s <a= =5 <land [ulkcran = T [1Pullrcan)
- |BI<k

PROPOSITION A2. Let fy, fa,...,fr € C®(R"™) and be such that
all norms appearing below are bounded. Moreover, let w = w(f) be a C'?¢
function satisfying

< B|fje?

o
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for 0 < ¢ < ¢, |f| €1 and some constant B. Then there exists a constant C

depending only on w such that

10°(w o f)llzrrmy < C|f|%;1(3n) Z 107 fli e ()

lal=N

PROPOSITION A3. Let f, g € C§°, then
10%(fg) ~ FP%llz2rm) < CUflllglle—1 + Iglol fil)

PROPOSITION A4. Let o(r) be a positive function which is C° for
all r > 0 and C! for all »r > 0 except possibly a finite number of points.
Moreover, let p(r) satisfy the following inequality for allr > 0 and0 < ' <1

and some constant M:

—plr +7') < plr) < Mplr +1).

If f is as in proposition A2, then for || =N

10 (@ o Nlzsse < CUAT Jsamr D 107 Il2s (1.10)
|oj=N
Here | - |o,, and || - ||zr e are correspondingly the weighted L°® and

LP-norm with weight-function ¢.

Proof of Proposition A1, A3 exactly repeats proof of similar propositions
given in [18), [7], proof of proposition A4 is by application of proposition
A2 and appropriate partition of unity. Proposition A2 is generalization of

Moser’s lemma. So we prove it here,

aw N
Pwen)= ¥ G & CallON

0<s<N |a|=2
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where |¢| = a1+ -+ay=s 101 +2a2+ -+ Nay =N
Choosing py = {iﬁ, we obtain by means of generalized Hélder inequal-
anN
ity:

‘w

1P weNlize <€ 3] f)a

0<s<N

DO | % 0l P22

“ al=s |&=1

Using (1.9) and [|(D%f)%||zei < ||D*f]|%5y,. We conclude:

HDN(wof N <C Z 1fli= Z H“DZfHLPN/L (1.11)

0<s<N |a]=8

By proposition Al:
104 || gowe < 115X 1OV £1IF,
Substituting this into (1.11) yields:

HDN(wof e £C Z |f |f|z(1"'ﬁ)a¢“DNf“875ra¢ _

0<8<gq

= CIfIE= 10V £ 2s

Proof of lemma 1: now follows immediately from proposition A4 since

the w defined by (2d) satisfies all the required properties

Proof of Lemma 3: By proposition A3

Ihaprllzz < C(lglilloullw + |9ulollgllw)
which by proposition A2 implies

Ihagxlize < Cloulf ™" 8u| -
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We also have

Ihagx < Clalolldulln < Cloul]|Bufly

and

1A sellze < Clouli||dulln

3
Since ||hllze < 3, Ztﬂ-ﬁS{V “hZﬁkHLz(R?) we obtain (1.7).
~n=1 i<K<1ig

2. DECAY ESTIMATES
Proof of Theorem 2: The theorem is a direct consequence of the follow-

ing two lemmas.

LEMMA 4. Let u be a solution of

d2u — Au=0
(2.1)

u(0,z) =0, u:(0,z) = e¢(x)
with g € C3°. Then there exists a constant C depending only on g such that

Ce

lu(t, z)] < (2.2)
VIt +z]1) (]t =[] + 1)
LEMMA 5. Let u be a solution of
{ ¢idfu; — Au; = Fi(z,t), z€ R?, 1<i<ip
(2.3)
u(0,z) = u(0,2) =0
Moreover, let w(p, a,t,r) be defined as
-1 io a;
w(p,a,t,r) = (r+1)"’7’]_—‘[(1@7:—r|—+—1)_2L (2.4a)
=1
where a = (ay,..., e;,) is a multi-index, |a| = Zo; = p— 1.

We will suppress everywhere the dependence of w on 7, p and o and write

symbolically as
wt,r) = (r+ 1) (et —r| +1)%,[a| =p—1 (2.4b)

Then,
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1
a. ForanyO< < 2 there exists a constant C depending only on F,
¢; and « such that the corresponding solution of (2.3) verifies the

following estimate for p > 3 and any multi-index o : o] =p —1

|6ui| <

C
(eit +r+1)3=7(r + 1) (jest — r| + 1) 7 11F|1s,p.¢ (2.5a)

b. There exists a constant C depending only on F and ¢; such that
the corresponding solution of (2.3) verifies the following estimate

for p = 2 and any multi-index o : |a] =1

cn(2+t) 1+t

| < .5
)aul, - m 1 + ‘Clt _ TE !HFHI3;P;t (2 )b)
with |||+ ||| defined with weight function w given by (2.4) instead of

(2d).
In order to simplify the notation, we will prove these estimates only

for u;. Moreover, we will assume that ¢; = 1. The proof of these lemas

is based essentially on the properties of the functional K defined by the

following definition.

DEFINITION 2.1. Let g(y) be a C°(R2) function and r, § + ¢ be polar
coordinates of y. Define K(t,a,r,8,g) =

’/" g(r, 6 + ¢)dz i @+
—r /12 —a? —r? 4+ 2arccos ¢ 2ar -
© 2 2 __ 42
J / glr0+¥)dz - |2ariodf] g
—¢ V/t¥ —a? — r% + 2arccos ¢ 2ar -
| a® 4+ 7% — 2
{ and © = arccos
2ar
(2.6a)
Also define
K(t,a,r) = K(t,a,r,0,1) ~ (2.6b)

The properties of K(t,a,r) are given in the proposition below.
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PROPOSITION 2.1.

2 4,2 42
Ift >a+r and gi;ar—t_ > 1, then K(t,a,r) satisfies
nl2 + ar
A) |K(t,a,r)|<C 2+ e=tozy] < c (2.7a)
V2 —aZ — 72 Vit2 —(a+71)?
B) laK(t,a,r) ‘BK(t,a,r) Ct
ot ar T (t—a—r)(t+a+r)ViZ—aZ —r2
(2.7b)
2 _ 2 _ .2
Ift<a-+r and t a r <1, then
2ar
A7) K(t,a,r) =1/~ /1 ar (2.7¢)
,T) =4/ — .
’ ar Jo /r(1-1)2+ Pr—1)
2,2 42
with P = et -t
2ar
B* Ktor) < Stz + — 2 x(t-a)]  (27d)
) ,a,T —\/717” (a+'r)2—tzx .
where x is the characteristic function of positive numbers.
) 8K (t,a,r) 8K(t,a,r) C{t + a) (2.7¢)
ot or “(at+r—t){a+r+t)/ar

We will prove the proposition later on in this section.

Proof of Lemma 4: As well known

u(t,z) = 1 / g9(y)dy1dy2
T 2 V2 =]z —yf?

lz—y|<t

In polar coordinates, the formula becomes:
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t+a 0
u(z,t) = u(a,0,t) = / rdr/ 9(r,0 + ¥)dz +
N a2 —r2 4+ 2arccos ¢

./‘t @ /’ g(r,0 + ¥)dz
t—a
- \/t"—a"’ — 12 4+ 2arccos

(2.8)

where a, 8 are polar coordinates of z, and r, # + ¢ are polar coordinates
of y. x is the characteristic function of positive numbers. The domain of

integration is shown below for ¢t < a (left) and t > a (right). /

4y2 /

The unshaded part corresponds to the first integral and is always present.
The shaded region corresponds to the second term and is present only if ¢ > a,
what we have expressed by introducing x(t —a) as a factor. Using functional

K(t,a,r,0,g), we can rewrite (2.8) in a more concise form.

t+a
u(z,t) = u(a,b,t) = / rK(t,a,r,8,g)dr

lt=al (2.9)

t—a
+ x(t — a) / rK(t,a,r,0,g)dr
0

Using the notation

[g“li = sup Ig(ra¢)]
0<y<L2r
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we can estimate |u| in the following manner

a+b
lu(z,t)| < / lglwK(t,a,7)rdr

max(a—t,0)

t+a
t—a)
<c / \/Eg gy v xt—q
{u_a|"’“” PR e L)

. t—a o r ﬂL“L)_
Fx(t )/O |g|wm___rzén[2+ |(a+7‘)2—t2|}dr}
1 t+a s ar x{t — a)
=c { Valt —a| Jji—q| glor*2en2 + m%z']dr

e e or x(t - o
BVl LA il P

t+a
N2 ar x{t — a) ,
AR R U Y

= Vit—al(t+a

(2.10)

Ift>a+1then

t+a ar —a
[ alvtntz+ X 2y

ar
SC/ glpén[2 + ———1(r + 1)%/%dr
[0,t—a—4]Ult—a+1,t+a] 9l n| t2 — (a + ’)2(]( )
tmath ar 3/2
+ -/.—a__ |g|¢,£n[2 + m](r + 1) dr

2

o o)
< c[/ lalo(L + r)¥2en(2 + 7)dr
0
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t—a+4i
~ lo(a) el + )2 n(z + )|z [ nla+ i

t—a—3 ‘ —u= |

< Ce
(2.11)

Similarly, we prove that if ¢ < a — 1 the integral in (2.10) is also less
than Ce. Thus, we obtain for |t —a| > 1

Ce '
lu(z,t)| £ ——— : (2.12)
(t+ a)t —al
Combining this with the estimate
Ce
) <
ju(e,0) < 2=

proved by Klainerman in [10], we obtain (2.2). In order to prove lemma 5,

we need the following definition.

PROPOSITION 2.2. Let u be a solution of

u = 02u — Au = F(z,t)

u(0,2) = u:(0,2) =0

Then

t a+it—a 0
u(t, z) =/ / rdr/ (r,8 +9,5)de
x(0,t—a) Ja—t+e V(t —s)? ~a2—r2+2arccos¢)

t—a t+a—s
t—a/ ds/ / Fir,0 = ¢,s)dz
t V(t—s)? —a? —r? + 2arccos Y

x(twa)/t ads/t a srdr i F(r,6 + ¢,s)dz
0 0 - \/(t—s)z—az—r2+2ar(c2ccg¢)
.loa

where a,§ are polar coordinates of z, and
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a?+r2—(t—s)?

(¢ = arccos
2ar

or

u(t,z) = /D’ K(t—s,a,r,0, F(s))rdrds+x(t—a) /D" K(t—s,a,r, 0, F(s))rdrds

(2.13b)
where the domains [ and D' are shown in the pictures below.
Ay V
t+a t+a
1%
@™ — /|
|
|
a—t | |
[ !
1 S !

Proof: Apply Duhamel’s principal with the solution of (2.1) in form
(2.8) and (2.9).

Proof of Lemma 5: By proposition 2.2

Oui(t,z) = / K(t - s,a,7,0,0F(s))rdrds
4 (2.14)
+ x(t —a) -/D' K(t - s,a,r,0,0F(s))rdrds

where a, 8 are polar coordinates of z.




Downloaded by [Northwestern University] at 09:53 18 January 2015

490 KOVALYOV

We derive estimates (2.5) for the case t > a. If t < a, then the second

term disappears and the derivation is the same as for the first term.

We split our region of integration D' U D into subregions according to
the following scheme
Blue region = {(r,s) €0 :t—a<r+s<t—a+min(62a)}
Black region = {(r,s) € D: max(0,t —a—6) <r+s<t—a}
White region = 0'\Blue region
Red region = D""\Black region
6 is chosen sufficiently small, say 0.1

For example, if t —a > 1, a > 1. The break-up of the domain of integration
looks like this:

Y

If t — a is small the red ration is swallowed by the black region and

similarly, if @ is small the white region is swallowed by the blue region.
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Using that in the white and blue regions

OF (s,r,0 + ¢)dz
)2 —a? —r? 4+ 2arccos®

_ 1 2 QF(s,r,8 + (—1)'¢)dr
_gﬂ;/o Vr(l—=71)(2+ Pr—r)

K(t—s,a,7,0,0F(s)) = /_i V(e

1— 2 2 _ t — 2
with 7 = __cosi, cosp = arri-(t=9) = P we can rewrite (2.14) as
1—cosyp 2ar
Ouy = / K(s,a,r,0,0F(s))rdsdr+
blueUblack

r

+Z/%/ 2aZ+pr—1)

white

OF (s,r,0 + (—1)')dsdr

GF(t — s,r,0 + ¢)dsdr

7|'
r
d
+/_n- w,/d\/(t——s)z —a%? —r% 4 2arccos ¢
re

Bi(z)

If & = 8, or 93, we can write out 8x = ax(z)0y + —r——~8¢ and integrate by

parts the terms containing a8, in / and / obtaining thus:

white red

[31u1]-§— !azu1| < / K(t—s,a,r,G,BF)|rdsdr
black
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+ /K(t— s,a,r,0,0F)rdsdr
blue

tta Jr|F(t,r,0 £ 1)|dr

1 dr
<), \/—_r(hr){ e VBT Pr—1]

t\/r|F(s,r,0 £ 9)|ds

+
0 2a(2 + Pt — 1)

r=t+a—8

t VT|F(t,r,0 £ ¢)|ds
t—a+$ 2a(2+P1‘—r)

+

r=g—t+a

. /t—a+5/2 VT F(s,7,6 £ )]
5 2a(2+ Pr—7)

+/dsdr(a vr

s 2a(2 4+ Pr—r1)
white

o\

ar 2a(2+ Pr—r)

8=0

r=t—g—s+6

) |F(s,r,0,j:¢)|}

. /" o /t-M r|F(s, 7,0 +¢)|ds
. 0 V/(t? — a? — r2 + 2 arccos ¢

8=

t—s)2—a? —r2+2arccos¢

e r|F(s,r,0 £ )|ds
<, V1

1

r=t—a—6—s

o fasar

red

1

e]
a\/(t —8)2 —a? —r?2  2arccosy

+

o
5;\/(t—s)2 —a® —r2 + 2arccos 9

) |F(s,r,0 + w)l}

KOVALYOV

(2.15)
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Br OF
K y &y aos_—
+ (s a,r " 311«') dsdr
redUwhite

If & = 8, integrating by parts again, we obtain that |8;u1| satisfies (2.15) as

well as |8yu| and |@puy|. In order to continue, we need

LEMMA 6. Let w(r) be a positive function which is C° for allr > 0
and C! for all r > 0 except possibly a finite number of points and assume

%<Aw

37| < (r). Then there exists a constant B
-

that for some constant A :

depending only on w such that for all C3(R?)-functions

2|2 (@)w?(z)) B Y [wdf 8520 f|Fa .
ai1+az+as<2

We will prove the lemma later on in this section.

By Lemma 6:
[VrE(s,r,)w(p, s,r)| < Cll|F|]]3,p,t
. oF )
Applying it for F, 8F and %, we obtain:

K(t —s,a,r)/rds dr
w(p, s,r)

9wl < ClIFllans |

blue
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+/t+“ K(t,a,r)y/rdr \/_dr
t

—a+8 (p’t r

/ K(t— sar)\/—ds

w(p, $,7)

r=t+a—s

/t K(t—s,a,r)\/rds
+
t—a+i w(p, s,7)

. /t—“+5/2 K(t — s,a,r)/rds
r—=s—t+a ¢} 'UJ(p,S,T)

r=t—s+d—a

+ K(t - s, a,r)) rdsdr

r w(p,s,r)

8K(t — s,a,r)
or

. / ((BK(t(—%s,a,r) +

white

+/ K(t —s,a,r)\/rdsdr /*—“—5 K(t,a,r)\/rdr

w(p,s,r) w(p,s,7)

black s=0

Er:t—a—&—e

N /t_“—s K(t—s,a,r)y/rds
0

w(p, s,r)

+/ OK(t —s,a,r) 4
ot

red

ar

’BK(t—s,a,r)

K(t —s,a,r)\ +/rdsdr
+ r > w(p,s,r) }

(2.16)

Using estimates (2.7) of proposition 2.1 and the following symbolic no-

tation

we can rewrite (2.16) as

|0u] < C|I|F||la,pt(L1 + -+ + T12) (2.17)
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where

i/’ 2+m]dsdr
a o 7.+1 (|ca r|+1)g'

Zn[2 + z—yz—g]dr‘
+6 + 1)t

t+a
a

Zn 2+ m]d& |

T + 1 ’cs _ T| + 1) r=t+a—s

(|cs -~ r’ +1)% r=s=tta

—a+6/2

G ez Gl
(r+1)%% (les—r] +1)%

Ir:t—a—s+6

dsdr
(r+1)5% (les—r|+1)% (a+r—s5—1)

!
: /
e
“a L

I7=i / In|2 + mg%t_—sv}dsdr
ve Jo (r+1)F (jes—r|+1)%

18= In {2+zt——ay§%a—+rv]dsdr

o (T r+1)5 (les—r|+1)5/{E=9) — a2 — r2
Ig—/t *=8 2+ Gy |

0 (r+1)5 V22 —aZ — 2

Tio = /t"“—"/ _ 2n[2 + '(t—si’i—ria+r55 ]ds
0 (r+1)7 (jes—r|+1)%/(t.— 5)? ~a?

2

495

r=t—a—G§—s
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7 /‘ Zn[2 + Z,‘._—aj‘ﬁm]ds dr
11 =
d(r +1)

A':+l(]cs——r'|+1)%(13—.5—0.—1') (t—s)2 —r2

I _/ Zn[2+zm)%’"(a—_”5;]dsdr
P D=+ DEVE= 97 — (@ 1)?

All the integrals satisfy the following inequality

C[ln(2+t)] ‘(mj%ﬁ-i—a"'m, 1fp=2
Ik < C

(t+a+ D3 7a+ D7(t—a+ 1)}

1
where 0 < v £ 3 and C depends on v for p > 3.

Substituting these estimates into (2.17), we obtain estimates (2.5) of

lemma 5.

t2_a2_7.2

Proof of proposition 2.1: Proof of A and B. Let b(r) = 5
ar

b(r) is a monotonically decreasing function, b(0) = oc, b(t — a) = 1. Thus,

/" dip _ 1 /“ dyp

o (t2—a?—r2+2arccosth)* (2 —a? —r2)> [ (1 + &cosy)
< 1 /27\’/4 di
= (tz —a? —- ,.2)& o (1 + SQTMQ)Q

wf d*” }
an/a (1 = cos ) + (1= F)cos )"

C w/4 d¢
< (t2 — a? — r2)@ {1+_/0 ((1-cos¢)+(1—%))°‘}
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C 'ﬂ'/4 d'(,b

K(t,a,r):Zf dy
0o \/t? —a?—r?+ 2arccos ¢

and thus, by (2.18)

(2.18)

w/4
c dy
Bltoy] € e o o 1+/ __w

( ) /t2_a2__.r2{ 0 /z2+1_%}

2 Cln{z + p-:(qar?:ys

= Ly g

In order to prove part B, we observe that

Pl <C’t/1r i
ot |~ o (t% ~—a? —r? + 2arccos ¢)%/2

oK
or

and by (2.18) this is less than

Ct ; /"/4 dip < Ct
(£2 — a? — r2)3/2 + o WE+EL)32[ T VAT o112 — (a+7)?)

Proof of A*, B* and C*: We have

K(t,a,r) /¢ = ‘\/Z/VJ\/ =
(t.a,r) = —p V/t? — a? —r? + 2arccos P ar Jo VcosyP —cosp

2 4,2 42
a*+r°—t
h e = P,
where cos @ Sar
; . . 1—cosy .
Changing variable of integration for 7 = e we obtain

2 1 dr
K(t,a,r) = \/;/0 VA =12+ (p—-1)7]

and the integral is differentiable for any P > —1, which implies part A*.
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In order to prove part B, it’s sufficient to prove it for —1 < P < -0.9.

In this case,

dr
o VTl =7)[2+ (P —1)7]
/1—? dr +/1 dr
Vi@ -7+ (P~1)r] Jp V11 -1)[2+ (P - 1)7]
sc{1+/1 ar }50{1‘—€n(1+P)}
=2r /(7 - 1)(r - 2p)

Combining this with (2.7¢), we obtain the desired estimate. Straightforward

computations show that

or

dK(t,a,r)
dat

+’3K(t,a,r) _2|£{_'t+d

with
‘aK / dr
\/27 1—7[2+( - 1)r]3/2
(of =r 1 dr
Sﬁ{l+/ V1—7[2+(P—1)r13/2}
(0; P C
< \/2Ta‘{1+1+P} s Var(l + P)
Therefore:
‘3K OK| _C(t+a)|0K & C(t + a) C(t + a)
or ar AP | = (ar)3/%(1+ P) = yfar[(a+ )2 —t?]

what implies (2.7d).

Proof of Lemma 6: Let r, ¢ be polar coordinates of z. We have
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af > ow
n—1p2 20\ _ o n—1 o] 2 2, OW
A p)wi(r) = 2r (/rfarw dr+'/r fwardr)
and thus

n—1,2_.2 Coon—leZ ooa?Zd.
| fAfwt] < (/r fwdr-i—/;)f]w T)

0

Using that

2
0

S+ SR < © [ (5P +1017 + 07 + n8s )b

we obtain Lemma 6.
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