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Global Existence for the 2D Incompressible
Isotropic Elastodynamics for Small Initial
Data

Xuecheng Wang

Abstract. We establish the global existence and the asymptotic behavior
for the 2D incompressible isotropic elastodynamics for sufficiently small,
smooth initial data in the Eulerian coordinates formulation. The main
tools used to derive the main results are, on the one hand, a modified
energy method to derive the energy estimate and, on the other hand, a
Fourier transform method with a suitable choice of Z-norm to derive the
sharp L∞-estimate. We mention that the global existence of the same
system but in the Lagrangian coordinates formulation was recently ob-
tained by Lei (Global well-posedness of incompressible Elastodynamics
in 2D, 2014). Our goal is to improve the understanding of the behavior
of solutions. Also, we present a different approach to study 2D nonlinear
wave equations from the point of view in frequency space.

1. Introduction

In this paper, we consider the questions of the global existence and the asymp-
totic behavior for the motion of elastic waves for isotropic incompressible ma-
terials in 2D. The motion of an elastic body is described as a time-dependent
family of orientation preserving diffeomorphism x(t, ·), 0 ≤ t < T . Mater-
ial point X in the reference configuration is deformed to the spatial position
x(t,X) at time t. Initially, we have x(0,X) = X. We use X(t, x) to denote the
inverse map of x(t,X) and we have X(0, x) = x. Since we can see more directly
the motion of an elastic body in Eulerian coordinates, we work in the Euler-
ian coordinates formulation. From now on, if without special annotations, the
derivatives (∂t,∇) are with respect to the Eulerian coordinates (t, x).

For the purposes of fixing notations and seeing how the incompressible
condition enters the picture, we record the following lemma, which can be
found in [25, Lemma 2.1]:
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Lemma 1.1. Given a family of deformations x(t,X), define the velocity, de-
formation gradient and the displacement gradient as follows:

v(t, x) =
dx(t,X)

dt

∣
∣
∣
∣X=X(t,x), F (t, x) =

∂x(t,X)
∂X

∣
∣
∣
∣
X=X(t,x)

,

G(t, x) = F (t, x) − I.

If x(t,X) is incompressible, then detF (t, x) ≡ 1,

∇ · v = 0, (∇ · F�)j = (∇ · G�)j = ∂iGi,j = 0, (1.1)

and

∂jGi,k − ∂kGi,j = Gm,k∂mGi,j − Gm,j∂mGi,k, i, j, k ∈ {1, 2, . . . , n}.

(1.2)

Proof. A detailed proof of this lemma can be found in [24, Section 2]. We only
give brief remarks here. From the incompressible condition, we have the volume
preserving condition, which is det(F (t, x)) ≡ 1. After taking a derivative with
respect to “t” for this equality, we have

0 =
d
dt

det(F (t, x)) = det(F )(t, x)trac(FtF
−1) =⇒ trac(FtF

−1) = 0,

note that

xt(t,X) = v(t, x(t,X)) =⇒ Ft = ∇vF

=⇒ 0 = trac(FtF
−1) = trac(∇v) = ∇ · v = 0.

It is easy to see that F (0, x) = I, hence ∇ · F�(0, x) = 0. It can be shown
that ∇ · F� satisfies a transport equation. Since it starts from zero, then it
will remain at zero for all the time.

Lastly, equality (1.2) comes from the facts that Fm,j∂mFi,k =
Fm,k∂mFi,j , which is derived from the commutativity of material derivatives
∂Xk

∂Xj
= ∂Xj

∂Xk
in spatial coordinates formulation and the definition of

G(t, x).
�

With the notation in Lemma 1.1, the system of incompressible isotropic
elastodynamcis can be formulated as follows:

⎧

⎨

⎩

∂tv + v · ∇v = −∇p + ∇ · T (F ),
∂tG − ∇v = −v · ∇G + ∇vG,
∇ · v = 0, ∇ · G� = 0,

(1.3)

where T (F ) is the Cauchy stress tensor and it is derived from the energy
functional W (F ) as follows:

T (F ) := (detF )−1S(F )F� = (detF )−1 ∂W (F )
∂F

F�, (1.4)

where S(F ) is the so-called Piola–Kirchhoff stress. Readers can refer to [30,
section 2] for the formal derivation of the system (1.3).
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For a general isotropic elastodynamcis, the energy functional W (F ) sat-
isfies the following relation:

W (F ) = W (FQ) = W (QF ), (1.5)

for all rotational matrices Q such that Q = Q� and detQ = 1. The first
equality in (1.5) is resulted from the frame indifference and the second equality
in (1.5) is resulted from the isotropy of materials.

Equality (1.5) implies that the energy functional W (F ) depends on F
through the principal invariants of FF�, which are trFF� and detFF� in
2D. If we denote τ = 1

2 trFF� and δ = detF , then W (F ) = W̃ (τ, δ) for some
smooth function W̃ : R+×R+ → R+. It follows that the Piola–Kirchhoff stress
has the following form:

S(F ) =
∂W (F )

∂F
= W̃τ (τ, δ)F + W̃δ(τ, δ)δF−�. (1.6)

In this paper, we mainly study the case of Hookean elasticity. We derive
the corresponding system of equations first and then we will remark on the
main differences between the Hookean case and general cases at the end of
Sect. 1.1.

The Hookean strain energy functional has the form W (F ) = 1
2 |F |2, which

infers that W̃ (τ, δ) = τ . Recall that detF (t, x) ≡ 1. Hence, from (1.4) and (1.6),
we know that T (F ) = FF�. Combining this fact with the system of equations
(1.3), we can derive the system of evolution for Hookean elasticity in terms of
v and G as follows:

⎧

⎨

⎩

∂tv − ∇ · G = −∇p − v · ∇v + ∇ · (GG�),
∂tG − ∇v = −v · ∇G + ∇vG,
∇ · v = 0,∇ · G� = 0.

(1.7)

1.1. Diagonalizing the System (1.7)

If one wants to analyze the system on the Fourier side, it is usually more
convenient to symmetrize the system (1.7). We mainly conduct this process in
this subsection.

As v and G� are divergence free, and we are in 2D setting, we can further
reduce the system (1.7), which has six variables into a system that has three
variables. Assume that ψ is the velocity potential of v⊥ and G1, G2 are the
velocity potentials of G⊥

·,1 and G⊥
·,2, respectively. More precisely,

v = (−∂2ψ, ∂1ψ), G·,1 = (−∂2G1, ∂1G1), G·,2 = (−∂2G2, ∂1G2). (1.8)

After tedious computations (readers can refer to the appendix for details), we
can reduce (1.7) into the system of equations as follows:

⎧

⎪⎨

⎪⎩

∂tψ − ∂1G1 − ∂2G2 = Ñ0,

∂tG1 − ∂1ψ = Ñ1,

∂tG2 − ∂2ψ = Ñ2,

(1.9)
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where

Ñ0 =−|∇|−1(R1f1 + R2f2), Ñ1 =Q1,2(G1, ψ), Ñ2 = Q1,2(G2, ψ), (1.10)

fi = Q1,2(∂iψ,ψ) − Q1,2(∂iG1, G1) − Q1,2(∂iG2, G2), i ∈ {1, 2},

and Ri = ∂i/|∇| denotes the Riesz transform. The operator Q1,2(·, ·) in the
above equations is one of the celebrated null form bilinear operators that is
defined as follows:

Q1,2(f, g) := ∂1f∂2g − ∂2f∂1g. (1.11)

In terms of potentials, we can reduce the constraint (1.2) as follows:

∂1G2 − ∂2G1 = Q1,2(G2, G1). (1.12)

Remark 1.2. Note that the pressure term does not come into play in the first
equation of the system (1.9). Since this equation is derived by applying curl
on (1.7), as a result, ∇p disappears. We can recover the pressure term from
the solution (ψ,G1, G2) of (1.9). Here is how it works: Firstly, we derive the
original velocity field v and displacement gradient G from potentials ψ, G1,
and G2; Secondly, we derive the following Poisson’s equation by applying div
operator on the first equation of system(1.7),

Δp = div(∇ · (GG�) − v · ∇v); (1.13)

Lastly, the pressure term can be derived by solving the above Poisson’s equa-
tion (1.13).

After diagonalizing the system (1.9), we get the following system of equa-
tions:

⎧

⎨

⎩

∂tφ0 = N0 = R1Ñ2 − R2Ñ1,

∂tΦ + i|∇|Φ = N1 = Ñ0 + i(R1Ñ1 + R2Ñ2),
(1.14)

where Ñ0, Ñ1 and Ñ2 are defined in (1.10) and φ0 and Φ are defined as follows:

φ0 := |∇|−1(∂1G2 − ∂2G1) = R1G2 − R2G1, Φ := ψ + i(R1G1 + R2G2).
(1.15)

It is easy to see that we can recover (ψ,G1, G2) from (φ0,Φ) by the following
identities:

ψ = Re(Φ) =
Φ + Φ

2
, G1 = R2φ0 − R1

(
Φ − Φ

2i

)

,

G2 = −R1φ0 − R2

(
Φ − Φ

2i

)

. (1.16)

Therefore, it is sufficient to study the system (1.14) instead.
We can rewrite the constraint Eq. (1.12) in terms of φ0 and Φ as follows:

φ0 = N2, (1.17)
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N2 = |∇|−1

⎡

⎢
⎢
⎣

Q1,2(R2φ0, R1φ0) +
∑

μ∈{+,−}
i=1,2

cμ

2
Q1,2(Riφ0, RiΦμ)

+
∑

μ,ν∈{+,−}

cμcν

4
Q1,2(R2Φμ, R1Φν)

⎤

⎦ ,

where c+ := −i, c− := i, Φ+ := Φ and Φ− := Φ. In later context, we also use
P+Φ to denote Φ and use P−Φ to denote Φ.

Remark 1.3. For general cases, the system (1.3) only differs from the system
(1.7), the Hookean case, at “cubic and higher” level in the sense of decay rate.
To know this fact, we recommend interested readers to [25, section 10] for more
details.

The approach used here in the Hookean case is robust enough to be
applied to general isotropic incompressible elastodynamics cases. Firstly, we
consider the energy estimate part. On one hand, intuitively speaking, those
cubic and higher order terms will not cause any additional obstructions be-
cause of the higher decay rate than quadratic terms. On the other hand, to
be rigorous, we usually confronts the difficulty of “losing derivatives” in the
energy estimate because of the quasilinear nature. However, the system (1.3)
indeed has the requisite symmetry properties to avoid losing derivatives. For
more details about this fact, please refer to [30,31]. Lastly, we consider the
L∞-estimate part. We can estimate those additional cubic and higher order
terms by the same method used to handle the cubic terms inside the equation
satisfied by Φ (see (5.1)).

1.2. Statement of the Main Result

Before introducing our main theorem, we define function spaces as follows:

Xk(R2) :=
{

f : ‖f‖Xk = ‖f‖Hk + ‖Sf‖H�k/2� + ‖Ωf‖H�k/2� < ∞}

, k ∈ N,

Z :=
{

f : ‖f‖Z = ‖(1 + |ξ|)N1+6f̂(ξ)‖L∞
ξ

< +∞
}

,

Z′ :=
{

f : ‖f‖Z′ = ‖f‖W N1+4 < ∞
}

, Z′
1 :=

{

f : ‖f‖Z′ = ‖f‖W N1+2 < ∞
}

,

‖f‖W γ :=
∑

k∈Z

2γ max{k,0}‖Pkf‖L∞ ,

where “S” is the scaling vector field and it is defined as S = t∂t + x1∂1 +
x2∂2 = t∂t + r∂r; and “Ω” is the rotational vector field and it is defined as
Ω = x2∂1 − x1∂2 = x⊥ · ∇.

The main result of this paper is as follows:

Main Theorem. Let N0 = 300, N1 = N0/2, and a fixed constant p0 ∈
(0, 1/1000], which is sufficiently small. If initial data (φ̃0, Φ̃0) satisfy the con-
straint (1.17) and the following estimate:

‖(φ̃0, Φ̃0)‖XN0
+ ‖(φ̃0, Φ̃0)‖Z = ε0 ≤ ε̄, (1.18)
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where ε̄ is a sufficiently small constant, then there exists a unique global solu-
tion (φ0,Φ) ∈ C([0,∞) : XN0(R

2)) of the initial value problem:
⎧

⎨

⎩

∂tφ0 = N0,
∂tΦ + i|∇|Φ = N1,

φ0 = N2, φ0(0) = φ̃0,Φ(0) = Φ̃0.
(1.19)

Moreover, the following estimate holds:

sup
t∈[0,∞)

(1 + t)−p0‖Φ(t)‖XN0
+ (1 + t)1/2‖Φ(t)‖Z′ + (1 + t)1/2−p0‖φ0(t)‖XN0

+(1 + t)‖φ0(t)‖Z′
1

� ε0. (1.20)

1.3. Previous Results

The long time behavior of isotropic elastodynamics mainly follows the para-
digm of nonlinear wave equation. As one can see from system (1.19), it is of
quasilinear wave type equation (technically speaking, it is of half wave type).

There is an extensive literature devoted to the study of wave equations.
For the purpose of giving concise introduction, we only list some representative
works here. Even for a semilinear wave equation with small smooth localized
initial data, John [18] showed that it can blow up in finite time. Meanwhile, if
there exists “null structure” inside the nonlinearity, one might expect better
behavior of the solutions. From the work of Klainerman [22] and the work of
Christodoulou [3], we can see the role of “null structure”. Also, the vector field
method introduced by Klainerman in [21] is a powerful tool to study the wave
equations.

A natural question is that whether there exists null structure for general
isotropic elastodynamics (not limited to the incompressible case). The com-
pressible isotropic elastodynamcis can be characterized by two families of
waves: fast pressure waves and slower shear waves. In the incompressible case,
the pressure wave does not present and the equations for shear waves possess
an inherent null structure. So the answer for the incompressible case is yes,
but the answer is not always yes for the compressible case.

For the 3D compressible elastodynamcis, on the one hand, counterex-
amples to global existence were shown in [19,32]. In [19], John showed that
the nontrivial radial solutions blow up for the dynamics of an isotropic ho-
mogeneous hyper-elastic medium with initial data that has sufficiently small
compact support, if the equations satisfy a certain “genuine nonlinearity con-
dition”. And in [32], Tahvildar and Zadeh showed the formation of singularities
of relativistic dynamics of isotropic hyperelastic solids for large initial data.
On the other hand, in [28], it was first noticed that there exists a null struc-
ture within the class of physically meaningful nonlinearities arising from the
hyperelasticity assumption.

Now, let us focus on the incompressible case. We already know that there
exists null structure inside the nonlinearity. Hence, we might expect better
behavior of solution, but does it strong enough to guarantee global solution?
In 3D, it is true, see the works of Sideris and Thomases [30,31].
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Naturally, one might wonder what will happen in 2D. In [25], Lei–Sideris–
Zhou showed the almost global existence for small initial data. The methods
used in [25] are mainly the vector field method and the Alinhac’s trick (the
ghost weighted energy method). To see how the ghost weighted energy method
works, interested readers may refer to [25] for details.

Here come the questions: does global solution exist for the 2D case? If
it does, how to push the almost global existence to the global existence for
the 2D incompressible case? One might try to work harder on the vector field
method to improve the previous result. But here, we are trying to provide an-
other method and improve the understanding of this problem, using a modified
energy method and a Fourier transform method with an appropriate choice of
Z-norm. Instead of from the point of view in physical space, we consider this
problem in the frequency space. We hope that the argument developed here
can shine some lights on the 2D compressible case.

1.4. The Main Idea of the Proof

We will use the bootstrap argument to derive the global existence. It naturally
falls into two parts: energy estimate (L2-type) part and the improved disper-
sion estimate (L∞-type). For the energy estimate part, we will use a modified
energy method to construct an appropriate modified energy, which grows at
most polynomially in time. For the improved dispersion estimate part, we will
use a Fourier transform method with a suitable choice of Z-norm to get sharp
1/t1/2 decay rate, which means that the decay rates of the nonlinear solution
and the linear solution are same.

The idea of the modified energy method was ever used in [4] by Germain
and Masmoudi, where they called it the iterated energy method. In [4], they
used the Duhamel formula and did integration by parts in time once to convert
the quadratic terms into cubic with price of “1/phase”, which is effectively
equivalent to utilizing normal form transformation. Similar idea has also been
used in the work of Hunter et al. [10], where they called it the modified energy
method. Later, this method has been applied further to the study of water
waves in the holomorphic coordinates formulation, see Hunter et al. [11] and
Ifrim and Tataru [7] for details.

Although, the idea of using normal form transformation to cancel out the
quadratic terms is clear and straightforward. But, to construct an appropriate
modified energy which can actually be used to close the energy estimate is
highly non-trivial. For the normal transformation part, it is crucial to identify
the strong null structure inside; otherwise, one only gets a singular bilinear
operator, which is not helpful to close the energy estimate. In Sect. 3.1, we
identify that there are at least two degrees of requisite angle inside the symbols,
one of them comes from the incompressible condition and the other one comes
from symmetries. As a result, the normal form transformation is not singular.
After adding cubic correction terms based on the normal form transformation,
due to the quasilinear nature, there is an issue of losing a derivative for the
quartic terms. To get around this issue, we also add quartic correction terms
into the energy, which will effectively cancel out the part that causes losing a
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derivative. Those quartic terms are impossible to find out or even works out
without identifying key cancellations inside the normal form transformation
and symmetries inside the system, see Sects. 3.6 and 3.7 for more details.

To make the Fourier transform method works properly, it is important to
choose an appropriate Z-norm and get the improved Z-norm estimate, there-
after get the improved dispersion estimate to close the argument. Because the
linear decay estimate we will prove in this paper has a similar structure as the
one proved in the works of Ionescu and Pusateri [14,15], inspired from their
works, we choose the Z-norm used in [14]. For more details about how this
argument works, see [4–6,8,9,12,14–17].

Lastly, we mention the recent result of Lei [26], which derives the global
existence of 2D incompressible elastodynamics in Lagrangian coordinates for-
mulation; the evolution in this formulation is described by a second-order wave
type equation instead of a coupled system. For those interested readers, please
refer to [26] for more details. An advantage of using Lagrangian coordinates
is that we can formulate the system in a nice way such that the bulk qua-
dratic terms disappear. In the sense of decay rate, the nonlinearity is at cubic
and higher level. However, in the Eulerian coordinates formulation, the bulk
quadratic terms do not disappear and this is a major drawback of working in
Eulerian coordinates.

1.5. Outline

In Sect. 2, we fix notations and prove the main theorem by assuming Proposi-
tions 2.3 and 2.4 hold. In Sect. 3, we first construct a modified energy and then
use this modified energy to do energy estimate and prove Proposition 2.3. In
Sect. 4, we prove the linear decay estimate, which is one of the key lemmas to
derive the improved dispersion estimate. In Sect. 5, we prove Proposition 2.4.
In Sect. 6, we will describe the asymptotic behavior of solution in a lower reg-
ularity Sobolev space. Lastly, in the appendix, we show how to derive (1.9) in
detail.

2. Preliminary

2.1. Notations

Fix an even smooth bump function ψ̃ : R → [0, 1] that supports in [−3/2, 3/2]
and equals to 1 in [−5/4, 5/4], k ∈ Z, x ∈ R

2, we define

ψk(x) := ψ̃(|x|/2k) − ψ̃(|x|/2k−1), ψ≤k(x) =
∑

l≤k

ψl(x),

ψ≥k(x) =
∑

l≥k

ψ≥k(x).

The frequency projection operator Pk, P≤k, and P≥k are defined by the mul-
tipliers ψk(ξ), ψ≤k(ξ) and ψ≥k(ξ), respectively, i.e.,

P̂kf(ξ) = ψk(ξ)f̂(ξ), P̂≤kf(ξ) = ψ≤k(ξ)f̂(ξ), P̂≥kf(ξ) = ψ≥k(ξ)f̂(ξ).
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For any real number k ∈ R, we use k+, k+ and k− to denote k + ε,
max{k, 0} and min{k, 0}, respectively, throughout the paper, where ε is an
arbitrary small constant. For any two numbers A and B and two absolute
constants c, C, c < C, we denote

A ∼ B, if cA ≤ B ≤ CA, A � B, B � A if A ≤ CB.

The Fourier transform of f is defined as follows:

f̂(ξ) =
∫

R2
e−ix·ξf(x)dx.

Besides f̂(ξ), we also use F(f)(ξ) to denote the Fourier transform of f . We
use F−1(g) to denote the inverse Fourier transform of g.

For any two vectors ξ and η, we use notation ∠(ξ, η) to denote the angle
from η to ξ. Hence, ∠(ξ, η) = −∠(η, ξ) and ∠(ξ, η) ∈ [−π, π]. When ∠(ξ, η) is
very close to ±π, i.e., ξ and η are almost parallel but in the opposite direction,
we say ∠(ξ, η) is small in the sense that ∠(ξ,−η) is small in this scenario. We
say a quantity has k degrees of angle, if this quantity is of size ∠(ξ, η)k or
∠(ξ,−η)k when ∠(ξ, η) is small. We mention that cos(∠(ξ, η)) is understood
in the usual sense as cos(∠(ξ, η)) = ξ · η/(|ξ||η|).

We will use the convention that the symbol q(·, ·) of a bilinear operator
Q(·, ·) is defined in the following sense throughout this paper:

F [Q(f, g)](ξ) =
1

4π2

∫

R2
f̂(ξ − η)ĝ(η)q(ξ − η, η)dη,

where f and g are two well-defined functions.

2.2. Bilinear Estimate

Define a class of symbol and its associated norms as follows:

S∞ := {m : R
4 or R

6 → C,m is continuous and ‖F−1(m)‖L1 < ∞},

‖m‖S∞ := ‖F−1(m)‖L1 ,

‖m(ξ, η)‖S∞
k,k1,k2

:= ‖m(ξ, η)ψk(ξ)ψk1(ξ − η)ψk2(η)‖S∞ ,

‖m(ξ, η, σ)‖S∞
k,k1,k2,k3

:= ‖m(ξ, η, σ)ψk(ξ)ψk1(ξ − η)ψk2(η − σ)ψk3(σ)‖S∞ .

Lemma 2.1. Given m,m′ ∈ S∞ and two well-defined functions f1, f2, and f3,
then the following estimates hold:

‖m · m′‖S∞ � ‖m‖S∞‖m′‖S∞ , (2.1)
∥
∥
∥
∥
F−1

(∫

R2
m(ξ, η)f̂1(ξ − η)f̂2(η)dη

)

(x)

∥
∥
∥
∥

Lr

� ‖m‖S∞‖f1‖Lp‖f2‖Lq ,
1

r
=

1

p
+

1

q
,

∥
∥
∥
∥
F−1

(∫

R2×R2
m(ξ, η, σ)f̂1(ξ − η)f̂2(η − σ)f̂3(σ)dηdσ

)

(x)

∥
∥
∥
∥

Ls

� ‖m‖S∞‖f1‖Lp′ ‖f2‖Lq′ ‖f3‖Lr′ ,

where p′, q′, r′, and s satisfy 1/s = 1/p′ + 1/q′ + 1/r′.

Proof. The proof is standard, or one can see [15, Lemma 5.2]. �
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To estimate the S∞
k,k1,k2

or the S∞
k,k1,k2,k3

norms of symbols, we constantly
use the following lemma:

Lemma 2.2. For i ∈ {2, 3}, if f : R
2i → C is a smooth function and k1, . . . , ki ∈

Z, then the following estimate holds:
∥
∥
∥
∥
∥
∥

∫

R2i

f(ξ1, . . . , ξi)
i∏

j=1

eixj ·ξj ψkj
(ξj)dξ1 . . . dξi

∥
∥
∥
∥
∥
∥

L1
x1,...,xi

�
2i+1∑

m=0

i∑

j=1

2mkj ‖∂m
ξj

f‖L∞ . (2.2)

Proof. Let us first consider the case when i = 2. Through scaling, it is sufficient
to prove the above estimate for the case k1 = k2 = 0. From the integration by
parts in ξ1 and ξ2, we have the following pointwise estimate:

(1 + |x1| + |x2|)5
∣
∣
∣
∣

∫

R2×R2
eix1·ξ1eix2·ξ2f(ξ1, ξ2)ψ0(ξ1)ψ0(ξ2)dξ1dξ2

∣
∣
∣
∣

�
5∑

m=0

[‖∂m
ξ1f‖L∞ + ‖∂m

ξ2f‖L∞
]

,

which is sufficient to finish the proof of (2.2). We can prove the case when
i = 3 very similarly, hence we omit the details here. �

2.3. Bootstrap Assumption and Proof of the Main Theorem

Recall that φ0 = N2 (see (1.17)) and N2 is quadratic. Intuitively speaking, if
we expect that energy is appropriately grow at rate tp0 and the decay rate of Φ
is sharp, then the L2 norm of φ0 decays at a rate 1/t1/2−p0 and the L∞ norm
of φ0 decays at a rate 1/t. Therefore, it motivates us to state the following
bootstrap assumption:

sup
t∈[0,T ]

(1 + t)−p0‖Φ(t)‖XN0
+ (1 + t)1/2−p0‖φ0(t)‖XN0

+(1 + t)1/2‖Φ‖Z′ + (1 + t)‖φ0‖Z′
1
+ (1 + t)−2p0‖Φ(t)‖Z � ε1 := ε

5/6
0 .

(2.3)

Since the size of the initial data is ε0, from the continuity of solution, we know
the existence of T > 0 in the above bootstrap assumption. In later context,
without further annotations, the solution is considered in the time interval
[0, T ] and satisfies above estimate.

In Sect. 3, we will prove the following proposition:

Proposition 2.3 (Energy estimate). Under the bootstrap assumption (2.3), we
have

sup
t∈[0,T ]

(1 + t)−p0‖(φ0,Φ)‖XN0
� ε0 + ε21 � ε0. (2.4)

Proof. It follows from the result of Lemma 3.6 directly. �
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In Sect. 5, we will prove the following proposition:

Proposition 2.4. Under the bootstrap assumption (2.3) and the energy estimate
(2.4), we can derive the following improved estimates:

sup
t∈[0,T ]

(1 + t)−p0‖Φ(t)‖XN0
+ (1 + t)1/2‖Φ(t)‖Z′

+(1 + t)−2p0‖Φ‖Z � ε0 + ε21 � ε0, (2.5)

sup
t∈[0,T ]

(1 + t)1/2−p0‖φ0(t)‖XN0
+ (1 + t)‖φ0(t)‖Z′

1
� (ε0 + ε1)2 � ε20.

(2.6)

Proof of the Main Theorem Combining results in the above two propositions,
it is easy to see that, under the bootstrap assumption (2.3), we have

sup
t∈[0,T ]

(1 + t)−p0‖Φ(t)‖XN0
+ (1 + t)1/2−p0‖φ0(t)‖XN0

+ (1 + t)−2p0‖Φ‖Z

+(1 + t)1/2‖Φ(t)‖Z′ + (1 + t)‖φ0(t)‖Z′
1

� ε0. (2.7)

Therefore, we can keep iterating the local result and extend the time interval
of existence to the full time interval [0,+∞), i.e., solution exists globally.
Moreover, the desired estimate (1.20) holds.

3. Energy Estimate

This section is devoted to prove Proposition 2.3. Firstly, we identify null struc-
tures inside the system (1.14), which are very essential to the whole argument.
Secondly, we identify the most problematic terms, which help us to figure out
how to construct a modified energy. Finally, we use this modified energy to do
energy estimate and finish the proof of Proposition 2.3.

3.1. Identifying Null Structures Inside the System

The goal of this subsection is to check the symbols of quadratic terms very
carefully to see whether there exist null structures and how “strong” null struc-
tures are. Based on the input types inside the quadratic terms, we decompose
the nonlinearities N0 and N1 and the constraint N2 as follows:

N0 =
∑

μ∈{+,−}
Q0,μ(φ0,Φμ) +

∑

μ,ν∈{+,−}
Qμ,ν(Φμ,Φν),

N1 = Q̃0,0(φ0, φ0) +
∑

μ∈{+,−}
Q̃0,μ(φ0,Φμ) +

∑

μ,ν∈{+,−}
Q̃μ,ν(Φμ,Φν),

N2 = Q̃1
0,0(φ0, φ0) +

∑

μ∈{+,−}
Q̃1

0,μ(φ0,Φμ) +
∑

μ,ν∈{+,−}
Q̃1

μ,ν(Φμ,Φν),
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where

Q0,μ(φ0, Φμ) =
1

2|∇|
(

Q1,2(|∇|φ0, Φμ)

− Q1,2( R1φ0, ∂1Φμ) − Q1,2(R2φ0, ∂2Φμ)
)

, μ ∈ {+, −},

Qμ,ν(Φμ, Φν) =
cμ

4|∇|
(

Q1,2(R1Φμ, ∂2Φν)−Q1,2(R2Φμ, ∂1Φν)
)

, μ, ν ∈ {+, −},

Q̃0,0(φ0, φ0) =
∑

i=1,2

Ri

|∇|
(

Q1,2(∂iR2φ0, R2φ0) + Q1,2(∂iR1φ0, R1φ0)
)

,

Q̃0,μ(φ0, Φμ) =
∑

i=1,2

cμ Ri

2 |∇|
(

Q1,2(∂iR1φ0, R2Φμ) − Q1,2(∂iR2φ0, R1Φμ)

+ Q1,2(∂iR2Φμ, R1φ0) − Q1,2(∂iR1Φμ, R2φ0)
)

+
i

2|∇|
(

Q1,2(R2φ0, ∂1Φμ) − Q1,2(R1φ0, ∂2Φμ)
)

, (3.1)

Q̃μ,ν(Φμ, Φν) =
∑

i,j=1,2

Ri

4 |∇|
(

cμcνQ1,2(∂iRjΦμ, RjΦν) − Q1,2(∂iΦμ, Φν)
)

+
i cμ

4|∇|
(

Q1,2(|∇|Φμ, Φν)−Q1,2(R1Φμ, ∂1Φν)−Q1,2(R2Φμ, ∂2Φν)
)

,

μ, ν ∈ {+, −},

Q̃1
0,0(φ0, φ0) =

1
2|∇| [Q1,2(R2φ0, R1φ0) − Q1,2(R1φ0, R2φ0)],

Q̃1
0,μ(φ0,Φμ) =

2∑

i=1

cμ

2
|∇|−1Q1,2(Riφ0, RiΦμ), (3.2)

Q̃1
μ,ν(Φμ,Φν) =

cμcν

8
|∇|−1[Q1,2(R2Φμ, R1Φν) − Q1,2(R1Φμ, R2Φν)]. (3.3)

After tedious calculations, we can show that the associated symbols of the
above bilinear operators are given as follows:

m0,μ(ξ − η, η) = − ξ · (ξ − η)
2|ξ||ξ − η|

(

(ξ − η) × η
)

,

mμ,ν(ξ − η, η) =
cμ

4|ξ|
1

|ξ − η|
(

(ξ − η) × η
)2

, (3.4)

m̃0,μ(ξ − η, η) = − cμ

2|ξ|2
(

ξ · (ξ − η)
|ξ − η||η| − ξ · η

|ξ − η||η|
)

((ξ − η) × η)2

− i

2|ξ||ξ − η| ((ξ − η) × η)2, (3.5)

m̃μ,ν(ξ − η, η) =
(

−cμcν

4|ξ|
ξ · (ξ − η)

|ξ|
(ξ − η) · η

|ξ − η||η| − ξ · (ξ − η)
4|ξ|2 − icμ ξ · (ξ − η)

4|ξ||ξ − η|
)

×((ξ − η) × η), (3.6)
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m̃0,0(ξ − η, η) = −ξ · (ξ − η)
|ξ|2

(ξ − η) · η

|ξ − η||η|
(

(ξ − η) × η
)

,

m̃1
0,0(ξ − η, η) =

−(

(ξ − η) × η
)2

2|ξ||ξ − η||η| , (3.7)

m̃1
0,μ(ξ − η, η) = −cμ

2
(ξ − η) · η

|ξ − η||η||ξ|
(

(ξ − η) × η
)

,

m̃1
μ,ν(ξ − η, η) =

cμcν

8
m̃1

0,0(ξ − η, η). (3.8)

Recall that c+ = −i and c− = i as defined in the introduction. As an example,
we will show detail computations for (3.1). which is very typical. All other
cases can be computed in the same way. From explicit formula in (3.1), we
have

m̃0,μ(ξ − η, η) =
∑

j=1,2

icμξj

2|ξ|2
[

i(ξ − η)j [(ξ − η) × η]
(ξ − η)1η2 − (ξ − η)2η1

|ξ − η||η|

−iηj [(ξ − η) × η]
(ξ − η)1η2 − (ξ − η)2η1

|ξ − η||η|
]

+
i

2|ξ|
[

[(ξ − η) × η]
(ξ − η)2η1 − (ξ − η)1η2

|ξ − η|
]

=
−cμ

2|ξ|2
[
ξ · (ξ − η)
|ξ − η||η| − ξ · η

|ξ − η||η|
]

((ξ − η) × η)2

− i

2|ξ||ξ − η| ((ξ − η) × η)2,

therefore, (3.5) holds.
From the above detailed formulas of symbols, we can see that all sym-

bols vanish when (ξ − η) ‖ η. Hence, indeed, there are null structures inside
nonlinearities. But does those null structures, especially the one in the symbol
m̃μ,ν(·, ·), strong enough? The answer depends on how strong we need them
to be.

In the later modified energy estimate part, we will see that it is very
crucial to gain at least two degrees of angle for m̃μ,ν(·, ·) in certain scenarios.
Otherwise, the symbol will be singular after dividing the phase.

In the following, we will show that we can gain one more degree of angle
from symmetries. However, this angle depends on the fact that whether (ξ−η)
and η are in the same direction. To be more precise, we divide into different
cases based on the types of phases, which are determined by the types of
quadratic terms. More precisely, the phases are defined as follows:

Φμ,ν(ξ, η) := |ξ| − μ|ξ − η| − ν|η|, μ, ν ∈ {+,−}.
Before we proceed, we mention that the types of phase and the discussion

here are also related to the normal form transformations that we will do later
(see also Sect. 3.2).
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(i) For the phase of type |ξ| − |ξ − η| − |η|, the corresponding symbol is
m̃+,+(·, ·). In this case, the phase vanishes when ∠(ξ, η) = ∠(ξ−η, η) = 0
and |ξ| has comparable size of |ξ − η|.

(ii) For the phase of type |ξ| − |ξ − η| + |η| or |ξ| + |ξ − η| − |η|, the corre-
sponding symbol is m̃+,−(·, ·) or m̃−,+(·, ·). For the first type, the phase
vanishes when ∠(ξ,−η) = ∠(ξ − η,−η) = 0. For the second type, the
phase vanishes when ∠(ξ, η) = ∠(ξ − η,−η) = 0. Whichever the case, we
have ∠(ξ − η,−η) = 0.

(iii) For the phase of type |ξ|+ |ξ −η|+ |η|, it does not vanish and has a lower
bound regardless of whether ξ and η are parallel or not. For this case, it
is not necessary to gain two degrees of angle.

For case (i), since two inputs of Q̃+,+(·, ·) are of the same type, we can utilize
self symmetry to see that the symbol of bilinear form Q̃+,+(·, ·) is also given
as follows:

m̃′
+,+(ξ − η, η) := [m̃+,+(ξ − η, η) + m̃+,+(η, ξ − η)]/2

=

(

− c+c+

8|ξ|
ξ · (ξ−η)

|ξ|
(ξ−η) · η

|ξ−η||η| − ξ · (ξ − η)

8|ξ|2 − ic+ ξ · (ξ − η)

8|ξ||ξ−η|
)

((ξ−η)×η)

+

(

− c+c+

8|ξ|
ξ · η

|ξ|
(ξ − η) · η

|ξ − η||η| − ξ · η

8|ξ|2 − ic+ ξ · η

8|ξ||η|
)

(η × (ξ − η))

=
−ξ · (ξ − 2η)

8|ξ|2 (1 − cos(∠(ξ − η, η)))((ξ − η) × η)
︸ ︷︷ ︸

three degrees of angle ∠(ξ−η,η)

− ξ

8|ξ|

·
(

ξ − η

|ξ − η| − η

|η|
)

((ξ − η) × η)

︸ ︷︷ ︸

two degrees of angle ∠(ξ−η,η)

. (3.9)

For case (ii), we couple term Q̃+,−(Φ,Φ) with term Q̃−,+(Φ,Φ) and define
Q̃+,−(Φ,Φ) := Q̃+,−(Φ,Φ)+ Q̃−,+(Φ,Φ). Its corresponding symbol is given as
follows:

m̃′
+,−(ξ − η, η) = m̃+,−(ξ − η, η) + m̃−,+(η, ξ − η)

=

(

− c+c−
4|ξ|

ξ · (ξ−η)

|ξ|
(ξ−η) · η

|ξ−η||η| − ξ · (ξ−η)

4|ξ|2 − ic+ ξ · (ξ−η)

4|ξ||ξ − η|
)

((ξ−η) × η)

+

(

− c−c+

4|ξ|
ξ · η

|ξ|
(ξ − η) · η

|ξ − η||η| − ξ · η

4|ξ|2 − ic− ξ · η

4|ξ||η|
)

(η × (ξ − η))

=
−ξ · (ξ − 2η)

4|ξ|2 (1 + cos(∠(ξ − η, η)))((ξ − η) × η)
︸ ︷︷ ︸

three degrees of angle ∠(ξ−η,−η)

− ξ

4|ξ|

·
(

ξ − η

|ξ − η| +
η

|η|
)

((ξ − η) × η)

︸ ︷︷ ︸

two degrees of angle ∠(ξ−η,−η)

. (3.10)

To make notations consistent, we define

m̃′
−,−(ξ − η, η) := m̃−,−(ξ − η, η), Q̃μ,ν(Φμ,Φν) := Q̃μ,ν(Φμ,Φν),

(μ, ν) ∈ {(+,+), (−,−)}. (3.11)
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To sum up, we can reformulate the equation satisfied by Φ as follows:

∂tΦ + i|∇|Φ = N1 = Q̃0,0(φ0, φ0) +
∑

μ∈{+,−}
Q̃0,μ(φ0,Φμ)

+
∑

(μ,ν)∈S
Q̃μ,ν(Φμ,Φν), (3.12)

where S := {(+,+), (+,−), (−,−)}. Inside the symbol of Q̃+,+(·, ·), we can
gain two degrees of angle when frequencies of two inputs are parallel and in
the same direction. Inside the symbol of Q̃+,−(·, ·), we can gain two degrees of
angle when frequencies of two inputs are parallel and in the opposite direction.
We can always gain one degree of angle regardless of whether two frequencies
are in the same direction or not.

3.2. Normal Form Transformation

The first step of constructing the modified energy is to find out the normal
form transformation. More precisely, we are looking for a normal form trans-
formation Φ → Φ̃, such that the equation satisfied by Φ̃ is cubic and higher.
Let

Φ̃ = Φ +
∑

(μ,ν)∈S
Aμ,ν(Φμ,Φν), (3.13)

where Aμ,ν(·, ·), (μ, ν) ∈ S, is an unknown bilinear operator to be determined.
Recall that the Eq. (3.12) is satisfied by Φ, then we have the following:

∂tΦ̃ + i|∇|Φ̃ =
∑

(μ,ν)∈S
Q̃μ,ν(Φμ, Φν) +

∑

(μ,ν)∈S
i|∇|Aμ,ν(Φμ, Φν)

−
⎛

⎝
∑

(μ,ν)∈S
Aμ,ν(iaμ|∇|Φμ, Φν) + Aμ,ν(Φμ, i|∇|aνΦν)

⎞

⎠ + cubic and higher,

where a+ = 1 and a− = −1. To cancel out quadratic terms, it is sufficient if
the following equality holds for all (μ, ν) ∈ S:

Q̃μ,ν(Φμ,Φν) + i|∇|Aμ,ν(Φμ,Φν) − iaμAμ,ν(|∇|Φμ,Φν)
−iaνAμ,ν(Φμ, |∇|Φν) = 0, (3.14)

which gives us,

aμ,ν(ξ − η, η) =
i

(|ξ| − aμ|ξ − η| − aν |η|)m̃′
μ,ν(ξ − η, η). (3.15)

3.3. The S∞ Norm Estimate of Symbols

In this section, we first discuss how to estimate the S∞
k,k1,k2

norm for a gen-
eral symbol which depends on the angular variable, and then we estimate the
S∞

k,k1,k2
norm of aμ,ν(ξ − η, η), (μ, ν) ∈ S. The method stated here can be eas-

ily generalized to the three independent variables setting. One can estimate
S∞

k,k1,k2,k3
norm of a symbol very similarly. For later stated S∞ norm estimates

of symbols, readers can always refer to this subsection for help.
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The essential tool we used is Lemma 2.2. Besides the pointwise estimate,
we also have to estimate the derivatives of symbols. Since the angular variable
of symbol may appear in the denominator, it is not so straightforward to see
the upper bound of S∞

k,k1,k2
norm directly. Hence, we provide the following

guide of doing estimates to readers, which consists of two essential steps and
an example.

Step 1: Choose the independent variables.
Since there are only two independent variables among three variables: ξ, ξ −η,
and η. It is important to choose the right two independent variables; otherwise,
the estimate can be unnecessarily rough. We choose the least two of the three
variables as the independent variables. For example, for a symbol as follows,

m(ξ, η)ψk(ξ)ψk1(ξ − η)ψk2(η),

variables ξ and η are not always the independent variables. If |ξ−η| ≤ |ξ| ∼ |η|,
then we let ξ − η and ξ to be independent variables first and then apply
Lemma 2.2.

Step 2: View the angular part as a whole part when we have angular variable
in the denominator.
The main point of this step is that we can reformulate the aforementioned
symbols as follows:

m(ξ, η) = m̃(ξ, η)f
(

η

|η| × ξ − η

|ξ − η| , (1, 0) × η

|η|
)

= m̃(ξ, η)f(sin(∠(ξ − η, η)), sin(∠(η, (1, 0)))),

where m(ξ, η) is one of the aforementioned symbol, m̃(ξ, η) is a regular symbol1

and f : R
2 → R is a smooth function.

An example: We choose a+,+(ξ −η, η) as a representative example, other sym-
bols can be done similarly. From (3.9) and (3.15), we have

a+,+(ξ − η, η) =
im̃′

+,+(ξ − η, η)

|ξ| − |ξ − η| − |η|

=
i(|ξ| + |ξ − η| + |η|)

2|ξ − η||η|(cos(∠(ξ − η, η)) − 1)
m̃

′
+,+(ξ − η, η)

=
ξ · (ξ − 2η)

8|ξ|2
i(|ξ| + |ξ − η| + |η|)

2|ξ − η||η|
(

(ξ − η) × η
)

+

(

−i(|ξ| + |ξ − η| + |η|)
2(cos(∠(ξ − η, η)) − 1)

ξ

16π|ξ| ·
(

ξ − η

|ξ − η| − η

|η|

))

×
(

(ξ − η)

|ξ − η| × η

|η|

)

=
iξ · (ξ − 2η)(|ξ| + |ξ − η| + |η|)

16|ξ|2

(

(ξ − η)

|ξ − η| × η

|η|

)

︸ ︷︷ ︸

Part I: A regular symbol

1 For a regular symbol, after choosing the independent variables as in Step 1, the right hand
side of (2.2) is comparable to the L∞ norm of itself.
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+
−i(|ξ| + |ξ − η| + |η|)ξ1

16|ξ|
cos(∠(ξ − η, (1, 0))) − cos(∠(η, (1, 0)))

(cos(∠(ξ − η, η)) − 1)

(

(ξ − η)

|ξ − η| × η

|η|

)

︸ ︷︷ ︸

Part II

+
−i(|ξ| + |ξ − η| + |η|)ξ2

16|ξ|
sin(∠(ξ − η, (1, 0))) − sin(∠(η, (1, 0)))

(cos(∠(ξ − η, η)) − 1)

(

(ξ − η)

|ξ − η| × η

|η|

)

︸ ︷︷ ︸

Part III

,

where ξj , j ∈ {1, 2}, is the j-th component of vector ξ and we used the following
fact in the above computation:

ξ − η

|ξ − η| − η

|η| = (cos(∠(ξ − η, (1, 0))) − cos(∠(η, (1, 0))),

sin(∠(ξ − η, (1, 0))) − sin(∠(η, (1, 0)))).

It remains to check “Part II” and “Part III”. Using the Step 2, we rewrite
them as follows:

Part II =
−i(|ξ| + |ξ − η| + |η|)ξ1

16|ξ|
︸ ︷︷ ︸

A regular symbol

f

(
η

|η| × ξ − η

|ξ − η| ), (1, 0) × η

|η|
)

︸ ︷︷ ︸

Angular part

,

Part III =
−i(|ξ| + |ξ − η| + |η|)ξ2

16|ξ|
︸ ︷︷ ︸

A regular symbol

g

(
η

|η| × ξ − η

|ξ − η| ), (1, 0) × η

|η|
)

︸ ︷︷ ︸

Angular part

,

where

f(x, y) =
−x

(

cos(sin−1(y) + sin−1(x)) − cos(sin−1(y))
)

(cos(sin−1(x)) − 1)
,

g(x, y) =
−x

(

sin(sin−1(y) + sin−1(x)) − y)
)

(cos(sin−1(x)) − 1)
,

and x, y ∈ [−1, 1]. We have the following expansions when x, y are very close
to 0,

f(x, y) = x + 2y − y2x + x2y

2
+ o(x4) + o(y4), when |x|, |y| � 1,

g(x, y) = −2 + y2 + xy +
4x2 − 2x2y2 + x4

8
+ O(x4) + O(y4), when |x|, |y| � 1.

We first use the rules in Step 1 to find out the independent variables and
then use the Chain rule and Leibniz’s rule, as a result, we can see that the
“Angular parts” of “Part II” and “Part III” are also regular symbols. From
the above discussion, it is easy to see that the following estimate holds:

∣
∣a+,+(ξ − η, η)ψk(ξ)ψk1(ξ − η)ψk2(η)

∣
∣ � 2max{k1,k2}.

Then, we can check the derivatives of a+,+(ξ − η, η) with respect to the inde-
pendent variables, from Lemma 2.2, eventually the following estimate holds:

‖a+,+(ξ − η, η)‖S∞
k,k1,k2

� 2max{k1,k2}.

We can perform similar analysis for all other symbols and have the fol-
lowing lemma:
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Lemma 3.1. For any admissible k, k1, k2 ∈ Z, we have the following estimate
for any (μ, ν) ∈ S,

‖aμ,ν(ξ − η, η)‖S∞
k,k1,k2

� 2max{k1,k2},

‖a−,−(ξ − η, η)‖S∞
k,k1,k2

� 2min{k1,k2} (3.16)

‖a+,−(ξ − η, η)‖S∞
k,k1,k2

� 2k1 , if k1 ≤ k2 − 5, (3.17)

‖q(ξ, η)‖S∞
k,k1,k2

� 2k1+k2 , ‖q̃(ξ, η)‖S∞
k,k1,k2

� 2min{k1,k2},

(3.18)

where q(·, ·) is the symbol of bilinear operator Q∈{Q0,μ, Qμ,ν , Q̃0,0, Q̃0,μ, Q̃μ,ν}
and q̃(·, ·) is the symbol of bilinear operator Q̃ ∈ {Q̃1

0, Q̃
1
0,μ, Q̃1

μ,ν}.
Proof. The desired estimates (3.16), (3.17), and (3.18) follow from Lemma 2.2
and the above discussion. We mention that for estimate (3.17) and the second
estimate of (3.16), we used the facts that |ξ| + |ξ − η| + |η| is always big and
|ξ|−|ξ−η|+|η| is not small when |ξ−η| � |η|. More precisely, from Lemma 2.2,
the following estimate holds:

∥
∥
∥
∥

1
|ξ| + |ξ − η| + |η|

∥
∥
∥
∥

S∞
k,k1,k2

� 2− max{k1,k2},

∥
∥
∥
∥

1
|ξ| − |ξ − η| + |η|

∥
∥
∥
∥

S∞
k,k1,k2

� 2− max{k1,k2}, if k1 ≤ k2 − 5.

Combining the above estimates with (3.18), from (2.1) in Lemma 2.1, we can
see that these improved estimates hold. �

3.4. The Usual Energy Estimate

To find out what cubic correction terms to add, we first do the usual energy
estimate. Due to the quasilinear nature of the system (1.19), we have to avoid
losing derivatives when doing energy estimate.

3.4.1. Energy in Terms of φ0 and Φ. We define the usual energy as follows:

E(t) := E
N0(t) + E

N1 (t) + E
0
(t),

E
N0(t) :=

∑

k+j=N0,0≤k,j∈Z

1

2

[∫

R2
|∂k

1 ∂
j
2φ0|2 + |∂k

1 ∂
j
2Φ|2

]

, (3.19)

E
N1(t) :=

∑

k+j=N1,0≤k,j∈Z

×1

2

[∫

R2
|∂k

1 ∂
j
2Sφ0|2 + |∂k

1 ∂
j
2SΦ|2 + |∂k

1 ∂
j
2Ωφ0|2 + |∂k

1 ∂
j
2ΩΦ|2

]

,

E
0
(t) :=

1

2

[∫

R2
|φ0|2 + |Φ|2 + |Sφ0|2 + |Ωφ0|2 + |SΦ|2 + |ΩΦ|2

]

. (3.20)

For a tuple of nonnegative integers α = (α1, α2, α3, α4), |α| ≥ 0 and |α3| +
|α4| ≤ 1, we use Γα to denote ∂α1

1 ∂α2
2 Sα3Ωα4 and use fα to denote Γαf for a

well-defined function f . For a bilinear term T (f, g), we use

T (β,γ)(f, g) := T (fβ , gγ) + T (fγ , gβ),
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to denote the terms that one of the inputs is hit by Γβ and the other input is
hit by Γγ . As

[S, ∂t + i|∇|] = −(∂t + i|∇|), [Ω, ∂t + i|∇|] = 0, (3.21)

after applying Γα,ΓαS, and ΓαΩ to the system of Eq. (1.19), we can de-
rive equations satisfied by φα

0 ∈ {Γαφ0,ΓαSφ0,ΓαΩφ0} and Φα ∈ {ΓαΦ,
ΓαSΦ,ΓαΩΦ} as follows,

⎧

⎪⎨

⎪⎩

∂tφ
α
0 = N (α,0)

0 + Errα
0

∂tΦα + i|∇|Φα = N (α,0)
1 + Errα

1 ,

(3.22)

where Errα
0 and Errα

1 are good error terms, which consist of terms in which
two inputs are not hit by the entire Γα derivative and the commutator terms
if “S” or “Ω” is applied. More precisely, for i ∈ {0, 1},

Errα
i =

∑

|γ|≤|β|<|α|,β+γ=α

(
α

β

)

N (β,γ)
i + commutator terms if |α3| + |α4| = 1,

(
α

β

)

:=
4∏

j=1

(
αj

βj

)

. (3.23)

We mention that we need to utilize the commutation rules for the vector
fields to derive the system (3.22). For readers’ conveniences, we derive and
discuss those commutation rules before ending this subsubsection.

For two smooth well-defined functions h1 and h2 and a bilinear operator
Q(·, ·) with symbol q(ξ, η), which is homogeneous of degree c, i.e.,

q(λξ, λη) = λcq(ξ, η), (3.24)

we have

SQ(h1, h2) = Q(Sh1, h2) + Q(h1, Sh2) − cQ(h1, h2), c ∈ {1, 2}. (3.25)

To prove (3.25), it is sufficient to consider the ‘x · ∇’ part of scaling vector ‘S’
as ‘t∂t’ part of ‘S’ distributes as usual derivatives. We have

F(

x · ∇Q(h1, h2)
)

(ξ) = [−ξ · ∇ξ − 2I]
(∫

R2
q(ξ, η)ĥ1(ξ − η)ĥ2(η)dη

)

=
∫

R2
[(−ξ · ∇ξ − 2)q(ξ, η)]ĥ1(ξ − η)ĥ2(η) dη

+
∫

R2
q(ξ, η)η · ∇ηĥ1(ξ − η)ĥ2(η) dη

−
∫

R2
q(ξ, η)(ξ − η) · ∇ξĥ1(ξ − η)ĥ2(η) dη

=
∫

R2
q(ξ, η)[−(ξ − η) · ∇ξ − 2]ĥ1(ξ − η)ĥ2(η) dη
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+
∫

R2
q(ξ, η)ĥ1(ξ − η)[−η · ∇η − 2]ĥ2(η) dη

−
∫

R2
(ξ · ∇ξ + η · ∇η)q(ξ, η)ĥ1(ξ − η)ĥ2(η) dη.

(3.26)

After taking one derivative with respect to λ for identity (3.24) and evaluating
it at λ = 1, we have

ξ · ∇ξq(ξ, η) + η · ∇ηq(ξ, η) = cq(ξ, η). (3.27)

Therefore,

x · ∇Q(h1, h2) = Q(x · ∇h1, h2) + Q(h1, x · ∇h2) − cQ(h1, h2), (3.28)

which implies that (3.25) holds. Very similarly, we have the following identity
for the rotational vector field:

ΩQ(h1, h2) = Q(Ωh1, h2) + Q(h1,Ωh2) − Q′(h1, h2), (3.29)

where bilinear operator Q′(·, ·) is defined by the following symbol:

q′(ξ, η) = ξ⊥ · ∇ξq(ξ, η) + η⊥ · ∇ηq(ξ, η). (3.30)

The size of the symbol q′(ξ, η) is comparable to the size of q(ξ, η). Moreover,
q′(ξ, η) has null structure as long as q(ξ, η) has null structure. To see this point,
we only have to check the case when both ∇ξ and ∇η hit the angular part, for
example, (ξ − η) × η, we have

ξ⊥ · ∇ξ

(

(ξ − η) × η
)

+ η⊥ · ∇η

(

(ξ − η) × η
)

= ξ · η − ξ · η = 0, (3.31)

which infers that bilinear operator Q′(·, ·) also has two degrees of angle inside.
From (3.25) and (3.29), we know that, modulo the good error commutator

terms, we can distribute the vector fields S and Ω as usual derivatives.
We remark that commutator terms come from two sources: (i) from the

commutation rules in (3.21); (ii) from the commutation rules in (3.25) and
(3.29). It is safe to put those commutator terms into the error terms, because
the commutator terms only depend on the φ0 and Φ and their top regularities
are all N0, which is much bigger than N1.

3.4.2. The Usual Energy Estimate. Recall the definition of EN0(t) and the
system of equations (3.22), we have

d
dt

EN0(t) =
∑

|α|=N0,α3=α4=0

×Re
(∫

φα
0 Errα

0 + ΦαErrα
1

)

+ Re
(∫

φα
0 N (α,0)

0 + ΦαN (α,0)
1

)

.

(3.32)

We will first show that cancellation happens for the second integral of the right
hand side of (3.32); hence, it does not lose derivatives.
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From the system of equation satisfied by ψ, G1, and G2 in (1.15) and
(1.10), we have

N (α,0)
0 = R1Ñ (α,0)

2 − R2Ñ (α,0)
1 , N (α,0)

1 = Ñ (α,0)
0 + i

[

R1Ñ (α,0)
1 + R2Ñ (α,0)

2

]

.

Ñ0 = Q(ψ, ψ)−Q(G1, G1) − Q(G2, G2), Ñ1 =Q1,2(G1, ψ), Ñ2 =Q1,2(G2, ψ),

(3.33)

where bilinear operator Q(·, ·) is defined by the symbol as follows:

q(ξ − η, η) = −ξ · (ξ − η)
|ξ|2 (ξ − η) × η.

We first reformulate the second integral of (3.32) in terms of ψ,G1, and
G2, because operators in (3.33) are much easier than operators in (3.12) (com-
putations are less involving) and we can use the fact that ψ, G1, and G2 are
all real. More precisely, from (1.15), we have

Re
(∫

φα
0 N (α,0)

0 + ΦαN (α,0)
1

)

=
∫

ψαÑ (α,0)
0 + Gα

1 Ñ (α,0)
1 + Gα

2 Ñ (α,0)
2

=
∫

ψα[Q(ψα, ψ) + Q(ψ,ψα)] +
∑

i=1,2

Gα
i Q1,2(Gα

i , ψ)

+ ψα
[ − Q(Gα

i , Gi) − Q(Gi, G
α
i )
]

+ Gα
i Q1,2(Gi, ψ

α), (3.34)

After utilizing symmetries on the Fourier side to switch the role of ξ and ξ −η,
we have

(3.34) =
∑

i=1,2

∫ ∫ [

Ĝα
i (ξ)Ĝα

i (ξ − η)ψ̂(η)q1(ξ − η, η)

+ψ̂α(ξ)Ĝα
i (ξ − η)Ĝi(η)q2(ξ − η)

]

dξdη

+
∫ ∫

ψ̂α(ξ)ψ̂α(ξ − η)ψ̂(η)q3(ξ − η, η)dξdη, (3.35)

where

q1(ξ − η, η) =
[ − (ξ − η) × (η) − ξ × (−η)

]

/2 = 0,
q2(ξ − η, η) = −(−η) × ξ − q(ξ − η, η) − q(η, ξ − η)

= η × ξ +
ξ · (ξ − 2η)

|ξ|2 (ξ − η) × η =
−2ξ · η

|ξ|2 (ξ − η) × η, (3.36)

q3(ξ − η, η) = [q(ξ − η, η) + q(η, ξ − η)]/2 + [q(ξ,−η) + q(−η, ξ)]/2

=
(

ξ · η

|ξ|2 +
(ξ − η) · η

|ξ−η|2
)

(ξ−η) × η = −(

q2(ξ − η, η)+q2(ξ,−η))/2.

(3.37)

From Lemma 2.2, the following estimate holds from the above explicit formu-
las:

‖q2(ξ − η, η)‖S∞
k,k1,k2

+ ‖q3(ξ − η, η)‖S∞
k,k1,k2

� 22k2 . (3.38)
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After replacing ψ, G1, and G2 by φ0 and Φ through (1.16), we have

(3.35) =
∫

∑

i=1,2

ψαQ2(Gα
i , Gi) + ψαQ3(ψα, ψ)

= Re

(
∫

∑

μ,ν,κ

1
8
Φα

μQ3(Φα
ν ,Φκ)

+
∑

i=1,2

1
8
(Φα + Φα)Q2

(

Γα((−1)i2R3−iφ0

+c+RiΦ + c−RiΦ), (−1)i2R3−iφ0

+ c+RiΦ + c−RiΦ)

)

,

where bilinear operators Q2(·, ·) and Q3(·, ·) are defined by the symbols q2(·, ·)
and q3(·, ·), respectively. To sum up, we have

d
dt

EN0(t) =
∑

|α|=N0
α3=α4=0

Re
(∫

φα
0 Errα

0 + ΦαErrα
1

)

+Re

⎛

⎝

∫
∑

μ,ν,κ∈{+,−}

1
8
Φα

μQ3(Φα
ν ,Φκ)

+
∑

i=1,2

1
8
(Φα + Φα)Q2

(

Γα((−1)i2R3−iφ0

+ c+RiΦ + c−RiΦ), (−1)i2R3−iφ0 + c+RiΦ + c−RiΦ)

⎞

⎠ .

(3.39)

With minor modifications, we can perform the same procedure for
EN1(t) and have the following:

d
dt

EN1(t) =
∑

|α|=N1+1
α3+α4=1

Re
(∫

φα
0 Errα

0 + ΦαErrα
1

)

+Re

⎛

⎝

∫
∑

μ,ν,κ∈{+,−}

1
8
Φα

μQ3(Φα
ν ,Φκ)

+
∑

i=1,2

1
8
(Φα + Φα)Q2

(

Γα((−1)i2R3−iφ0

+ c+RiΦ + c−RiΦ), (−1)i2R3−iφ0 + c+RiΦ + c−RiΦ)

⎞

⎠ .

(3.40)
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3.5. Identifying the Worst Cubic Terms

The worst cubic terms inside the derivative of energy E(t), which decay slowly,
only depend on Φ. We identify them in this section. From (3.20), we have

worst cubic terms of
d
dt

E0(t) =
∑

(μ,ν)∈S
Re

⎛

⎝

∫

ΦQ̃μ,ν(Φμ,Φν)

+ΩΦ
[

Q̃μ,ν(ΩΦμ,Φν) + Q̃μ,ν(Φμ,ΩΦν)

−Q̃′
μ,ν(Φμ,Φν)

]

+ SΦ
[

Q̃μ,ν(SΦμ,Φν)

+ Q̃μ,ν(Φμ, SΦν) − Q̃μ,ν(Φμ,Φν)
]

⎞

⎠ ,

(3.41)

where the bilinear operator Q̃′
μ,ν(·, ·), following from (3.30), is defined by the

following symbol:

(ξ⊥ · ∇ξ + η⊥ · ∇η)m̃′
μ,ν(ξ − η, η).

From (3.39), we have

Worst cubic terms of
d
dt

EN0(t)

=
∑

|α|=N0,α3=α4=0

∑

|γ|≤|β|<|α|,β+γ=α

(
α

β

)
∑

(μ,ν)∈S
Re

(∫

ΦαQ̃μ,ν(Φβ
μ,Φγ

ν)
)

+
∑

μ,ν,κ∈{+,−}

1
8
Re

⎛

⎝

∫
∑

i=1,2

cνcκΦα
μQ2(RiΦα

ν , RiΦκ) + Φα
μQ3(Φα

ν ,Φκ)

⎞

⎠ .

From the identity (3.37), we have

∑

μ,ν,κ∈{+,−}

1
8
Re

⎛

⎝

∫
∑

i=1,2

cνcκΦα
μQ2(RiΦα

ν , RiΦκ) + Φα
μQ3(Φα

ν ,Φκ)

⎞

⎠

=
∑

μ,ν,κ∈{+,−}

1
8
Re

⎛

⎝

∫
∑

i=1,2

cνcκΦα
μQ2(RiΦα

ν , RiΦκ)

− Φα
μQ2(Φα

ν ,Φκ)/2 − Φα
ν Q2(Φα

μ ,Φ−κ)/2
)

=
∑

μ,ν,κ∈{+,−}

1
8
Re

⎛

⎝

∫
∑

i=1,2

cνcκΦα
μQ2(RiΦα

ν , RiΦκ) − Φα
μQ2(Φα

ν ,Φκ)

⎞

⎠
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=
∑

μ,ν,κ∈{+,−}

1
8
Re

(∫

Φα
μQ4

ν,κ(Φα
ν ,Φκ)

)

=
∑

ν,κ∈{+,−}

1
4
Re

(∫

ΦαQ4
ν,κ(Φα

ν ,Φκ)
)

, (3.42)

where the bilinear operator Q4(·, ·) is defined by the following symbol:

q4
ν,κ(ξ − η, η) = −q2(ξ − η, η)

(

1 + cνcκ
(ξ − η) · η

|ξ − η||η|
)

= −q2(ξ − η, η)(1 − aνaκ cos(∠(ξ − η, η)). (3.43)

To sum up, we have

Worst cubic terms of
d
dt

EN0(t)

=
∑

|α|=N0
α3=α4=0

∑

|β|,|γ|<|α|
β+γ=α

(
α

β

)
∑

(μ,ν)∈S
Re

(∫

ΦαQ̃μ,ν(Φβ
μ,Φγ

ν)
)

+
∑

ν,κ∈{+,−}

1
4
Re

(∫

ΦαQ4
ν,κ(Φα

ν ,Φκ)
)

. (3.44)

Now, we consider the worst cubic terms of the derivative of EN1(t). Except
the value of α is different and the presence of commutators terms, most cubic
terms are same as terms in (3.44). Very similarly, we have

Worst cubic terms of
d
dt

EN1(t)

=
∑

|α|=N1+1
α3+α4=1

⎡

⎢
⎢
⎣

∑

|γ|,|β|<|α|
β+γ=α

(
α

β

)
∑

(μ,ν)∈S
Re

(∫

ΦαQ̃μ,ν(Φβ
μ,Φγ

ν)
)

+
∑

ν,κ∈{+,−}

1
4
Re

(∫

ΦαQ4
ν,κ(Φα

ν ,Φκ)
)
⎤

⎦

+
∑

|α|=N1
α3=α4=0

∑

β+γ=α

(
α

β

)
∑

(μ,ν)∈S
Re

(∫

−ΓαSΦQ̃μ,ν(Φβ
μ,Φγ

ν)

−ΓαΩΦQ̃′
μ,ν(Φβ

μ,Φγ
ν)
)

. (3.45)

To sum up, from (3.19), (3.41), (3.44) and (3.45), we have

Worst cubic terms of
d
dt

E(t)

=
∑

(|α1|+|α2|,|α3|+|α4|)∈
{(N0,0),(N1,1),(0,0),(0,1)}
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×
∑

|β|,|γ|≤max{|α|−1,1}
β+γ=α

(
α

β

)

×
∑

(μ,ν)∈S
Re

(∫

ΦαQ̃μ,ν(Φβ
μ,Φγ

ν)
)

+
∑

(|α1|+|α2|,|α3|+|α4|)
∈{(N0,0),(N1,1)}

∑

ν,κ∈{+,−}

1
4
Re

(∫

ΦαQ4
ν,κ(Φα

ν ,Φκ)
)

+
∑

|α|∈{0,N1}
α3=α4=0

∑

β+γ=α

(
α

β

)

×
∑

(μ,ν)∈S
Re

(∫

−ΓαSΦQ̃μ,ν(Φβ
μ,Φγ

ν) − ΓαΩΦQ̃′
μ,ν(Φβ

μ,Φγ
ν)
)

.

(3.46)

3.6. Construction of the Modified Energy

3.6.1. First Level Correction. From the construction of normal form trans-
formation in Sect. 3.2, to cancel out (3.46), it is sufficient to add the following
cubic terms to the usual energy:

EFCorr(t) =
∑

(|α1|+|α2|,|α3|+|α4|)∈
{(N0,0),(N1,1),(0,0),(0,1)}

∑

|β|,|γ|≤max{|α|−1,1}
β+γ=α

(
α

β

)

×
∑

(μ,ν)∈S
Re

(∫

ΦαAμ,ν(Φβ
μ,Φγ

ν)
)

+
∑

(|α1|+|α2|,|α3|+|α4|)
∈{(N0,0),(N1,1)}

∑

ν,κ∈{+,−}

1
4
Re

(∫

ΦαA4
ν,κ(Φα

ν ,Φκ)
)

+
∑

|α|∈{0,N1}
α3=α4=0

∑

β+γ=α

(
α

β

)
∑

(μ,ν)∈S

Re
(∫

−ΓαSΦAμ,ν(Φβ
μ,Φγ

ν) − ΓαΩΦA′
μ,ν(Φβ

μ,Φγ
ν)
)

, (3.47)

where the bilinear operator A′
μ,ν(·, ·) and the bilinear operator A4

ν,κ(·, ·) are
defined by the symbol a′

μ,ν(·, ·) and a4
ν,κ(ξ − η, η) as follows:

a′
μ,ν(ξ − η, η) =

i(ξ⊥ · ∇ξ + η⊥ · ∇η)m̃′
μ,ν(ξ − η, η)

|ξ| − aμ|ξ − η| − aν |η| ,

a4
ν,κ(ξ − η, η) =

iq4
ν,κ(ξ − η, η)

|ξ| − aν |ξ − η| − aκ|η| =
i(|ξ| + aν |ξ − η| + aκ|η|)q2(ξ − η, η)

2aνaκ|ξ − η||η| .

(3.48)

As mentioned in the commutation part of the rotational vector field Ω, symbol
(ξ⊥ ·∇ξ +η⊥ ·∇η)m̃′

μ,ν(ξ−η, η) has two degrees of angle inside; hence, a′
μ,ν(ξ−
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η, η) is a regular symbol. Similar to the proof of Lemma 3.1, by Lemma 2.2,
we can derive the following estimates:

‖a′
μ,ν(ξ − η, η)‖S∞

k,k1,k2
� 2max{k1,k2}, ‖a4

ν,κ(ξ − η, η)‖S∞
k,k1,k2

� 2k2 , (3.49)

‖a4
−,−(ξ − η, η)‖S∞

k,k1,k2
+ ‖a4

−,+(ξ − η, η)‖S∞
k,k1,k2

� 22k2−k1 , if k2 ≤ k1 − 5.

(3.50)

3.6.2. Second Level Correction. Due to the quasilinear nature, it is possible
to lose a derivative after taking derivative with respect to time t for EFCorr(t).
We first identify those problematic terms inside dEFCorr(t)/dt by checking
which terms are possible to lose one derivative.

Note that inputs inside Aμ,ν(·, ·) are not hit by entire derivatives and
we lose at most another one derivative after taking derivative with respect to
time. That is to say, only the following terms are possible to lose one derivative
after taking derivative with respect to time,

Possible problematic terms

:=
∑

(|α1|+|α2|,|α3|+|α4|)
∈{(N0,0),(N1,1)}

∑

β+γ=α,|γ|=1,
|γ3|=|γ4|=0

∑

(μ,ν)∈S

(
α

β

)

Re
(∫

ΓγΦβ

×(

Aμ,ν(Φβ
μ,Φγ

ν) + Aμ,ν(Φγ
μ,Φβ

ν )
))

+
∑

ν,κ∈{+,−}

1
4
Re

(∫

Φα
(

A4
ν,κ(Φα

ν ,Φκ)
)

.

Recall (3.16), we know that A−,−(·, ·) does not lose derivative. That is to say,
A−,−(∂tΦβ ,Φγ) actually does not lose derivative. Recall (3.17), we can see
that A+,−(Φγ , ∂tΦβ) actually does not lose derivative, because losing deriva-
tive is only relevant when Φβ has relatively higher frequency and for this case
A+,−(·, ·) does not lose derivative. From (3.50), we can actually gain one de-
rivative from the symbol of A4

−,κ(∂tΦα
−,Φκ) when ∂tΦα

− has larger frequency;
hence, it does not lose derivative. To sum up, we can rule out A−,−(Φβ

−,Φγ
−),

A−,−(Φγ
−,Φβ

−), A+,−(Φγ ,Φβ
−), and A4

−,κ(Φα
−,Φκ). The problematic terms are

given as follows:

Problematic terms

:=
∑

(|α1|+|α2|,|α3|+|α4|)
∈{(N0,0),(N1,1)}

∑

β+γ=α,|γ|=1,
|γ3|=|γ4|=0

(
α

β

)

Re
(∫

ΓγΦβ
(

A+,+(Φβ ,Φγ)

+ A+,+(Φγ ,Φβ) + A+,−(Φβ ,Φγ
)
)

+
1
4
Re

(∫

Φα
(

A4
+,+(Φα,Φ) + A4

+,−(Φα,Φ)
)
)

. (3.51)

To get around the difficulty of losing another derivative after taking de-
rivative in time, we need utilize symmetries inside the system. Utilizing can-
cellations inside (3.64), (3.65) and (3.67), we can rule out some more terms
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further after replacing Φ by its real part and imaginary part. As a result,
the problematic cubic terms inside (3.51) are, intuitively speaking, either of
type ∂j(|Φβ |2)∂jIm(Φ) or of type |Φα|2Im(Φ). For those types cubic terms,
we only need to worry about the case when ∂t hits |Φβ |2 or |Φα|2. Recall the
symmetries we identified in (3.34). We know that there are symmetries inside
∂t(|φα

0 |2 + |Φα|) and this whole term does not lose derivative. This observation
suggests us to add cubic terms of type ∂j(|φβ

0 |2)∂jIm(Φ) or of type |φα
0 |2Im(Φ)

to (3.51). Essentially speaking, Im(Φ) plays very little role. But, due to its
presence, it will complicate computations a lot.

To sum up, with above intuition, we define the following second level
correction terms:

ESCorr(t) :=
∑

(|α1|+|α2|,|α3|+|α4|)
∈{(N0,0),(N1,1)}

∑

β+γ=α,|γ|=1,
|γ3|=|γ4|=0

(
α

β

)

×Re
(∫

Γγφβ
0

(

A+,+(φβ
0 ,Φγ) + A+,+(Φγ , φβ

0 )

+ A+,−(φβ
0 ,Φγ

))

+
1
4
Re

(∫

φα
0

(

A4
+,+(φα

0 ,Φ)+A4
+,−(φα

0 ,Φ)
))

.

(3.52)

Now, we can see the correspondence of Φα(Φβ) in (3.51) and φα
0 (φβ

0 ) in (3.52).
The modified energy that will be used to do energy estimate is defined as
follows:

Emodi(t) = E(t) + EFCorr(t) + ESCorr(t). (3.53)

Lemma 3.2. Under the bootstrap assumption (2.3), we have

sup
t∈[0,T ]

∣
∣EFCorr(t)

∣
∣ +

∣
∣ESCorr(t)

∣
∣ � ε20. (3.54)

Proof. Let h1 and h2 be two well-defined functions. From (3.16) and (3.49) and
Lemma 2.1, we have the following estimate for a bilinear operator
A(·, ·) ∈ {Aμ,ν(·, ·), A′

μ,ν(·, ·)},

‖A(h1, h2)‖Hs �
(

∑

k1≤k2−10

22sk2‖Pk2 [A(Pk1h1, Pk2h2)]‖2
L2

)1/2

+

(
∑

k2≤k1−10

22sk1‖Pk1 [A(Pk1h1, Pk2h2)]‖2
L2

)1/2

+
∑

|k1−k2|≤10

∑

k≤k1+20

2sk‖Pk[A(Pk1h1, Pk2h2)]‖L2

�
(

∑

k1≤k2−10

22(s+1)k2‖Pk2h2‖2
L2‖Pk1h1‖2

L∞

)1/2
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+

(
∑

k2≤k1−10

22(s+1)k1‖Pk2h2‖2
L∞‖Pk1h1‖2

L2

)1/2

+‖h2‖Hs+1‖h1‖W 1 � ‖‖h2‖Hs+1‖h1‖W 1 + ‖h1‖Hs+1‖h2‖W 1 .

(3.55)

For fixed α such that (|α1| + |α2|, |α3| + |α4|) = (N0, 0), then from estimate
(3.49) and Lemma 2.2, we have

‖A4
μ,ν(Φα

ν ,Φκ)‖L2 �
(

∑

k1≤k2−10

22N0k1+2k2‖Pk2Φ‖2
L2‖Pk1Φ‖2

L∞

)1/2

+

(
∑

k2≤k1−10

22(N0+1)k2‖Pk2Φ‖2
L2‖Pk1Φ‖2

L∞

)1/2

+‖Φ‖HN0 ‖Φ‖W 1+ � ‖Φ‖HN0 ‖Φ‖Z′ . (3.56)

Very similarly, we have the following estimate when (|α1| + |α2|, |α3| + |α4|) =
(N1, 1),

‖A4
+,κ(φα

0 ,Φκ)‖L2 + ‖A4
μ,ν(Φα

ν ,Φκ)‖L2

�
(‖S(Φ, φ0)‖HN1 + ‖Ω(Φ, φ0)‖HN1

)‖Φ‖W N1+2 � ‖Φ‖XN0
‖Φ‖Z′ .

(3.57)

To sum up, from estimates (3.55), (3.56) and (3.57), we can estimate terms
inside (3.47) and (3.52) one by one. As a result, we have
∣
∣EFCorr(t)

∣
∣ +

∣
∣ESCorr(t)

∣
∣ � ‖(φ0,Φ)‖2

XN0
‖Φ‖Z′ � (1 + t)−1/2+2p0ε31 � ε20.

(3.58)

Therefore, our desired estimate (3.54) holds. �

Remark 3.3. Since the above dyadic decomposition and multilinear type esti-
mates are standard processes, we will not repeat the detail proofs of similar
estimates again but give the stated estimates directly.

3.7. Key Cancellations

3.7.1. Key Cancellations Inside the Symbols of A+,+(·, ·) and A+,−(·, ·).
From (3.9), we have

m̃′
+,+(ξ − η, η) + m̃′

+,+(η, ξ − η)

=
−ξ · (ξ − 2η)

4|ξ|2 (1 − cos(∠(ξ − η, η)))((ξ − η) × η)

−
(

ξ

4|ξ| − ξ − η

4|ξ − η|
)

·
(

ξ − η

|ξ − η| − η

|η|

)

((ξ − η) × η)

− ξ − η

4|ξ − η| ·
(

ξ − η

|ξ − η| − η

|η|

)

((ξ − η) × η)
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=
ξ · η − |ξ|2

2|ξ2| (1 − cos(∠(ξ − η, η)))
(

(ξ − η) × η
)

−
(

ξ

4|ξ| − ξ − η

4|ξ − η|
)

·
(

ξ − η

|ξ − η| − η

|η|

)

((ξ − η) × η).

Very similarly, from (3.10), we have the following decomposition for m̃′
+,−(ξ −

η, η):

m̃′
+,−(ξ − η, η) =

ξ · η − |ξ|2
2|ξ2| (1 + cos(∠(ξ − η, η)))

(

(ξ − η) × η
)

−
(

ξ

4|ξ| − ξ − η

4|ξ − η|
)

·
(

ξ − η

|ξ − η| +
η

|η|

)

((ξ − η) × η).

Therefore,

a+,+(ξ − η, η) + a+,+(η, ξ − η)

=
i(|ξ| + |ξ − η| + |η|) × (

m̃′
+,+(ξ − η, η) + m̃′

+,+(η, ξ − η)
)

|ξ − η||η|(cos(∠(ξ − η, η)) − 1)

= i
|ξ| + |ξ − η| + |η|

2|ξ − η||η| ξ × η + i
−ξ · η(|ξ| + |ξ − η| + |η|)

2|ξ2||ξ − η||η|
(

(ξ − η) × η
)

−i

(

ξ

4|ξ| − ξ − η

4|ξ − η|

)

·
(

ξ − η

|ξ − η| − η

|η|

)

((ξ − η) × η)

× |ξ| + |ξ − η| + |η|
|ξ − η||η|(cos(∠(ξ − η, η)) − 1)

, (3.59)

a+,−(ξ − η, η) =
im̃′

+,−(ξ − η, η)
|ξ| − |ξ − η| + |η| =

i(|ξ| + |ξ − η| − |η|)m̃′
+,−(ξ − η, η)

|ξ − η||η|(cos(∠(ξ − η, η)) + 1)

= −i
|ξ| + |ξ − η| − |η|

2|ξ − η||η| ξ × η + i
ξ · η(|ξ| + |ξ − η| − |η|)

2|ξ|2|ξ − η||η| ξ × η

−i

(

ξ

4|ξ| − ξ − η

4|ξ − η|

)

·
(

ξ − η

|ξ − η| +
η

|η|

)

((ξ − η) × η)

× |ξ| + |ξ − η| − |η|
|ξ − η||η|(cos(∠(ξ − η, η)) + 1)

. (3.60)

The main point of the above decompositions is to separate out the leading
term, which essentially causes the loss of a derivatives. Note that the difference
between ξ/|ξ| and (ξ − η)/|ξ − η| is less than |η|/|ξ| when |η| � |ξ|. Therefore,
when |η| � |ξ|, the leading term of a+,+(ξ − η, η) + a+,+(η, ξ − η) is iξ × η/|η|
and the leading term of a+,−(ξ − η, η) is −iξ × η/|η|. Now it is easy to see the
leading terms are cancelled out. More precisely, from Lemma 2.2, (3.59), and
(3.60), the following estimates hold:
∥
∥
∥
∥
a+,+(ξ − η, η) + a+,+(η, ξ − η) − iξ × η

|η|
∥
∥
∥
∥

S∞
k,k1,k2

� 2k2 , if k2 ≤ k1 − 10,

(3.61)
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∥
∥
∥
∥
a+,−(ξ − η, η) + iξ × η

|η|
∥
∥
∥
∥

S∞
k,k1,k2

� 2k2 , if k2 ≤ k1 − 10.

(3.62)

From (3.62), as a byproduct, the following estimate also holds:
∥
∥
∥
∥
a+,−(ξ,−η) + iξ × η

|η|
∥
∥
∥
∥

S∞
k,k1,k2

� 2k2 , if k2 ≤ k1 − 10. (3.63)

From (3.61), (3.62), and (3.63), the following estimates hold:

‖a+,+(ξ − η, η) + a+,+(η, ξ − η) + a+,−(ξ − η, η)‖S∞
k,k1,k2

� 2k2 , if k2 ≤ k1 − 10,

(3.64)
‖a+,+(ξ − η, η) + a+,+(η, ξ − η) + a+,−(ξ, −η)‖S∞

k,k1,k2
� 2k2 , if k2 ≤ k1 − 10.

(3.65)

After changing of coordinates in (3.65), we have the following byproduct:

‖a+,+(ξ,−η) + a+,+(−η, ξ) + a+,−(ξ − η, η)‖S∞
k,k1,k2

� 2k2 , if k2 ≤ k1 − 10.

(3.66)

3.7.2. Key Cancellations Inside the Symbols of A4
+,+(·, ·) and A4

+,−(·, ·).
Recall the detail formula of the symbol of A4

ν,κ(·, ·) in (3.48) and the explicit
formula of q2(ξ − η, η) in (3.36), we have the following identity:

a4
+,+(ξ − η, η) + a4

+,−(ξ − η, η) =
iq2(ξ − η, η)

|ξ − η| =
−2iξ · η

|ξ|2|ξ − η| (ξ − η) × η,

a4
+,+(ξ − η, η) − a4

+,−(ξ,−η) =
−i(|ξ| + |ξ − η| + |η|)

|ξ − η||η|

(

ξ · η

|ξ|2 (ξ × η)

− (ξ − η) · η

|ξ − η|2 (ξ × η)

)

+

(

i(|ξ| + |ξ − η| − |η|)
|ξ||η|

− i(|ξ| + |ξ − η| + |η|)
|ξ − η||η|

)

(ξ − η) · η

|ξ − η|2 (ξ × η),

From the above computations and Lemma 2.2, the following estimate holds if
k2 ≤ k1 − 10,

‖a4
+,+(ξ−η, η)+a4

+,−(ξ−η, η)‖S∞
k,k1,k2

+ ‖a4
+,+(ξ − η, η)

−a4
+,−(ξ,−η)‖S∞

k,k1,k2
� 22k2−k1 . (3.67)



2D Incompressible Isotropic Elastodynamics

3.8. Energy Estimate for the Modified Energy

We first prove the following lemma, which consists of some bilinear estimates
that will be used later.

Lemma 3.4. For bilinear operator Q ∈ {Q0,μ, Qμ,ν , Q̃0,0, Q̃0,μ, Q̃μ,ν}, Q̃ ∈
{Q̃1

0, Q̃
1
0,μ, Q̃1

μ,ν} and any two smooth functions h1, h2 ∈ H1 ∩ W 1+, we have

‖Q(h1, h2)‖L2 � min{‖h1‖H1‖h2‖W 1+ , ‖h2‖H1‖h1‖W 1+}, (3.68)

‖Q̃(h1, h2)‖L2 � min{‖h1‖L2‖h2‖W 1+ , ‖h2‖L2‖h1‖W 1+}, (3.69)

‖Q̃(h1, h2)‖L∞ � min
{‖h1‖W 1+‖h2‖W 1+ ,min{‖h1‖L∞‖h2‖W 1+ + ‖h1‖3/4

L∞

×‖h1‖1/4
H5 ‖h2‖3/4

L∞‖h2‖1/4
L2 , ‖h2‖L∞‖h1‖W 1+

+‖h2‖3/4
L∞‖h2‖1/4

H5 ‖h1‖3/4
L∞‖h1‖1/4

L2 }}. (3.70)

Proof. Similar to the proof of estimate (3.55), from (3.18) in Lemma 3.16 and
Lemma 2.1, it is easy to see the desired estimate (3.68) and (3.69) holds. Note
that, from (3.18) in Lemma 3.16 and bilinear estimate in Lemma 2.1, the
following estimate holds:

‖Q̃(h1, h2)‖L∞ =
∑

|k1−k2|≤4

2k12−(1+)k1,+‖Pk1h1‖L∞‖Pk2h2‖L∞

+
∑

|k1−k2|≥4

2min{k1,k2}2−(1+)(k1,++k2,+)‖Pk1h1‖W1+‖Pk2h2‖W1+

� ‖h1‖W1+‖h2‖W1+ . (3.71)

There is another way to estimate the L∞-norm of Q̃(h1, h2), which is as
follows:

‖Q̃(h1, h2)‖L∞ � ‖h1‖L∞‖h2‖W 1+

+
∑

k2≤k1−4

2k22−5k1,+/4(‖Pk1h1‖L∞‖Pk2h2‖L∞)3/4

×‖Pk2h2‖1/4
L2 ‖Pk1h1‖1/4

H5 � ‖h1‖L∞‖h2‖W 1+

+‖h1‖3/4
L∞‖h1‖1/4

H5 ‖h2‖3/4
L∞‖h2‖1/4

L2 . (3.72)

Since the upper bound we used is symmetric, we can switch the role of h1 and
h2 in estimates (3.71) and (3.72) to see estimate (3.70) holds.

�

From the construction of cubic correction terms inside the modified en-
ergy, we know that cubic terms inside dEmodi(t)/dt that does not depend on
φ0 are cancelled out. It would be sufficient to close the energy estimate, if we
can prove the following two Lemmas.

Lemma 3.5. Under the bootstrap assumption (2.3), we have

sup
t∈[0,T ]

(1 + t)−2p0+1

∣
∣
∣
∣
cubic terms inside

d
dt

E(t) that depend on φ0

∣
∣
∣
∣
� ε20.

(3.73)
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Proof. Recall the bootstrap assumption (2.3), we know that φ0 decays 1/t1/2

faster than Φ. With this 1/t1/2 faster decay rate, the decay rate for those cubic
terms is sufficient. Although there are many cubic terms inside dE(t)/dt that
depends on φ0, we can use (3.49), L2−L∞ type estimate in Lemma 2.1, and the
estimates in Lemma 3.4 to estimate all of them. From (3.19), (3.23),(3.39), and
(3.40), we can identify all of them. As representative examples, we estimate
two of them in detail as follows:

(i) For any tuples β, γ, such that |β|, |γ| < |α| ∈ {N0, N1 + 1}, we have
the following estimate by estimate (3.68) in Lemma 3.4; the following
estimate holds:

∣
∣
∣
∣
∣

∫

Φα(t)Q̃0,μ(φβ
0 (t),Φγ

μ(t))dx

∣
∣
∣
∣
∣

� ‖Φ(t)‖XN0

[‖φ0(t)‖XN0
‖Φ(t)‖Z′ + ‖Φ(t)‖XN0

‖φ0(t)‖Z′
1

]

� (1 + t)2p0−1ε31 � (1 + t)2p0−1ε20.

(ii) From (3.38) and L2 − L∞ type bilinear estimate in Lemma 2.1, the fol-
lowing estimate holds:

∣
∣
∣
∣
∣

∫

Φα(t)Q2(R2φ
α
0 (t), R1Φ(t))dx

∣
∣
∣
∣
∣

� ‖Φ(t)‖XN0

[‖φ0(t)‖XN0
‖Φ(t)‖Z′ + ‖Φ(t)‖XN0

‖φ0(t)‖Z′
1

]

� (1 + t)2p0−1ε31 � (1 + t)2p0−1ε20.

�

Lemma 3.6. Under the bootstrap assumption (2.3), we have

sup
t∈[0,T ]

(1 + t)−2p0+1

∣
∣
∣
∣
quartic terms of

d
dt

(EFCorr(t) + ESCorr(t))
∣
∣
∣
∣
� ε20.

(3.74)

Therefore, after combing above estimate with the results of Lemmas 3.2 and
3.5, we have

sup
t∈[0,T ]

(1 + t)−p0‖(φ0,Φ)‖XN0
� ε0. (3.75)

3.9. Proof of Lemma 3.6

Since the decay rate of quartic terms is sufficient, we only have to avoid losing
derivatives to close the argument. Recall the problematic terms we found in
(3.51) and the second correction terms in (3.52), to close the argument, it is
sufficient to prove that the following terms do not lose a derivative:

∑

(|α1|+|α2|,|α3|+|α4|)
∈{(N0,0),(N1,1)}

∑

β+γ=α,|γ|=1,
|γ3|=|γ4|=0

(
α

β

)
(

J1
β,γ(Φγ) + J2

β,γ(Φγ)
)

+
1
4
(J1

α + J2
α),
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where

J1
β,γ(Φγ) := Re

(
∫

ΓγN (β,0)
1

(

A+,+(Φβ ,Φγ)

+A+,+(Φγ ,Φβ) + A+,−(Φβ ,Φγ)
)

+ΓγN (β,0)
0

(

A+,+(φβ
0 ,Φγ) + A+,+(Φγ , φβ

0 ) + A+,−(φβ
0 ,Φγ)

)

,

J2
β,γ(Φγ) := Re

(
∫

ΓγΦβ
(

A+,+(N (β,0)
1 ,Φγ)

+A+,+(Φγ ,N (β,0)
1 ) + A+,−(N (β,0)

1 ,Φγ)
)

+Γγφβ
0

(

A+,+(N (β,0)
0 ,Φγ)

+A+,+(Φγ ,N (β,0)
0 ) + A+,−(N (β,0)

0 ,Φγ)
)

)

,

J1
α := Re

(
∫

N (α,0)
1

(

A4
+,+(Φα,Φ) + A4

+,−(Φα,Φ)
)

+N (α,0)
0

(

A4
+,+(φα

0 ,Φ) + A4
+,−(φα

0 ,Φ)
)

)

,

J2
α := Re

(
∫

Φα
(

A4
+,+(N (α,0)

1 ,Φ) + A4
+,−(N (α,0)

1 ,Φ)
)

+φα
0

(

A4
+,+(N (α,0)

0 ,Φ) + A4
+,−(N (α,0)

0 ,Φ)
)

)

.

We mention that J1
β,γ(Φγ) and J2

β,γ(Φγ) differ slightly; only the roles of Φβ

and N (β,0)
1 are switched, and the same situation happens for J1

α and J2
α. In the

following two subsubsections, we mainly reveal cancellations inside J1
β,γ(Φγ)

and J1
α in details.
Although computations that readers will see are tedious, there are three

main ideas behind: (i) The cancellation (3.78) holds, as symbols of bilinear
operators Aμ,ν(·, ·) and A4

μ,ν(·, ·) are all imaginary and even in the sense of
(3.77). With this fact, we can split variables into real part and imaginary part.
As a result, we have the same inputs, which are all real, inside aforementioned
bilinear operators. (ii) With cancellations in (3.64), (3.65), and (3.67), we know
that those bilinear operators do not play many roles. Essentially speaking,
the only difference between quartic terms inside J1

β,γ(Φγ) and J1
α and cubic

terms inside (3.34) is another real function, which does not affect too much.
(iii) There are cancellations inside the cubic terms of (3.34), which have been
shown before in (3.35).
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3.9.1. Estimate of J1
β,γ(Φγ) and J2

β,γ(Φγ). Since Γγ ∈ {∂1, ∂2}, we write Γγ

as ∂j for some j ∈ {1, 2}. We first consider J1
β,γ(Φγ) and decompose it into

two parts by splitting the input ∂jΦ into imaginary part and real part. More
precisely, we have

J i
β,γ(Φγ) = J i

β,γ(∂jRe(Φ)) + J i
β,γ(i∂jIm(Φ)), i ∈ {1, 2}. (3.76)

From the explicit formula of aμ,ν(·, ·) in (3.15), the following facts hold:

aμ,ν(ξ − η, η) = aμ,ν(η − ξ,−η), Re(aμ,ν(ξ − η, η)) = 0, (μ, ν) ∈ S.

(3.77)

which further give us the following identity:

Re

(
∫

fAμ,ν(g, h)

)

= 0, if f, g, and h are all real functions. (3.78)

• Estimate of J1
β,γ(∂jRe(Φ)). From (3.78) and the fact that Im(φ0) = 0,

the following identity holds after replacing Φ in terms of ψ, G1, and G2,

J1
β,γ(∂jRe(Φ)) = Re

(
∫

∂jRe(N (β,0)
1 )

(

A+,+(iIm(Φβ), ∂jRe(Φ))

+A+,+(∂jRe(Φ), iIm(Φβ))

+A+,−(iIm(Φβ), ∂jRe(Φ))

)

+Re

(
∫

−i∂jIm(N (β,0)
1 )

(

A+,+(Re(Φβ), ∂jRe(Φ))

+A+,+(∂jRe(Φ),Re(Φβ))

+A+,−(Re(Φβ), ∂jRe(Φ))
)

)

.

After writing above terms in Fourier side, we have the following estimate:

|J1
β,γ(∂jRe(Φ))| �

∣
∣
∣
∣
∣

∫
̂ReN (β,0)

1 (ξ) ̂Im(Φβ)(ξ − η)R̂e(Φ)(η)b1(ξ, η)dη

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫
̂ImN (β,0)

1 (ξ)R̂e(Φβ)(ξ − η)R̂e(Φ)(η)b1(ξ, η)dη

∣
∣
∣
∣
∣
,

where

b1(ξ, η) = iξjηj

(

a+,+(ξ − η, η) + a+,+(η, ξ − η) + a+,−(ξ − η, η)).

Recall (3.64). From (2.1) in Lemma 2.1, the following estimate holds:

‖b1(ξ, η)‖S∞
k,k1,k2

� 22k2+k1 , if k2 ≤ k1 − 10,

which further gives us the following estimate:
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|J1
β,γ(∂jRe(Φ))| � ‖N (β,0)

1 ‖L2‖Φβ‖H1‖Φ‖Z′

� ‖(φ0,Φ)‖2
XN0

(‖φ0‖Z′
1
+ ‖Φ‖Z′

)2 � (1 + t)−2p0+1ε30.

(3.79)

• Estimate of J1
β,γ(i∂jIm(Φ)). Using (3.78), we have the following identity

for J1
β,γ(i∂jIm(Φ)),

J1
β,γ(i∂jIm(Φ)) = Re

(
∫

∂jRe(N (β,0)
1 )

(

A+,+(Re(Φβ), i∂jIm(Φ))

+A+,+(i∂jIm(Φ),Re(Φβ)) + A+,−(Re(Φβ),−i∂jIm(Φ))
)

+∂jRe(N (β,0)
0 )

(

A+,+(Re(φβ
0 ), i∂jIm(Φ))

+A+,+(i∂jIm(Φ),Re(φβ
0 )) + A+,−(Re(φβ

0 ),−i∂jIm(Φ))
)

+∂jIm(N (β,0)
1 )

(

A+,+(Im(Φβ), i∂jIm(Φ))

+A+,+(i∂jIm(Φ), Im(Φβ)) + A+,−(Im(Φβ),

−i∂jIm(Φ))
)

+ ∂jIm(N (β,0)
0 )

(

A+,+(Im(φβ
0 ), i∂jIm(Φ))

+A+,+(i∂jIm(Φ), Im(φβ
0 )) + A+,−(Im(φβ

0 ),−i∂jIm(Φ))
)

)

.

(3.80)

From (1.15) and (1.19), we rewrite (3.80) in terms of ψ, G1, and G2 and
have the following identity:

J1
β,γ(i∂jIm(Φ)) = J1,1

β,γ(i∂jIm(Φ)) + J1,2
β,γ(i∂jIm(Φ)), (3.81)

where

J1,1
β,γ(i∂jIm(Φ)) := Re

(
∫

∂jR1Ñ (β,0)
1

(

A+,+(R2G
β
2 , i∂jIm(Φ))

+A+,+(i∂jIm(Φ), R2G
β
2 ) + A+,+(R2G

β
2 ,−i∂jIm(Φ))

)

−∂jR2Ñ (β,0)
1

(

A+,+(R1G
β
2 , i∂jIm(Φ))

+A+,+(i∂jIm(Φ), R1G
β
2 )

+A+,−(R1G
β
2 ,−i∂jIm(Φ))

)

+∂jR2Ñ (β,0)
2

(

A+,+(R1G
β
1 , i∂jIm(Φ))

+A+,+(i∂jIm(Φ), R1G
β
1 ) + A+,−(R1G

β
1 ,

−i∂jIm(Φ))
) − ∂jR1Ñ (β,0)

2

(

A+,+(R2G
β
1 , i∂jIm(Φ))

+A+,+(i∂jIm(Φ), R2G
β
1 )

+A+,−(R2G
β
1 ,−i∂jIm(Φ))

)

,
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J1,2
β,γ(i∂jIm(Φ)) := Re

(
∫

∂jÑ (β,0)
0

(

A+,+(ψβ , i∂jIm(Φ))+A+,+(i∂jIm(Φ), ψβ)

+A+,−(ψβ ,−i∂jIm(Φ))
)

+
∑

i=1,2

∂jRiÑ (β,0)
1

(

A+,+(RiG
β
1 , i∂jIm(Φ))

+A+,+(i∂jIm(Φ), RiG
β
1 )

+A+,−(RiG
β
1 ,−i∂jIm(Φ))

)

+∂jRiÑ (β,0)
2

(

A+,+(RiG
β
2 , i∂jIm(Φ))

+A+,+(i∂jIm(Φ), RiG
β
2 ) + A+,−(RiG

β
2 ,−i∂jIm(Φ))

)

.

We write J1,1
β,γ(∂jIm(Φ)) on the Fourier side and have the following:

|J1,1
β,γ(i∂jIm(Φ))| �

∣
∣
∣
∣
∣

∫ ∫
̂̃N (β,0)

1 (ξ)̂Gβ
2 (ξ − η)Îm(Φ)(η)m1(ξ − η, η)dηdξ

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ ∫
̂̃N (β,0)

2 (ξ)̂Gβ
1 (ξ − η)Îm(Φ)(η)m1(ξ − η, η)dηdξ

∣
∣
∣
∣
∣
,

where

m1(ξ−η, η) = iξjηj
ξ

|ξ| ×
(

ξ − η

|ξ−η|
)
(

a+,+(ξ−η, η) + a+,+(η, ξ − η) − a+,−(ξ − η, η)
)

= iξjηj
−ξ × η

|ξ||ξ − η|
(

a+,+(ξ − η, η) + a+,+(η, ξ − η) − a+,−(ξ − η, η)
)

.

From the above computation, we can see that the cancellation comes from the
Riesz operators. From Lemma 2.2, the following estimate holds:

‖m1(ξ − η, η)‖S∞
k,k1,k2

� 22k2+k1 , if k2 ≤ k1 − 10.

From the above estimate and L2 − L∞ type bilinear estimate in Lemma 2.1,
the following estimate holds:

|J1,1
β,γ(i∂jIm(Φ))| � ‖(Ñ (β,0)

1 , Ñ (β,0)
2 )‖L2

(‖Φ‖Z′‖(G1, G2)‖XN0

+‖Φ‖XN0
‖(G1, G2)‖Z′

1

)

� ‖(φ0,Φ)‖2
XN0

(‖φ0‖Z′
1
+ ‖Φ‖Z′

)2 � (1 + t)−2p0+1ε30.

(3.82)

We proceed to consider J1,2
β,γ(∂jIm(Φ)). Recall (3.33), similar to computations

in (3.35), we write J1,2
β,γ(∂jIm(Φ)) on the Fourier side. As a result, the following

estimate holds:
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|J1,2
β,γ(i∂jIm(Φ))|

�
∣
∣
∣
∣
∣

∫ ∫ ∫

̂ψβ(ξ − σ)ψ(σ)̂ψβ(ξ − η)Îm(Φ)(η)m2(ξ, η, σ)dσdηdξ

∣
∣
∣
∣
∣

+
∑

i=1,2

∣
∣
∣
∣
∣

∫ ∫ ∫

̂
Gβ

i (ξ − σ)ψ̂(σ)̂Gβ
i (ξ − η)Îm(Φ)(η)m3(ξ, η, σ)dσdηdξ

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ ∫ ∫

̂
Gβ

i (ξ − σ)Ĝi(σ)̂ψβ(ξ − η)Îm(Φ)(η)m4(ξ, η, σ)dσdηdξ

∣
∣
∣
∣
∣
,

(3.83)

where

m2(ξ, η, σ) = iξjηj

(

q(ξ − σ, σ) + q(σ, ξ − σ)
)(

a+,+(ξ − η, η) + a+,+(η, ξ − η)
)

+i(ξj − ηj − σj)(−ηj)
(

q(ξ − η,−σ)

+q(−σ, ξ − η)
)

a+,−(ξ − σ,−η), (3.84)

m3(ξ, η, σ) = iξjηj(ξ − σ) × σ
ξ · (ξ − η)
|ξ||ξ − η|

(

a+,+(ξ − η, η) + a+,+(η, ξ − η)
)

+i(ξj − ηj − σj)(−ηj)(ξ − η)

×(−σ)
(ξ − η − σ) · (ξ − σ)
|ξ − η − σ||ξ − σ| a+,−(ξ − σ,−η), (3.85)

m4(ξ, η, σ) = iξjηj(−q(ξ − σ, σ) − q(σ, ξ − σ))(a+,+(ξ − η, η)
+a+,+(η, ξ − η) − a+,−(ξ − η, η))

+i(ξj − ηj − σj)(−ηj)
( − (−σ)

×(ξ − η)
) (ξ − η − σ) · (ξ − η)

|ξ − η − σ||ξ − η|
(

a+,−(ξ − σ,−η)

−a+,+(ξ − σ,−η) − a+,+(−η, ξ − σ)
)

(3.86)

Since losing a derivative for (3.83) is only relevant when |η|, |σ| � |ξ|, we
assume |η|, |σ| � |ξ| in the rest of this subsubsection. Now, we are ready to
see cancellation inside mi(ξ, η, σ), i ∈ {2, 3, 4}. We decompose them as follows:

m2(ξ, η, σ)
= iξjηj (q(ξ − σ, σ) + q(σ, ξ − σ) + q(ξ,−σ) + q(−σ, ξ))

︸ ︷︷ ︸

cancellation from (3.37) and (3.38)

(

a+,+(ξ − η, η)

+a+,+(η, ξ − η)
) − iξjηj

(

q(ξ,−σ)

+q(−σ, ξ)
)

(a+,+(ξ − η, η) + a+,−(η, ξ − η) + a+,−(ξ,−η))
︸ ︷︷ ︸

cancellation from (3.65)

+ i(ηj + σj)ηj

(

q(ξ − η,−σ) + q(−σ, ξ − η)
)

a+,−(ξ − σ,−η)
︸ ︷︷ ︸

rough estimate will do

−iξjηja+,−(ξ,−η)
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× (q(ξ − η,−σ) − q(ξ,−σ) + q(−σ, ξ − η) − q(−σ, ξ))
︸ ︷︷ ︸

cancellation from the smallness of the difference between ξ−η and ξ

+i (a+,−(ξ,−η) − a+,−(ξ − σ,−η))
︸ ︷︷ ︸

from the smallness of the difference between ξ − σ and ξ

·ξjηj

(

q(ξ − η,−σ) + q(−σ, ξ − η)
)

. (3.87)

From the above decomposition, (3.38) and (3.65), and Lemma 2.2, the following
estimate holds:

‖m2(ξ, η, σ)‖S∞
k,k1,k2,k3

� 23 max{k2,k3}+2k1 , if max{k2, k3} ≤ k1 − 10.

(3.88)

Now, we proceed to reveal cancellations inside m3(ξ, η, σ) and
m4(ξ, η, σ). For simplicity, we only highlight those symbols that do not satisfy
(3.88) type estimate. As a result, we have

m3(ξ, η, σ) = i
(

a+,+(ξ − η, η) + a+,+(η, ξ − η) + a+,−(ξ, −η)
︸ ︷︷ ︸

cancellation from (3.65)

−a+,−(ξ, −η) + a+,−(ξ − σ, −η)
) · ξjηj(ξ × σ)

+other terms inside (3.85) that satisfy (3.88) type estimate,

m4(ξ, η, σ) = iξjηj

[(

σ × ξ
) − q(ξ − σ, σ) − q(σ, ξ − σ)

]

︸ ︷︷ ︸

cancellation from (3.36) and (3.38)

×(

a+,+(ξ − η, η) + a+,+(η, ξ − η)

−a+,−(ξ − η, −η)
) − iξjηj

(

σ × ξ
)

×
((

a+,+(ξ − η, η) + a+,+(η, ξ − η) + a+,−(ξ, −η)
)

︸ ︷︷ ︸

cancellation from (3.65)

− (

a+,+(ξ, −η) + a+,+(ξ, −η) + a+,−(ξ − η, η)
)

︸ ︷︷ ︸

cancellation from (3.66)

+
( − a+,−(ξ, −η) + a+,−(ξ − σ, −η)
︸ ︷︷ ︸

cancellation from the smallness of between ξ and ξ − σ

−a+,+(ξ − σ, −η) + a+,+(ξ, −η) − a+,+(−η, ξ − σ) + a+,+(−η, ξ)
)

︸ ︷︷ ︸

cancellation from the smallness of ξ and ξ − σ

)

+ other terms inside (3.86) that satisfy (3.88) type estimate.

From the above decomposition, (3.38) and (3.65), and Lemma 2.2, the following
estimate holds if max{k2, k3} ≤ k1 − 10:

‖m3(ξ, η, σ)‖S∞
k,k1,k2,k3

+ ‖m4(ξ, η, σ)‖S∞
k,k1,k2,k3

� 23 max{k2,k3}+2k1 . (3.89)

From (3.88) and (3.89) and L2 − L∞ − L∞ type trilinear estimate in Lemma
2.1, we have

|J1,2
β,γ(i∂jIm(Φ))| �

(‖Φ‖Z′‖(G1, G2)‖XN0
+ ‖Φ‖XN0

‖(G1, G2)‖Z′
1

)2

� (1 + t)−1+2p0ε30. (3.90)
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To sum up, from (3.76), (3.79), (3.81), (3.82), and (3.90) , the following esti-
mate holds:

|J1
β,γ(Φγ)| � (1 + t)−1+2p0ε30.

Note the following two facts: one can estimate J2
β,γ(Φγ) very similarly with

minor modifications.

(i) We can represent J2
β,γ(Φγ) in the following way:

Re
(∫

Γγf
(

T (g,Γγh)
)

= Re
(∫

ΓγgT̃ (f,Γγh)
)

+ a term that doesn’t lose derivative,

where the first term is similar to J1
β,γ(Φγ) and T̃ (·, ·) is defined by the

following symbol:

t̃(ξ − η, η) := t(ξ,−η),
t(ξ − η, η) is the symbol of bilinear operator T ∈ {A+,+, A+,−}.

(ii) From (3.64) and (3.65), same types of cancellations also happen for t̃(ξ −
η, η) when |η| � |ξ|.

3.9.2. Estimating J1
α and J2

α. We first estimate J1
α and decompose it into

two parts as follows,

J1
α = J1

α(Re(Φ)) + J1
α(iIm(Φ)), J1

α(Re(Φ))

:= Re

(
∫

N (α,0)
1

(

A4
+,+(Φα,Re(Φ))

+A4
+,−(Φα,Re(Φ))

)

+ N (α,0)
0

(

A4
+,+(φα

0 ,Re(Φ))

+A4
+,−(φα

0 ,Re(Φ))
)

)

,

J1
α(iIm(Φ)) := Re

(
∫

N (α,0)
1

(

A4
+,+(Φα, iIm(Φ)) + A4

+,−(Φα,−iIm(Φ))
)

+ N (α,0)
0

(

A4
+,+(φα

0 , iIm(Φ)) + A4
+,−(φα

0 ,−iIm(Φ))
)

)

.

From (3.67) and L2 − L∞ type bilinear estimate in Lemma 2.1, the following
estimate holds:

|J1
α(Re(Φ))| � ‖N (α,0)

1 ‖H−1‖Φ‖XN0
‖Φ‖Z′

� ‖(φ0,Φ)‖2
XN0

(‖φ0‖Z′
1
+ ‖Φ‖Z′)2 � (1 + |t|)−1+2p0ε30.

(3.91)
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Note that (3.76) also holds for a4
μ,ν(·, ·). Hence, identity (3.78) also holds for

bilinear operator A4
μ,ν(·, ·). As a result, we have

J1
α(iIm(Φ)) = J1,1

α (iIm(Φ)) + J1,2
α (iIm(Φ)),

J1,1
α (iIm(Φ)) := Re

(∫

R2Ñ (α,0)
2

(

A4
+,+(R1G

α
1 , iIm(Φ)

+A4
+,−(R1G

α
1 ,−iIm(Φ))

)

−R1Ñ (α,0)
2

(

A4
+,+(R2G

α
1 , iIm(Φ) + A4

+,−(R2G
α
1 ,−iIm(Φ))

)

+R1Ñ (α,0)
1

(

A4
+,+(R2G

α
2 , iIm(Φ)

+A4
+,−(R2G

α
2 ,−iIm(Φ))

) − R2Ñ (α,0)
1

(

A4
+,+(R1G

α
2 , iIm(Φ)

+ A4
+,−(R1G

α
2 ,−iIm(Φ))

)
)

,

J1,2
α (iIm(Φ)) := Re

(∫

Ñ (α,0)
0

(

A4
+,+(ψα, iIm(Φ)) + A4

+,−(ψα,−iIm(Φ))
)

+
∑

i,j=1,2

RiÑ (α,0)
j

(

A4
+,+(RiG

α
j , iIm(Φ)

+ A4
+,−(RiG

α
j ,−iIm(Φ))

)
)

.

Very similar to estimate of J1,1
β,γ(∂jIm(Φ)) in (3.82), the cancellation comes

from the Riesz operator. With minor modifications, we can prove the following
estimate:

|J1,1
α (iIm(Φ))| � ‖(Ñ (α,0)

1 , Ñ (α,0)
2 )‖H−1‖(G1, G2, Φ)‖XN0

(‖(G1, G2)‖Z′
1
+ ‖Φ‖Z′)

� ‖(φ0, Φ)‖2
XN0

(‖φ0‖Z′
1
+ ‖Φ‖Z′

) � (1 + t)−1+2p0ε30. (3.92)

Very Similar to what we did for J1,2
β,γ(i∂jIm(Φ)) in (3.83), we can write

J1,2
α (iIm(Φ)) on the Fourier side and rewrite the associated symbols as follows:

|J1,2
α (iIm(Φ))| �

∣
∣
∣
∣

∫ ∫ ∫

̂ψβ(ξ − σ)ψ(σ)̂ψβ(ξ − η)Îm(Φ)(η)m5(ξ, η, σ)dσdηdξ

∣
∣
∣
∣

+
∑

i=1,2

∣
∣
∣
∣

∫ ∫ ∫

̂
Gβ

i (ξ − σ)ψ̂(σ)
̂
Gβ

i (ξ − η)Îm(Φ)(η)m6(ξ, η, σ)dσdηdξ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ ∫ ∫

̂
Gβ

i (ξ − σ)Ĝi(σ)̂ψβ(ξ − η)Îm(Φ)(η)m7(ξ, η, σ)dσdηdξ

∣
∣
∣
∣
,

where

m5(ξ, η, σ) = i
(

q(ξ − σ, σ) + q(σ, ξ − σ)
)

a4
+,+(ξ − η, η) + i

(

q(ξ − η, −σ)

+q(−σ, ξ − η)
)

a4
+,−(ξ − σ, −η)

= i
(

q(ξ − σ, σ) + q(σ, ξ − σ) + q(ξ, −σ) + q(−σ, ξ)
)

︸ ︷︷ ︸

cancellation from (3.37) and (3.38)

a4
+,+(ξ − η, η)

+i
(

q(ξ, −σ) + q(−σ, ξ)
) ( − a4

+,+(ξ − η, η) + a4
+,−(ξ, −η)

)

︸ ︷︷ ︸

cancellation from (3.67)

+ good errors,
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m6(ξ, η, σ) = i
(

(ξ − σ) × σ
) ξ · (ξ − η)

|ξ||ξ − η| a4
+,+(ξ − η, η) + i

(

(ξ − η)

×(−σ)
) (ξ − η − σ) · (ξ − σ)

|ξ − η − σ||ξ − σ| · a4
+,−(ξ − σ, −η)

= i
(

ξ × σ
) (

a4
+,+(ξ − η, η) − a4

+,−(ξ − σ, −η)
)

︸ ︷︷ ︸

cancellation from (3.67)

+ good errors,

m7(ξ, η, σ) = i(−q(ξ − σ, σ) − q(σ, ξ − σ))
(

a4
+,+(ξ − η, η) − a4

+,−(ξ − η, η)
)

+i
( − (−σ) × (ξ − η)

)

× (ξ − η − σ) · (ξ − σ)

|ξ − η − σ||ξ − σ|
(

a4
+,−(ξ − σ, −η) − a4

+,+(ξ − σ, −η)
)

= i
(

σ × ξ − q(ξ − σ, σ) − q(σ, ξ − σ)
)

︸ ︷︷ ︸

cancellation from (3.36) and (3.38)

(

a4
+,+(ξ − η, η) − a4

+,−(ξ − η, η)
)

+ i
(

σ × ξ
) (

a4
+,−(ξ, −η) − a4

+,+(ξ, −η) − a4
+,+(ξ − η, η) + a4

+,−(ξ − η, η)
)

︸ ︷︷ ︸

cancellation from (3.67)

+ good errors.

We only highlighted the cancellations in symbols above and omitted the detail
formulas for good error terms. From the above decompositions, (3.36), (3.37),
(3.38), (3.49), and (3.67) and Lemma 2.2, the following estimate holds when
max{k2, k3} ≤ k1 − 10,

‖m5(ξ, η, σ)‖S∞
k,k1,k2,k3

+ ‖m6(ξ, η, σ)‖S∞
k,k1,k2,k3

+‖m7(ξ, η, σ)‖S∞
k,k1,k2,k3

� 23 max{k2,k3},

which further gives us the following estimate:

|J1,2
α (iIm(Φ))| � ‖(G1, G2, ψ,Φ)‖2

XN0
(‖(G1, G2, ψ)‖Z′

1
+ ‖Φ‖Z′)2

� ‖(φ0,Φ)‖2
XN0

(‖φ0‖Z′
1
+ ‖Φ‖Z′)2

� (1 + t)−1+2p0ε41

� (1 + t)−1+2p0ε30. (3.93)

Hence, from (3.91), (3.92), and (3.93), we have

|J1
α| � (1 + t)−1+2p0ε30. (3.94)

Similar to the procedures we did for J2
β,γ(Φγ), with minor modifications, we

can estimate J2
α very similarly. We omit the details here.

4. Linear Decay Estimate

Lemma 4.1 (Linear Decay Estimate). For any t ∈ R and any suitable function
f(x), we have

‖eit|∇|f‖Z′ � (1 + t)−1/2‖f‖Z + (1 + t)−5/8
[‖f‖HN0−1 + ‖|x|∇f‖HN1−1

]

.

(4.1)
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Proof. We can rule out the very low frequency case first using the size of
support of ξ. More precisely,

∑

2k�(1+t)−5/4

2(N1+4)k+

∣
∣
∣
∣

∫

R2
eit|ξ|+x·ξ f̂(ξ)ψk(ξ)dξ

∣
∣
∣
∣
≤

∑

2k�(1+t)−5/8

2k‖Pkf‖L2(R2)

� (1 + t)−5/8‖f‖HN0−1 ,

Then, we can use the HN0−1 norm to rule out the very high frequency case as
follows:

∑

2k�(1+t)5/8(N1−5)

2(N1+4)k+

∣
∣
∣
∣

∫

R2
eit|ξ|+x·ξ f̂(ξ)ψk(ξ)dξ

∣
∣
∣
∣

≤
∑

2k�(1+t)5/8(N1−5)

2−(N1−5)k+‖Pkf‖HN0−1

� (1 + t)−5/8‖f‖HN0−1 .

From now on, we assume that |t| ≥ 1, otherwise it would be straight-
forward. When |x/t| ≤ 0.99 or |x/t| ≥ 1.01, we do integration by parts with
respect to “ξ”, which gives us the following estimate:

2(N1+4)k+

∣
∣
∣
∣

∫

R2
eit|ξ|+x·ξ f̂(ξ)ψk(ξ)dξ

∣
∣
∣
∣

� |t|−12−k2(N1+4)k+‖P̂kf(ξ)‖L1
ξ

+ |t|−12(N1+4)k+‖∂ξP̂kf(ξ)‖L1
ξ

� |t|−1‖Pkf‖HN0−1 + |t|−125k+‖|x|∇f‖HN1−1

� |t|−1‖Pkf‖HN0−1 + |t|−5/8‖|x|∇f‖HN1−1 . (4.2)

It remains to consider the case when |t|−5/4 ≤ 2k ≤ |t|5/8(N1−5) and
0.99 ≤ |x|/t ≤ 1.01. Note that the phase Φ(ξ) = t|ξ|+x · ξ has a line of critical
points, i.e., Φ

′
(ξ) = 0 if ξ/|ξ| = −x/t = −x/|x| =: ξ0. We first localize the

angle of ξ with respect to ξ0, and then use the size of support if it is close to
the critical points and do integration by parts in “ξ” if it is away from the
critical points. Let l̃k be the least integer such that 2l̃k ≥ |t|−1/22−k/2, then

∑

|t|−5/4≤2k≤|t|5/8(N1−5)

2(N1+4)k+

∣
∣
∣
∣

∫

R2
eit|ξ|+x·ξ f̂(ξ)ψk(ξ)ψ≤l̃k

(ξ/|ξ| − ξ0)dξ

∣
∣
∣
∣

�
∑

|t|−5/4≤2k≤|t|5/8(N1−5)

22k+l̃k2(N1+4)k+‖P̂kψ‖L∞

�
∑

|t|−5/4≤2k≤|t|
23k/22−2k+ |t|−1/2‖f‖Z � |t|−1/2‖f‖Z . (4.3)

Note that |∇Φ(ξ)| ≥ |t| 2l when |ξ/|ξ| − ξ0| ∼ 2l, hence after integration by
parts in “ξ”, we have
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∑

|t|−5/4≤2k≤|t|5/8(N1−5)

2(N1+4)k+
∑

l̃k≤l≤2

∣
∣
∣
∣

∫

R2
eit|ξ|+x·ξ f̂(ξ)ψk(ξ)ψl(ξ/|ξ| − ξ0)dξ

∣
∣
∣
∣

�
∑

|t|−5/4≤2k≤|t|5/8(N1−5)

2(N1+4)k+
∑

l̃k≤l≤2

1
|t|2l

(

2−(k+l)22k+l‖P̂kf‖L∞

+ 2(2k+l)/2‖∂ξ f̂(ξ)ψk(ξ)‖L2

)

�
∑

|t|−5/4≤2k≤|t|5/8(N1−5)

∑

l̃k≤l≤2

1
|t|2

−l2k−2k+‖f‖Z +
1
|t|2

−l/225k+‖|x|∇f‖HN1−1

�
∑

|t|−5/4≤2k≤|t|5/8(N1−5)

23k/22−2k+
1

|t|1/2
‖f‖Z +

1
t3/4

2k/425k+‖|x|∇f‖HN1−1

� 1
|t|1/2

‖f‖Z +
1

|t|5/8
‖|x|∇f‖HN1−1 . (4.4)

Combing (4.3) and (4.4), we can see that (4.1) also holds for the remaining
cases, therefore finishing the proof. �

5. Proof of Proposition 2.4

The proof of Proposition 2.4 is separated into the following two steps:
Step 1: Deriving the improved Z-norm estimates for Φ, which further give us

the improved dispersion estimate for Φ, i.e., prove (2.5).
Step 2: Deriving the improved estimate for φ0 via the bootstrap argument on

the constraint, i.e., prove (2.6).

5.1. Improved Z-Norm Estimate and Dispersion Estimate for Φ

Recall the equation satisfied by Φ in (3.12), we can replace φ0 by N2 in Q̃0,μ

several times until the quartic terms only depend on Φ. More precisely, we can
reformulate (3.12) as follows:

∂tΦ + i|∇|Φ = Q2 + C + Q4 + R, (5.1)

where

Q2 =
∑

(μ,ν)∈S
Q̃μ,ν(Φμ,Φν), R = N1 − Q2 − C − Q4,

C =
∑

μ,ν,κ∈{+,−}
Q̃0,μ(Q̃1

ν,κ(Φν ,Φκ),Φμ), (5.2)

Q4 =
∑

μ,ν,κ,τ∈{+,−}
Q̃0,0(Q̃1

μ,ν(Φμ,Φν), Q̃1
κ,τ (Φν ,Φκ))

+Q̃0,μ(Q̃1
0,ν(Q̃1

κ,τ (Φκ,Φτ ),Φν)),Φμ), (5.3)

and it is not difficult to see that, in the sense of decay rate, “R” is of quintic
and higher. Define the associated profile of Φ as g(t) = eit|∇|Φ(t), it follows
that

∂tg(t) = eit|∇|[Q2 + C + Q4 + R]. (5.4)
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Recall the normal form transformation defined in (3.13), we define the associ-
ated profile of Φ̃ as g̃(t) = eit|∇|Φ̃; it follows that

∂tg̃(t) = eit|∇|

⎡

⎣C + Q4 + R +
∑

(μ,ν)∈S
Aμ,ν(Φμ, Pν(Q2 + C + Q4 + R))

+ Aμ,ν(Pμ(Q2 + C + Q4 + R),Φν)

⎤

⎦ . (5.5)

From (3.75) and the bootstrap assumption (2.3), we have the following esti-
mates:

sup
t∈[0,T ]

(1 + t)1/2‖e−it|∇|g‖Z′ + (1 + t)−2p0‖g‖Z

� ε1, sup
t∈[0,T ]

(1 + t)−p0
[‖g‖HN0 + ‖g̃‖HN0−1

]

� ε0, (5.6)

sup
t∈[0,T ]

(1 + t)−p0
[‖F−1[|ξ|∇ξ ĝ(ξ)](·)‖HN1 + ‖F−1[|ξ|∇ξ

̂̃g(ξ)](·)‖HN1−1

]

� ε0.

(5.7)

We postpone the proof of estimate (5.7) to the end of this section and take
this estimate as granted first.

5.1.1. Proof of (2.5). From the results in Lemmas 5.1, 5.2 and 5.3, we have

sup
t∈[0,T ]

(1 + t)−2p0‖g‖Z � ‖g(0)‖Z + sup
t∈[0,T ]

(1 + t)−2p0

∥
∥
∥
∥

∫ t

0

∂tg

∥
∥
∥
∥

Z

� ε0,

sup
t∈[0,T ]

‖g̃(t)‖Z � ‖g(0)‖Z + sup
t∈[0,T ]

∥
∥
∥
∥

∫ t

0

∂tg(s)ds

+
∑

(μ,ν)∈S
eit|∇|[Aμ,ν(Φμ,Φν)

]

∥
∥
∥
∥
∥
∥

Z

� ε0.

From the linear decay estimate (4.1) in Lemma 4.1, we have

sup
t∈[0,T ]

(1 + t)1/2‖Φ̃(t)‖Z′ � ε0 + sup
t∈[0,T ]

(1 + t)−1/8
[‖g̃‖HN0−1

+‖F−1[|ξ|∇ξ
̂̃g(ξ)]‖HN1−1

]

� ε0,

which further gives us the following estimate:

sup
t∈[0,T ]

(1 + t)1/2‖Φ(t)‖Z′ � sup
t∈[0,T ]

(1 + t)1/2‖Φ̃‖Z′

+ sup
t∈[0,T ]

(1 + t)1/2

∥
∥
∥
∥
∥
∥

∑

(μ,ν)∈S
Aμ,ν(Φμ,Φν)

∥
∥
∥
∥
∥
∥

Z′

� ε0 + sup
t∈[0,T ]

(1 + t)1/2‖Φ‖3/2
Z′ ‖Φ‖1/2

HN0
� ε0.

Therefore, (2.5) holds.
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5.1.2. Z-Norm Estimate for the Remainder Terms. We can first estimate the
remainder term very easily and have the following lemma:

Lemma 5.1 Under the bootstrap assumption (2.3) and the energy estimate
(2.4), we have

‖R‖Z � (1 + t)−3/2+2p0ε51, (5.8)

which further gives us

sup
t∈[0,T ]

∥
∥
∥
∥

∫ t

0

eis|∇|Rds

∥
∥
∥
∥

Z

� ε0.

Proof. Since R is of quintic and higher, by multilinear estimate, it is easy to
derive

‖R‖Z � ‖Φ‖2
XN0

[‖Φ‖3
Z′ + ‖φ0‖Z′

1
‖Φ‖Z′

]

+ ‖φ0‖2
XN0

‖Φ‖Z′

+‖φ0‖XN0
‖Φ‖XN0

(Φ‖2
Z′ + ‖φ0‖Z′

1
)

� (1 + t)−3/2+2p0ε51.

�

5.1.3. Z-Norm Estimate for the Cubic and Quartic Terms. Next, we proceed
to estimate C and Q4; it turns out that we can treat one of the bilinear terms
inside Q4 as a single input and then estimate C and Q4 in the same way. More
precisely, we have the following lemma:

Lemma 5.2 Under the bootstrap assumption (2.3) and the energy estimate
(2.4), we have

‖C‖Z + ‖Q4‖Z � (1 + t)−7/5−p0ε31, (5.9)

which further gives us the following estimate:

sup
t∈[0,T ]

∥
∥
∥
∥

∫ t

0

eit|∇|Cds

∥
∥
∥
∥

Z

+
∥
∥
∥
∥

∫ t

0

eit|∇|Q4ds

∥
∥
∥
∥

Z

� ε20.

Proof. it is sufficient to consider the case when t ≥ 1, otherwise, it is trivial.
To prove (5.9), essentially speaking, we only need to estimate the following
trilinear form in Z-normed space for any possible signs μ, ν, κ ∈ {+,−},

T (Q̃1
μ,ν(fμ, gν), hκ), T ∈ {Q̃0,+(·, ·), Q̃0,−(·, ·), Q̃0,0(·, ·)}, (5.10)

where f , g, and h are well-defined functions and they satisfy the following
estimate:

sup
t∈[0,T ]

(1 + t)−p0‖(f, g, h)‖XN0
+ (1 + t)1/2‖(f, g, h)‖Z′

+(1 + t)−2p0‖(f, g, h)‖Z � ε1. (5.11)

Define the associated profiles of f, g, and h as f̃(t) := eit|∇|f(t), g̃(t) :=
eit|∇|g(t), and h̃(t) := eit|∇|h(t), respectively. Take the Fourier transform of
the trilinear form in (5.10), we have
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F[

T (Q̃1
μ,ν(fμ, gν), hκ)

]

(ξ)

=
∫

R2

∫

R2
eitΦμ,ν,κ(ξ,η,σ)̂̃fμ(ξ − σ) ̂̃gν(σ − η)̂̃hκ(η)mμ,ν(ξ, η, σ)dηdσ,

where

Φμ,ν,κ(ξ, η, σ) = −μ|ξ − σ| − ν|σ − η| − κ|η|,
mμ,ν(ξ, η, σ) = m̃1

μ,ν(ξ − σ, σ − η)t(ξ − η, η),

and t(·, ·) is the associated symbol of the bilinear operator T (·, ·).
We can first rule out the very high frequency case by L2 − L2 − L∞ type

estimate as follows:

sup
2k≥(1+t)1/N1

∥
∥Pk

[

T (Q̃1
μ,ν(fμ, gν), hκ)

]∥
∥

Z

� sup
2k≥(1+t)1/N1

2−(N0−N1−10)k‖(f, g, h)‖2
HN0 ‖(f, g, h)‖Z′

� (1 + t)−7/5−10p0ε31. (5.12)

For the remaining case, we do integration by parts in “σ”. More precisely, after
integrating by parts in σ, we have
∣
∣
∣F[

T (Q̃1
μ,ν(Pμf, Pνg), Pκh)

]

(ξ)
∣
∣
∣ � 1

t

[|I1
μ,ν,κ(ξ)| + |I2

μ,ν,κ(ξ)| + |I3
μ,ν,κ(ξ)|],

(5.13)

where

I1
μ,ν,κ(ξ) =

∫

R2

∫

R2
eitΦμ,ν,κ(ξ,η,σ)̂̃fμ(ξ − σ) ̂̃gν(σ − η)̂̃hκ(η)∇σ

·m̂μ,ν(ξ, η, σ)dηdσ,

I2
μ,ν,κ(ξ) =

∫

R2

∫

R2
eitΦμ,ν,κ(ξ,η,σ)̂̃fμ(ξ − σ)∇σ

· ̂̃gν(σ − η)m̂μ,ν(ξ, η, σ)̂̃hκ(η)dηdσ,

I3
μ,ν,κ(ξ) =

∫

R2

∫

R2
eitΦμ,ν,κ(ξ,η,σ)∇σ

̂̃
fμ(ξ − σ)

·m̂μ,ν(ξ, η, σ) ̂̃gν(σ − η)̂̃hκ(η)dηdσ,

m̂μ,ν(ξ, η, σ) =
∇σΦμ,ν,κ(ξ, η, σ)

|∇σΦμ,ν,κ(ξ, η, σ)|2 mμ,ν(ξ, η, σ)

=
μ ξ−σ

|ξ−σ| − ν σ−η
|σ−η|

∣
∣μ ξ−σ

|ξ−σ| − ν σ−η
|σ−η|

∣
∣
2 m̃1

μ,ν(ξ − σ, σ − η)t(ξ − η, η). (5.14)

Recall that there is a strong null structure inside the symbol m̃1
μ,ν(·, ·) (see

(3.6) and (3.8)); in any case, we can gain one degree of angle between ξ − σ
and σ − η, which compensates the loss in denominator.
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From Lemmas 2.1 and 2.2 and the discussion in Sect. 3.3, the following
estimates for the symbol m̂μ,ν(ξ, η, σ) hold:

‖F−1[m̂μ,ν(ξ, η, σ)ψk(ξ)ψk1(ξ − η)ψk2(η)ψk′
1
(ξ − σ)ψk′

2
(σ − η)]‖L1

� 2min{k′
1,k′

2}+k1+k2 , (5.15)
‖F−1[∇σ · m̂μ,ν(ξ, η, σ)ψk(ξ)ψk1(ξ − η)ψk2(η)ψk′

1
(ξ − σ)ψk′

2
(σ − η)]‖L1

� 2max{k′
1,k′

2}+k2 . (5.16)

Hence, from L2 − L∞ type bilinear estimate in Lemma 2.1, the following esti-
mate holds:

sup
2k≤(1+t)1/N1

∑

i=1,2,3

‖F−1[Ii
μ,ν,κ(·)ψk(·)]‖Z

� (1 + t)10/N1
[‖(f, g, h)‖HN0

+‖|ξ|∇ξ(
̂̃
f(ξ), ̂̃g(ξ)‖HN1

]2 × ‖(f, g, h)‖Z′

� (1 + t)10/N1‖(f, g, h)‖2
XN0

‖(f, g, h)‖Z′

� (1 + t)−2/5−10p0ε31. (5.17)

To sum up, after combining (5.12), (5.13) and (5.17), we can see the following
estimate holds under the smallness assumption (5.11):

‖T (Q̃1
μ,ν(Pμf, Pνg), Pκh)‖Z � (1 + t)−7/5−10p0ε31. (5.18)

From the explicit formula of “C” in (5.2) and the bootstrap assumption, we
can immediately derive the improved Z-norm estimate for “C”.

Let us proceed to consider the quintic term Q4. Recall the explicit formula
of Q4 in (5.3) and then let h := Q̃1

κ,τ (Φv,Φκ), we have

Q̃0,0(Q̃1
μ,ν(Φμ,Φν), Q̃1

κ,τ (Φν ,Φκ)) = Q̃0,0(Q̃1
μ,ν(Φμ,Φν), h),

and

sup
t∈[0,T ]

(1 + t)−p0‖h‖XN0
+ (1 + t)1/2‖h‖Z′ + (1 + t)−2p0‖h‖Z � ε1.

Therefore, we can use the derived general type Z-norm estimate (5.18) for
the first term on the right hand side of (5.3). For the second term on the right
hand side of (5.3), we can treat the trilinear form of type (5.10) as a input of
bilinear operator Q̃0,μ(·, ·), then the Z-norm estimate will be straightforward.
To sum up, we have

‖Q4‖Z � (1 + t)−7/5−10p0ε31 + (1 + t)−7/5−10p0ε31‖Φ‖HN0
� (1 + t)−7/5−p0ε31,

which implies that (5.9) holds, hence finishing the proof. �

5.1.4. Z-Norm Estimate for the Quadratic Terms. Lastly, we consider the
quadratic terms and we have the following lemma:



X. Wang Ann. Henri Poincaré

Lemma 5.3 Under the bootstrap assumption (2.3) and the energy estimate
(2.4), we have

sup
t∈[0,T ]

(1 + t)−2p0

∥
∥
∥
∥

∫ t

0

eis|∇|Q2ds

∥
∥
∥
∥

Z

� ε0. (5.19)

sup
t∈[0,T ]

∥
∥
∥
∥
∥
∥

∫ t

0

eis|∇|Q2ds +
∑

(μ,ν)∈S
eitΛ

[

Aμ,ν(Φμ,Φν)
]

∥
∥
∥
∥
∥
∥

Z

� ε0. (5.20)

Proof. We write Q2 on the Fourier side in terms of profile g and have the
following:

F
(∫ t

0

eis|∇|Q2ds

)

(ξ)

=
∑

(μ,ν)∈S

∫ t

0

∫

R2
eisΦμ,ν(ξ,η)ĝμ(s, ξ − η)ĝν(s, η)m̃′

μ,ν(ξ − η, η)dηds.

(5.21)

For this case, we do integration by parts in time and have the following iden-
tity:

F
(∫ t

0

eis|∇|Q2ds

)

(ξ) =
∑

(μ,ν)∈S
J μ,ν

1 (ξ) + J μ,ν
2 (ξ) + Endμ,ν

1 (ξ) − Endμ,ν
0 (ξ),

(5.22)

where

J μ,ν
1 (ξ) =

∫ t

0

∫

R2
eisΦμ,ν(ξ,η)∂sĝμ(s, ξ − η)ĝν(s, η)aμ,ν(ξ − η, η)dηds,

J μ,ν,m
2 (ξ) =

∫ t

0

∫

R2
eisΦμ,ν(ξ,η)ĝμ(s, ξ − η)∂sĝν(s, η)aμ,ν(ξ − η, η)dηds,

Endμ,ν
1 (ξ) = −

∫

R2
eitΦμ,ν(ξ,η)ĝμ(t, ξ − η)ĝν(t, η)aμ,ν(ξ − η, η)dη

= −F[

eit|∇|Aμ,ν(Φμ(t),Φν(t))
]

(ξ),

Endμ,ν
0 (ξ) = −F[

Aμ,ν(Φμ(0),Φν(0))
]

(ξ). (5.23)

Combing (5.23) and (5.22), we also have the following equality:

F
(∫ t

0

eis|∇|Q2ds

)

(ξ) +
∑

(μ,ν)∈S
F
[

eitΛAμ,ν(Φμ(t),Φν(t))
]

(ξ)

=
∑

(μ,ν)∈S
F
[

Aμ,ν(Φμ(0),Φν(0))
]

(ξ) + J μ,ν
1 (ξ) + J μ,ν

2 (ξ). (5.24)

From L2 − L2 type bilinear estimate, we can estimate the endpoint cases as
follows:

‖F−1(Endμ,ν
1 (·))‖Z � ‖g(t)‖2

HN0 � (1 + t)2p0ε21 � (1 + t)2p0ε0,

‖F−1(Endμ,ν
0 (·))‖Z � ε0. (5.25)
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Since, J μ,ν
2 (ξ) can be estimate in the same way as J μ,ν

1 (ξ), we only
estimate J μ,ν

1 (ξ) in details here. We can plug in the equation satisfied by ∂tg
(see (5.4)) and have the following:

J μ,ν
1 (ξ) = C1 + Q1

4 + R1,

where

Q1
4 =

∫ t

0

∫

R2
eisΦμ,ν(ξ,η) ̂Pμ[eis|∇|C](s, ξ − η)ĝν(s, η)aμ,ν(ξ − η, η)dηds,

R1 =
∫ t

0

∫

R2
eisΦμ,ν(ξ,η) ̂Pμ[eis|∇|[Q4 + R]](s, ξ − η)ĝν(s, η)aμ,ν(ξ − η, η)dηds,

C1 =
∑

k1,k2∈Z

∑

(κ,τ)∈S

∫ t

0

∫

R2

∫

R2
eisΦκ,τ

μ,ν(ξ,η,σ)P̂μ[gκ](s, ξ − σ)

×P̂μ[gτ ](s, σ − η)ĝν(s, η)bk1,k2
μ,ν,κ,τ (ξ, η, σ)dηdσds,

and

Φκ,τ
μ,ν(ξ, η, σ) = |ξ| − μκ|ξ − σ| − μτ |σ − η| − ν|η|,

bk1,k2
μ,ν,κ,τ (ξ, η, σ) = m̃′

κ,τ (ξ − σ, σ − η)aμ,ν(ξ − η, η)ψk1(ξ − η)ψk2(η).

As R1 is of quintic and higher, we can estimate it in the same way as we
did for R in Lemma 5.8. Moreover, we can estimate Q1

4 in the same way as we
did for C and Q4 in Lemma 5.2, because of the presence of bilinear operator
Q̃1

μ,ν(·, ·) in the term Q1
4. We omit the details for those cases here. It remains

to estimate C1. For this case, we will use integration by parts in “σ”. This
method has been used to estimate “C” in the proof of Lemma 5.2, to estimate
C1 without any problem.

To see this point, we consider the following symbol:

b̂k1,k2
μ,ν,κ,τ (ξ, η, σ) =

∇σΦκ,τ
μ,ν(ξ, η, σ)

|∇σΦκ,τ
μ,ν(ξ, η, σ)|2 bk1,k2

μ,ν,κ,τ (ξ, η, σ),

which is the symbol inside the trilinear term after integration by parts in
“σ”. The main difference between the symbol b̂k1,k2

μ,ν,κ,τ (ξ, η, σ) and the symbol
m̂μ,ν(ξ, η, σ) in (5.14) is the difference between m̃′

μ,ν(ξ−σ, σ−η) and m̃1
μ,ν(ξ−

σ, σ − η).
Recall the detail formulas of m̃′

μ,ν(ξ − η, η) and m̃1
μ,ν(ξ − η, η) in (3.9),

(3.10), (3.11), (3.6), (3.6), (3.8). Note that, after using the angle between ξ −η
and η, a potential problem for m̃′

μ,ν(ξ − η, η) is that the size will be very big
when |ξ| � |ξ − η| ∼ |η| and |ξ| � 1. While, this problem is not an issue for
m̃1

μ,ν(ξ − η, η). We will show that, after a more careful study of symbols, it is
actually not a problem for m̃′

μ,ν(ξ − η, η).
Correspondingly, it is sufficient to check for the case when |ξ − η| �

|ξ − σ| ∼ |σ − η| for b̂k1,k2
μ,ν,κ,τ (ξ, η, σ). Note that if κ and τ have the same sign

then σ − ξ and σ − ξ + ξ − η = σ − η are almost in the same direction for the
case we are considering; hence
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|∇σΦκ,τ
μ,ν(ξ, η, σ)| =

∣
∣
∣
∣

σ − ξ

|σ − ξ| +
σ − η

|σ − η|
∣
∣
∣
∣
∼ 1.

That is to say, if κτ = +, then we do not need to use the size of angle. Hence,
it is not an issue when ξ − η is very small.

For the case when κ and τ have different sign, i.e, (κ, τ) = (+,−) and we
have

|∇σΦκ,τ
μ,ν(ξ, η, σ)| =

∣
∣
∣
∣

σ − ξ

|σ − ξ| − σ − η

|σ − η|
∣
∣
∣
∣
.

Recall (3.10). Note that, the (1 + cos(ξ − σ, σ − η)) part of m̃′
+,−(ξ − σ, σ −

η) is sufficient to compensate the loss of angle in the denominator part of
b̂k1,k2
μ,ν,κ,τ (ξ, η, σ). Hence, the size of the symbol is not big even if ξ − η is very

small. From the above discussion and Lemma 2.2, the following estimate holds:

‖F−1 [̂bk1,k2
μ,ν,κ,τ (ξ, η, σ)ψk(ξ)ψk′

1
(ξ − σ)ψk′

2
(σ − η)]‖L1

� 2k′
1+k′

2+max{k1,k2}, (5.26)

‖F−1[∇σ · b̂k1,k2
μ,ν,κ,τ (ξ, η, σ)ψk(ξ)ψk′

1
(ξ − σ)ψk′

2
(σ − η)]‖L1

� 2max{k′
1,k′

2}+max{k1,k2}. (5.27)

Therefore, the method used in the estimate of “C” in the proof of Lemma 5.2
can be applied to estimate C1 without any problem. To sum up, we have

‖F−1[J μ,ν
1 (ξ)]‖Z � ‖F−1[C1]‖Z + ‖F−1[Q1

4]‖Z + ‖F−1[R1]‖Z

� 2−p0mε31 � 2−p0mε20. (5.28)

From the above estimate and (5.25), it is easy to see that our desired estimates
(5.19) and (5.20) hold. �

5.2. Improved Estimate for φ0 Via Bootstrap Argument on the Constraint

Lemma 5.4 With the improved estimate we have proven for Φ as follows:

sup
t∈[0,T ]

(1 + t)−p0‖(φ0,Φ)‖XN0
+ (1 + t)1/2‖Φ‖Z′ � ε0, (5.29)

we have the following improved estimate for φ0,

sup
t∈[0,T ]

(1 + t)1/2−p0‖φ0‖XN0
+ (1 + t)‖φ0‖Z′

1
� (ε0 + ε1)2 � ε20. (5.30)

Proof. From the constraint equation φ0 = N2 and the estimates in Lemma 3.4,
we have the following estimates for fixed t ∈ [0, T ]:

‖φ0(t)‖XN0
�

(‖φ0‖XN0
+ ‖Φ‖XN0

)

(‖φ0‖Z′
1
+ ‖Φ‖Z′)

� 1
(1 + t)1/2−p0

(ε0 + ε1)2,
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‖φ0(t)‖Z′
1

� ‖Φ‖2
Z′ + ‖φ0‖Z′

1
‖Φ‖Z′ + (‖φ0‖Z′

1
‖Φ‖Z′)3/4‖(φ0,Φ)‖1/4

XN0

+‖φ0‖2
Z′

1
+ ‖φ0‖3/2

Z′
1

‖φ0‖1/2
XN0

� (
1

1 + t
+

1
(1 + t)9/8−p0/4

)(ε0 + ε1)2 � 1
1 + t

(ε0 + ε1)2.

Therefore, (5.30) holds. �

5.3. Proof of (5.7)

We assume that |t| ≥ 1; otherwise, it is trivial. Note that

‖F−1[|ξ|∇ξ ĝ(ξ)](·)‖HN1 � ‖Sg‖HN1 + ‖Ωg‖HN1 + ‖t∂tg‖HN1 ,

Sg = eit|∇|SΦ, Ωg = eit|∇|ΩΦ, (5.31)

and a very similar estimate also holds for g̃. Hence, it is sufficient to estimate
t∂tg in HN1 and t∂tg̃ in HN1−1. Recall the equation satisfied by g̃ in (5.5),
due to the cubic and higher structure, it is not difficult to derive the following
estimate:

sup
t∈[0,T ]

(1 + t)−p0‖F−1[|ξ|∇ξ
̂̃g(ξ)]‖HN1−1 � ε0.

Recall the equation satisfied by g in (5.4), we have

‖eit|∇|[C + Q4 + R]‖HN1 � ‖(φ0,Φ)‖XN0
(‖Φ‖2

Z′ + ‖φ0‖Z′
1
) � (1 + t)−1+p0ε31.

It remains to estimate Q2 in HN1 norm. We can first rule out the very high
frequency as follows:

∑

2k≥(1+t)2/N1

‖Pk[Q2]‖HN1 � (1 + t)−1‖Φ‖HN0 ‖Φ‖Z′ � 1
(1 + t)3/2

ε21.

For the remaining cases, we do integration by parts in “η”. Very similar to the
proof of estimate (5.26) and (5.27), the following estimates hold:

∥
∥
∥
∥
∥

μ ξ−η
|ξ−η| − ν η

|η|
|μ ξ−η

|ξ−η| − ν η
|η| |2

m̃′
μ,ν(ξ − η, η)

∥
∥
∥
∥
∥

S∞
k,k1,k2

� 2k1+k2 ,

∥
∥
∥
∥
∥
∇η ·

(
μ ξ−η

|ξ−η| − ν η
|η|

|μ ξ−η
|ξ−η| − ν η

|η| |2
m̃′

μ,ν(ξ − η, η)

)∥
∥
∥
∥
∥

S∞
k,k1,k2

� 2max{k1,k2},

which further gives us the following estimate:
∑

2k�(1+t)2/N1

‖Pk[Q2]‖HN1

� 1
t
(1 + t)2/N1

[‖F−1[|ξ|∇ξ ĝ(ξ)]‖HN1 + ‖g‖HN1+3

]‖e−it|∇|g‖Z′

� 1
(1 + t)5/4

(

ε1‖F−1[|ξ|∇ξ ĝ(ξ)]‖HN1 + ε0
)

.
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To sum up, we have

‖F−1[|ξ|∇ξ ĝ(ξ)](·)‖HN1 � tp0ε0 + ε1‖F−1[|ξ|∇ξ ĝ(ξ)]‖HN1 ,

which further gives us

‖F−1[|ξ|∇ξ ĝ(ξ)](·)‖HN1 � tp0ε0.

Now, we can see the estimate (5.7) indeed holds.

6. Asymptotic Behavior of the Solution

As a byproduct of the global existence result, we can very easily see that φ0

scatters to zero in XN0 . From (5.4), (5.24) and the definition of g̃(t), we are
motivated to define

g̃∞ = g̃(0)+F−1

[∫ ∞

0

∫

R2
eisΦμ,ν(ξ,η)∂s[ĝμ(s, ξ − η)ĝν(s, η)]aμ,ν(ξ − η, η)dηds

]

+
∫ ∞

0

eisΛ[C + Q4 + R]ds,

then as a byproduct of the improved Z-norm estimate for g, we have

‖g̃(t) − g̃∞‖Z � 1
(1 + t)p0

ε0. (6.1)

Thus, from (6.1), we can easily derive the following:

‖Φ(t) − e−it|∇|g̃∞‖HN1+4

� ‖Φ̃(t) − e−it|∇|g̃∞‖HN1+4 +
∑

(μ,ν)∈S
‖Aμ,ν(Φμ,Φν)‖HN1+4

� 1
(1 + t)p0

ε0 → 0, as |t| → ∞. (6.2)

That is to say, Φ(t) scatters to a linear solution in a lower regularity Sobolev
space.
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Appendix: Deriving the System (1.9) from the System (1.7)

Recall that

v = (−∂2ψ, ∂1ψ), G·,1 = (−∂2G1, ∂1G1), G·,2 = (−∂2G2, ∂1G2),

it is easy to see that the following identities hold:

∇v =

(

−∂1∂2ψ −∂2
2ψ

∂2
1ψ ∂2∂1ψ

)

, G =

(

−∂2G1 −∂2G2

∂1G1 ∂1G2

)

,
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G� =

(

−∂2G1 ∂1G1

−∂2G2 ∂1G2

)

,

GG� =

(

(∂2G1)2 + (∂2G2)2 −∂2G1∂1G1 − ∂2G2∂1G2

−∂1G1∂2G1 − ∂1G2∂2G2 (∂1G1)2 + (∂1G2)2

)

.

We can take the first component of the first equation of the system (1.7)
and write it in terms of ψ,G1, and G2. As a result, we have

− ∂t∂2ψ + ∂1∂2G1 + ∂2
2G2 = −∂1p − (−∂2ψ∂1 + ∂1ψ∂2)(−∂2ψ)

+∂1

[

(∂2G1)2 + (∂2G2)2
]

+∂2

[ − ∂2G1∂1G1 − ∂2G2∂1G2

]

= −∂1p − (∂2ψ∂1∂2ψ − ∂1ψ∂2
2ψ)

+∂2G1∂1∂2G1 − ∂1G1∂
2
2G1

+∂2G2∂1∂2G2 − ∂2
2G2∂1G2

= −∂1p − Q1,2(∂2ψ,ψ) + Q1,2(∂2G1, G1)
+Q1,2(∂2G2, G2). (6.3)

Very similarly, after taking the second component of the first equation of the
system (1.7), we have

∂t∂1ψ − [∂1∂1G1 + ∂2∂1G2] = −∂2p − (−∂2ψ∂1 + ∂1ψ∂2)(∂1ψ)
+∂1

[ − ∂1G1∂2G1 − ∂1G2∂2G2

]

+∂2

[

(∂1G1)2 + (∂1G2)2
]

= −∂2p + Q1,2(∂1ψ,ψ)
−Q1,2(∂1G1, G1) − Q1,2(∂1G2, G2). (6.4)

Applying ∂2/|∇|2 on both hands side of Eq. (6.3) and −∂1/|∇|2 on both
hands side of Eq. (6.4), and then adding those two equations together, we have

∂tψ − ∂1G1 − ∂2G2

= −|∇|−1R2

[

Q1,2(∂2ψ,ψ) − Q1,2(∂2G1, G1) − Q1,2(∂2G2, G2)
]

−|∇|−1R1

[

Q1,2(∂1ψ,ψ) − Q1,2(∂1G1, G1) − Q1,2(∂1G2, G2)
]

.

Therefore, the first equation of the system (1.9) holds. Now, we proceed to
derive the equations satisfied by G1 and G2. From the equation satisfied by G
in (1.7), we have the following four equations:

−∂t∂2G1+∂1∂2ψ = −(−∂2ψ∂1+∂1ψ∂2)(−∂2G1)+(∂1∂2ψ∂2G1 − ∂2
2ψ∂1G1)

= Q1,2(ψ, ∂2G1) + Q1,2(∂2ψ,G1) = ∂2

[

Q1,2(ψ,G1)
]

, (6.5)

∂t∂1G1 − ∂2
1ψ = Q1,2(∂1G1, ψ) + Q1,2(G1, ∂1ψ) = −∂1

[

Q1,2(ψ,G1)
]

,

(6.6)
−∂t∂2G2 + ∂2

2ψ = −(−∂2ψ∂1 + ∂1ψ∂2)(−∂2G2) + (∂1∂2ψ∂2G2 − ∂2
2ψ∂1G2)

= Q1,2(ψ, ∂2G2) + Q1,2(∂2ψ,G2) = ∂2

[

Q1,2(ψ,G2)
]

,

(6.7)
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∂t∂1G2 − ∂2∂1ψ = Q1,2(∂1G2, ψ) + Q1,2(G2, ∂1ψ) = −∂1

[

Q1,2(ψ,G2)
]

.

(6.8)

From (6.5) and (6.6), we can see that the following equation holds,

∂tG1 − ∂1ψ = −Q1,2(ψ,G1) = Q1,2(G1, ψ).

From (6.7) and (6.8), we can see that the following equation holds,

∂tG2 − ∂2ψ = −Q1,2(ψ,G2) = Q1,2(G2, ψ).

To sum up, all equations in the system (1.9) hold.
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