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In the significant work of [6], Alinhac proved the global existence of small solutions 
for 2D quasilinear wave equations under the null conditions. The proof heavily 
relies on the fact that the initial data have compact support [23]. Whether this 
constraint can be removed or not is still unclear. In this paper, for fully nonlinear 
wave equations under the null conditions, we prove the global well-posedness for 
small initial data without compact support. Moreover, we apply our result to a 
class of quasilinear wave equations.
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r é s u m é

Dans un travail important, Alinhac [6] a prouvé l’existence globale de solutions 
petites pour les équations des ondes en 2D sous la condition nulle. La preuve repose 
en grande partie sur le fait que les données initiales ont un support compacte [23]. 
Que cette contrainte peut être retirée ou non est encore une question ouverte. Dans 
ce papier, pour les équations des ondes totalement non linéaires avec la condition 
nulle, nous démontrons l’existence globale pour des données initiales petites sans 
l’hypothese de support compacte. De plus, nous appliquons notre résultat à une 
classe d’équations d’ondes quasilinéaires.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Global well-posedness for nonlinear wave equations is a well-oiled mathematical topic. Many mathe-
maticians including S. Alinhac, D. Christodoulou, L. Hörmander, F. John, S. Klainerman, etc. have made 
tremendous contributions to this subject. The first nontrivial long-time existence result was established by 
John and Klainerman in [15] where they showed the almost global existence for 3D quasilinear scalar wave 
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equations. The landmark work of global existence for 3D quasilinear wave equations was obtained firstly by 
Klainerman [19] and by Christodoulou [8] independently under null conditions. The corresponding problem 
in 2D is more delicate since it only has critical decay even under the null condition. In 2001, Alinhac [6]
introduced the so-called ghost weight and proved the global well-posedness. However, the argument in [6]
heavily relies on the compact support of the initial data, since the use of a certain kind of Hardy-type 
inequality depending on the compact support is crucial [23]. For the case where the initial data is not 
compactly supported, it’s still unclear whether the existence of solution is global or not.

In this paper, we consider the following 2D fully nonlinear wave equations:{�u = Nαβμν∂α∂βu∂μ∂νu,

u(0, ·) = ϕ, ∂tu(0, ·) = ψ,
(1.1)

where ∂ := (∂t, ∂1, ∂2), � is d’Alembertian operator, ϕ, ψ ∈ Hk
Λ (the space Hk

Λ will be explained in Section 2), 
u = u(t, x1, x2) is the unknown variable. Here and throughout this paper, Einstein’s summation convention 
is used, which means that repeated indices are always summed over their ranges. Our first goal is to prove 
the global well-posedness for (1.1) without compact support.

We denote the nonlinearities as

N(u, v) = Nαβμν∂α∂βu∂μ∂νu. (1.2)

It’s clear that, by a simple symmetrization procedure, Nαβμν can be assumed to be satisfying the symmetry

Nαβμν = Nβαμν = Nαβνμ. (1.3)

For global existence, we impose the standard null condition for N(u, v):

NαβμνXαXβXμXν = 0 (1.4)

for all X ∈ Σ, where Σ is the light cone

Σ = {X ∈ R
3 : X2

0 = X2
1 + X2

2}.

The main result of this paper can be described as follows:

Theorem 1.1. Let M > 0, 0 < γ < 1
8 be two given constants and (ϕ, ψ) ∈ Hk

Λ, with k ≥ 8. Suppose that the 
nonlinearities satisfy the symmetry (1.3), null condition (1.4), and

‖(ϕ,ψ)‖Hk
Λ
< M, ‖(ϕ,ψ)‖Hk−1

Λ
< ε. (1.5)

There exists a positive constant ε0 < e−M which depend on M, k, γ such that, if ε ≤ ε0, the fully nonlinear 
wave equation (1.1) with initial data (u(0), ∂tu(0)) = (ϕ, ψ) has a unique global solution which satisfies 
Ek(t) ≤ C0M

2〈t〉γ and Ek−1(t) ≤ C0ε
2eC0M for some C0 > 1 uniformly for 0 ≤ t < ∞.

Remark 1.1. We emphasize that our argument can also be applied to the general fully nonlinear wave 
equations with cubic and higher-order nonlinear terms whose quadratic and cubic terms both satisfy null 
conditions. For simplicity, we only focus on the quadratic case here, since the higher-order terms can be 
treated similarly, see [6,27].

Our second goal is to apply Theorem 1.1 to show the global well-posedness for a class of quasilinear 
wave equations even when the initial data is not compactly supported. There are two key points for this 
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purpose. The first one is to transform the quasi-linear wave equations to fully nonlinear equations so that 
the application of Theorem 1.1 is possible. In general the resulting fully nonlinear wave equations do not 
satisfy the symmetry condition (1.3), but do satisfy certain null condition if the original quasi-linear wave 
equations do. To avoid the loss of derivatives, we need to symmetrize the resulting fully nonlinear wave 
equations and at the mean time, keep the null structure. The second point is to show that the null condition 
(1.4) is preserved under the symmetrization procedure. See Lemma 5.1 for more details.

Consider the following quasilinear wave equations:{�v = Al∂l(Nμδ∂μv∂δv),
v(0, x) = v0(x), ∂tv(0, x) = v1(x).

(1.6)

Now we are ready to state the second main result of this paper as follows:

Theorem 1.2. For the quasilinear wave equations (1.6), we assume the following null condition holds

NμδXμXδ = 0 (1.7)

for all X ∈ Σ. Let (ϕ, ψ) defined by (5.1) or by (5.2)–(5.3) in Section 5 belong to Hk
Λ with k ≥ 8 and they 

satisfy the condition (1.5). Then the equations (1.6) with initial data satisfying (5.1) or (5.2)–(5.3) have 
global classical solutions.

Remark 1.2. We mention that (1.7) is equivalent to

AlNμδXlXμXδ = 0. (1.8)

See Section 5 for more details.

As an example of (1.6), we consider the following prototype quasilinear wave equation{�v = ∂t(|∂tv|2 − |∇v|2),
v(0, ·) = v0, ∂tv(0, ·) = v1.

(1.9)

In this case, ϕ and ψ which appear in Theorem 1.2 are

ϕ = χ, ψ = v0, (1.10)

where χ is a function satisfying the following elliptic equation{
−Δχ = |v1|2 − |∇v0|2 − v1,

(χ(x),∇χ(x)) ∈ Hk
Λ.

(1.11)

Remark 1.3. Indeed, we can obtain the uniform bound of the highest-order energy for the equation (1.9)
(see Section 6). In [4], Alinhac proved that for the three dimensional scalar quasilinear wave equation with 
small initial data under null condition, the highest-order energy is uniformly bounded (see also Wang [32]), 
and he also conjectured that a certain time growth of the highest-order energy is a true phenomenon except 
for 3D scalar wave equation. However, in [24], Lei–Wang were able to show that the uniform boundedness 
of the highest-order energy is still true for 3D incompressible elastodynamics which gives a counterexample 
to Alinhac’s conjecture. Here we provide another counter-example to Alinhac’s conjecture. We emphasize 
that it is still unclear whether Alinhac’s conjecture is true or not for general 2D quasilinear wave equations, 
3D non-relativistic wave equations and compressible elastodynamics.
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This paper is mainly inspired by the recent work of global existence result for 2D incompressible elastody-
namics in which the concept of strong null condition is introduced [22]. In the case of general 2D quasilinear 
wave equations, to prove the global existence of small solutions under null conditions, Alinhac [6] used a 
kind of Hardy-type inequality to produce good unknowns ∂(∂t + ∂r)Γαu which decay as 〈t〉−1 in L2. For 
that purpose, the initial data is required to have compact support. Our strategy is to focus on the fully 
nonlinear cases in which the equations naturally have one more derivative than the quasilinear ones. Hence 
we can gain an extra 〈t〉−1 decay in the lower-order energy estimate. Since we don’t need to use Hardy-type 
inequality to create an extra derivative, the constraint of compact support can be removed. Moreover, for 
a class of quasilinear wave equations (1.6) with the initial data satisfying (5.1) or (5.2), we can transform 
them into fully nonlinear cases, hence the compact support constraint is removed and we can still obtain 
the global well-posedness. In particular, we can even prove the uniform bound of the highest-order energy 
for the equation (1.9).

From now on, we review some related results concerning nonlinear wave equations and elastodynamics. 
When n ≥ 4, the global existence of small solutions to the Cauchy problem of quasilinear wave equations is 
easy and can be obtained by the fact of subcritical decay, for instance, see [18,20,25]. The nontrivial long-
time behavior was firstly established by John and Klainerman in [15] where they showed the almost global 
existence for 3D quasilinear wave equations. In general, this is sharp [12]. By introducing the null condition, 
the global existence results were obtained firstly by Klainerman [19] and by Christodoulou [8] independently. 
Klainerman’s proof uses the vector field theory and generalized energy method, while Chritodoulou’s argu-
ment relies on conformal mapping method. For nonrelativistic systems of nonlinear wave equation where the 
Lorentz invariance is not available, Klainerman and Sideris introduced the weighted L2 energy with the use 
of only invariance of translation, rotation, scaling and obtained the almost global existence in 3D [21] (see 
an earlier proof by John [14] using L1 − L∞ estimate). Subsequently, Sideris adapted the weighted energy 
method to get the global existence for 3D elastic wave under null condition [26]. Be of importance is that 
Sideris [27] and Agemi [1] got the global existence under nonresonance null condition which is physically 
compatible with the system. For 3D incompressible elastodynamics, the global existence was obtained by 
Sideris and Thomases [28,29]. For wave systems with different speed, the global well-posedness were proved 
by Sideris and Tu in [30]; see also [34] for a different method. While there is no null condition, the finite 
time blow-up was shown for nonlinear wave equations [5,12] and for compressible elastodynamics [13,31] in 
three dimension.

In 2D, the blow-up results for quasilinear wave equations were firstly shown by Alinhac in [2,3,7]. Com-
pared with the three dimensional case, the corresponding long time existence problem is more delicate since 
quadratic terms have only critical decay even under the assumption of null condition. In the semilinear 
case, Godin got the global existence under null condition [9]. In the quasilinear case, if the nonlinearities 
are cubic terms and they satisfy the null condition, a series of global existence results were derived by 
[11,16,17,35] etc. When the nonlinearities contain the quadratic terms, Alinhac [6] was the first to prove the 
global existence under both null condition. In Alinhac’s proof, the key point is the introduction of ghost 
weight. However, the method used in [6] heavily relies on the assumption of compact support to the initial 
data, since a certain kind of Hardy-type inequality depending on the compact support of initial data is 
crucial [23]. While there is no Lorentz invariance, the corresponding problem is more complicated. The first 
non-trivial long time behavior results was established by Lei, Sideris and Zhou [23] where the authors es-
tablished the almost global existence for incompressible elastodynamics in Eulerian coordinates. The global 
well-posedness is finally established by Lei [22] in which the author found a kind of inherent “strong null 
condition” in Lagrangian coordinates (see a new proof by Wang using space time resonance method [33]). 
We remark the results in [22,23,33] don’t require the compact support of the initial data.

The paper is organized as follows. In Section 2, we give some notations and necessary lemmas which 
are important for our energy estimates. In Section 3, we focus on the null structure of the nonlinearities. 
Section 4 concerns the higher and lower order energy estimates for (1.1) which yield the first main result of 
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the paper. Then the second main result for the global solutions of (1.6) is proved in Section 5. In the last 
section, we show the uniform bound of the highest-order energy for the equation (1.9).

2. Preliminaries

In the whole paper, we use the following notation conventions. Points in space-time R+×R
2 are denoted 

by

X = (t, x) = (t, x1, x2).

Partial derivatives are written as

∂0 = ∂t = ∂

∂t
, and ∂i = ∂

∂xi
, 1 ≤ i ≤ 2.

We also abbreviate space derivative and space-time derivative as

∇ = (∂1, ∂2), and ∂ = (∂t, ∂1, ∂2).

For the convenience, we denote

r = |x|, ω = x

r
, ω⊥ = (ω⊥

1 , ω⊥
2 ) = (−ω2, ω1), 〈a〉 =

√
1 + a2.

We often decompose space derivative into radial and angular components

∇ = ω∂r + ω⊥

r
∂θ, (2.1)

where ∂r = ω · ∇, ∂θ = x⊥ · ∇. This fact plays an important role in our argument.
A central role in our paper is the application of the generalized vector field operators, which was intro-

duced by Klainerman [18]:

Ω = −x2∂1 + x1∂2,

S = t∂t + r∂r,

Li = t∂i + xi∂t, 1 ≤ i ≤ 2.

Note that if u(t, x) is a solution to (1.1), then λ−2u(λx, λt) is also a solution with initial data 
(λ−2ϕ(λx), λ−1ψ(λx)) for any λ > 0. Hence more precisely, we define the modified scaling generator 
S̃ = S − 2. The seven vector fields used in this paper can be denoted by Γ = (∂, Ω, L1, L2, S̃). For Γau, we 
mean Γa1 ...Γa7 , where a is multi-index a = (a1, · · · , a7). We also use the abbreviation Γku = {Γau : |a| ≤ k}.

Based on the above preparation, we define the generalized energy in line with the wave equations by

Ek(u(t)) = 1
2

∑
|a|≤k−1

∫
R2

|∂Γau|2dx.

To describe the space of the initial data, we introduce the following notation (see [27]):

Λ = {∇, r∂r,Ω},

and
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Hk
Λ = {(f, g) :

∑
|a|≤k−1

(‖Λaf‖L2 + ‖∇Λaf‖L2 + ‖Λag‖L2) < ∞},

with the norm

‖(f, g)‖Hk
Λ

=
∑

|a|≤k−1

(‖∇Λaf‖L2 + ‖Λag‖L2).

Space ḢΓ(T ) is defined by

Ḣk
Γ(T ) = {u : [0, T ) → R| ∂u ∈ ∩k−1

j=0C
j([0, T );Hk−j−1

Λ )}.

Solutions will constructed in the space ḢΓ(T ) with the norm

sup
0≤t<T

Ek(t)1/2.

It is obviously that Ḣk
Γ(T ) ⊆ C2([0, T ) ×R

2) if k ≥ 8. This confirms the fact that the solutions we constructed 
are classical one.

Throughout this paper, we use A � B to denote A ≤ CB for some absolute constant C, whose meaning 
may change from line to line.

Now we state some preliminary weighted estimates.

Lemma 2.1. There holds

〈t + r〉 1
2 〈t− r〉 1

2 |u| �
∑
|a|≤2

‖Γau‖L2 , (2.2)

provided the right-hand side is finite.

Proof. If we replace S̃ by S, then (2.2) is a classical inequality by S. Klainerman [18]. Note that S̃ and S differ 
each other by a lower order term, thus the lemma is an easy consequence of the classical Klainerman–Sobolev 
inequality. �

The following lemma states the relationship between the ordinary derivatives and the vector field.

Lemma 2.2. There holds

|(t + r)(∂t + ∂r)u| ≤ |Γu|, (2.3)

and

|(t− r)∂u| � |Γu|. (2.4)

Proof. If we replace S̃ by S, one can find the result in [18]. Note the relation between S̃ and S, one 
immediately has the lemma. �

Combining Lemma 2.1 with (2.4), we get strengthened decay rate for ‖∂2u‖L∞ away from the light cone.

Lemma 2.3. Let u ∈ E4, then there holds

〈t + r〉 1
2 〈t− r〉 3

2 |∂2u| �
∑
|a|≤3

‖∂Γau‖L2 .
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We have the following lemma which asserts that the null structure is preserved upon the commutation 
between the Γ operators and the wave equations (1.1). This property would be extremely important in our 
proof.

Lemma 2.4. Assume the nonlinearities of the wave equations (1.1) satisfy the null condition (1.4), then there 
holds

�Γau =
∑

b+c+d=a

Nd(Γbu,Γcu), (2.5)

where each term Nd is of the form (1.2) satisfying (1.4), especially N0(u, v) = N(u, v).

Proof. See L. Hörmander [10]. �
The local existence of the classical solutions to (1.1) and (1.6) are trivial by standard method, we omit 

the details here. In order to get the global existence result, it suffices to establish the following a priori
estimates

d

dt
Ek(t) � 〈t〉−1Ek(t)E

1
2
k−1(t), (2.6)

d

dt
Ek−1(t) � 〈t〉− 3

2E
1
2
k (t)Ek−1(t). (2.7)

Once the above estimates are obtained, the main results hold by standard continuity method. For the details, 
one can consult [22].

3. Estimate for the nonlinearities

In this section, we are going to study the good properties of the nonlinearities due to the null condition. 
Both the higher-order energy estimate and the lower-order energy estimate will benefit from those properties. 
We will state them in two different lemmas.

The use of (1.4) for the lower-order energy estimate is captured in the following lemma. It says that we 
are able to gain 〈t〉−1 decay near the light cone.

Lemma 3.1. Let 1 � r. Suppose that the nonlinearities (1.2) satisfy (1.4). Then there holds

|N(u, v)| � 1
r

(
|∂Γu| + |∂u|

)
(|∂Γv| + |∂v|). (3.1)

Proof. First, we introduce the notations:

D± = 1
2(∂t ± ∂r), Y ± = (1,±ω).

Consequently, one has (∂t, ω∂r) = Y −D− +Y +D+. By (2.1), one can decompose the space-time derivatives 
as follows:

∂ = (∂t, ∂1, ∂2) = Y −D− + Y +D+ + (0, ω
⊥

r
∂θ) = Y −D− + R, (3.2)

where

R = Y +D+ + (0, ω
⊥
∂θ).
r
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Here the derivative D− denotes the bad derivative, R denotes the good derivative. Simple calculation shows

|Ru| � min
{
|∂u|, |(∂t + ∂r)u| + |1

r
∂θu|, |

1
r
Γu|

}
, (3.3)

and

|∂Ru|, |R2u|, |D±Ru|, |R(Y ±D±)u| � 1
r
(|∂Γu| + ∂u|). (3.4)

Here ∂Ru, R2u, R(Y ±D±)u are understood as matrix operators ∂⊗Ru, R⊗Ru, R⊗(Y ±D±)u, respectively.
Employing the decomposition (3.2), we organize N(u, v) as follows:

N(u, v) = Nαβμν

{
Y −
α Y −

β D−D−u + Y −
α D−Rβu + Rα(Y −

β D−u) + RαRβu
}

×
{
Y −
μ Y −

ν D−D−v + Y −
μ D−Rνv + Rμ(Y −

ν D−v) + RμRνv
}

= NαβμνY
−
α Y −

β Y −
μ Y −

ν D−D−uD−D−v

+ NαβμνY
−
α Y −

β D−D−u[Y −
μ D−Rνv + Rμ(Y −

ν D−v) + RμRνv]

+ Nαβμν [Y −
α D−Rβu + Rα(Y −

β D−u) + RαRβu]Y −
μ Y −

ν D−D−v

+ Nαβμν [Y −
α D−Rβu + Rα(Y −

β D−u) + RαRβu]

× [Y −
μ D−Rνv + Rμ(Y −

ν D−v) + RμRνv]. (3.5)

Note Y − ∈ Σ, then thanks to the null condition (1.4), one immediately has

NαβμνY
−
α Y −

β Y −
μ Y −

ν D−D−uD−D−v = 0.

For the last four lines in (3.5), by (3.3) and (3.4), it’s easy to see that they are bounded by the right hand 
side of (3.1). Thus the lemma is proved. �

We cannot directly use Lemma 3.1 in the higher-order energy estimate since it will cause derivative loss 
problems. This loss makes the use of the null condition rather delicate in the higher order energy estimate. 
Fortunately, we still have the following lemma:

Lemma 3.2. Let F1(u) = Nαβμν∂αΓau∂βΓau∂μ∂νu, F2(u) = Nαβμν∂αΓau∂βΓau∂μ∂ν∂tu, F3(u) =
Nαβμν∂βΓau∂tΓau∂α∂μ∂νu, and 1 � r. Then for all multi-index a, there hold

|F1(u)| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u| + 1

r
|∂tΓau|2(|∂Γu| + |∂u|),

|F2(u)| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂3u| + 1

r
|∂tΓau|2(|∂2Γu| + |∂2u|),

|F3(u)| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂tΓau||∂3u| + 1

r
|∂tΓau|2(|∂Γ2u| + |∂Γu| + |∂u|).

The nonlinear terms F1, F2 and F3 are taken from the higher-order energy estimate in the next section. 
The lemma says that due to the null condition, we can estimate F1, F2 and F3 by good derivative ∂t + ∂r
with some good remainders.
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Proof. Since the proof of F1, F2, F3 is similar, we only give the details concerning F1 and leave F2 and F3
to the interested readers.

Case a: all of α, β, μ, ν ∈ {1, 2}. By (2.1), we rearrange F as follows:

Nαβμν∂αΓau∂βΓau∂μ∂νu

=
{
Nαβμν(ωα∂t + ∂α)Γau∂βΓau∂μ∂νu−Nαβμνωα∂tΓau(ωβ∂t + ∂β)Γau∂μ∂νu

}
+Nαβμνωαωβωμων∂tΓau∂tΓau∂r∂ru

+
{
Nαβμνωαωβ∂tΓau∂tΓau[ωμ∂r(

1
r
ω⊥
ν ∂θ)u + 1

r
ω⊥
μ ∂θ(ων∂r + 1

r
ω⊥
ν ∂θ)u]

}
= J11 + J12 + J13.

Simple calculation shows

|J11| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u|,

|J13| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

Case b: one of α, β, μ, ν is 0.
1) α = 0, β, μ, ν ∈ {1, 2} or β = 0, α, μ, ν ∈ {1, 2}. By the symmetry of the nonlinearities and (2.1), one 

gets

N0βμν∂tΓau∂βΓau∂μ∂νu + Nα0μν∂αΓau∂tΓau∂μ∂νu

= 2N0βμν∂tΓau∂βΓau∂μ∂νu

= 2N0βμν∂tΓau(ωβ∂t + ∂β)Γau∂μ∂νu

−2N0βμνωβωμων∂tΓau∂tΓau∂r∂ru

+
{
− 2N0βμνωβ∂tΓau∂tΓau[ωμ∂r(

1
r
ω⊥
ν ∂θ)u + 1

r
ω⊥
μ ∂θ(ων∂r + 1

r
ω⊥
ν ∂θ)u]

}
= J21 + J22 + J23.

Similarly,

|J21| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u|,

|J23| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

2) μ = 0, α, β, ν ∈ {1, 2} or ν = 0, α, β, μ ∈ {1, 2}. By the symmetry of the nonlinearities and (2.1), we 
have

Nαβ0ν∂αΓau∂βΓau∂t∂νu + Nαβμ0∂αΓau∂βΓau∂t∂μu

= 2Nαβ0ν∂αΓau∂βΓau∂t∂νu

=
{
2Nαβ0ν(ωα∂t + ∂α)Γau∂βΓau∂t∂νu− 2Nαβ0νωα∂tΓau(ωβ∂t + ∂β)Γau∂t∂νu

}
+2Nαβ0νωαωβ∂tΓau∂tΓau∂ν(∂t + ∂r)u

−2Nαβ0νωαωβων∂tΓau∂tΓau∂r∂ru
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−2Nαβ0νωαωβ∂tΓau∂tΓau(ω
⊥
ν

r
∂θ)∂ru

= J31 + J32 + J33 + J34.

As before,

|J31| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u|.

Exploiting the good derivative (2.3), we get

|J32 + J34| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

Case c: two of α, β, μ, ν is 0.
1) μ, ν = 0, α, β ∈ {1, 2}. By (2.1), then

Nαβ00∂αΓau∂βΓau∂t∂tu

=
{
Nαβ00(ωα∂t + ∂α)Γau∂βΓau∂t∂tu−Nαβ00ωα∂tΓau(ωβ∂t + ∂β)Γau∂t∂tu

}
+
{
Nαβ00ωαωβ∂tΓau∂tΓau[∂t(∂t + ∂r)u− ∂r(∂t + ∂r)u]

}
+Nαβ00ωαωβ∂tΓau∂tΓau∂r∂ru

= J41 + J42 + J43.

We have

|J41| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u|.

By (2.3), we get

|J42| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

2) α, β = 0, μ, ν ∈ {1, 2}. By (2.1), then

N00μν∂tΓau∂tΓau∂μ∂νu

= N00μνωμων∂tΓau∂tΓau∂r∂ru

+
{
N00μν∂tΓau∂tΓau[ωμ∂r(

1
r
ω⊥
ν ∂θ)u + 1

r
ω⊥
μ ∂θ(ων∂r + 1

r
ω⊥
ν ∂θ)u]

}
= J51 + J52.

Obviously,

|J52| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

3) β, ν = 0, α, μ ∈ {1, 2}. By (2.1), then



Y. Cai et al. / J. Math. Pures Appl. 114 (2018) 211–234 221
Nα0μ0∂tΓau∂αΓau∂μ∂tu

= Nα0μ0∂tΓau(ωα∂t + ∂α)Γau∂μ∂tu−Nα0μ0ωα∂tΓau∂tΓau∂μ(∂t + ∂r)u

+Nα0μ0ωαωμ∂tΓau∂tΓau∂r∂ru + Nα0μ0ωα∂tΓau∂tΓau
1
r
ω⊥
μ ∂θ∂ru

= J61 + J62 + J63 + J64.

Obviously,

|J61| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u|,

and by (2.3), one gets

|J62 + J64| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

4) β, μ = 0, α, ν ∈ {1, 2}.
5) α, μ = 0, β, ν ∈ {1, 2}.
6) α, ν = 0, β, μ ∈ {1, 2}.
Since the estimates of 4), 5), 6) are similar to 3) in Case c, we formulate them together as follows:

Nα00ν∂αΓau∂tΓau∂t∂νu + N0β0ν∂tΓau∂βΓau∂t∂νu + N0βμ0∂tΓau∂βΓau∂μ∂tu

=
{
Nα00νωαων∂tΓau∂tΓau∂r∂ru + N0β0νωβων∂tΓau∂tΓau∂r∂ru

+N0βμ0ωβωμ∂tΓau∂tΓau∂r∂ru
}

+
{
3Nα00ν∂tΓau(ωα∂t + ∂α)Γau∂ν∂tu− 3Nα00νωα∂tΓau∂tΓau∂ν(∂t + ∂r)u

+3Nα00νωα∂tΓau∂tΓau
1
r
ω⊥
ν ∂θ∂ru

}
= J71 + J72.

Similarly,

|J72| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u| + 1

r
|∂tΓau|2(|∂Γu| + |∂u|).

Case d: three of α, β, μ, ν are 0.
1) α, β, μ = 0, ν ∈ {1, 2} or α, β, ν = 0, μ ∈ {1, 2}. Owning to the symmetry of the nonlinearities and 

(2.1), there holds

N000ν∂tΓau∂tΓau∂t∂νu + N00μ0∂tΓau∂tΓau∂t∂μu

= 2N00μ0∂tΓau∂tΓau∂t∂μu

= 2N00μ0∂tΓau∂tΓau
ω⊥
μ

r
∂t∂θu + 2N00μ0ωμ∂tΓau∂tΓau∂r(∂r + ∂t)u

−2N00μ0ωμ∂tΓau∂tΓau∂r∂ru

= J81 + J82 + J83.

Similarly, by (2.3), there holds



222 Y. Cai et al. / J. Math. Pures Appl. 114 (2018) 211–234
|J81 + J82| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

2) β, μ, ν = 0, α ∈ {1, 2} or α, μ, ν = 0, β ∈ {1, 2},

Nα000∂αΓau∂tΓau∂t∂tu + N0β00∂tΓau∂βΓau∂t∂tu

= 2Nα000∂αΓau∂tΓau∂t∂tu

= 2Nα000(ωα∂t + ∂α)Γau∂tΓau∂t∂tu− 2Nα000ωα∂tΓau∂tΓau∂t(∂t + ∂r)u

+2Nα000ωα∂tΓau∂tΓau(∂t + ∂r)∂ru− 2Nα000ωα∂tΓau∂tΓau∂r∂ru

= J91 + J92 + J93 + J94.

Easily,

|J91| �
2∑

i=1
|(ωi∂t + ∂i)Γau||∂Γau||∂2u|,

and by (2.3), one gets

|J92 + J93| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

Case e: α = β = μ = ν = 0.

N0000∂tΓau∂tΓau∂t∂tu

= N0000∂tΓau∂tΓau∂t(∂t + ∂r)u−N0000∂tΓau∂tΓau(∂t + ∂r)∂ru

+N0000∂tΓau∂tΓau∂r∂ru

= J01 + J02 + J03.

Obviously, by (2.3), there holds

|J01 + J02| �
1
r
|∂tΓau|2(|∂Γu| + |∂u|).

Now we have taken care of all the terms except for J12, J22, J33, J43, J51, J63, J71, J83, J94 and J03. 
Each of them can not be bounded by some good derivative. However, note that the sum of them is

J12 + J22 + J33 + J43 + J51 + J63 + J71 + J83 + J94 + J03

= NαβμνXαXβXμXν∂tΓau∂tΓau∂r∂ru.

Here X = (−1, ω1, ω2) ∈ Σ, thus they vanish by the null condition (1.4). This completes the proof of the 
lemma. �
4. Energy estimate

This section is devoted to the energy estimate. We split the proof into two subsections, which correspond 
to the higher-order energy estimate and the lower-order energy estimate, respectively.

In Theorem 1.1, by taking appropriate small ε0, we can assume Ek−1 � 1, which will be always assumed 
in the following argument.
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4.1. Higher-order energy estimate

In this subsection, we perform the higher-order energy estimate. Apart from the usual energy estimate 
for wave equations, we will see that the ghost weight method of Alinhac plays an important role in our 
argument.

Let k ≥ 8, |a| ≤ k − 1, σ = r − t and q(σ) = arctanσ. We write eq = eq(σ) for simplicity of presentation. 
Taking the L2 inner product of the equations (2.5) with eq∂tΓau. Then employing integration by parts, we 
have

1
2
d

dt

∫
R2

eq(|∂tΓau|2 + |∇Γau|2)dx

+1
2

2∑
i=1

∫
R2

eq

1 + σ2 |(ωi∂t + ∂i)Γau|2dx

=
∫
R2

∑
b+c+d=a

Nd(Γbu,Γcu)∂tΓaueqdx. (4.1)

At first sight, we will always lose one derivative for the highest order terms. Fortunately, the symmetry of 
the nonlinearities enables us to circumvent this problem. The price we pay is to lose 〈t〉−1 decay rate, which 
will be compensated by the ghost weight method. We remark that the estimate for the highest order terms 
is the only spot where the ghost weight energy is used.

For the highest order term N0(Γbu, Γcu) in (4.1), we only treat the case for b = a. The counterpart case 
for c = a can be estimated exactly in the same way, we omit the details here. Using integration by parts, 
one has ∫

R2

N0(Γau, u)∂tΓaueqdx

=
∫
R2

Nαβμν∂α∂βΓau∂μ∂νu∂tΓaueqdx

=
∫
R2

Nαβμν∂α(∂βΓau∂μ∂νu∂tΓaueq)dx−
∫
R2

Nαβμν∂βΓau∂α∂μ∂νu∂tΓaueqdx

−
∫
R2

Nαβμν∂βΓau∂μ∂νu∂α∂tΓaueqdx−
∫
R2

Nαβμν∂βΓau∂μ∂νu∂tΓau∂αe
qdx. (4.2)

The first term on the right hand side of (4.2) will be absorbed into the generalized energy. The second term 
has no derivative loss problem and the null condition is present. The third and the forth term need further 
attention.

For the third term on the right hand side of (4.2), by the symmetry of the nonlinearities, we write

−
∫
R2

Nαβμν∂βΓau∂μ∂νu∂α∂tΓaueqdx

= −1
2

∫
R2

Nαβμν∂μ∂νu∂t(∂βΓau∂αΓau)eqdx

= −1
2∂t

∫
R2

Nαβμν∂μ∂νu∂βΓau∂αΓaueqdx + 1
2

∫
R2

Nαβμν∂t∂μ∂νu∂βΓau∂αΓaueqdx

+1
2

∫
Nαβμν∂μ∂νu∂βΓau∂αΓau∂te

qdx. (4.3)

R2
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For the fourth term on the right hand side of (4.2), we organize them as follows:

−Nαβμν∂βΓau∂μ∂νu∂tΓau∂αe
q

= −N0βμν∂βΓau∂μ∂νu∂tΓau∂te
q −

2∑
i=1

Niβμν∂βΓau∂μ∂νu∂tΓau∂ie
q

−
2∑

i=1
Niβμν∂βΓau∂μ∂νu∂iΓau∂te

q +
2∑

i=1
Niβμν∂βΓau∂μ∂νu∂iΓau∂te

q

= −Nαβμν∂βΓau∂μ∂νu∂αΓau∂te
q −

2∑
i=1

Niβμν∂βΓau∂μ∂νu(ωi∂t + ∂i)Γau
eq

1 + σ2 . (4.4)

Combining the above (4.2)–(4.4), we derive that∫
R2

Nαβμν∂α∂βΓau∂μ∂νu∂tΓaueqdx

= ∂t

∫
R2

N0βμν∂βΓau∂μ∂νu∂tΓaueqdx−
∫
R2

Nαβμν∂βΓau∂α∂μ∂νu∂tΓaueqdx

− 1
2∂t

∫
R2

Nαβμν∂μ∂νu∂βΓau∂αΓaueqdx + 1
2

∫
R2

Nαβμν∂t∂μ∂νu∂βΓau∂αΓaueqdx

− 1
2

∫
R2

Nαβμν∂μ∂νu∂βΓau∂αΓau∂te
qdx

−
2∑

i=1

∫
R2

Niβμν∂βΓau∂μ∂νu(ωi∂t + ∂i)Γau
eq

1 + σ2 dx

= I1 + I2 + I3 + I4 + I5 + I6. (4.5)

In the sequel, we will estimate I1 to I6 one by one.
Denote the ghost weight energy by

G(t) =
2∑

i=1

∫
R2

eq

1 + σ2 |(ωi∂t + ∂i)Γau|2dx.

In view of Lemma 3.2, we have

I2 + I4 + I5 + I6

�
∫

r≥〈t〉/2

2∑
i=1

|(ωi∂t + ∂i)Γau∂Γau|(|∂3u| + |∂2u|)

+ 1
r
|∂tΓau|2(|∂Γ2u| + |∂Γu| + |∂u|)dx

+
∫

r≤〈t〉/2

|∂Γau|2(|∂3u| + |∂2u|)dx. (4.6)
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Here we have divided the integral domain R2 into two domains. By Lemma 2.1 and Hölder inequality, the 
first two lines on the right hand side of (4.6) can be estimated by

∫
r≥〈t〉/2

2∑
i=1

|(ωi∂t + ∂i)Γau∂Γau|(|∂3u| + |∂2u|)

+1
r
|∂tΓau|2(|∂Γ2u| + |∂Γu| + |∂u|)dx

�
2∑

i=1

∥∥ (ωi∂t + ∂i)Γau

〈r − t〉
∥∥
L2‖∂Γau‖L2‖〈r − t〉(|∂3u| + |∂2u|)‖L∞

+〈t〉−1∥∥|∂Γau|2
∥∥
L1‖∂Γ2u‖L∞

� Cη〈t〉−1EkEk−1 + ηG.

Here η is a constant which can be chosen to be any positive number, Cη is a constant depends only on η
and k.

For the last line of (4.6), we derive from Lemma 2.3 that∫
r≤〈t〉/2

|∂Γau|2(|∂3u| + |∂2u|)dx

≤
∥∥|∂Γau|2

∥∥
L1

∥∥|∂3u| + |∂2u|
∥∥
L∞(r≤〈t〉/2)

� 〈t〉− 3
2EkE

1
2
k−1.

Then inserting the above two estimates into (4.6), one gets

I2 + I4 + I5 + I6 � Cη〈t〉−1EkE
1
2
k−1 + ηG. (4.7)

Here we have used the assumption Ek−1 � 1.
Next, we are going to take care of I1 and I3. They will be absorbed by the energy as a lower order 

perturbation. Denote

Ẽa(u(t)) = 1
2

∫
R2

eq(σ)|∂Γau|2dx−
∫
R2

N0βμν∂βΓau∂μ∂νu∂tΓaueqdx

+1
2

∫
R2

Nαβμν∂μ∂νu∂βΓau∂αΓaueqdx. (4.8)

The reason why we define Ẽa(u(t)) is that one moves I1 and I3 to the left hand side of (4.1), then one will 
get Ẽa(u(t)). As is indicated in the beginning of this section, we assume Ek−1 � 1. Then

|12

∫
R2

Nαβμν∂μ∂νu∂βΓau∂αΓaueqdx−
∫
R2

N0βμν∂βΓau∂μ∂νu∂tΓaueqdx|

�
∫
R2

|∂Γau|2|∂2u|dx ≤ E
1
2
k−1

∫
R2

|∂Γau|2dx �
∫
R2

|∂Γau|2dx. (4.9)

On the other hand, note that
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∫
R2

eq(|∂tΓau|2 + |∇Γau|2)dx ∼
∫
R2

|∂tΓau|2 + |∇Γau|2dx. (4.10)

Hence one deduces that ∫
R2

|∂Γau|2dx ∼ Ẽa(u(t)). (4.11)

Combining (4.1)–(4.11), we have

d

dt

∫
R2

(|∂tΓau|2 + |∇Γau|2)dx + G(t)

�
∫
R2

∑
b+c+d=a,d�=0

Nd(Γbu,Γcu)∂tΓaueqdx

+〈t〉−1EkE
1
2
k−1 + ηG.

Let η be small enough, then ηG on the right hand of the above inequality will be absorbed by the left-hand 
side, thus we are arriving at

d

dt

∫
R2

|∂Γau|2dx �
∫
R2

∑
b+c+d=a,d�=0

Nd(Γbu,Γcu)∂tΓaueqdx + 〈t〉−1EkE
1
2
k−1.

Now we are going to estimate the remaining lower order terms. We still split the integral domains into two 
parts. First, for r ≤ 〈t〉/2, there holds 〈r− t〉 � 〈t〉. Since |b| + |c| < |a|, without loss of generality, we assume 
|b| ≤ [|a|/2]. By Lemma 2.3, we deduce that

∑
|b|+|c|<|a|

d�=0

∫
r≤〈t〉/2

Nd(Γbu,Γcu)∂tΓaueqdx

�
∑

|b|+|c|<|a|
|b|≤[|a|/2]

∫
r≤〈t〉/2

|∂tΓau||∂2Γbu||∂2Γcu|dx

�
∑

|b|+|c|<|a|
|b|≤[|a|/2]

‖∂tΓau‖L2(r≤〈t〉/2)‖∂2Γbu‖L∞(r≤〈t〉/2)‖∂2Γcu‖L2(r≤〈t〉/2)

� 〈t〉−2EkE
1
2
k−1.

When r ≥ 〈t〉/2, we need to fully utilize the null condition of the nonlinearities. By Lemma 3.1 and 
Lemma 2.1, one has ∑

|b|+|c|<|a|
d�=0

∫
r≥〈t〉/2

Nd(Γbu,Γcu)∂tΓaueqdx

�
∑

|b|+|c|<|a|

∫
r≥〈t〉/2

1
r
|∂Γau||∂Γ|b|+1u||∂Γ|c|+1u|dx

�
∑

|b|+|c|<|a|
|b|≤[|a|/2]

〈t〉−1‖∂Γau‖L2‖∂Γ|b|+1u‖L∞‖∂Γ|c|+1u‖L2

� 〈t〉− 3
2EkE

1
2 .
k−1
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It then follows from the above three estimates that

d

dt

∫
R2

|∂Γau|2dx � 〈t〉−1EkE
1
2
k−1.

Summing over |a| ≤ k − 1 yields

d

dt
Ek(t) � 〈t〉−1Ek(t)E

1
2
k−1(t).

This gives the first differential inequality (2.6).

4.2. Lower-order energy estimate

In this subsection, we perform the lower-order energy estimate. Unlike the higher-order energy estimate, 
we care less about the derivative loss problems since it’s not an issue. We will focus our mind on obtaining 
the maximal decay in time.

Let |a| ≤ k − 2. Multiplying the equations (2.5) with ∂tΓau, then integrating over R2, we have

d

dt

∫
R2

1
2(|∂tΓau|2 + |∇Γau|2)dx

=
∫
R2

∑
b+c+d=a

Nd(Γbu,Γcu)∂tΓaudx.

We still split the integral domains into two parts. When r ≤ 〈t〉/2, by Lemma 2.3, one gets∫
r≤〈t〉/2

∑
b+c+d=a

Nd(Γbu,Γcu)∂tΓaudx

�
∑

|b|+|c|≤|a|
|b|≤[|a|/2]

∫
r≤〈t〉/2

|∂tΓau||∂2Γbu||∂2Γcu|dx

�
∑

|b|+|c|≤|a|
|b|≤[|a|/2]

‖∂tΓau‖L2(r≤〈t〉/2)‖∂2Γbu‖L∞(r≤〈t〉/2)‖∂2Γcu‖L2(r≤〈t〉/2)

� 〈t〉−2E
1
2
k Ek−1.

When r ≥ 〈t〉/2, by Lemma 3.1 and Lemma 2.1, one gets∫
r≥〈t〉/2

∑
b+c+d=a

Nd(Γbu,Γcu)∂tΓaudx

�
∑

|b|+|c|≤|a|

∫
r≥〈t〉/2

1
r
|∂Γau||∂Γ|b|+1u||∂Γ|c|+1u|dx

�
∑

|b|+|c|≤|a|
|b|≤[|a|/2]

〈t〉−1‖∂Γau‖L2‖∂Γ|b|+1u‖L∞‖∂Γ|c|+1u‖L2

� 〈t〉− 3
2Ek−1E

1
2 .
k
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Gathering all the above estimates in this subsection, and summing over |a| ≤ k − 1 yields

d

dt
Ek−1(t) � 〈t〉− 3

2E
1
2
k (t)Ek−1(t).

This gives the lower-order energy estimate (2.7).

5. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. The main idea is to transform (1.6) into fully nonlinear 
ones. For the latter, we have obtained the global well-posedness result in the last section.

First, we give the definition of ϕ and ψ which appear in Theorem 1.2. For (1.6), if A0 = 0, we assume 
A1 �= 0 without loss of generality. Under this case, define⎧⎨⎩ϕ = 1

A1

∫ x1
−∞ v0

(
s, x2 + A2

A1
(s− x1)

)
ds,

ψ = 1
A1

∫ x1
−∞ v1

(
s, x2 + A2

A1
(s− x1)

)
ds.

(5.1)

Otherwise, if A0 �= 0, define ⎧⎨⎩ϕ = χ,

ψ = 1
A0

v0 − A1
A0

∂1χ− A2
A0

∂2χ,
(5.2)

where χ is a function satisfying the following equation

⎧⎪⎪⎨⎪⎪⎩
(A1∂1 + A2∂2)2χ−A2

0Δχ

= −A0∂tv(0) + A1∂1v(0) + A2∂2v(0) + A2
0Nμδ∂μv(0)∂δv(0),

(χ(x),∇χ(x)) ∈ Hk
Λ.

(5.3)

Next, we elucidate the nonlinearities of (1.6). Obviously (1.7) implies (1.8). On the other side, if

AlNμδXlXμXδ = 0

for all X ∈ Σ, one deduce that

(AlXl)(NμδXμXδ) = 0.

From which one must have

NμδXμXδ = 0

for all X ∈ Σ. This means (1.7) and (1.8) are equivalent.
Following the same argument, one can see that (1.7) is also equivalent to

AlAmNμδXlXmXμXδ = 0. (5.4)

We will directly use the null condition (5.4) in the following proof.
Before the proof of Theorem 1.2, we first state a simple lemma which asserts that the null condition is 

preserved under symmetrization procedure.
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Lemma 5.1. Suppose that the nonlinearities (1.2) satisfy (1.4), but they may not satisfy the symmetry con-
dition (1.3). After some symmetrization procedure, they still satisfy (1.4).

Proof. Define

Ñαβμν = 1
4(Nαβμν + Nβαμν + Nαβνμ + Nβανμ).

One can check that

Nαβμν∂α∂βu∂μ∂νu = Ñαβμν∂α∂βu∂μ∂νu.

Moreover, Ñαβμν satisfy the symmetry (1.3) and the null condition (1.4). �
Now we prove Theorem 1.2.

Proof. We are going to show that (1.6) can be transformed into{�u = AλAνNμδ∂
2
λμu∂

2
νδu,

u(0, x) = ϕ, ∂tu(0, x) = ψ,
(5.5)

where (ϕ, ψ) is defined by (5.1) or by (5.2)–(5.3).
Case a: A0 = 0.
Without loss of generality, we assume A1 �= 0, let

u(t, x) = 1
A1

x1∫
−∞

v
(
t, s, x2 + A2

A1
(s− x1)

)
ds.

Simple calculation shows

∂1u(t, x) = 1
A1

v(t, x) − A2

A2
1

x1∫
−∞

∂2v
(
t, s, x2 + A2

A1
(s− x1)

)
ds,

∂2u(t, x) = 1
A1

x1∫
−∞

∂2v
(
t, s, x2 + A2

A1
(s− x1)

)
ds.

One can infer that

v = Ai∂iu.

Inserting them into (1.6), we get

Ai∂i(�u−AλAνNμδ∂
2
λμu∂

2
νδu) = 0.

Let

�u−AλAνNμδ∂
2
λμu∂

2
νδu = 0.

Obviously one has
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u(0, x) = 1
A1

x1∫
−∞

v0
(
s, x2 + A2

A1
(s− x1)

)
ds,

∂tu(0, x) = 1
A1

x1∫
−∞

v1
(
s, x2 + A2

A1
(s− x1)

)
ds,

which gives (5.1).
Case b: A0 �= 0.
Let

u(t, x) = 1
A0

t∫
0

v
(
s, x1 + A1

A0
(s− t), x2 + A2

A0
(s− t)

)
ds

+χ
(
x1 −

A1

A0
t, x2 −

A2

A0
t
)
,

where χ will be chosen later. Simple calculation shows

∂tu(t, x) = 1
A0

v(t, x)

+ 1
A0

t∫
0

(−A1

A0
∂1 −

A2

A0
∂2)v

(
s, x1 + A1

A0
(s− t), x2 + A2

A0
(s− t)

)
ds

−(A1

A0
∂1 + A2

A0
∂2)χ

(
x1 −

A1

A0
t, x2 −

A2

A0
t
)
,

∂2
t u(t, x) = 1

A0
∂tv(t, x) − 1

A0
(A1

A0
∂1 + A2

A0
∂2)v(t, x)

+ 1
A0

t∫
0

(A1

A0
∂1 + A2

A0
∂2)2v

(
s, x1 + A1

A0
(s− t), x2 + A2

A0
(s− t)

)
ds

+(A1

A0
∂1 + A2

A0
∂2)2χ

(
x1 −

A1

A0
t, x2 −

A2

A0
t
)
,

∂1u(t, x) = 1
A0

t∫
0

∂1v
(
s, x1 + A1

A0
(s− t), x2 + A2

A0
(s− t)

)
ds

+∂1χ
(
x1 −

A1

A0
t, x2 −

A2

A0
t
)
,

∂2u(t, x) = 1
A0

t∫
0

∂2v
(
s, x1 + A1

A0
(s− t), x2 + A2

A0
(s− t)

)
ds

+∂2χ
(
x1 −

A1

A0
t, x2 −

A2

A0
t
)
.

Combing the expressions in the above, we deduce that

v = Ai∂iu.

Inserting them into (1.6), we get
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Ai∂i(�u−AλAνNμδ∂
2
λμu∂

2
νδu) = 0. (5.6)

Let

(�u−AλAνNμδ∂
2
λμu∂

2
νδu)|t=0 = 0,

then the expression inside the bracket of (5.6) always vanishes. Thus the quasilinear wave equations (1.6)
will be transformed into the following fully nonlinear wave equation{�u = AλAνNμδ∂

2
λμu∂

2
νδu,

u(0, x) = χ, ∂tu(0, x) = 1
A0

v0 − A1
A0

∂1χ− A2
A0

∂2χ,

where χ is a function satisfying the following relation⎧⎪⎪⎪⎨⎪⎪⎪⎩
(A1
A0

∂1 + A2
A0

∂2)2χ− Δχ

= − 1
A0

∂tv(0) + A1
A2

0
∂1v(0) + A2

A2
0
∂2v(0) + Nμδ∂μv(0)∂δv(0),

(χ(x),∇χ(x)) ∈ Hk
Λ.

This gives (5.2) and (5.3).
In the above two cases, the quasilinear wave equations (1.6) are both transformed to the fully nonlinear 

wave equations (5.5). Note the null condition assumption (5.4), then if the initial data (ϕ, ψ) ∈ Hk
Λ with 

k ≥ 8 and they satisfy (1.5), we obtain the global existence result to (5.5) according to Theorem 1.1
and Lemma 5.1. Consequently, the quasilinear wave equations (1.6) have global classical solutions since 
v = Ai∂iu. �
Remark 5.2. The transformation from quasilinear wave equations (1.6) to fully nonlinear equation (5.5) is 
reversible. Consider {�u = AλAνNμδ∂

2
λμu∂

2
νδu,

u(0, x) = u0(x), ∂tu(0, x) = u1(x).
(5.7)

We assume (1.7) holds, let (u0, u1) ∈ Hk
Λ and they satisfy the condition (1.5). According to Theorem 1.1

and Lemma 5.1, we obtain the global existence result for (5.7). Let v = Ai∂iu, then v exits globally in time 
and satisfies the following quasilinear wave equation{�v = Al∂l(Nμδ∂μv∂δv),

v(0, x) = Ai∂iu(0, x), ∂tv(0, x) = Ai∂i∂tu(0, x).
(5.8)

6. Proof of Remark 1.3

In this section, we are going to prove Remark 1.3.

Proof. Following the argument in the above section, let

u(t, x) =
t∫

0

v(τ, x)dτ + (−Δ)−1(|v1|2 − |∇v0|2 − v1).

Then the equation (1.9) can be transformed to the following fully nonlinear wave equation
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{�u = |∂2
t u|2 − |∂t∇u|2,

u(0, ·) = (−Δ)−1(|v1|2 − |∇v0|2 − v1), ∂tu(0, ·) = v0.
(6.1)

For the nonlinearities in (6.1), it’s easy to see that they satisfy the null condition (1.4). Hence by Lemma 2.4, 
we have

�Γau =
∑

b+c+d=a

Nd(Γbu,Γcu). (6.2)

Now we preform the highest order energy estimate for (6.1). Since the techniques are essentially the same 
as the ones we have used in Section 4, we only sketch the main line of the argument.

Let k ≥ 8, |a| ≤ k − 1, multiplying the equation (6.2) with ∂tΓau and integrating over R2, we have

d

dt

∫
R2

1
2(|∂tΓau|2 + |∇Γau|2)dx

=
∫
R2

2(∂2
t Γau∂2

t u− ∂t∇Γau · ∂t∇u)∂tΓaudx

+
∑

b+c+d=a
d�=0

∫
R2

Nd(Γbu,Γcu)∂tΓaudx.

For the highest order terms, we deduce from integration by parts that

2
∫
R2

(∂2
t Γau∂2

t u− ∂t∇Γau∂t∇u)∂tΓaudx

= −
∫
R2

|∂2
t Γau|2∂t�u + ∂t

∫
R2

|∂tΓau|2∂2
t udx

≤ Ek(t)‖∂t�u‖L∞ + ∂t

∫
R2

|∂tΓau|2∂2
t udx.

By Lemma 2.1, Lemma 2.2, and Lemma 2.3, we have

‖∂t�u‖L∞ � 〈t〉− 3
2E

1
2
k (t).

The last term ∂t
∫
R2 |∂tΓau|2∂2

t udx can be treated similar to (4.8)–(4.11) as a lower order perturbation. On 
the other hand, following the paradigm of the energy estimates we have done in Section 4, we can estimate 
the remaining lower order terms as follows:

∑
b+c+d=a

d�=0

∫
R2

Nd(Γbu,Γcu)∂tΓaudx � 〈t〉− 3
2E

3
2
k (t).

Thus we infer by gathering the above argument that

d

dt
Ek(t) � 〈t〉− 3

2E
3
2
k (t).

By continuity method, if Ek(0) < ε for a sufficiently small ε > 0, then the fully nonlinear wave equation 
(6.1) is globally well-posedness and the highest order energy is uniformly bounded: Ek(t) < Cε for some 
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universal constant C. Note that we can transform (1.9) to (6.1), hence the highest energy of (1.9) is also 
uniformly bounded. �
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