
Indiana University Mathematics Department
 

 
Stability of Large Solutions to Quasilinear Wave Equations
Author(s): S. Alinhac
Source: Indiana University Mathematics Journal, Vol. 58, No. 6 (2009), pp. 2543-2574
Published by: Indiana University Mathematics Department
Stable URL: https://www.jstor.org/stable/24903304
Accessed: 03-03-2022 22:50 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/24903304?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Indiana University Mathematics Department is collaborating with JSTOR to digitize,
preserve and extend access to Indiana University Mathematics Journal

This content downloaded from 113.104.214.157 on Thu, 03 Mar 2022 22:50:35 UTC
All use subject to https://about.jstor.org/terms



 Stability of Large Solutions to

 Quasilinear Wave Equations
 S. Alinhac

 ABSTRACT. We investigate the stability of (large) global C00
 solutions to quasilinear wave equations satisfying the null con
 dition in X [0, +oo[.

 We give sufficient conditions for such a solution to be sta
 ble and have a free representation, and discuss the connection
 between stability and blowup at infinity. This latter concept is
 defined using a conformai inversion.

 Introduction

 In this paper, we study the behavior of solutions to the Cauchy problem

 □u + Q(u) = 0, Q(u) = gaPy(dyu)(d^u),
 u(x,0) = Uo(x), (dtu)(x, 0) = U\(x).

 We consider the simplest case where li/ € Qj° (R|), and assume that Q(u) satisfies
 the null condition

 3αβ},ξαξβξΥ = 0

 whenever = Σ ξ?.
 Let us review first the classical results obtained in the case of "small solu

 tions" by Christodoulou [11] and Klainerman [13] .The approach of [13] uses the
 Lorentz fields

 Ζ = da, R = χ λ 0, Hi = tdi + Xidt, S = tdt + rdr.

 2543
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 2544  S. Alinhac

 Defining a higher order energy (for an appropriate N)

 EN(t) = X \\zkdu(-,t)\\2L2,
 k<N

 it is shown that if £jv(0) = f2 is small enough, the solution u exists globally and
 £jv(i) remains of the order of e2 for all times. If we try an asymptotic analysis in
 the spirit of Hôrmander [12] or Lindblad-Rodnianski [15], introducing the slow
 time τ — ε log t and looking for u in the representation

 u(x,t) =-F(r-t, co, τ), r = \x\, χ = τω,
 r

 we find that Q(tt) = 0(t~3) and dTF = 0. Thus, in a first approximation, u
 behaves like a free solution of the wave equation (1 /r)F(r - t, co).

 The approach by Christodoulou uses the embedding of Minkowski space into
 the Einstein cylinder (see also [12]): taking advantage of the null condition, it
 transforms the original problem into a quasilinear hyperbolic Cauchy problem

 av + Q(v) = 0

 for a certain function V in an open domain D. The global existence of V in 2)
 yields the global existence of u, the smoothness of V in 'D giving the asymptotic
 behavior of u at infinity. It is not clear how to compare the smallness assumptions
 in both approaches.

 In the present paper, we consider large C00 solutions, supposed to exist glob
 ally, and investigate both their behavior at infinity and their stability. The pos
 sibility of using a conformai compactification (namely, in this paper, conformai
 inversion) allows us to give a precise meaning to the expression "blowup at in
 finity" : this means that the function ν e C°°(D) has some singularity on the
 boundary of T). It is not clear, however, if this can actually happen : may be
 all solutions V, smooth in the open domain Ί), are automatically smooth on the
 closure. Though we do not believe this, we have no proof that smooth solutions
 blowing up at infinity do exist.

 In this context, we distinguish between

 (i) Existence of a representation of u,
 (ii) Stability of u.

 The first property means simply V e C00 {'£)), since by conformai inversion
 this corresponds to an actual representation of U identical to that of a free solution
 (see [12])

 u(x, t) = -F (r-t, ω, -V
 r V r /

 The proof of (i) is analogous to the proof of a finite blowup criteria for a quasi
 linear wave equation or system (see for instance [16]). The statement follows the
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 Stability of Large Solutions to Quasilinear Wave Equations 2545

 same scheme : if the solution is smooth in the open domain and if a certain a
 priori condition is satisfied, then the solution is smooth in the closed domain. For
 technical reasons (similar to that of [14]), we restrict ourselves in this paper to
 discussing representation or stability at null infinity, that is, in a domain t < t + r,
 t — +00 but \r - 11 < C. The a priori conditions that we impose on the solution
 are of two types :

 (i) Smallness conditions,
 (ii) Decay conditions.

 These last conditions are formulated in terms of pointwise decay of a certain

 number of Zkdu ; they involve no small constants. The first ones are the delicate
 point, since we do not want to fall back in the framework of the previous papers.
 The only smallness assumptions that we make on u are about energy properties
 for the linearized operator

 is timelike, and that a certain family of hyperboloids is spacelike. These condi
 tions are of course inspired by the necessity of having good energy estimates for
 the equation on V, the field Kq and the hyperboloids corresponding to dj- and
 {T = C} by conformai inversion. The precise statements are given in the repre
 sentation theorem and the first stability theorem of Section 3.

 The representation property clearly implies stability of u. However, the other
 implication is not clear, though we conjecture that it is true. In fact, if it were not
 true, this would mean that there are solutions ν Ε C°°(D) of OV + Q(f) = Owith
 some singularities on dl), such that all small perturbations of the data produce
 again a solution in C°°(D).

 If, with the aim of handling more general situations in the future, we are
 willing to ignore conformai inversion, we are left with this : a representation of u
 with a smooth profile F

 implies that u remains 0(t 1 ) under the action of any number of operators Ka =
 Ka + 2xa, where Kq and

 £ = □ + g"pY (dyU)dlp.

 Roughly, we assume that the field

 Ko = (r2 + t2)dt + 2rtdr

 K*U = ba (r-t, ω, ij
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 2546  S. Alinhac

 for a new profile Fa explicitly deduced from F. Note that this behavior is far
 from being obvious, since it would seem from the expression of Ka that only
 Kau = 0(1) ; in fact, several cancellations of "principal terms" take place in the
 computation of KaU. On the other hand, the second stability theorem shows a
 stability condition, using Lorentz fields, in the spirit of [13]. From what has been
 said above, it is hard to believe that this stability property does not necessarily
 correspond to a representation with a V G C°°{T)). However, we are not able to
 prove this directly, since this would require to prove directly the 0(t_1) behavior
 of Kau. The difficulty here is to express KaQ(u) in an appropriate way analogous
 to what can be done for ZQ(it) for instance.

 Finally, we would like to emphasize the obvious fact that conformai inversion
 allows us to connect blowup at infinity with finite time blowup : if we can describe
 the way a certain solution ν e C°°(D) of av + Q(v) = 0 blows up at a point
 mo € dD, this will describe the behavior at infinity of the corresponding u.
 Taking into account previous work on finite time blowup for quasilinear wave
 equations [2], [4], [5], we distinguish fundamentally genuinely nonlinear points
 from linearly degenerate points. In this spirit, the linear degeneracy theorem of
 Section 5 shows that all points of dD are linearly degenerate, a highly non-obvious
 result.

 The plan of the paper is as follows : in Section 1, we recall some basic facts
 about the null condition, while we introduce the conformai inversion in Section
 2. The main results are stated in Section 3, and proved in Section 4. Finally,
 Section 5 is devoted to a somewhat heuristic discussion of blowup at infinity and
 finite time blowup.

 l. Notation and Basic facts about the Null Condition

 In this paper, we deal with the Cauchy problem for the quasilinear wave equation
 in R^. X [0, +°o[

 au + Q(u) = 0, Q(u) ξ gaPy(dyu) (d^u).

 Here, x = (X\, X2,Xi), Xo — t : greek indices run from 0 to 3, while latin indices
 run from 1 to 3. For simplicity, we take g"Py to be real given constants with

 g°°y = 0, g= g^,

 and the sum sign on repeated indices in the expression of Q is omitted. The data

 Uq{x) = u(x, 0), ui(x) = (dtu)(x, 0)

 are supposed to be C°° functions on R3 supported for \x\ < M. Note that if u is
 a global solution of au + Q(u) = 0, then the function U\ defined by

 U\(x,t) = λ lu(\x,At)
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 Stability of Large Solutions to Quasilinear Wave Equations 2547

 is also a solution, with data supported for \x\ < Μ/λ. Whenever we consider a
 global smooth solution u of Du + Q(u) = 0, we assume that u is small enough
 to make the linearized operator

 □ + βαβγ (dyu)d2^

 strictly hyperbolic with respect to t.

 1.1. The null condition. We assume that the constants g satisfy the null
 condition, that is

 flatty = 0

 whenever ξο = Σ · Let us recall the fundamental result due Christodoulou [11]
 and Klainerman [13] : if the data are sufficiently small, there exists a global smooth
 solution u to the Cauchy problem for □ u + Q(u) = 0. If the null condition is not
 satisfied, finite time blowup of small enough smooth solutions has been proved for
 (almost) all initial data [8].

 Recall that the Lorentz fields

 da, R = χ λ d, Hi = tdi + Xidt, S = tdt + ^Xidi,

 that we denote generically by Z, commute with □, with the exception of [□, S] =
 2d. For an integer fc, Zk denotes a product of k Lorentz fields. The quadratic
 form Q enjoyes two important properties in connection with the fields Ζ (see [12]
 for proofs).

 Lemma 1.1 (Estimation Lemma 1). For any smooth functions u, v,

 \βαβΗ3γη)(3ΐβν)\ < C(1 + t)_1(|Zu| \d2v\ + \du\ \Zdv\),

 where the sum over all Lorentz fields Ζ is omitted.

 Note the well-known decomposition

 3i = COidr - ίω Λ

 Here and in the whole paper, (r, go) are the polar coordinates

 r = \x\, x = r ω, 3r = ^a>/3j.

 We will often use 3/ = — C0idr, which is tangent to the spheres, with the
 decomposition

 I Vxii|2 = ^(3 iU)2 = (3 ru)2 + ^(3 iU)2 = (3 ru)2 +
 R
 —u
 r
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 2548 S. Alinhac

 Note that in an exterior region r > et (c > 0), if Q contains no t-derivative, the
 above estimate of Q can be obtained using only the rotations R and not all Lorentz
 fields, since we also have the nice formula

 dfjU = uOiOOjdîu + didjU + drfjU - djdiU - Widj - (Vjdi)u.

 Lemma 1.2 (Commutation Lemma). For any Lorentz field Ζ and any smooth
 functions u, ν,

 z[gaPy(dyu)( d2afSv)]

 = gaPy(dyZu)(d2aeu) + g^y(dyu)(d2apZv) + gaPY(dyU){dlpv),

 where the new sum with constant coefficients g satisfies again the null condition.

 1.2. Algebraic identities for the null condition. It is sometimes convenient
 to split the coordinates in (x, t)

 Q(u) = 2g0iy(dyu)(d2iu) + glJy (dyu) (dfjU)

 = 2g0l0(dtu)(djiu) + 2g0lj (3,·μ)(3^μ) + glj0(dtu){dfju) + gljk (dku) (dfjU).

 Lemma 1.3. [Algebraic identities] The null condition implies the identities

 (i) νξ e R3, g^l^j + 2g0i^j = 0,

 (ii) νξ e R3, gv%^k + 2(^0ί0ξ,·)(Σ ζ}) = 0,

 (iii) νξ G R4, g (ξ) = 3α^ξαξβξγ = Α(ξ)(ξ02 - Σ ξ?), Α(ξ) = 2g0i%,

 (iv) νξ, η e R3, g'Hilm + 2^%^ηί = -2Α(ξ)(ξ ■ 17) - Α(η)(Σ ξ?),
 where ξ ■ η = Σ ξίΠί

 Proof. Let us fix ξ with ξο = Σ ξ^· The null condition reads

 2gm*,Ui + g'Hiljlk + (ξο)[2^0ι'ξιξ, + gij%$] = o.

 Replace ξο by -ξο in the above equation : by comparison, we obtain (i) and (ii).
 These two identities in turn imply (iii).
 To obtain (iv), set

 m)=gijkttjtk = -A£) Ιξΐ2·

 For fixed ξ and 17, consider the function

 φ(λ) = /(ξ + λ/7) = -Α(ξ)|ξ|2 - 2λΑ(ξ)(ξ ■ η) - ΛΑ(ι?)ΙξΙ2 + 0(λ2).
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 Stability of Large Solutions to Quasilinear Wave Equations 2549

 Then

 φ'( 0) = η ■ Vf (ξ) = gij%^rn +

 gives the claim. D

 1.3. Pointwise behavior of the solution. For a smooth solution u of au +
 Q(u) = 0, relatively weak decay assumptions on a certain number of functions
 Zku imply a much better decay for U. The following lemma is an illustration,
 among many possible variations, of this statement.

 Lemma 1.4. Assume that u is a global smooth solution of ou + Q(u) = 0
 satisfying for some C and ν > j

 \Zku\ < C(r - t)1/2( 1 + t)~v, v >\.
 k<4

 Then \u\ < C{r - i)_1(l + t)~K

 Proof Using the estimation lemma, and the inequality (r-t)\dv\ < C X \Zv\,
 we get from

 X \Zku\ < C(l + trv(r-t)1'2
 k< 2

 the estimate

 |Q(u)| < C(1 + t)"(2v+1)(r-t>_1.

 Using the commutation lemma, we have the same estimate also for ZQ and Z2Q.
 Proposition 3.1 of [7] shows then

 χ \zku\ < c(i + trl.
 k<2

 Using once more the estimation lemma, we get |Q(u)| < (r - t)~2(l + 0~3,
 hence by the same proposition, |u| < C(r - t)_1 (1 + t)-1. D

 The following lemma is a weaker version of the preceding result in a region
 where \r - t\ < C.

 Lemma 1.4'. Assume that u is a global smooth solution in a region

 t < t + r,

 satisfying there

 X \zkdu\ <C(l + tr\ v>i.
 fc<l

 Then \u\ < C(1 + t)_1.

 Proof The assumptions imply |Q(u)|<C(l + t)"1~2v. Hence Proposition
 3.1 of [7] gives the result. Ο
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 2550  S. Alinhac

 2. CONFORMAL INVERSION

 2.1. Basic formula. We recall here the definition and some basic formula.
 Let

 Γ= {(x,t) eR4, t2 > \x\2}.

 The conformai inversion I is the application from Γ to itself defined by

 v_ * T_ -*
 t2 -r2' t2 -r2'

 Note that I2 = id on Γ. We will also note Xq = T, R = |X|, X/R = ω = x/r,
 and u(X, T) for the transform of a function u(x,t)

 ΰ(Χ, T) = u(x, t), u(I) = u.

 We write the Lorentz fields on the (X, T) side with the same letters, when no
 ambiguity arises : for instance, S = Tdj + R3r, etc.

 Lemma 2.1. The fields d t, 3;, are transformed by I into

 K0 = (R2 + T2)dT + 2RTdR = 2TS - (T2 - R2)dT,

 Ki = 2XtS + (T2 - R2)di.

 The fields
 L = + dr, L = 3f — dr

 are transformed into

 (R + T)2 (dT + dR), (R-T)2(d T-dR).

 The rotation fields Ri are preserved, while the hyperbolic rotations Hi and the scaling
 field S are transformed into their opposite.

 2.2. The wave equation. From now on, we use the following notation :
 u{x, t) is given, ύ(Χ, Τ) is its transformed function, and we set

 The following lemma summarizes well-known facts (see [1] for instance).

 Lemma 2.2. Set Ka = Ka + 2xa. The following formula hold :

 (i) nv = (T2 ~ R2)-Hdu)(I),

 (ii) (dau)(I) = (T2 - R^KaV,

 (iii) Ru = (T2 - R2)Rv, Hu = (T2 - R2)Hv, Su = (T2-R2){Sv + 2v),

 (iv) aKav = (Κα + 6Χα)πν.
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 Stability of Large Solutions to Quasilinear Wave Equations 2551

 2.3. The operators L\ and L2· As shown by formula (iv) in Lemma 2.2
 above, Kaw = 0(t_1) if w is a solution of the wave equation with Cq data.
 To understand which cancellations take place, it is convenient to introduce the
 following operators.

 Definition.

 The operator L\ is defined by

 L\w = (r + t)Lw + 2 w.

 The operator L2 is defined by

 L2w = L\w + 2 L\w = (r + t)2L2w + 8 (r + t)Lw + 8 w.

 To understand the origin of these definitions, let us compute L\W and L2IV
 on a free solution of aw = 0, represented as iv(x, t) = r~lF{r-t, (V, r~!) (see
 [12]). Here, F is smooth, and we note σ = r - t, ζ = r~x. We have first

 2 4
 L2w = -rF + -TdzF + 0(r"5),

 γό ^-4

 Then

 r-t r+t

 LlW = -^-F--^-dzF,
 ?F 4(r + t)?> F

 L2W = —r[(r + t)2 - 4r(r + t) + 4r2] h 7——(r + t - 2r) + 0(r-3)
 fD γ-4

 = 2(r - t)2F + 4(t2~r2)dzF + Q(r-3)
 γ·3 γ·4

 The point is that, for a function w satisfying Y.k<\ \Zkw\ = Oft'1), one has
 Lw = 0(r2) and one would expect Li if = 0(t_1) ; in the present case however,
 we see that L\W = 0(t~2) as long as \r - t| < C. Similarly, and even more
 strikingly, one would expect L2IV = 0(f-1)> since L2w = 0(t-3) ; in contrast,
 we obtain here L2w = 0(t~3) as long as \r-t\ < C : note the double cancellation
 occuring for the F and 3ZF coefficients in the above computation.

 The following lemma displays the relations between Ka,L\ and I2·

 Lemma 2.3. The following identities hold :

 (i) K0iv = tL\w + (r - t) Σ oOiHiW,

 (ii) KiW = XiLiW + (t - r)Hiiv + r(t - r)diW, dt = dt - α>idr,
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 2552  S. Alinhac

 (iii) KqW = ^ + ^ L2w + t2 - r2)Lxw - 2—— υ 4 2r r

 (t -r)3
 if

 r

 (t - r)4 t9 (r-t)Ht-3r) t (t2-r2)2
 + τ Lzw + Lw + 4 - 2 r - 2  [lLw - ^drw

 Proof. Since Ho ξ ^ ω,Η, = tdr + rdt, we have

 tL\W + (r - t)(tdru> + rdtiu)

 = (dtw)(t{r + t) + r(r - t)) + (drw)(t(r + t) + t(r - t)) + 2tiv

 XiL\iv + (t - r)(tdiU> + Xidtu>) + r(t - r)(diW - iVidriv)

 = 2Xiiv + Xi(dtw)(r + t + t - r) + Xi{dru>)(r + t - (t - r))

 + (diw)(t(t - r) + r(t - r))

 = 2XiSw + (t2 - r2)di\v + 2Xiw = KiW.

 Formula (iii) has the interest of introducing Lj. The proof is straightforward :
 first, we check that

 4KqW = (r+t)4L2w + (r-t)4L2iv+2{t2-r2)2LLw+4(r+t)3Liv+4(t-r)3Lw.

 Then

 KqW = (Ko + 2t)(KoW + 2 tw) = KqW + 4tKoW + 2 (r2 + 3 t2)w.

 The strategy is then to express L2W through L2W, and Liv through L\W, and this
 leads immediately to the formula. Ο

 As a consequence, in a region | r - t I ^ C, if Zk<i \Zkw\ = 0(t ') and
 \L\W\ = 0(r2), we have Kaw = 0(t~') instead of the expected 0(1). More
 precisely, for a solution admitting the smooth representation

 = K0w.

 Similarly,

 one easily obtains

 for some new profile Fa. For instance,

 F0 = -a2(daF) - 2(1 - az)(dzF),
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 Stability of Large Solutions to Quasilinear Wave Equations 2553

 and similar formula for F;.

 There are of course formula for the products KqKî and KiKj, similar to the
 one given here for Kq. These formula imply that in a region \r — t\ < C where
 we assume Zfc<2 \Zkw\ = 0(t_1), L\W = 0(t~2) and L2w = 0(t~3), we also
 have KaK$w = 0(t_1). For a solution w of aw = 0, these estimates can be
 obtained just using the commutation formula of Lemma 2.2. In the present case
 of a smooth solution u of □ u + Q(u) = 0, it is not algebraically clear how Q
 behaves under the action of Ka + 6xa. This is the reason why we use conformai
 inversion in Section 4.

 The following lemma shows how one can control L\W and L2W.

 Lemma 2.4. Recalling the notation Λω = Σ R2 for the Laplace operator on the
 spheres, we have the formula

 y _|_ £ , ν y £

 (i) LL\W = (r + t)aw + Δα,w + r~x (Sw + ^ cojHiW) + Liu,

 (ii) With £= (r + t)L+ 8 - (r + t)/r,

 Ύ H- t Y t

 LL2w = (r + t)£nw + r'lL2w + —ρ L\Δωιυ - 2 L\w

 r2 -12 (r -1)2 .t-r
 + 3 5— Δωτν + 2 τ— w + 4—-τ- w.

 yj y λ y I

 Proof We have first

 LL]W = (r + t)LLw + 2Lw = (r + t) ^drw + + 2Lw
 , r + t Λ r + t T r -tT

 = (r + t)aw + —r— Δωιν + Lw + Lw.
 yZ y y

 Next, since L2w = (r + t)2L2w + 8(r + t)Lw + 8w,

 LL2w = (r + t)2LL2w + 8 (r + t)LLw + 8 Lw.

 Replacing systematically LL by □ + £ (L — L) + γ·ιΔω, we obtain

 τ τ2 ( τ 1 \ 1 τ 2 1 j- . 3. 4 LLzw = \L aw + -Lzw + —rLAœw rAmu; drw.
 \ y J y y I yD y I

 Expressing repeatedly L2w and Lw using L2w and L\W, we get the desired ex
 pression. Ο
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 2554  S. Alinhac

 With the help of this lemma, we can obtain in a strip \r - t\ < C, the desired
 estimates L\W = 0(t~2) and L2IV = 0(£~3), provided we have a good control of
 aw and of Σϋ<Ν I I for an appropriate N. For the present paper however, we
 need only estimate L\U, and this will be done in the next section 2.4.

 Remark. To estimate LjU in the framework of the present paper, Lemma 2.4
 shows that it would be necessary to prove £Q(u) = 0(£-4). This can actually
 be done in the following way: the estimation lemma from Section 1.1 shows that
 Q(u) = 0(£~3), an estimate also valid for ZQ(u), etc. However, a more pre
 cise computation shows some cancellation in the expression of rLQ(u), namely
 rLQ(u) + 3Q{u) = 0(t~4). Since we will not use this in the sequence, we omit
 the details.

 2.4. Translation of the assumptions on u. In the whole paper, we will fix
 ίο > 2M, and consider for £ > to the Cauchy problem with data on {t = to}

 DU + Q_(u) = 0, U(X, to) = U0(x), 0tu)(x, to) = Ui(x).

 Since the Cauchy data vanish for \x\ > M, the solution u (if it exists) vanishes for
 r > M + t - to- We will always use the conformai inversion I in these coordinates
 (X, t), and set To = — 1 / to- Recall that we associate to the function u the function

 V defined by

 u(I)(X, T) = (T2-R2)v(X,T).

 The image by I of the hyperboloid defined in Section 3 is just {Γ = T\ =
 -1 / £1}. The assumptions on u in the theorems of Section 3 have to be translated
 into assumptions on v. In the new coordinates (x, £), the assumptions of these
 theorems are that u is a C°° solution of Oil + Q(u) = 0 in the region

 for some Γι, — 1 /to < Γι <0.

 Lemma 2.5. The function V is a C°° function in the region

 Τ = {(X,T),T0<T <T,<0, R<\T\}.

 The functions v{X, Tq), (drV)(X, To) are compactly supported in {\X\ < | To I}·
 Denoting by θ any smooth vector field in Τ tangent to the boundary {jR = | Γ|}, the
 decay assumptions on u imply, for some constant C,

 \v\ + \dv\ + \θ3ν\ + (Τ2 - R2)\d2v\ < C.
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 Stability of Large Solutions to Quasilinear Wave Equations 2555

 Proof. The plane {Γ = To} corresponds under I to the upper branch of the
 hyperboloid Hj0 = {t2 — r2 + t/To = 0}. Since ίο > 2M, u vanishes identically
 near Hj0 but on a compact set, hence the properties of the traces of ν on {Τ = To}
 are established.

 On Τ, 0 < -Τι < R - Τ < -27ο· Hence, for any function w,

 \w(X,T)\ <C« \ [(T2-R2)iv](I)(x,t)\ < j.

 In fact, T2 - R2 = (R - T)\R + T\, and |i? + T\ = l/(r + t). On the other hand,
 the fields S, R and

 (R + T)(dT + dR) = S + Yj(ViHi

 generate all tangent fields θ. Hence the boundedness properties of V are implied
 by

 \v\ + \dv\ + \dRv\ + |35v| + \dHv\ < C.

 According to Lemmas 2.1, 2.2, these conditions on ν are equivalent to

 C
 \u\ 4- |-Κβϋ| + \Ru\ + + \Hu\ + \K(xRu\ + 4* \K(xHtl\ <

 Lemmas 2.3, 2.4 show that \Kau\ = 0(i_1) is implied by \Zu\ = 0{t~l),
 [Δα,ιι| = 0(t_1) and |dw| = 0(t~3) : this last requirement is implied by the
 estimation lemma (Lemma 1.1), since \ou\ = |Q(u)|. To prove the further
 bounds on KaZu, we proceed in exactly the same way, using the commutation
 lemma, which shows that also \ZQ_(u)\ = 0(t~3). Ο

 2.5. The equation on v. The computation in this section is due to Chris
 todoulou [11], who even performed it in a more general context (embedding of
 the Minkowski space into the Einstein cylinder, see also [12]). Since we need
 very precise information on the equation satisfied by V, beyond the fact that no
 singular terms appear, we do it again.

 Lemma 2.6. Recall that V is defined byu(I) (Χ, Τ) = (T2 - R2)v(X, T).

 (i) Lfthe function u satisfies the equation au + Q(u) = 0, the function ν satisfies

 the equation nv + Q(v) = 0, where

 Q(v) = 4[2A(Sv + ν ) + Y\v](S2v + 3 Sv + 2v)

 + 4 (Sv + v)[Y2Sv + Y2v + (gaPys<xô^Xy){Sv + ν)]

 + 2(T2 - R2)(Sv + ν){30ίβγεοιεβΧγ32ΰ(βν + ga^sa£yô^dyv)

 + 4(T2 - R2)(Y5Sv + Y5v) + (Τ2 - i?2) V^W^)(d2apv).
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 We have used here the following notation : εα is -1 for α = 0 and 1 otherwise;
 the vector field Υαβ is

 Υαβ = ^αΧβ^α + εβΧαδβ.

 The vector fields Y\, Y2 and Y3 are defined by

 Y\ = gaiSyXaXP£ydy,

 Y2 = β«β*ΧγΥαβ = 2 0αβ*εαΧβΧγ3α,

 Yd = ïdaPyty(dyv)Y^ = g0lPy£a£yXp(dyV)da.

 (ii) The vector fields Y\ and Y2 are tangent to the boundary {R + Τ = 0},

 (iii) The boundary {R + Τ = 0} is characteristic for the operator ga^ εαεβΧγΒαβ.

 Proof. By conformai inversion, the transform of dau is AKav, according to
 lemma 2.2 (here, Δ = Τ2 - R2). Hence the transform of d2a^u is ΑΚαΚβν. Now,
 since — 2X(\S ε (%Ad

 ΚαΚβν = 2XaS (Κβν) + εαΔΒα(Κβν) +2 ΧαΚβν

 = 2ΧαΞ(2Χβ(Ξν + ν) + εβΔ3βν) + εαΑ3α(2 Xp(Sv + ν) + εβΑ3βν)

 + 2Χβΐ(2Χβ(5ν + ν ) + ΕβΔΒβν)

 = 4ΧαΧβ[52ν + 3 Sv + 2ν] + 2 Α[ΥαβΞν + Υαβν + εαδαβ(Ξν + ν)]

 + Α2εαεβΒ2αβν.

 In the sum ga^y (KyV)(KaKpv), the only terms which do not contain a factor Δ
 are

 8 (Sv + v)(S2v + 3 Sv + 2ν)(βαβγΧαΧβΧγ).

 By the algebraic properties displayed in Lemma 1.3, ga^yΧαΧβΧγ = A(X)A ;
 hence the transform of Q(u) is A3Q(^)> with

 Q(v) = 4[S2v + 3Sv + 2v][2A(Sv + v) + ga^X^Ydyv]

 + 4 (Sv + v)gaPyXy(Y^Sv + Υαβν + εαδαβ^ν + ν))

 + 2Δ[(5ν + ν)^αβ}'ε(ΧεβΧΥ32αβν + gaPy εαεΥδαβΒΥν)

 + g<xPyey(dyv)(Y0lPSv + Υαβν)] + A2gc'βyεcιεβεy(^yv)(^2aβv),

 which is the result stated in the lemma.
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 Since da(R + Τ) = εα(Χα)/Κ on R + Τ = 0, we have there

 RY\(R + T) = gaPyXaXpXy = 0,

 showing that Y\ is tangent to the boundary. Similarly, we have on the boundary

 RY2(R + T) = 2 βα^εαΧβΧγεαΧα = 0,

 hence (ii) is proved. Finally, on R + Τ = 0,

 R2ga^easpXy[da(R + T)][dp{R + !")]= ga^ ΧκΧβΧγ = 0. Ο

 2.6. The energy condition. Let us denote by £ the linearized operator on
 ν corresponding to the equation Dv + Q_(v) = 0, and by £2 its principal part.
 According to Lemma 2.6,

 £2 = □ + 4aS2 + 4(Sv + ν ) Y2S + Αεαβ32αβ + 4ΔΥ35 ξ □ + £αβΒ2αβ,

 where

 Δ = Τ2 - R2,

 Υ3 = gaiSy£ol£yXp(dyV)dol,

 a = 2 A(Sv + v) + YiV,

 ca& = [g<χβγεοιεβ][2Χγ{Ξν + v) + Afy3yv].

 We define now a smallness assumption on ν, the "energy condition."

 Definition (Energy Condition.). Let To < T\ < 0. We say that u satisfies the
 energy condition in the region

 to < t < + (r2 + 7^2) ,t>r\ 2rry τ at2)

 if the function ν satisfies in the region

 {(X,T), R < \T\, To < Τ < T\]

 the following two conditions : For some constant «0 < 1,

 (i) |^00| < «0,

 (ϋ) ΙΣ^'ξίξ^αοΙξΙ2·

This content downloaded from 113.104.214.157 on Thu, 03 Mar 2022 22:50:35 UTC
All use subject to https://about.jstor.org/terms



 2558  S. Alinhac

 Condition (i) ensures that the surfaces {Τ = C} are (uniformly) non-char
 acteristic, the coefficient of dj in £2 being 1 + i00. Condition (ii) ensures that
 the energy corresponding to the operator L2, the multiplier dj and the surfaces
 {T = C} is at least (1 - (Xo) times the standard energy. Note in particular that
 these conditions imply that is everywhere timelike (in the sense of the metric
 corresponding to the operator).

 We formulated the energy condition as above to emphasize its geometric char
 acter. It is clear, however, that it is a smallness assumption on u, for which we give
 a rough sufficient condition in the following lemma.

 Lemma 2.7. There exists a constant £q depending only on g, such that if

 \u\ + \Ru\ + |Su| + |tf0w| ^ |Γ |3, Ho = Σ ωίΗί = rdt + tdr,

 the energy condition on u is satisfied.

 Proof. We claim first that there exists an £1, depending only on g, such that
 the conditions

 I ν I + \Rv\ + |Sv| + \H0v\ < filTol"3

 imply the energy condition. In fact, Yi and Y2 can be expressed as a linear com
 bination of R, S and (Γ + R) (dr + 3j?) with coefficients homogeneous of order 1.

 Similarly, ΔΥ3 is a combination of S v and HqV with coefficients homogeneous of
 degree 2. Hence the first energy condition is ensured if £1 is small enough.

 For the second condition, we inspect the coefficients they all are linear
 combinations of Rv, Sv and HqV with coefficients homogeneous of degree 3 ;
 hence the second energy condition is also satisfied if £1 is small enough. Finally,
 the given condition on u is just the translation of the conditions on v. Ο

 3. Main results

 Let M > 0, and assume given two functions Mo, U\ G Q^(R^), vanishing for
 \x\ > M. Choose to > 2M, t\ > 2(to ~ M). Define the (half) hyperboloid

 by i/2
 Ht0,U = |(X, t), t = -to + y + (^2 + -^-"j J ■

 Assume that there exists, in the region between {t = 0} and Ht0it, > a C°° solution
 u of the Cauchy problem

 du + gaPy(dyU)(d2apU) = 0,
 u(x,0) = u0(x), (dtu)(x,0) = ui(x).

 Recall that we have assumed that g satisfies the null condition, with g00y = 0. We

 make on u two series of assumptions :
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 Smallness assumptions. We assume the following:

 (i) The linearized operator □ + ga^y {dyu)d2^ is strictly hyperbolic with respect
 to t,

 (ii) For some t > 0, the function U satisfies the energy condition of Section 2.6for
 t > t.

 Decay assumptions. For some constant C, the function u satisfies

 X\Zkdu\<^-t, Σ \Zk*œU\ < Y^-t, Αω = ΣΚ1
 k<2 k<1

 Note that these assumptions imply in particular that the region t > t is a
 domain of determination. Our first result gives a representation of w analogous to
 the representation of the free solutions of ou = 0 (see [12]).

 Theorem (Representation Theorem). Under the assumptions above, there exists
 a C™ function

 Ίχ52χ[0,1] — R F :

 such that, for r > \,

 u{x,t) = -F (r-t, co, - ).
 r V r

 The second result expresses the stability of u.

 Stability Theorem 1. Let the assumptions above on u be satisfied. Let M0, ux
 be Cq functions on vanishing for \x\ > M. There exists fo > 0 such that, for
 ε < ε ο, the solution of the Cauchy problem

 dw + g0lpY(dyU>)(dlpW) = 0,
 w(x, 0) = u0(x) + εη0(χ), (dtu>)(x,0) = u\{x) + fMj(x)

 exists globally in the same region as u and has a representation

 w{x,t) = —G (r-t, ω, ,
 r \ r )

 where G has the same smoothness properties as F.

 In the following corollary, in order to make scaling invariant assumptions, we
 define M as the smallest M such that the supports of the Cauchy data Uo and U\
 are contained in the ball \x\ < M.

 Corollary. AssumeM = 1. Then there exists fi > 0 such that if for some ν > \,
 the solution u satisfies the assumptions:
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 Smallness Assumptions: For some t > 0 andt > t, Zfc<2 \Zkdu\ < f χ ( 1 + t) v.
 Decay Assumptions: For some constant C, Σι<<4 \Zkdu\ < C( 1 + t)"v.

 then the conclusions of both theorems are true.

 Finally, as explained in the introduction, the following theorem indicates a
 case where stability is proved directly, without knowing about any representation
 of the solution u. In contrast with the two preceding theorems, the solution u is
 assumed here to exist in the whole of R3 X [0, +oo[.

 Stability Theorem 2. Let u e C°° (R3 x [0, oo[). Assume that u is a solution
 of OU + Q(u) = 0 and satisfies the following properties :

 Smallness Property: For some οίο < 1, {dyu)%i%j\ < αοΙξΙ2·
 Decay property: For some Co, Xk<7\Zkdu | < Co(l + t)~l(r -

 Then the solution u is stable, in the same sense as in the first stability theorem.

 Comments.

 1. The possibility of a representation formula for the solution and its stabil
 ity are of course properties of the solution for large t : that explains the
 formulation in the theorems.

 2. We formulate the "energy condition", which is the only smallness condition
 on the solution u, in terms of the function V, which depends on the choice
 of to (see Sections 2.4- 2.6). It is of course possible to translate this explicit
 condition on ν into a condition on u, either directly by replacing V by U, or
 indirectly by discussing the energy density produced on the hyperboloids by

 integration of (nu + Q{u)){Kou). However, this last approach did not seem
 very transparent to us either. The point of this explicit smallness condition
 is its geometric character, which makes it, we believe, easily acceptable. It
 seems to us reasonable to think that the weakest requirement of the energy
 condition is obtained by taking for M its minimum and choosing to as close
 to 2M as possible.

 3. As computed in Section 2.3, if the solution admits the smooth representa
 tion

 u{x, t) = —F (r-t, ω, — j ,

 then Kau admits a similar representation, with a new profile Fa. Thus a
 necessary condition for u to admit such a representation is Klu = 0(t_1)
 for all products of I operators Ka. It turns out, thanks to the conformai
 inversion, that this condition is also sufficient. However, we were not able

 to produce a direct proof of this (that is, working only on the "u side").
 4. If u(x,t) = (1 /r)F(r-t, ω, l/r) were a solution of cm = 0, F would

 satisfy the equation

 23l-zF + zd\F - AWF - 2zdzF = 0, σ = r - t, ζ -
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 Hence F would be determined, at least as a formal power series in 1 /r, from
 its value at infinity F(cr, a), 0). The same occurs here for the profile F of a
 solution of Du + Q(u) = 0.

 5. The formulation of the stability in the stability theorems can evidently be
 improved by introducing an appropriate norm.

 6. For a discussion of the link between instability and blowup at infinity, see
 Section 5.

 7. The corollary after the theorems is just one example of the following possi
 bility : we can weaken the decay rate to any t~v (v > 0) if we ask

 X \zkdu\ < c(i + t)~v
 k<N

 for Ν big enough.
 8. We discussed only the representation and stability of solutions in an exte

 rior region roughly t < t + r. The reason for this is technical : to ob
 tain the smoothness of ν up to the origin from the equation on v, we
 have to require boundedness (or at least reasonable behavior) of a certain
 number of derivatives of v. For instance, \djv\ < C is equivalent to
 \Kqu\ < C(1 + t)~l(r - t)~l. We can of course take these decay prop
 erties of u as our assumptions, and obtain then representation and stability
 for u. But we do not know how to obtain these decay properties of u from
 decay properties of, say, Zku for k < N, using the equation on u.

 9. In Stability Theorem 2 we do not know whether u has a smooth represen
 tation in the sense of the representation theorem, but we believe so.

 10. It is possible of course to weaken the decay assumptions on u in the sec
 ond stability theorem by using more Ζ fields, as indicated in Lemma 1.4.
 We kept the assumptions on u in this form since they are expressed in the
 same terms as that on the perturbation v, which come from Klainerman's
 inequality.

 11. The assumption that the Cauchy data are compactly supported does not
 seem important to us. It can certainly be replaced by a strong enough de
 cay at infinity, using the embedding of a Minkowski space into the Einstein
 cylinder as in [11]. We chose to use conformai inversion since it gives sim
 pler computations.

 4. Proof of the theorems

 Recall here from Section 2.4 that we introduce a new (translated) (-coordinate by
 considering u as the solution for t > to of the Cauchy problem

 □u + Q(u) = 0, u(x, to) = uo(x), (dtu)(x,to) = U\(x).

 We use then conformai inversion in these coordinates.
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 4.1. Determination domains. Recall from Lemma 2.5 the notation

 r = {(x,T), To < τ < T\ < ο, r < ι τ* 11.

 Let us choose an integer k > T\ - To, and define the subdomain Tj C Τ by

 Τε = {(Χ,Τ), To < T<TU R<-T-£(k + T-Tx)}.

 This domain is a compact truncated cone of revolution contained in Τ, with
 normal "vector" to the lateral boundary Ν = (to, 1 + ε).

 Lemma 4.1. Let L be the linearized operator on ν of the equation DV + Q_(v) =
 0. Integrating as usual the product (Lw){drw) in Τε η {To < Τ < Τ'}, we obtain
 energy terms in w on the plane {Τ = T'} and on the lateral boundary A£ of the
 domain :

 (i) There exists Οίο < 1 such that, on {T = T'\, the energy is greater than

 [Orw)2 + X(3iif)2] dX.

 (ii) On Αε, the energy is non-negative.

 Proof The first point is exactly the energy condition of Section 2.6. For
 the second point, we note that the energy condition implies that dτ is timelike.
 Thus it is enough to check that the normal to A£ (in the sense of the metric) is
 also timelike, that is, p(N) > 0, ρ denoting the principal symbol of L. Since
 Ν = {Ni, No) = (cο, 1 + ε), we have

 p(N) = No -^Nj + 4[2A(Sv + v) + Yiv]s2 + 4(Sv + v)j2S

 + 2MSv + ν)(ά<χΙ}*εαεβΧγΝαΝβ) + 4Ay3s

 + Α2(3αβγεαεβεγ(3γν)Ν„Νβ),

 s, y2, and y3 being the symbols of S, Yi and I3 taken on Ν. Now, on A£,

 R + T = 0{ε), Δ = 0(f), Xa = Rcoat ωα = εαΝα + Ο (ε).

 Hence

 5 = ΤΝ0 + XXiNi = R + Τ + εΤ = Ο (ε), y2 = gat)^aNaXeXY = Ο (ε),

 βα^εαεβΧγΝαΝβ = Ο (ε).

 These estimates correspond of course to points (ii) and (iii) of Lemma 2.6. "We
 thus obtain

 p{N) = 2ε + ε2 + 0(\3ν\ε2).

 Since, by the assumptions of the theorems, we already know \ dv \ < C everywhere
 independently of ε, the claim is proved for small enough ε. Ο
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 Lemma 4.2. For the linearized operator L, we have the standard energy inequal
 ity in Τε,

 \dw(T')\v<C\dw(T0)\L2 + c\T \£w(-,s)\L2ds.
 J To

 Here, the constants do not depend on ε.

 Proof. Since, according to the preceding lemma, we control the standard en
 ergy on the surfaces {T' = C}, it is enough, to prove the lemma,

 (i) to control \da\i«=, if a is a coefficient of the principal part,
 (ii) to control | b It», if b is a coefficient of the lower order terms.

 Coefficients such as a involve only at most one tangential derivative θν of V
 ; coefficients such as b involve at most two derivatives of V, one of them being
 tangential. In both cases, the assumptions on u, translated into properties of V
 (see Lemma 2.5) garantee a uniform control in I00 norm. Ο

 4.2. End of the proof of the representation theorem.

 a. To prove that ν € C00 (T^), we proceed as usual, working in Τε. We
 commute 3χ with the equation on ν (after normalizing the coefficient of djV to
 one), and use interpolation in X (for fixed T). One has to be careful, however,
 about the structure of the terms, since we do not control the I00 norm of 32v, but

 only of 3θν. Symbolically, we can write the equation on V as

 av + Q(v) = αν + (ν + θν)3θν + ν2 + νθν + (θν)2 + (θν)3ν = 0.

 The first order terms do not cause any problem. For a typical second order term
 (θν)(δθν), we write

 3|[(0v)(30v)] = (θν)δθδχν + (3θν)(θ3χν) +r,

 where the first two terms belong to the linearized operator acting on w v,
 and

 \r\ < C X [d{-ld0v\ \d$-*d0v\.
 l<l<k-l

 Using now the inequality (see for instance [10])

 IIO*/)OMlp ^ c(||/Hi- WgWHP+o + Ml- U\\hp+i)

 with the functions / = 3θν, g = 3θν and ρ + q = k - 1, we get

 ||r|li2 < C||30v||i~ ||dv||H*.

 In this way, we get a control of the I2 norm in Tf of all terms 3χν, for all k ; this
 control is, of course, uniform in ε. Using the equation, we extend this control to

 all derivatives of V. Since ε is arbitrary, we get that V G C^CT).
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 b. We have given the above argument in the full domain Τε in order to
 simplify the notation. If we assume the energy condition only for t > t as in the
 theorems, we will in fact work for ν in the domain

 Tsn{R> (τ2 + j\ }.
 Since ν is C00 in a neighborhood of the boundary

 \ 1/2

 of this domain, the argument runs in exactly the same way.

 c. We now have

 / ^ 1 fx t u(x, t) = -r TV
 t2-r2 \t2-r2' t2-r

 Since t/(t + r) and r/(t + r) are smooth functions of (t — r)/r, we obtain the
 representation of u in the coordinates (x,t), which yields the representation with
 the original coordinates r, oo and t - r.

 d. The stability of ti is a consequence of the stability of V. Ο

 4.3. Proof of Stability Theorem 2

 4.3.1. Set

 Pz = □ + gaPy{dYz)d2^,

 where ζ is some smooth given function (it will be u + ν in application). We first
 establish an energy inequality for Pz.

 Lemma 4.3 (Energy inequality).
 Assume that ζ satisfies the following properties :

 Smallness Property: For some «ι < 1, \gi-iy (^yZ)ξiξj\ < (ΧιΙξΙ2>
 Decay Property: For some C, Xk<i iZfc3z| ^ C(1 + t)~l(r - £)~1/2·

 Then, with η = 0.1, Ti = + a>idt and

 Ew(t:) = ^ J [(dtw)2 + Y^(diW)2](x,t)dx,

 the following energy inequality holds :

 E-w (t)
 ο <s<t

 (r - s) 1 η Y \T{W\2dxds
 t —1

 < \CEW(0) + C ί \Pzw\ \dtw\ dxd5 j expC(Ç + C2).
 L Jo<s<t J

 Proof We take essentially the proof from [3], but repeat it for convenience.
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 a. Note the pointwise inequality

 \Ttw\ <c(\ + trlX\zw\.

 b. With a = a(r - t), we have first

 (nw)(dtw)ea = ^dt[ea(dtw)2+eaYj(diw)2j + Xdi(· ■ ■ ) + ^eaa'Yd(Tiw)2.

 From now on, we choose

 a(s) = f {σ)~ι~ηάσ,
 J —oo

 hence 0 < a < C. We also have (omitting indices in C[\ and q2)

 2ea(dyz)(dlpw)(dtw) = *(■■■) + ea(a'q ι + q2),
 (fa = -(dyZ)[coa(dpw)(dtw) + (vp(d«w){dtw) + (Βατν)(3βΐν)],

 qi = -(daw)(dtw){djyz) - {dpw){dtw)(d2ayz) + (3aw){dpw)(djyz).

 c. We use now systematically the identity da = Ta - coa3t, with To = 0.
 The coefficient of — (dyz) in q\ is

 ωα{Τβ\ν - oopdtw)(dtw) + ωβ(Ταιν - ω«3tw)(dtw)

 + (Taw)(dpw) - a)a(dtw)(TfiW - ωβΒίΐυ)

 = -ωαωβ(3ίΐυ)2 + (Ταιν)(3βίν) + cop(Taw)(dtw).

 When summing with the coefficients ga^v, using the null condition, we get sym
 bolically

 gapyqi = (dz)(dw)(Tw) + (Tz)(dw)2.

 Proceeding similarly with q2, we obtain symbolically

 q2 = (dw)(Tw)(d2z) + b(dtw)2,

 b = (vadjyz + cOfidlyZ + wacopdfyz.

 Again, we can write symbolically

 b = ooacop(Oy(dfz) + Tdz,

 which gives upon summing

 ga^yq2 = (div)(Tw){d2z) + (dw)2(Tdz).
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 d. The terms containing (div)2 in a' ga^yq\ and ga"y(l2 have a coefficient
 bounded by

 C(1 + tyl{(r -ΐ)~ι~ηΣ\Ζζ\ + ]Γ|Ζ3ζ|} < CÇ(l + ίΓ2.

 The terms in (Tw)(div) in a'ga^yq\ and ga^y£l2 have a coefficient bounded by

 \d2z\ + a'\dz\ < CC( 1 + t)-1^ - t)~3/2·

 e. The energy term for the operator Ρ is

 ~ I [ea(dtw)2 + ea £(diU))2 + eagljy(dyz){diW)(djw)](x, t) dx.

 Hence the smallness assumption on ζ implies that it is bounded below by

 I J [ea(l - «i)[0tn/)2 + Yj{diw)2]\{x,t)dx.

 This implies that the terms J CC( 1 + t)~2\dw\2 can be handled using Gronwall's
 lemma. To handle the terms in (Tw){dw), we write, with η' > 0 as small as
 desired,

 Cç[ {r - s)~il2(\ + s)~x\Tw\ \dw\<bcàs
 Jo<s<t

 < η' f {r - s)~l~n Y(TiW)2dxds + CQ-C2 (1 + 5)"2|3w|2dxd5.
 Jo<5<t Jo<5<t

 Choosing η' small enough, and using Gronwall's lemma, we obtain the result. ΓΊ

 4.3.2. Let u + ν be the solution corresponding to the perturbed data,

 V (x,0) = EU0{x), (dtv)(x,0) = £Ux(x).

 We proceed by induction on time, and make on V the induction hypothesis

 X ||9Zki>||x,2 < C\E.
 k<6

 Using the Klainerman inequality, this implies

 X \zkdv\(x,t) < CCif(l + t)_1(r - t)"1/2.
 fc< 4

 The equation satisfied by V is, with ζ = u + V,

 Pzv + gapy{d2^u)(dyV) = 0.
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 Taking into account the smallness assumption on u, we see that the smallness
 assumption required on ζ in Lemma 4.3 is satisfied if Cj ε is small enough, and
 the decay assumption is satisfied with C = C(Co + C\S). We write the additional
 term as

 (d2u)(Tv) - c(dtv), c = gaPyu)yd^u.

 Just as before, we have |c| < C(1 + t)-1 \Zdu\ < CCo(l + t)~2. Hence

 Ev(t)+ f (r - s)'1'11 Y(TiV)2 dxds < CEV(0) exp C(C + C2).
 J0<s<t

 4.3.3. We now take k < 6 and commute a product Zk with the equation on
 V. In this process, we use repeatedly the commutation lemma of Section 1.1. We
 obtain

 Pz(Zkv) + ga^(dle(u + v))d yZkv + R = 0,

 R = Xhmy ΟγζΡη)(Β2αβΖ«ν)
 p<k, p+q<k

 + Xlmy(àyZpv)(d2ai}Z*v) 02αβΖριι)(ΒγΖ«ν).
 p<k-1, n<k-1, p+q<k p<k, q<k-1, p+q<k

 Here, for each couple (p, q), the constants hpqY, £pq} and rripqy satisfy the null
 condition. We will use the energy inequality for Pz ; we have to control the
 additional terms

 ga^(d2c(pz)(dyw)(dtw), R(dtiv)

 with w = Zkv. The first term is handled just as for the case k = 0. To control
 the other terms, we have to modify slightly the estimation lemma of Section 1.1
 (Lemma 1.1).

 Lemma 4.4. If g satisfies the null condition, we have the two inequalities (which
 we write symbolically for simplicity)

 G = \galindywx){d2apw2)\ < C( 1 + trx\Zwx\ \d2w2\ + c\dwi\ \Tdw2\,

 G < C\Twi\ \d2w2\ + C(l + t)_1|3^il \Zdw2\.

 Using the first inequality of the lemma, we bound an h-term oiR(dtW) as

 \hf/(dyzpu)(d2ailz«v)(dtw)\
 < C(1 + t)~l\Zp+1u\ \d2Zav\ \dtw\ + Cldz^ul ITdZ^vl \dtw\.
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 2568 S. Alinhac

 The first term is bounded by

 CCo(l + t)~3/2[|a2Ziv|2 + \dtw\2}.

 The second term is bounded for small η' > 0 by

 η'(r - ί)-1-"|Γ3Ζ<ιν|2 + CQC02(1 + tr3/2\dtw\2.

 The ra-terms are handled similarly, using the second line of the lemma, with the
 same type of bounds.
 To handle an é'-term, we distinguish the cases ρ > q or ρ < q. If ρ > q, then

 q < 3 ; using the second line of the lemma, we bound the term by

 C\TZpv\ \d2Z*v\ \dtw\ + C(1 + t)~l\dZpv\ \ZdZqv\ \dtw\.

 Since q < 3,
 \d2Zqv\ < CCif(l + tyl{r -

 and the first term is less than

 η'(r - ί)-χ-η\τζ*νI2 + CC„'(Ci£)2(1 + tr3l2\dtw\2.

 Similarly, the second term is less than

 C(Cif)(l + t)~2[\dZpv\2 + |3tw|2].

 Assume now ρ < q, hence ρ < 3. Using the first line of the lemma, we bound the
 /-term by

 C(1 +t)~l\Zp+lv\ \d2Zqv\ \dtw\ + C\dZpv\ \TdZqv\ \dtw\.

 The first term is less than

 C(Cif)(l + t)~3,2[\dZq+iv\2 + |3txf|2].

 The second term is less than

 η'(ν - t}~1~ri\TdZ'lv\2 + CQ(Cif)2(l + t)'312\dtw\2.

 4.3.4. Summing all inequalities, and using Gronwall's lemma, we obtain
 with

 4>(t) = χ I \dzkv(-,t)\ I
 k<6

 the inequality

 φ(ί) < C2φ(0)expC2(Co + CXE + Q2 + Cfe2),

This content downloaded from 113.104.214.157 on Thu, 03 Mar 2022 22:50:35 UTC
All use subject to https://about.jstor.org/terms



 Stability of Large Solutions to Quasilinear Wave Equations 2569

 where C2 is a numerical constant (independent of Co and Ci). Since

 Φ(0) < C3e,

 we choose

 C\ = 4C2C3 exp Ci (Co + φ.

 Then we choose So > 0 small enough to satisfy C\e0 small and

 expC2(Cif0 + Cfcjf) < 2.

 For ε < So, this gives

 Φ(ί) < \CxE

 and finishes the proof. Ο

 5. Remarks on the blowup at infinity

 Recall that for some to > 2M, we consider u as a solution of the Cauchy problem

 au + Q(w) = 0, u(x,to) = uo(x), (dtu)(x,t0) = Ui(x).

 Using the conformai inversion I, we set To = -1 / ίο and associate to u the func
 tion V defined by

 u(I)(X,T) = (T2-R2)v(X,T).

 The concept of "blowing up at infinity" is not clear to us in general situations, and
 we think that it would be interesting to clarify the concept in general situations
 for quasilinear wave equations. In the present case however, the use of conformai
 inversion allows us to give precise definitions.

 Definition. We say that a given global C°° solution u of ou + Q(u) = 0 does
 not blow up at infinity if the corresponding function ν is C°° on the compact region

 {(X,T), T0 < Τ < 0, T2-R2> 0}.

 For a C00 solution u only defined below an hyperboloid

 1/21

 (x,t), to < t < --^r + (r2 + 7^2 ) L To <T\ < 0, ik + {r2 + M

 the same definition makes sense, the function ν being here C00 on the compact region

 {(X,T), To <T<TU T2-R2> 0}.

This content downloaded from 113.104.214.157 on Thu, 03 Mar 2022 22:50:35 UTC
All use subject to https://about.jstor.org/terms



 2570  S. Alinhac

 With such definitions, it is clear that solutions which do not blowup at infinity
 are stable. Global solutions blowing up at infinity (if they exist) correspond to
 functions V having some singularity only on the boundary of the domain : this
 appears as an unstable limiting case, since it would seem that some perturbations
 of V produce functions having a singularity inside the domain, corresponding to
 finite time blowup for u. It is not clear however if the limiting case of global
 smooth solutions corresponds to global solutions or to solutions blowing up in
 finite type, as shown by the three very simple examples below.

 5. /. Three simple examples.

 a. Let us consider the ODE

 y' = -y + y2, ;y(()) = ;yo>o.

 The explicit solution is

 y(t) = (1 + Ae'r\ A= 1.
 yo

 If yo < 1, then A > 0 and the solution y is global and stable, with behavior
 y(t) — 0 at infinity. For y ο > 1, then A < 0 and finite time blowup occurs. For
 the limiting case yo = 1, A = 0 and the solution is simply y ξ 1, which is global
 with blowup at infinity.

 b. Let us consider the ODE

 y' = -2(t - \)y2, y(0)=y0>0.

 The explicit solution is

 y(t) =
 ι 1 1

 (t- 1)2 + 1
 yo

 If yo < 1, the solution is global and goes to zero at infinity. If y ο > 1, the solution
 blows up in finite time. For the limiting case yo = 1, the solution is simply
 y{t) = (t - l)"2, which blows up in finite time.

 c. The explanation of the difference between these two very simple examples
 is this: in a, the finite time singularities are stable (with minimal blowup rate),
 hence they cannot occur for the limiting case. In contrast, the finite time singular

 ity (ί - l)"2 is unstable (with higher blowup rate), and it does occur as a limiting
 case singularity. In the first case, the change

 s = e\ w(s)-s 'yi-logs)
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 reduces the problem to
 w' = -w2.

 Thus we have a regular compactification of the problem, analogous to the one
 obtained using conformai inversion for our quasilinear wave equation. In the
 second case, it does not seem possible to obtain such a compactification.

 d. Consider the Cauchy problem with data on {t = ίο} for the equation

 nu + (dtu)2 - Σ(Βίΐί)2 = 0.

 As is well known, setting u = eu - 1, this equation reads au = 0. Define as before
 V and v_ by

 u(I)(X, T) = (T2 - R2)v(X, T), u(I)(X, T) = (T2 - R2)v(X, Τ).

 We already know that OV_ = 0. The transformed equation for ν is easily seen to
 be

 av + 4v(Sv) + (Τ2 - R2)^(drv)2 - ^(3iV)2J + 4v2 = 0.

 We also have

 u(X, T) = log(l + u) = log( 1 + (T2 - R2)v) = (T2 - R2)v.

 Suppose now that u is a global C°° solution of our equation : this implies u =
 (Γ2 - R2)v > -1 everywhere. For s close to zero, log(l + s) = sf(s) for some
 / ε C00. Since ν is C°° everywhere, close to {Γ2 = R2}, we get

 v(X,T) = vf((T2-R2)v).

 Hence ν is automatically in C°° (T), and u does not blowup at infinity.
 This example is of course very special : the equation on ν has the property

 that all solutions which exist and are C00 in the interior of "T are automatically
 C°° CT). But the question is : what tells us that this is not the case for the general

 equation DV + Q(v) = 0 obtained in Lemma 2.6 ?
 Let us mention an apparent "paradox" connected with this example : it is easy

 to construct C00 data

 v0(X) = v{X,To), Vi(X) = (dTv)(X,To)

 for the equation on v, compactly supported in {|X| < I To I}, such that the cor
 responding solution V blows up inside T. If we consider now the solution νε of

 the υ-equation with data (svq, £Vi) on [T = To}, it certainly belongs to C00('j')
 for ε small enough. Define fo by

 £0 = sup{f>0, V0 <£'<£, Vs>eC°°(f)}.
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 One would be tempted to believe that v£o is C00 inside Τ, but this is not the case
 in view of the above considerations. This example is similar to example 2 above :
 the singularity of v£o inside Τ is unstable.

 5.2. Heuristics. To summarize what has been said before :

 (i) If a solution does not blowup at infinity, it is stable,
 (ii) We do not know if blow up at infinity implies instability of the solution, but

 we believe so,

 (iii) We do not know if there are actually solutions which blow up at infinity, but
 we believe there are (otherwise this paper would be meaningless).

 5.3. Local blowup for quasilinear wave equations. From what has been
 said before, it seems important to us to investigate, on the cone {R + Τ = 0},
 blowup for the solutions of the equation Dv + Q(v) = 0. Let us recall in a
 sketchy way some basic facts from [4] about blowup.

 Consider to simplify an (hyperbolic) equation of the form

 Σραβ (dv)dlpv = 0.

 One could allow pa& to also depend on (χα,υ), but only the dependence on dν
 is significant. The principal symbol ρ = ρ°Ήν)ξαξβ of the linearized operator
 on V is a function of ξ and V = (dav). Denote by Da the derivative with respect
 to Vw. A characteristic point (Vq, ξο ) is said to be genuinely nonlinear (following
 Lax) if

 ρ(ν0,ξο) = 0, ξ0 ■ Dp(Vo, ξο) Φ 0.

 In this case, one can construct singular solutions for which d2v blows up at some
 point m of a spacelike surface {d = 0} with the minimal rate d~l. This type
 of singularity is believed to be stable, that is, slightly modified data yield a mod
 ified solution blowing up close to m with the same minimal rate (for a precise
 statement, see [6]). A linearly degenerate point (Vb, ξο) is defined by

 p(Vo, ξο) = 0, ξ0 · Dp(Vo, ξο) = 0.

 In this case, one can construct singular solutions for which d2v blows up at some
 point m of a spacelike surface {d = 0} with the higher rate d~2 ; moreover, such
 solutions are unstable, meaning that some slight modifications of the data yield
 a minimal rate blowup solution, while some other modifications yield a solution
 which does not blow up at all (see [5]). The condition of being a linearly degen
 erate point is invariantly defined with respect to change of variables or nonlinear
 change of unknown function. Note that the null condition does not necessarily
 implies that all points are linearly degenerate ; however, there are equations satis
 fying the null condition for which all points are linearly degenerate, for instance

 DU + Οιu){dju) - (d2u)(df2u) = 0.
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 For such an equation on u, the equation on V, away from the boundary {R + T} =
 0, will have only linearly degenerate points, since the equation on ν is the result of
 a change of variables (the conformai inversion) coupled with a change of unknown
 function. The remarkable fact however, is that for all equations satisfying the null
 condition, the boundary points are linearly degenerate.

 Theorem (Linear Degeneracy Theorem). On the boundary {R + Τ = 0}, all
 points are linearly degenerate points for the equation OV + Q(v) = 0.

 Proof. The principal symbol ρ of the linearized equation L is actually a func
 tion of (X, T,v,dv) in our case, but we disregard the dependence on (Χ, Τ, V) as
 irrelevant. On R + T = 0, the principal symbol is (with (ξ, τ) dual to (X, T))

 ρ = τ2 - |ξ|2 + 4[2A(Sv + v) + Y{v]s2 + 4(Sv + v)y2s,

 with s = T(τ - ωξ),

 T~2yi = T(2g0l0u)i- glj0coiWj) + gijku)i(v^k - 230ί]ωίξ],

 T~2y2 = t(2g0l0u)i - 2g0lJiViU)j) - 2gij0w&j + 2gijkœkuoilj

 + 2goi% - 2gWwfc.

 Since

 D0p = 4(2AT + Y^s2 + 4Ty2s, Dtp = 4(-2ATiVi + Y{)s2 -4TcOiy2s,

 the expression Ε = \ [tDoρ + Χ ζίDip] is

 Ε = (2ΑΤ(τ - ωξ) + yi)s2 + sy2T(T - ωξ)

 = Τ2(τ - ωξ)2[2ΑΤ(τ - ωξ) + yx + y2\.

 Now

 T~2(yi +y2) = τ[2Α(ω) - (2g0ljωiωj +gljoωiωj)]

 + Α(ξ) - 2[gij0tt)i5j + 30ίΠω^ + ω&)]

 + glJkωiωjξk + 2 gljkωiωkξj.

 Taking into account the algebraic properties displayed in Section 1.1, with X = ω
 and Υ = ξ for the last line, we obtain

 T~2(yx + y2) = 2Α(ω)τ + Α(ξ) - 2Α(ω)(ωξ) - Α(ξ)\ω\2

 = 2Α{ω){τ - ωξ).
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 Hence finally

 2Α(Χ)Τ(τ - ωξ) + y\ + y2 = -2Α(ω)Τ2(τ - ωξ) + 2Α(ω)Τ2{τ - ωξ)
 = 0. η

 This computation shows that, despite appearances, the equation □ ν + Q ( ν ) =
 0 still contains many hidden cancellations ! We still dont know how to exploit
 this result, but we feel that it is important to understand blowup at infinity for the
 solutions of nu + Q(u) = 0.
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