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Abstract. In this paper we deal with systems of nonlinear wave equa-
tions in two space dimensions. When the system has common propaga-
tion speeds and cubic nonlinearity, the small data global existence result
was obtained by Katayama [9], provided that the cubic part of Taylor’s
expansion for the nonlinearity satisfies the so-called null condition. The
aim of this paper is to extend the result to the case where the system
has multiple speeds of propagation. To realize this, we make use of a
kind of Hardy’s inequality given in Lemma 2.2 below, which creates the
loss of decay but only with respect to (1 + ||x| − cit|). Thus we are able
to absorb such a loss by means of the decay estimates in Proposition 4.2
below.

1. Introduction

We consider the Cauchy problem for the following system of nonlinear
wave equations:

�iu
i ≡ ∂2

t ui − c2
i Δui = F i(u, ∂u, ∂2u) in R

n × (0,∞), (1.1)

ui(x, 0) = εf i(x), ∂tu
i(x, 0) = εgi(x) for x ∈ R

n (1.2)

for n = 2. Here i runs from 1 to m with m an integer, ui = (ui
1, . . . , u

i
pi

)
with pi ≥ 1 and u = t(u1, . . . , um). We denote ∂ = (∂0, . . . , ∂n) and ∂2 =
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(∂α∂β)α,β=0,...,n, where ∂0 = ∂/∂t and ∂i = ∂/∂xi (i = 1, . . . , n). Besides,
ε is a small positive parameter and the propagation speeds c1, . . . , cm are
different from each other; that is,

0 < c1 < c2 < · · · < cm. (1.3)

We suppose that the initial data f i and gi are smooth functions in their
arguments taking values in R

pi , and are compactly supported. We also
suppose that the nonlinear term F i = F i(u, v, w) is a smooth function in its
arguments around the origin taking values in R

pi , where u ∈ R
p, v ∈ R

(n+1)p,
and w ∈ R

(n+1)2p, with p = p1 + · · · + pm. A basic assumption on F i is

F i(u, v, w) = O(|u|q + |v|q + |w|q) near (u, v, w) = 0 (1.4)

with some integer q such that q ≥ 2.
The aim of this paper is to study the problem (1.1) and (1.2) when n = 2,

and to find a sufficient condition to guarantee the global (in time) existence
of a small-amplitude solution for the problem. Before stating our theorem,
we recall several known results briefly. In Christodoulou [3] and Klainerman
[15], the problem was independently handled for the case where n = 3, q = 2,
and m = 1, and the global existence result was proven for sufficiently small ε
by different approaches, provided that the quadratic part of Taylor’s expan-
sion for F 1(u, v, w) around the origin satisfies the so-called “null condition.”
A typical example which satisfies the null condition is |∂tu

1|2 − c2
1|∇u1|2

with ∇ = (∂1, . . . , ∂n). A generalization of this result for m ≥ 2 has been
done by many authors. When n = 3, Kubota and Yokoyama [18] treated the
problem assuming an extra condition on F i, and then Katayama [10] relaxed
the assumption on F i as follows: the quadratic part of it satisfies the null
condition and does not include u itself. (For the case where F i(u, v, w) does
not depend explicitly on u itself, see [16], [1], [8], [24], [22], [23], [7], and
references therein.) Though the case where F i may contain u itself in its
quadratic part has been studied by [11], [12], and [21], we do not go further
in that direction.

Now we turn our attention to the case of n = 2. Let F i
(3)(u, v, w) be the

cubic part of Taylor’s expansion for F i(u, v, w) around the origin. When
q = 3 and m = 1, Katayama [9] proved the small data global existence
result under the assumption that F i

(3) satisfies the null condition (for the
case where n = q = 2, m = 1 and F 1(u, v, w) ≡ F 1(v, w), see Alinhac [2]).
Roughly speaking, we prove an analogous result to [9] for m ≥ 2 in this
article. To be more specific, we describe assumptions on F i in what follows.
First of all, we assume q = 3 in (1.4). Since we may assume that F i is linear
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with respect to the second-order derivatives of u without loss of generality,
F i can be written in the following form:

F i(u, ∂u, ∂2u) =
m∑

j=1

2∑
γ,δ=0

H ij
γδ(u, ∂u)∂γ∂δu

j + Ki(u, ∂u) (i = 1, . . . , m),

(1.5)
where H ij

γδ(u, v) is a pi×pj matrix-valued function and Ki(u, v) is a pi vector-
valued function (see e.g. Courant and Hilbert [4], Chapter I, Section 7).
Therefore (1.4) with q = 3 implies

H ij
γδ(u, v) = O(|u|2+|v|2), Ki(u, v) = O(|u|3+|v|3) near (u, v) = 0. (1.6)

In order to guarantee the existence of the local solution for the problem, we
need to assume

H ij
γδ = tH

ji
γδ (i, j = 1, . . . , m; γ, δ = 0, 1, 2). (1.7)

Besides, since we consider only small and smooth solutions in this paper, we
may suppose

H ij
00 = 0, H ij

γδ = H ij
δγ (i, j = 1, . . . , m; γ, δ = 0, 1, 2) (1.8)

(for derivation of the first assumption, see for instance the proof of Theorem
4.1 in [18]).

On one hand, by (1.4) with q = 3 one can also write F i as

F i(u, ∂u, ∂2u) = F i
(3)(u, ∂u, ∂2u) + H i(u, ∂u, ∂2u), (1.9)

where

H i(u, ∂u, ∂2u) = O(|u|4 + |∂u|4 + |∂2u|4) near (u, ∂u, ∂2u) = (0, 0, 0).
(1.10)

We divide F i
(3) into several groups as follows:

F i
(3)(u, ∂u, ∂2u) =

m∑
j=1

N ij(u, ∂uj , ∂2uj) + Ri(u, ∂u, ∂2u), (1.11)

where N ij is a homogeneous polynomial only in (u, ∂uj , ∂2uj) of degree
3, while Ri is a homogeneous polynomial in (u, ∂u, ∂2u) of degree 3 being
explicitly written as

Ri(u, ∂u, ∂2u) =
∑

j,k=1,...,m
j �=k

∑
r=1,...,pj
s=1,...,pk

∑
|a|,|b|=1,2

Qijkrs
ab (u, ∂u, ∂2u)∂auj

r∂
buk

s .

(1.12)
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Here Qijkrs
ab (u, ∂u, ∂2u) is a homogeneous polynomial of degree 1, and uj

r

(1 ≤ r ≤ pj) denotes the r-th component of uj . Finally, we suppose that
N ij (i, j = 1, . . . , m) satisfies the following condition:

N ij(λ, (Xαμj)α=0,1,2, (XαXβνj)α,β=0,1,2) ≡ 0 (1.13)

holds for any λ ∈ R
p, μj , νj ∈ R

pj , and (X0, X1, X2) ∈ R
3 satisfying X2

0 =
c2
j (X

2
1 + X2

2 ). Note that when m = 1, the condition (1.13) is equivalent to
the null condition which was introduced in [3] and [15].

Under these assumptions, we prove the following.

Theorem 1.1. Let n = 2. We suppose that (1.5) through (1.13) hold. Then
for any f i, gi ∈ C∞

0 (R2), there exists a positive number ε0 such that the
problem (1.1) and (1.2) admits a unique solution u ∈ C∞([0,∞) × R

2 : R
p)

for 0 < ε ≤ ε0.

When n = 3, a suitable L2 bound for u itself was obtained by [10], which
enables one to prove the existence of a global solution. But one can not
expect to get such a suitable L2 bound when n = 2, so that in [9] u itself
was evaluated in Lp(R2) with some p ∈ (2,∞) (see also [19]). Then it is
necessary to apply the following inequality given by Lemma 3.3 in [9] to the
solution: If u(x, t) = 0 for |x| ≥ ct + M with positive numbers c, M > 0,
then

‖(1 + || · | − ct|)−1u(·, t)‖L2(R2) ≤ C‖∂ru(·, t)‖L2(R2). (1.14)

However, it does not seem to be useful if m ≥ 2, because the solution ui(x, t)
of (1.1) does not satisfy ui(x, t) = 0 for |x| ≥ cit + M (1 ≤ i ≤ m − 1) in
general, even if the initial data vanishes for |x| ≥ M . To overcome the
difficulty, we make use of a variant of Hardy’s inequality given in Lemma 2.2
below. Moreover, the inequality leads us to employ the homogeneous Sobolev
space to evaluate u itself, instead of Lp(R2) used in [9]. In this way, we are
able to establish the theorem. We remark that Theorem 1.2 in [9] follows
from it, since Ri(u, v, w) disappears when m = 1. However, the requirement
that (1.13) holds for any 1 ≤ i, j ≤ m seems to be strong. Indeed, if
F i(u, v, w) = F i(v, w), then we need (1.13) only for j = i (1 ≤ i ≤ m),
which was shown in [8]. We hope that the assumption in Theorem 1.1 will
be relaxed like this.

This paper is organized as follows. In Section 2 we collect some notation
and preliminary estimates. We give basic estimates for N ij(u, ∂uj , ∂2uj)
in Section 3. Section 4 is devoted to deriving weighted L∞ estimates for
the inhomogeneous wave equation. Especially, we give a refined estimate
for the first-order derivatives of the solution in Proposition 4.2 below, which
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improves the decay rate in comparison with former estimates (see for instance
[1] and [8]). We establish some estimates for the solution in Sobolev spaces
by using the Fourier representation and energy method in Section 5. Finally,
in Section 6, we prove Theorem 1.1.

The authors are grateful to Professor K. Kubota for his valuable com-
ments. They would also like to thank Professor S. Katayama for useful
discussions.

2. Notation and preliminaries

We introduce the following vector fields:

S = t∂t + r∂r, Ω = x1∂2 − x2∂1, (2.1)

where r = |x| and r∂r = x1∂1 + x2∂2, and denote Γ = (Γ1, . . . ,Γ4) =
(∂1, ∂2,Ω, S). Then we have the following commutator relations:

[Γk,�ci ] = 0 if k = 1, 2, 3, [Γ4,�ci ] = −2�ci (2.2)

for i = 1, . . . , m, and

[∂α, ∂β] = 0 (α, β = 0, 1, 2), [Ω, ∂0] = 0, [Ω, ∂1] = −∂2, [Ω, ∂2] = ∂1, (2.3)

[S, ∂α] = −∂α (α = 0, 1, 2), [S, Ω] = 0.

Here [ , ] denotes the usual commutator of linear operators.
Let v(x, t) be a smooth function defined on R

2 × [0, T ) taking values in
R

p with p an integer. For such a function we set

|v(x, t)|k =
∑
|a|≤k

p∑
i=1

|Γavi(x, t)|,

where k is a nonnegative integer, a = (a1, . . . , a4) is a multi-index, Γa =
Γa1

1 · · ·Γa4
4 and |a| = a1 + · · · + a4. Besides, we define

‖v(t)‖2
k =

∫
R2

|v(x, t)|2kdx.

Let u(x, t) = t(u1(x, t), . . . , um(x, t)) be a function defined on R
2 × [0, T )

such that each ui(x, t) is a R
pi-valued smooth function. For such a function

we set

[u(x, t)]k =
m∑

i=1

wi(|x|, t)|ui(x, t)|k, 〈u(x, t)〉k =
m∑

i=1

ηi(|x|, t)|ui(x, t)|k, (2.4)

where wi and ηi are weight functions defined by

wi(r, t) = (1 + r)
1
2 (1 + |r − cit|)1+ν (1 ≤ i ≤ m), w0(r, t) = (1 + r)

3
2
+ν ,
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ηi(r, t) = (1 + t + r)
1
2 (1 + |r − cit|)ν (1 ≤ i ≤ m),

η0(r, t) = (1 + t + r)
1
2 (1 + r)ν

for r ≥ 0, t ≥ 0, and 0 < ν < 1/2. Moreover, we also use the following
notation:

Uk(x, t) = 〈u(x, t)〉k+1 + [∂u(x, t)]k, Uk(t) = sup
x∈R2

Uk(x, t). (2.5)

Let cm+1 = min
1≤i≤m

{ci − ci−1}/3 with c0 = 0. We see cm+1 > 0 from (1.3).

Then we define

Λi(t) = {(x, s) ∈ R
2 × [0, t] : ||x| − cis| ≤ cm+1s, |x| ≥ 1}

for i = 1, . . . , m, and Λ0(t) is the complementary set of
m⋃

i=1

Λi(t) in R
2× [0, t].

We see from (1.3) that Λi ∩ Λj = ∅ if i = j.
In what follows, we collect some elementary lemmas.

Lemma 2.1. Let v ∈ C∞
0 (Rn) and w ∈ C1([0,∞)). Suppose that w(r) > 0

for r ≥ 0 and that there is a positive constant A such that |w′(r)| ≤ Aw(r)
for r ≥ 0. Then we have

|x|n−1
2 w(|x|)|v(x)| ≤ C

∑
|a|≤[n−1

2
]+1

(‖w(| · |)Ωav‖L2(Rn) +‖w(| · |)∂rΩav‖L2(Rn))

(2.6)
for x ∈ R

n, where ∂r =
∑n

j=1(xj/|x|)∂j and C is a constant independent of
x, v, and w.

For the proof, see Proposition 1 in [14].

Lemma 2.2. For any R ≥ 0, 0 ≤ s < 1/2, and v ∈ C∞
0 (Rn), we have∥∥∥ v

|| · | − R|s
∥∥∥

L2(Rn)
≤ C‖v‖Ḣs(Rn), (2.7)

where C is a constant independent of R and v. Here

‖v‖Ḣs(Rn) = ‖|ξ|sF [v]‖L2(Rn
ξ )

with F [v](ξ) =
∫

Rn e−ixξv(x)dx.

For the proof, see Theorem 4.4 and Lemma 4.3 (1) in [5].

Lemma 2.3. Let κ1 and κ2 be positive numbers, c ≥ 0, and 1 ≤ p ≤ ∞. If
pκ1 ≥ n − 1 and pκ2 > 1, then we have

‖(1+t+|·|)−κ1(1+|ct−|·||)−κ2‖Lp(Rn) ≤ C(1+t)−κ1+n−1
p for t ≥ 0. (2.8)
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Proof. Since the estimate (2.8) for p = ∞ is obvious, we shall assume
1 ≤ p < ∞. By the assumption −pκ1 +n− 1 ≤ 0, the left-hand side of (2.8)
raised to the power p is estimated by

(1 + t)−pκ1+n−1

∫
R2

(1 + t + |x|)−(n−1)(1 + |ct − |x||)−pκ2dx.

Switching to polar coordinates, we see from pκ2 > 1 that the above integral is
bounded by some constant; hence, (2.8) holds. This completes the proof. �

At the end of the section, we summarize basic estimates of the solution of
the homogeneous wave equation.

Lemma 2.4. Let vi(x, t) be a solution of

∂2
t vi − c2

i Δvi = 0 in R
2 × (0,∞) (2.9)

vi(x, 0) = εφi(x), ∂tv
i(x, 0) = εψi(x) for x ∈ R

2, (2.10)

where ε > 0, and φi and ψi are smooth and compactly supported functions.
Then denoting v = t(v1, . . . , vm), we have

〈v(x, t)〉0 ≤ Cε, [∂v(x, t)]0 ≤ Cε for (x, t) ∈ R
2 × [0,∞), (2.11)

where C is a constant independent of ε. Moreover, for ρ > 0 we have

‖v(t)‖Ḣρ ≤ Cε for t ≥ 0. (2.12)

Proof. First we prove (2.11). As is well known, we have

|vi(x, t)| ≤ Cε(1+t+ |x|)− 1
2 (1+ |cit−|x||)− 1

2 for (x, t) ∈ R
2× [0,∞) (2.13)

(for the proof, see e.g. Lemma 1 in [6]). Since 0 < ν < 1/2, the first estimate
in (2.11) holds. Let Γ̃ = (Γ̃1, . . . , Γ̃7) be a collection of vector fields defined
by

Γ̃j = Γj (j = 1, . . . , 4), Γ̃5 = ∂t, Γ̃6 = cit∂1 +
x1

ci
∂t, Γ̃7 = cit∂2 +

x2

ci
∂t.

Then we have [Γ̃j ,�ci ] = 0 (j = 4) and [Γ̃4,�ci ] = −2�ci . Therefore (2.13)
yields∑
|a|≤1

|Γ̃avi(x, t)| ≤ Cε(1+t+ |x|)− 1
2 (1+ |cit−|x||)− 1

2 for (x, t) ∈ R
2× [0,∞).

(2.14)
Note that for any C1 function w(x, t) we have

|∂w(x, t)| ≤ C(1 + |cit − |x||)−1
∑
|a|≤1

|Γ̃aw(x, t)| for (x, t) ∈ R
2 × [0,∞)
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(for the proof, see e.g. Lemma 3.4 in [9]). Thus the second one in (2.11) is
also valid.

Next we prove (2.12). We shall use

‖|ξ|−sF [φ]‖L2(R2
ξ) ≤ C‖φ‖Lq(R2

x) if 0 ≤ s < 1, q = 2(s + 1)−1 (2.15)

for the case where 0 < ρ ≤ 1. The estimate follows from the Hardy-
Littlewood-Sobolev inequality, since F [|x|−k](ξ) = Cn,k|ξ|−(n−k) for 0 < k <
n. Then, recalling the Fourier representation of vi(x, t),

F [vi](ξ, t) = ε cos(t|ξ|)F [φi](ξ) + ε|ξ|−1 sin(t|ξ|)F [ψi](ξ),

we obtain (2.12). This completes the proof. �

3. An estimate for the null form

Proposition 3.1. Assume that (1.8) and (1.13) hold. Then for u = t(u1, . . . ,
um) ∈ C∞(R2 × [0, T ) : R

p) with ui(x, t) a pi vector-valued function and for
any nonnegative integer k, there is a constant Ck, independent of u and T ,
such that

|N ij(u, ∂uj , ∂2uj)(x, t)|k ≤ Ck||x| − cjt|
1 + |x| + t

Φk(u)(x, t) +
Ck

1 + |x| + t
Ψk(u)(x, t)

(3.1)

for (x, t) ∈ Λj(T ), where we have set

Φk(u) = |u|[ k
2
]+1|∂uj |[ k

2
]+1|∂uj |k+1 + |∂uj |2

[ k
2
]+1

|u|k,

Ψk(u) = |u|2
[ k
2
]+1

|∂uj |k+1 + |u|[ k
2
]+1|∂uj |[ k

2
]+1|u|k+1.

Proof. We see from the assumptions that N ij is linear with respect to u.
In fact, by (1.13), N ij(u, 0, 0) ≡ 0 for any u ∈ R

p. Namely, N ij does not
include terms which are cubic in u. Moreover, if N ij includes a term which
is quadratic in u, it follows from (1.13) that such a term is expressed as
Qij(u)�ju

j , where Qij(u) is a pi × pj matrix. But the assumption (1.8)
excludes such a possibility. Therefore, each component N ij

r (1 ≤ r ≤ pi) of
N ij can be written as

N ij
r (u, ∂uj , ∂2uj)

=
pj∑

h,k,l=1

( 2∑
α,β,γ,δ=0

Ahkl
αβγδ∂αuj

h∂βuj
k∂γ∂δu

j
l +

2∑
α,β,γ=0

Bhkl
αβγ∂αuj

h∂βuj
k∂γuj

l

)
(3.2)
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+
m∑

q=1

pq∑
h=1

pj∑
k,l=1

( 2∑
α,β,γ=0

Cqhkl
αβγ uq

h∂αuj
k∂β∂γuj

l +
2∑

α,β=0

Dqhkl
αβ uq

h∂αuj
k∂βuj

l

)
,

where Ahkl
αβγδ, Bhkl

αβγ , Cqhkl
αβγ , and Dqhkl

αβ are constants.
To gain such an additional decay as in (3.1), we introduce the operators

R0 = ∂t + cj∂r, Rk = ∂k − xk

r
∂r (k = 1, 2).

Then by (2.3) and

[∂l, ∂r] =
1
r
Rl (l = 1, 2), [Ω, ∂r] = 0, [S, ∂r] = −∂r, (3.3)

one can verify the following.

Lemma 3.1. For any l, k = 1, 2 and any integer m, we have

[S, R0] = −R0, [Ω, R0] = 0, [∂l, R0] =
cj

r
Rl,

[S, Rk] = −Rk, [Ω, R1] = −R2, [Ω, R2] = R1,

[∂l, Rk] = −1
r
δlk∂r +

xlxk

r3
∂r −

xk

r2
Rl

and

[S,
1

rm
] = − m

rm
, [Ω,

1
rm

] = 0, [∂l,
1

rm
] = − mxl

rm+2
.

Lemma 3.2. For a real-valued, smooth function v(x, t) and 1 ≤ j ≤ m, we
have

|Rαv(x, t)|k ≤ Ck||x| − cjt|
1 + |x| + t

|∂rv(x, t)|k +
Ck

1 + |x| + t
|v(x, t)|k+1, (3.4)

where (x, t) ∈ Λj(T ) and α = 0, 1, 2.

Proof. When k = 0, we easily find that (3.4) follows from

R0 = −r − cjt

t
∂r +

1
t
S for t > 0, (3.5)

R1 = −x2

r2
Ω, R2 =

x1

r2
Ω for r > 0, (3.6)

since |x| and t are equivalent to 1 + t + |x| for (x, t) ∈ Λj(T ). When k = 1,
by Lemma 3.1 and (3.4) with k = 0, we have

|ΓRαv(x, t)| ≤ C(|RαΓv(x, t)| +
2∑

α=0

|Rαv(x, t)| + 1
r
|∂rv(x, t)|)
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≤ C||x| − cjt|
1 + |x| + t

|∂rv(x, t)|1 +
C

1 + |x| + t
|v(x, t)|2.

When k ≥ 2, by Lemma 3.1 we obtain (3.4), inductively. �
End of the proof of Proposition 3.1. For simplicity, we assume Bhkl

αβγ =

Cqhkl
αβγ = Dqhkl

αβ = 0 in (3.2) (the general case can be treated in a similar
fashion). We take ω0 = −cj and ωl = xl/r (l = 1, 2) so that ω2

0 = c2
j (ω

2
1+ω2

2).
Choosing Xα = ωα (α = 0, 1, 2), λ = u, μj = ∂ru

j , and νj = ∂2
ruj in (1.13),

we get from (3.2)
pj∑

h,k,l=1

2∑
α,β,γ,δ=0

Ahkl
αβγδωαωβωγωδ∂ru

j
h∂ru

j
k∂

2
ruj

l = 0.

Therefore, N ij
r (u, ∂uj , ∂2uj) is rewritten as

2∑
α,β,γ,δ=0

Ahkl
αβγδ

{
Rαuj

h∂βuj
k∂γ∂δu

j
l + ωα∂ru

j
hRβuj

k∂γ∂δu
j
l (3.7)

+ωαωβ∂ru
j
h∂ru

j
kRγ∂δu

j
l + ωαωβωγ∂ru

j
h∂ru

j
k∂rRδu

j
l

}
,

since R0 = ∂0 − ω0∂r and Rk = ∂k − ωk∂r. We use the following relations
derived by (3.3) for the last term:

∂rR0u
j
l = R0∂ru

j
l , ∂rRku

j
l = Rk∂ru

j
l −

1
r
Rku

j
l (k = 1, 2).

Then applying Γa to (3.7) and using Lemma 3.2, we get (3.1). (Notice that
(1.8) implies Ahkl

αβ00 = 0.) Thus we complete the proof. �

4. L∞
estimates

We consider the following operator associated with the inhomogeneous
wave equation whose propagation speed is ci (i = 1, . . . , m) and data F is in
C(R2 × [0, T )) (T > 0):

Lci(F )(x, t) =
1

2πci

∫ t

0
ds

∫
|x−y|<ci(t−s)

F (y, s)√
c2
i (t − s)2 − |x − y|2

dy, (4.1)

or

Lci(F )(x, t) =
1
2π

∫ t

0
ds

∫ t−s

0

ρ√
(t − s)2 − ρ2

dρ

∫
|ω|=1

F (x + ciρω, s)dSω,

(4.2)
where (x, t) ∈ R

2× [0, T ). We prove basic estimates of Lci(F )(x, t) in Propo-
sition 4.1 and of its spatial derivatives in Proposition 4.2. As an application
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of these estimates, we derive a priori estimates for a solution of (1.1) and
(1.2) in Corollary 4.1.

Proposition 4.1. Let 0 < κ < 1/2 and μ > 0. Then we have

|Lci(F )(x, t)|(1 + |x| + t)
1
2 (1 + |cit − |x||)κ ≤ CMκ(F )(t), (4.3)

for (x, t) ∈ R
2 × [0, T ), where we have set

Mκ(F )(t) =
m∑

j=0

sup
(y,s)∈Λj(t)

{|y| 12 z
(j)
κ+μ(|y|, s)|F (y, s)|}, (4.4)

z(j)
κ (λ, s) = (1 + λ + s)1+κ(1 + |λ − cjs|), c0 = 0. (4.5)

Here C is a constant depending only on μ, κ, and cj.

Proof. Without loss of generality, we may assume ci = 1. Let χj(y, s) be
the characteristic function of Λj(t). Then it follows that

|L1(F )(x, t)| ≤
m∑

j=0

L1(χj |F |)(x, t) (4.6)

≤
m∑

j=0

sup
(y,s)∈R2×[0,t]

{|y| 12 z
(j)
κ+μ(|y|, s)χj(y, s)|F (y, s)|}L1(Fj)(x, t)

with Fj(y, s) = [|y| 12 z
(j)
κ+μ(|y|, s)]−1. Since cj > 0 if 1 ≤ j ≤ m, Theorem 1.1

in [17] shows the boundedness of L1(Fj)(x, t) in x and t for such j. Moreover,
seeing the proof of the theorem, we find that the same is true also for j = 0,
once we establish the following:

J :=
∫ α

−α
(1 + |α + β

2
|)− 1

2
−μ(t + r + β)−

1
2 dβ (4.7)

≤ C(1 + α)
1
2 (1 + t + r)−

1
2 for t > 0, r > 0, and 0 < α < t + r,

which corresponds to (2.37) in [17]. When 0 < t + r < 1, we have

J ≤
∫ α

−α

1√
t + r + β

dβ ≤ 2
√

t + r + α,

which implies (4.7), since α < t + r < 1, while, when t + r ≥ 1, we have

J ≤
√

2
t + r

∫ α

−α
(1 + |α + β

2
|)− 1

2 dβ;

hence, (4.7) holds. Therefore (4.6) implies (4.5). This completes the proof.
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Proposition 4.2. Let 0 < ν < 1/2 and μ > 0. Then we have

|∂
Lci(F )(x, t)|(1 + |x|) 1
2 (1 + |cit − |x||)1+ν ≤ CM̃ν(F )(t) (� = 1, 2) (4.8)

for (x, t) ∈ R
2 × [0, T ), where we have set

M̃ν(F )(t) =
∑
|a|≤1

Mν(∂a
xF )(t) + Mν(ΩF )(t). (4.9)

Here C is a constant depending only on ν, μ, and cj.

Proof. We assume ci = 1, as before. Since ∂
∂L1(F )(x, t) = L1(∂
F )(x, t),
it follows from Proposition 4.1 that

|∂
L1(F )(x, t)|(1 + r + t)
1
2 (1 + |t − r|)ν ≤ CMν(∂
F )(t) (� = 1, 2);

hence, (4.8) holds if |t − r| ≤ 2. In what follows, we assume |t − r| ≥ 2. We
set

E1 = {(y, s) ∈ R
2 × [0, t) : |y| + s > t − r, |x − y| < t − s},

E2 = {(y, s) ∈ R
2 × [0, t) : t − r − 1 < |y| + s < (t − r)+},

E3 = {(y, s) ∈ R
2 × [0, t) : |y| + s < (t − r − 1)+}.

Clearly, E2 and E3 are the empty set when t − r < 0, and

E1 ∪ E2 ∪ E3 = {(y, s) ∈ R
2 × [0, t) : |x − y| < t − s}.

According to this decomposition, we define

Pj(F )(x, t) =
1
2π

∫∫
Ej

F (y, s)√
(t − s)2 − |x − y|2

dy ds (j = 1, 2, 3), (4.10)

so that ∂
L1(F )(x, t) =
∑3

j=1 Pj(∂
F )(x, t).
Firstly we deal with P1(∂
F )(x, t). Following the computation made in

Section 4 of [8], we find that

|P1(∂
F )(x, t)| ≤ M̃ν(F )(t)
5∑

k=0

Ik, (4.11)

where we have set

I1 =
m∑

j=0

∫∫
D1

λ
1
2

z
(j)
ν+μ(λ, s)

dλ ds

∫ ϕ

−ϕ
K1(λ, ψ; r, t − s)dψ,

I2 =
m∑

j=0

∫
D

′
2

λ
1
2

z
(j)
ν+μ(λ, s)

dσ

∫ 1

0
K2(λ, τ ; r, t − s)dτ,
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I3 =
m∑

j=0

∫∫
D2

1

λ
1
2 z

(j)
ν+μ(λ, s)

dλ ds

∫ 1

0
K2(λ, τ ; r, t − s)dτ,

I4 =
m∑

j=0

∫∫
D2

λ
1
2

z
(j)
ν+μ(λ, s)

dλ ds

∫ 1

0
|∂λK2(λ, τ ; r, t − s)|dτ,

I5 =
m∑

j=0

∫∫
D2

λ
1
2

z
(j)
ν+μ(λ, s)

dλ ds

∫ 1

0
|(∂λΨ · K2)(λ, τ ; r, t − s)|dτ.

Here we have used the following notation:

K1(λ, ψ; r, t) = (2π)−1{t2 − r2 − λ2 + 2rλ cos ψ}− 1
2 ,

K2(λ, τ ; r, t) = (2π)−1{2rλτ(1 − τ)(2 − (1 − cos ϕ)τ)}− 1
2 ,

ϕ(λ; r, t) = arccos
[r2 + λ2 − t2

2rλ

]
,

Ψ(λ, τ ; r, t) = arccos[1 − (1 − cos ϕ(λ; r, t))τ ],

D1 = {(λ, s) ∈ (0,∞) × (0, t) : λ− < λ ≤ λ− + δ or λ+ − δ ≤ λ < λ+},
D2 = {(λ, s) ∈ (0,∞) × (0, t) : λ− + δ ≤ λ ≤ λ+ − δ},
D

′
2 = {(λ, s) ∈ (0,∞) × (0, t) : λ = λ− + δ or λ = λ+ − δ}

with λ− = |t − s − r|, λ+ = t − s + r, and δ = min{r, 1/2}. To evaluate Ik

in the above, we shall use the following estimates.

Lemma 4.1. Let (λ, s) ∈ D1 ∪ D2. Then we have∫ ϕ

−ϕ
K1 dψ = 2

∫ 1

0
K2 dτ ≤ C

(rλ)
1
2

log
[
2 +

rλ

(λ − λ−)(λ+ + λ)
H(t − s − r)

]
,

(4.12)∫ 1

0
|∂λK2|dτ ≤ C

(rλ)
1
2 (λ + s + r − t)

, (4.13)

∫ 1

0
|∂λΨ · K2|dτ ≤ C

(rλ)
1
2

( 1√
(λ+ − λ)(λ − λ−)

+
1√

λ2 − λ2
−

)
, (4.14)

where H(s) = 1 for s > 0 and H(s) = 0 otherwise.

Proof. For the proof of (4.12) and (4.13), see for instance Proposition 5.3
in [1]. Here we prove only (4.14). Putting

P := cos ϕ(λ; r, t − s) =
r2 + λ2 − (t − s)2

2rλ
,
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we have Ψ = arccos(1 + Pτ − τ). Therefore we have

∂λΨ =
−√

τ√
(1 − P )(2 + Pτ − τ)

λ2 + (t − s)2 − r2

2rλ2
.

From the identity λ2 + (t− s)2 − r2 = λ(λ + t− s− r) + (t− s− r)(λ+ − λ),
we have

|λ2 + (t − s)2 − r2| ≤ λ(λ + λ−) + λ−(λ+ − λ)

≤ λ
√

λ + λ+(
√

λ + λ− +
√

λ+ − λ)

for λ− ≤ λ ≤ λ+. Therefore we see that the left-hand side of (4.14) is
estimated by

1√
2rλ

√
λ + λ+(

√
λ + λ− +

√
λ+ − λ)

4πrλ
√

1 − P

∫ 1

0

1√
1 − τ(2 + Pτ − τ)

dτ. (4.15)

Notice that the τ -integral is estimated by C/
√

1 + P . Indeed, when 0 ≤
P < 1, it suffices to see that it is just bounded. On the other hand, when
−1 < P ≤ 0, by changing the variables by σ =

√
1 − τ , we have

τ − integral = 2
∫ 1

0

1
(1 + P ) + (1 − P )σ2

dσ

=
2√

(1 − P )(1 + P )
arctan

√
1 − P

1 + P
≤ π√

1 + P
,

since
√

1 − P ≥ 1 for −1 < P ≤ 0. By means of
√

1 − P
√

1 + P =
√

1 − P 2 = (2rλ)−1
√

λ2
+ − λ2

√
λ2 − λ2

−, (4.16)

we obtain (4.14). This completes the proof. �

Now we start the proof of the following estimate for Ik:

Ik ≤ C(1 + r)−
1
2 (1 + |t − r|)−(1+ν) (k = 1, . . . , 5). (4.17)

First we evaluate I1. Notice that when t − s − r > 0 and λ > λ+ − δ, we
have

log
[
2 +

rλ

(λ − λ−)(λ+ + λ)

]
≤ log 3,

since λ − λ− > r. Besides, for any ρ > 0 satisfying ρ ≤ min{1/2, μ/2}, we
have

log
[
2 +

rλ

(λ − λ−)(λ+ + λ)

]
≤ Cρ

[
1 +

( λ−
λ − λ−

)ρ]
, (4.18)
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for t − s − r > 0, λ > λ−. Moreover, we note that z
(j)
ν (λ, s) is equivalent

to z
(j)
ν (λ+, s) (respectively z

(j)
ν (λ−, s)) for λ+ − δ < λ < λ+ (respectively

λ− < λ < λ− + δ). Hence by (4.12), we get

I1 ≤ Cr−
1
2

m∑
j=0

[A1,j + A2,j + A3,j ], (4.19)

where for 0 ≤ j ≤ m we have set

A1,j =
∫ t

0

∫ λ+

λ+−δ

1

z
(j)
ν+μ(λ+, s)

dλ ds,

A2,j =
∫ (t−r)+

0

∫ λ−+δ

λ−

1

z
(j)
ν+μ(λ−, s)

[
1 +

( λ−
λ − λ−

)ρ]
dλ ds,

A3,j =
∫ t

(t−r)+

∫ λ−+δ

λ−

1

z
(j)
ν+μ(λ−, s)

dλ ds.

It follows that

A1,j ≤ Cδ

(1 + t + r)1+ν

∫ ∞

−∞

1
(1 + |(cj + 1)s − t − r|)1+μ

ds (4.20)

≤ Cδ(1 + t + r)−(1+ν).

Since the λ integral in A2,j is evaluated by C(δ + δ1−ρλ−ρ) ≤ Cδ1−ρ(1+ |t−
r|)ρ for 0 < s < t − r and 0 < ρ < 1, we get

A2,j ≤ Cδ1−ρ

(1 + |t − r|)1+ν

∫ ∞

−∞

1

(1 + |(cj + 1)s − t + r|)1+μ
2

ds (4.21)

≤ Cδ1−ρ(1 + |t − r|)−(1+ν),

since we took ρ ≤ μ/2. When s > (t − r)+, we have

s + λ− = 2s − t + r ≥ |t − r|, s + λ− ≥ C|cjs − λ−| = C|(cj − 1)s + t − r|
with C−1 = max{cj , 1}; hence,

z
(j)
ν+μ(λ−, s) ≥ C(1 + |t − r|)1+ν(1 + |(cj − 1)s + t − r|)1+μ if cj = 1,

z
(j)
ν+μ(λ−, s) ≥ C(1 + |t − r|)1+ν(1 + 2s − t + r)1+μ if cj = 1.

Therefore, we get

A3,j ≤ Cδ(1 + |t − r|)−(1+ν). (4.22)
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Summing up (4.20), (4.21), and (4.22), we see from (4.19) that I1 is estimated
by Cδ1−ρr−

1
2 (1 + |t − r|)−(1+ν). This bound implies (4.17) for k = 1, since

0 < ρ ≤ 1/2 and δ/r ≤ 2/(1 + r).
In the following, we assume r ≥ 1/2 so that δ = 1/2, because D2 is the

empty set when 0 < r < 1/2. Since λ = λ− + (1/2) or λ = λ+ − (1/2) for
(λ, s) ∈ D

′
2, we get (4.17) for k = 2 analogously to the previous argument.

Next we evaluate I3. Note that λ ≥ 1/2 if (λ, s) ∈ D2 and that

log
[
2 +

rλ

(λ − λ−)(λ+ + λ)

]
≤ Cρ(1 + λ)ρ

for λ ≥ λ− + (1/2) and 0 < ρ ≤ μ/2. Therefore we get from (4.12)

r
1
2 I3 ≤ C

m∑
j=0

∫∫
D2

dλ ds

(1 + λ)z(j)
ν+(μ/2)(λ, s)

≤ C

m∑
j=0

A3,j , (4.23)

where we have set

A3,j =
∫∫

D2

dλ ds

(1 + s + λ)2+ν(1 + |cjs − λ|)1+μ
2

if 1 ≤ j ≤ m,

A3,j =
∫∫

D2

dλ ds

(1 + s + λ)1+ν(1 + λ)2+
μ
2

if j = 0.

When 1 ≤ j ≤ m, changing the variables by

α = λ + s and β = λ − s, (4.24)

we have

A3,j ≤
1
2

∫ t+r

|t−r|

1
(1 + α)2+ν

dα

∫ α

r−t

1

(1 + |ψj(α, β)|)1+μ
2

dβ≤C(1+|t−r|)−(1+ν),

where
2ψj(α, β) = (cj + 1)β − (cj − 1)α. (4.25)

On the other hand, when j = 0, we have

A3,0 ≤ C

(1 + |t − r|)1+ν

∫∫
D2

1

(1 + λ)2+
μ
2

dλ ds ≤ C

(1 + |t − r|)1+ν
,

since s + λ ≥ |t − r| for (λ, s) ∈ D2. Therefore (4.17) holds for k = 3.
Next we evaluate I4. Since λ + s + r − t ≥ 1/2 for λ ≥ λ− + (1/2), we get

from (4.13)

r
1
2 I4 ≤ C

m∑
j=0

∫∫
D2

dλ ds

z
(j)
ν+μ(λ, s)(λ + s + r − t + 1)

(4.26)
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≤ C

∫ t+r

|t−r|

dα

(α − t + r + 1)(1 + α)1+ν+μ
2

∫ α

r−t

dβ

(1 + |ψj(α, β)|)1+μ
2

≤ C

(1 + |t − r|)1+ν

∫ ∞

|t−r|

( 1

(α − t + r + 1)1+
μ
2

+
1

(1 + α)1+
μ
2

)
dα,

which yields (4.17) for k = 4.
Next we evaluate I5. It follows from (4.14) that

r
1
2 I5 ≤ C

m∑
j=0

(A5,j + B5,j + C5,j),

where for 0 ≤ j ≤ m we have set

A5,j =
∫∫

D2

dλ ds

z
(j)
ν+μ(λ, s)

√
t − s + r − λ + 1

√
λ − t + s + r + 1

,

B5,j =
∫∫

D2

dλ ds

z
(j)
ν+μ(λ, s)

√
t − s + r − λ + 1

√
λ + t − s − r + 1

,

C5,j =
∫∫

D2

dλ ds

z
(j)
ν+μ(λ, s)

√
λ − t + s + r + 1

√
λ + t − s − r + 1

.

Changing the variables by (4.24), we have

A5,j ≤
1
2

∫ t+r

|t−r|

dα

(1 + α)1+ν
√

t + r − α
√

α − t + r

∫ α

r−t

dβ

(1 + |ψj(α, β)|)1+μ

≤ C(1 + |t − r|)−(1+ν)

∫ t+r

t−r

dα√
t + r − α

√
α − t + r

= Cπ(1 + |t − r|)−(1+ν).

Moreover, changing the variables first by (4.24) and then σ = ψj(α, β), we
get

B5,j ≤
1

cj + 1

∫ t+r

|t−r|

dα

(1 + α)1+ν+μ
2
√

t + r − α + 1

×
∫ α

βj

dσ

(1 + |σ|)1+ρ
√

1 + 2
cj+1(σ − βj)

,

where 2βj = (1− cj)α+(1+ cj)(r− t) and ρ is taken such that 0 < ρ < μ/2.
It has been shown in Lemma 3.13 in [18] that the σ integral in the above is
estimated by C(1 + |βj |)−

1
2 . Therefore, if cj = 1, then we have

(1 + |t − r|)1+νB5,j ≤ C

∫ t+r

|t−r|

dα
√

t + r − α + 1(1 + |βj |)
1
2
+μ

2

≤ C.
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While, if cj = 1, then we get

(1 + |t − r|) 1
2 B5,j ≤ C

∫ t+r

|t−r|

dα

(1 + α)1+ν+μ
2
√

t + r − α + 1

≤ C(1 + |t − r|)−( 1
2
+ν).

Thus we find that B5,j has the same bound as A5,j . Since we can deal with
C5,j similarly, we obtain (4.17) for all k = 1, . . . , 5 in conclusion.

Secondly we deal with P2(∂
F )(x, t) for t − r ≥ 2. Switching to polar
coordinates,

x = (r cos θ, r sin θ), y = λξ = (λ cos(θ + ψ), λ sin(θ + ψ)), (4.27)

we get

P2(∂
F )(x, t) =
∫ t−r

0

∫ λ−

(λ−−1)+

∫ π

−π
λ∂
F (λξ, s)K1(λ, ψ; r, t − s)dψ dλ ds.

(4.28)
From the following estimates for K1,∫ π

−π
K1(λ, ψ; r, t − s)dψ ≤ C√

(λ + λ−)(λ+ − λ)
log

[
2 +

rλ

(λ− − λ)(λ+ + λ)

]
,

where 0 < s < t − r and 0 < λ < λ− (for the proof, see e.g. Proposition 5.2
in [1]), we get∫ π

−π
K1(λ, ψ; r, t − s)dψ ≤ C√

λ
√

r + 1
√

λ− − λ

( t − r

λ− − λ

)ρ
, (4.29)

if 0 < s < t − r, λ− − 1 ≤ λ < λ− and 0 < ρ < min{1/2, μ/2}, because we
have

1√
λ+ − λ

≤
√

2√
r + 1

√
λ− − λ

for such s and λ. Therefore we obtain from (4.28)

√
r + 1|P2(∂
F )(x, t)| ≤ C|t − r|ρM̃ν(F )(t)

m∑
j=0

A6,j , (4.30)

where we have set

A6,j =
∫ t−r

0

∫ t−s−r

t−r−s−1

dλ ds

z
(j)
ν+μ(λ, s)(λ− − λ)ρ+ 1

2

.
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Changing the variables by (4.24), we see that A6,j is bounded by

C

∫ t−r

t−r−1

dα

(1 + α)1+ν+μ
2 (t − r − α)ρ+ 1

2

≤ C(1 + |t − r|)−(1+ν+μ
2
),

since 0 < ρ < 1/2 and t − r > 2. Thus we get

|P2(∂
F )(x, t)| ≤ CM̃ν(F )(t)(r + 1)−
1
2 (1 + |t − r|)−(1+ν). (4.31)

Thirdly we deal with P3(∂
F )(x, t) for t− r ≥ 2. Making the integration by
parts in y and switching to polar coordinates as in (4.27), we get

P3(∂
F )(x, t) =
∫ t−r−1

0

∫ t−s−r−1

0

∫ π

−π
λF (λξ, s)K3(λ, ψ;x, t − s)dψ dλ ds

+
∫ t−r−1

0

∫ π

−π
λξ
F (λξ, s)K1(λ, ψ; r, t − s)

∣∣∣
λ=t−s−r−1

dψ ds, (4.32)

where we have set

K3(λ, ψ;x, t) =
−(x
 − λξ
)

2π(t2 − r2 − λ2 + 2rλ cos ψ)
3
2

.

We see from (4.29) that the second term on the right-hand side of (4.32) is
bounded by

C|t − r|ρM̃ν(F )(t)√
r + 1

m∑
j=0

∫ t−r−1

0

1

z
(j)
ν+μ(λ, s)(λ− − λ)

1
2
+ρ

∣∣∣
λ=t−s−r−1

ds (4.33)

≤ CM̃ν(F )(t)(r + 1)−
1
2 (1 + |t − r|)−(1+ν),

since t − r ≥ 2 and ρ < μ/2. Suppose we have found∫ π

−π
|K3(λ, ψ; r, t − s)|dψ ≤ C

(λ− − λ)
√

(λ− + λ)(λ+ − λ)
. (4.34)

Then, noting λ+ −λ ≥ 2r +1 for λ < t− s− r− 1, we see that the first term
on the right-hand side of (4.32) is estimated by CM̃ν(F )(t)/

√
r + 1 times∫ t−r−1

0

∫ t−s−r−1

( t−r
2

−s)+

dλ ds

z
(j)
ν+μ(λ, s)(λ− − λ)

+
∫ t−r

2

0

∫ t−r
2

−s

0

√
λdλ ds

z
(j)
ν+μ(λ, s)(λ− − λ)

3
2

≤ C

(1 + |t − r|)1+ν

∫ t−r

t−r
2

dα

(1 + α)
μ
2 (t − r − α + 1)

∫ α

r−t

dβ

(1 + |ψj(α, β)|)1+μ
2

+
C

(1 + |t − r|) 3
2

∫ t−r
2

0

dα

(1 + α)
1
2
+ν

∫ α

r−t

dβ

(1 + |ψj(α, β)|)1+μ
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≤ C(1 + |t − r|)−(1+ν),

since ν < 1/2. Thus we get (4.8) from (4.11), (4.17), (4.31), and (4.33). It
remains to show (4.34). Since

|K3(λ, ψ;x, t − s)| ≤ r + λ√
(t − s)2 − (r + λ)2

1
(−2rλP )(1 − P−1 cos ψ)

with P = (r2 + λ2 − (t − s)2)/2rλ (< −1), and∫ π

−π

1
1 + a cos ψ

dψ =
2π√

1 − a2
for |a| < 1,

we get ∫ π

−π
|K3(λ, ψ; r, t − s)|dψ ≤

√
r + λ√
λ− − λ

1
(−2rλP )

√
1 − P−2

.

By (4.16) we obtain (4.34). This completes the proof of Proposition 4.2. �
Corollary 4.1. Let 0 < ν < 1/2, μ > 0, and q ≥ 0. If u ∈ C∞(R2 × [0, T ))
is a solution of (1.1) and (1.2), then we have

〈u(x, t)〉k+1(1 + |x| + t)−q ≤ C0ε + C0

m∑
i=1

Mν−q(|F i|k+1)(t), (4.35)

[∂
u(x, t)]k(1 + |x| + t)−q ≤ C0ε + C0

m∑
i=1

Mν−q(|F i|k+1)(t) (� = 1, 2)

(4.36)

for (x, t) ∈ R
2 × [0, T ) and a nonnegative integer k, where C0 is a constant

depending only on μ, ν, k, q, and cj. Besides, here and later on as well we
abbreviate F i(u, ∂u, ∂2u) as F i.

Proof. We see from (2.2) that u(x, t) satisfies

�ciΓ
aui =

∑
|b|≤|a|

Ca,bΓbF i (4.37)

with some constant Ca,b; hence, we have

Γaui(x, t) = vi(x, t) +
∑

|b|≤|a|
Ca,bLci(Γ

bF i)(x, t), (4.38)

where vi(x, t) is the solution of (2.9) and (2.10) with φi and ψi determined
by f i and gi in (1.2) suitably. Therefore, by (2.11) we obtain

〈Γaui(x, t)〉0 ≤ Cε + C
∑

|b|≤|a|
〈Lci(Γ

bF i)(x, t)〉0, (4.39)
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[∂
Γaui(x, t)]0 ≤ Cε + C
∑

|b|≤|a|
[∂
Lci(Γ

bF i)(x, t)]0 (� = 1, 2) (4.40)

for (x, t) ∈ R
2 × [0, T ). Since s + |y| ≤ C(t + |x|) if |x − y| ≤ ci(t − s), we

get the following estimates for q ≥ 0, in view of the proof of Propositions
4.1 and 4.2:

〈Lci(F )(x, t)〉0(1 + |x| + t)−q ≤ CMν−q(F )(t), (4.41)

[∂
Lci(F )(x, t)]0(1 + |x| + t)−q ≤ CM̃ν−q(F )(t) (� = 1, 2) (4.42)

for (x, t) ∈ R
2 × [0, T ). Thus, recalling (4.9), we see that (4.39) with |a| ≤

k + 1 and (4.40) with |a| ≤ k give (4.35) and (4.36) respectively. This
completes the proof. �

5. L2
estimates

In this section we shall derive an energy estimate. To be more specific,
we introduce

Dk(t) = ‖∂u(t)‖k + ‖∂∂xu(t)‖k + (1 + t)−
1
p ‖u(t)‖X , (5.1)

‖u(t)‖X =
∑
|a|≤k

‖Γau(t)‖Ḣρ , p =
2

1 − ρ
, (5.2)

where t ≥ 0, k is a nonnegative integer, ∂x = (∂1, ∂2), and 0 < ρ < 1/4. We
put

C∗ := max
i,l=1,...,m
q,k=0,1,2

∑
|a|≤1

m∑
j=1

pj∑
p=1

sup
|u|+|∂u|≤1

∣∣∣ ∂H il
qk

∂(∂auj
p)

(u, ∂u)
∣∣∣. (5.3)

Then our purpose of this section is formulated as follows.

Proposition 5.1. We suppose that (1.5) through (1.13) hold. Let u ∈
C∞(R2×[0, T )) be a solution of (1.1) and (1.2). Suppose that 1/4 < ν < 1/2,
0 < ρ < 1/4, and that

C∗U0(t) ≤
c2
1

4m
, U[ k

2
]+1(t) ≤ 1 for 0 ≤ t < T. (5.4)

Then there exists a constant C1 > 0 independent of T and ε such that

Dk(t) ≤ Cε(1 + t)
C1(U

[ k
2 ]+1

(t))2

for 0 ≤ t < T. (5.5)
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Proof. First we estimate ‖u(t)‖X . By (4.37) we have the Fourier repre-
sentation of Γaui. Evaluating it in Ḣρ, we see from (2.12) and (2.15) with
s = 1 − ρ that

‖u(t)‖X ≤ Cε + C
∑
|a|≤k

∫ t

0
‖ΓaF (s)‖Lq ds, (5.6)

where 1/q = (1/p) + (1/2) with p = 2/(1 − ρ). Thus it suffices to estimate
‖ΓaF (s)‖Lq . Suppose we have found

|ΓaF i(x, s)| ≤ C(U[ k
2
]+1(t))

2[ηl(|x|, s)−2(|∂u(x, s)|k + |∂∂xu(x, s)|k) (5.7)

+ ηl(|x|, s)−3|u(x, s)|k]

for (x, s) ∈ Λl(t) (0 ≤ l ≤ m) and |a| ≤ k, where ηl(λ, s) is given in (2.4).
Then for any r with 1 ≤ r ≤ 2, (5.7) and Lemma 2.2 yield

‖ΓaF i(s)‖Lr ≤ C(U[ k
2
]+1(t))

2
m∑

l=0

[‖ηl(| · |, s)−2‖Lr∗ (‖∂u(s)‖k + ‖∂∂xu(s)‖k)

+ ‖ηl(| · |, s)−3|cls − | · ||ρ‖Lr∗‖u(s)‖X ],

where 1/r = (1/r∗) + (1/2). Since r∗ ≥ 2, ν > 1/4, and 0 < ρ < 1/4, we
have r∗(2ν) > 1 and r∗(3ν − ρ) > 1. Therefore, the application of Lemma
2.3 gives

‖ηl(|·|, s)−2‖Lr∗ ≤ C(1+s)−1+ 1
r∗ , ‖ηl(|·|, s)−3|cls−|·||ρ‖Lr∗ ≤ C(1+s)−

3
2
+ 1

r∗ .

Noting 1/p < 1/2 for ρ > 0, we get

‖ΓaF i(s)‖Lr ≤ C(U[ k
2
]+1(t))

2(1 + s)−1+ 1
r∗ Dk(s). (5.8)

Using this estimate with r = q and r∗ = p, we get from (5.6)

(1 + t)−
1
p ‖u(t)‖X ≤ C

[
ε + (U[ k

2
]+1(t))

2

∫ t

0
(1 + s)−1Dk(s)ds

]
. (5.9)

Now we prove (5.7). In the following, we always assume that (x, s) ∈ Λl(t)
with 0 ≤ l ≤ m and |a| ≤ k. Then (2.4) implies

|uj(x, s)|k ≤ CUk(t)ηl(|x|, s)−1,

|∂uj(x, s)|k ≤ CUk(t)ηl(|x|, s)−1(1 + |cls − |x||)−1,

|∂uj(x, s)|k ≤ CUk(t)ηl(|x|, s)−2 if j = l,
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where 1 ≤ j ≤ m and C is independent of x and s. According to (1.9) and
(1.11), we write

F i =
m∑

j=1

Ñ ij + R̃i + Gi + H i, (5.10)

where we have set

Ñ ij(u, ∂uj , ∂2uj) = N ij(u, ∂uj , ∂2uj) − N ij(0, ∂uj , ∂2uj),

R̃i(u, ∂u, ∂2u) = Ri(u, ∂u, ∂2u) − Ri(0, ∂u, ∂2u),

Gi(∂u, ∂2u) = N ij(0, ∂uj , ∂2uj) + Ri(0, ∂u, ∂2u).

By (1.10) and the fact that Gi is a cubic polynomial in (∂u, ∂2u), we get

|ΓaH i(x, s)| ≤ C(U[ k
2
]+1(t))

3ηl(|x|, s)−3(|u(x, s)|k
+ |∂u(x, s)|k + |∂∂xu(x, s)|k),

|ΓaGi(x, s)| ≤ C(U[ k
2
]+1(t))

2ηl(|x|, s)−2(|∂u(x, s)|k + |∂∂xu(x, s)|k).

Besides, we see from (1.12) that ΓaR̃i(x, s) is estimated by the right-hand
side of (5.7), since for j = h we have∑

|a|,|b|=1,2

|∂auj(x, s)|[ k
2
]|∂buh(x, s)|[ k

2
] ≤ C(U[ k

2
]+1(t))

2ηl(|x|, s)−3.

Moreover, when j = l, it is easy to see that ΓaÑ ij(x, s) is bounded by

C(U[ k
2
]+1(t))

2ηl(|x|, s)−3(|u(x, s)|k + |∂u(x, s)|k + |∂∂xu(x, s)|k).

Thus it remains to evaluate ΓaÑ ij(x, s) for the case of j = l. It follows from
(3.2) that

Ñ ij
r =

m∑
q=1

pq∑
h=1

pj∑
k,l=1

( 2∑
α,β,γ=0

Cqhkl
αβγ uq

h∂αuj
k∂β∂γuj

l +
2∑

α,β=0

Dqhkl
αβ uq

h∂αuj
k∂βuj

l

)
.

By (1.13) we can rearrange the above expression of Ñ ij
r so that each term

involves the operator Rα = ∂α − ωα∂r as in (3.7). Employing Lemma 3.2
together with the trivial estimate |Rαv(x, s)|k ≤ C|∂v(x, t)|k, we find that
ΓaÑ ij(x, s) is estimated by the right-hand side of (5.7). Therefore we have
shown (5.7); hence, (5.9) holds.

Next we estimate ‖∂u(t)‖k. Using (5.8) with r = 2 and r∗ = ∞, we easily
have

‖∂u(t)‖k ≤ C
[
ε + (U[ k

2
]+1(t))

2

∫ t

0
(1 + s)−1Dk(s)ds

]
. (5.11)
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Finally we estimate ‖∂∂xu(t)‖k, by making use of the following.

Lemma 5.1. We suppose that the assumptions in Proposition 5.1 are ful-
filled. For v = t(v1, . . . , vm) ∈ C∞(R2 × [0, T ) : R

p) with vi(x, t) a pi

vector-valued function, we set

‖v(t)‖2
E =

m∑
i=1

∫
R2

{
|∂tv

i(x, t)|2 + c2
i |∇vi(x, t)|2

+
m∑

l=1

2∑
q,k=1

H il
qk(u, ∂u)∂qv

i · ∂kv
l(x, t)

}
dx.

Then for 0 ≤ t < T we have
d

dt
‖v(t)‖E ≤ C max

i,l=1,...,m
q,k=0,1,2

‖∂(H il
qk(u, ∂u)(t)‖L∞‖v(t)‖E (5.12)

+
m∑

i=1

C[‖Qi(v)(t)‖L2 + ‖Ki(u, ∂u)(t)‖L2 ],

where we have set

Qi(v) = �civ
i −

m∑
l=1

2∑
γ,δ=0

H il
qk(u, ∂u)∂γ∂δv

l − Ki(u, ∂u). (5.13)

Proof. By (1.7) we have

H il
γδ(u, ∂u)wl · wi = wl · tH il

γδ(u, ∂u)wi = H li
γδ(u, ∂u)wi · wl,

where a · b means the inner product of a, b ∈ R
pi . Therefore direct compu-

tation yields

d

dt
‖v(t)‖2

E =
m∑

i=1

∫
R2

[J i(v)(x, t) + 2(Qi(v) + 2Ki(u, ∂u)) · ∂tv
i(x, t)]dx,

where we have set

Ji(v) = −2
m∑

l=1

2∑
q=1

2∑
k=0

∂q(H il
qk(u, ∂u))∂kv

i · ∂tv
l

+
m∑

l=1

2∑
q,k=1

∂t(H il
qk(u, ∂u))∂qv

i · ∂kv
l.

Thus, to prove (5.12), it suffices to show that ‖v(t)‖E is equivalent to
‖∂v(t)‖L2 . From (1.6) and (5.4) with (5.3) we have |H il

qk(u, ∂u)(x, t)| ≤
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c2
1/4m2. Recalling (1.3), we see that the desired assertion is valid. This

completes the proof. �
By (1.6) it is easy to see that

max
i,l=1,...,m
q,k=0,1,2

‖∂(H il
qk(u, ∂u))(x, t)‖L∞

x
≤ C(1 + t)−1(U1(t))2.

Moreover, we have

‖Ki(u, ∂u)(t)‖L2 ≤ C(1 + t)−1(U0(t))2D0(t),

since the cubic term in Ki(u, ∂u) is supposed to be linear in u by (1.13) and
(1.12) (see also the beginning of the proof of Proposition 3.1), while for such
terms as u4 we can use Lemma 2.2 as in the proof of (5.8). Now, taking
v = Γa∂xu (|a| ≤ k) in (5.12), we get

d

dt
‖Γa∂xu(t)‖E ≤ C(1+t)−1(U1(t))2Dk(t)+

m∑
i=1

C‖Qi(Γa∂xu)(t)‖L2 , (5.14)

because of the equivalence between ‖v(t)‖E and ‖∂v(t)‖L2 . Therefore, it
remains to estimate ‖Qi(Γa∂xu)(t)‖L2 . In view of (5.13) and (4.37) we have

Qi(Γa∂xu) = �ciΓ
a∂xui − F i(u, ∂u, ∂2Γa∂xu)

= Γa∂xF i(u, ∂u, ∂2u) − F i(u, ∂u, ∂2Γa∂xu) +
∑

|b|≤|a|
Ca,bΓbF i(u, ∂u, ∂2u);

hence, such terms containing Γa∂x∂2u are canceled out, modulo lower-order
terms. Thus, we find that ‖Qi(Γa∂xu)(t)‖L2 is estimated by C(1 + t)−1·
·(U[ k

2
]+1(t))

2Dk(t). This means

‖∂∂xu(t)‖k ≤ C

[
ε + (U[ k

2
]+1(t))

2

∫ t

0
(1 + s)−1Dk(s)ds

]
. (5.15)

Summing up (5.9), (5.11), and (5.15), we obtain (5.5) by the Gronwall in-
equality. �

6. Proof of Theorem 1.1

To show the solution exists globally in time, we are going to estimate
Uk(t).

Lemma 6.1. Suppose that (1.9) through (1.13) hold. Let 1/4 < ν < 1/2,
0 < ρ < 1/4, k be a nonnegative integer, and q ≥ 0. If we take μ ≥ 0 and
θ > 0 so that

ν + μ + θ ≤ 1
2
, (6.1)
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then for any u = t(u1, . . . , um) ∈ C∞(R2 × [0, T ) : R
p) with ui(x, t) a pi

vector-valued function satisfying

U[ k+1
2

](t) ≤ 1 for 0 ≤ t < T, (6.2)

there is a constant C2, independent of u and T , such that

|y| 12 z
(l)
ν+μ−q(|y|, s)|F i(u, ∂u, ∂2u)(y, s)|k (6.3)

≤ C2(U[ k
2
]+1(t))

2(1 + s)−θDk+2(s) + C2(U[ k+1
2

](t))
2[(1 + |y| + s)−q〈u(y, s)〉k

+ C3(q)(1 + |y| + s)−
1
2
−q[∂u(y, s)]k+1] (6.4)

for (y, s) ∈ Λl(t) (0 ≤ l ≤ m), where C3(q) is a constant such that C3(q) = 0
for q ≥ 1/2, and C3(q) = 1 otherwise.

Proof. For simplicity, we shall use the following notation:

w+(λ, s) = 1 + λ + s, wc(λ, s) = 1 + |λ − cs|.
Then for j = 1, . . . , m and l = 0, 1, . . . , m, we have

|uj(y, s)|k ≤ 〈u(y, s)〉kw+(|y|, s)− 1
2 wcj (|y|, s)−ν for (y, s) ∈ Λj(t),

|uj(y, s)|k ≤ C〈u(y, s)〉kw+(|y|, s)− 1
2
−ν for (y, s) ∈ Λl(t), l = j,

and

|∂uj(y, s)|k ≤ C[∂u(y, s)]kw+(|y|, s)− 1
2 wcj (|y|, s)−1−ν for (y, s) ∈ Λj(t),

|∂uj(y, s)|k ≤ C[∂u(y, s)]kw+(|y|, s)−1−ν(1 + |y|)− 1
2 for (y, s) ∈ Λl(t), l = j,

where C is independent of y and s. In the following, we assume that (y, s) ∈
Λl(t). As before, we write F i(y, s) =

∑m
j=1 N ij(y, s) + Ri(y, s) + H i(y, s).

First we consider N ij(y, s). When l = j, it follows from Proposition 3.1
that

|y| 12 z
(j)
ν+μ−q(|y|, s)|N ij(y, s)|k

≤ C(U[ k
2
]+1(t))

2[w+(|y|, s)−1+ν+μ−qwcj (|y|, s)1−2ν |y| 12 |∂uj(y, s)|k+1

+w+(|y|, s)−1+ν+μ−qwcj (|y|, s)−2ν |y| 12 |u(y, s)|k+1]

≤ C(U[ k
2
]+1(t))

2
[
w+(|y|, s)−θ|y| 12 |∂u(y, s)|k+1

+w+(|y|, s)− 1
2
−θ〈|y| − cjs〉−ρ|y| 12 |u(y, s)|k+1

]
, (6.5)

by (6.1), q ≥ 0, ν > 1/4, and ρ < 2ν, where we put 〈λ〉 =
√

1 + λ2. Applying
Lemmas 2.1 and 2.2 with n = 2 together with (5.1), we have

|y| 12 |∂u(y, s)|k+1 ≤ CDk+2(s),
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〈|y| − cjs〉−ρ|y| 12 |u(y, s)|k+1 ≤ C(1 + s)
1
p Dk+2(s).

Since 1/p = (1 − ρ)/2 < 1/2, we see that |y| 12 z
(j)
ν+μ−q(|y|, s)|N ij(y, s)|k is

estimated by the first term of right-hand side in (6.3). On the other hand,
when l = j, we have

|y| 12 z
(l)
ν+μ−q(|y|, s)|N ij(y, s)|k (6.6)

≤ C(U[ k+1
2

](t))
2
[
w+(|y|, s)−1+μ−qwcl

(|y|, s)1−ν |y| 12 |∂u(y, s)|k+1

+w+(|y|, s)−2−ν+μ−qwcl
(|y|, s)1−ν〈u(y, s)〉k

]
≤ C(U[ k+1

2
](t))

2{(1 + s)−θDk+2(s) + (1 + |y| + s)−q〈u(y, s)〉k},

since N ij(y, s) is linear in u, and θ + μ < 1/4 < ν.
Next we consider Ri(y, s). We see from (1.12) that

|y| 12 z
(l)
ν+μ−q(|y|, s)|Ri(y, s)|k

≤ C(U[ k+1
2

](t))
2w+(|y|, s)−1+μ−qwcl

(|y|, s)−2ν(〈u(y, s)〉k + [∂u(y, s)]k+1)

≤ C(U[ k+1
2

](t))
2{(1 + |y| + s)−q〈u(y, s)〉k + (1 + |y| + s)−

1
2
−q[∂u(y, s)]k+1},

by 0 < μ < 1/2. Moreover, if q ≥ 1/2, then we have

|y| 12 z
(l)
ν+μ−q(|y|, s)|Ri(y, s)|k

≤ C(U[ k+1
2

](t))
2[w+(|y|, s)ν+μ−qwcl

(|y|, s)−2ν |y| 12 |∂u(y, s)|k+1

+w+(|y|, s)−1+μ−qwcl
(|y|, s)−2ν〈u(y, s)〉k]

≤ C(U[ k+1
2

](t))
2{(1 + s)−θDk+2(s) + (1 + |y| + s)−q〈u(y, s)〉k}.

Finally, we consider H i(y, s). Then we have

|y| 12 z
(l)
ν+μ−q(|y|, s)|H i(y, s)|k ≤ C(U[ k+1

2
](t))

3w+(|y|, s)− 1
2
+ν+μ−q

× wcl
(|y|, s)1−3ν(|y| 12 |∂u(y, s)|k+1 + 〈u(y, s)〉k)

≤ C(U[ k+1
2

](t))
2{(1 + s)−θDk+2(s) + (1 + |y| + s)−q〈u(y, s)〉k},

by (6.1) and ν > 1/3. Thus we obtain (6.3), and the proof is completed. �
Corollary 6.1. Let the assumptions of Lemma 6.1 be fulfilled, and C0 and
C2 be the constants in Corollary 4.1 and Lemma 6.1, respectively. Let u ∈
C∞(R2 × [0, T )) be a solution of (1.1) and (1.2). If we assume

C0C2U[ k+2
2

](t) ≤
1
2
, U[ k+2

2
](t) ≤ 1 for 0 ≤ t < T, (6.7)
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then we have

〈u(x, t)〉k+1(1 + |x| + t)−q ≤ C0ε + C4(U[ k+1
2

]+1(t))
2
[
(1 + s)−θDk+3(s)

+ C3(q)(1 + |y| + s)−
1
2
−q[∂u(y, s)]k+2

]
, (6.8)

and

[∂
u(x, t)]k(1 + |x| + t)−q ≤ C0ε + C4(U[ k+1
2

]+1(t))
2
[
(1 + s)−θDk+3(s)

+ C3(q)(1 + |y| + s)−
1
2
−q[∂u(y, s)]k+2

]
(6.9)

for (x, t) ∈ R
2 × [0, T ) and � = 1, 2, where C4 is a constant independent of

T and ε.

Proof. First we prove (6.8), by using (4.35), (4.4), and (6.3) with q = 0.
Thanks to (6.7), the term sup(y,s)∈R2×[0,t](1 + |y| + s)−q〈u(y, s)〉k+1 on the
right-hand side can be absorbed by the left. Thus we get (6.8). Moreover,
(6.9) follows from (4.36), (6.3), and (6.8). �
End of the Proof of Theorem 1.1. Let N ≥ 6 and put

B0 := min
{

1,
C1θ

2
,

1
2C0C2

}
,

where C0 is the number in Corollary 4.1, C1 in Proposition 5.1, and C2 and
θ in Lemma 6.1. By the local existence theorem (see for instance [18], also
[13]), for any initial data f i, gi ∈ C∞

0 (R2), there are positive constants εN

and TN such that for any ε with 0 < ε ≤ εN there exists a smooth solution
u(x, t) of (1.1) and (1.2) in (x, t) ∈ R

2 × [0, TN ]. Moreover, we have

lim
ε→0

max
0≤t≤TN

(‖u(t)‖HN + ‖∂tu(t)‖HN−1) = 0, (6.10)

where ‖u‖Hk = ‖〈ξ〉kF [u]‖L2
ξ
. Hence it follows from Sobolev’s inequality

and the finite speed of propagation that there is ε∗ = ε∗(N, ν, TN , B0) > 0
such that for 0 < ε ≤ ε∗

UN (t) ≤ B0 for 0 ≤ t ≤ T, (6.11)

where T = TN . Since [(N + 5)/2] + 1 ≤ N for N ≥ 6, we have from
Proposition 5.1

DN+5(t) ≤ Cε(1 + t)
θ
2 for 0 ≤ t < T, (6.12)

where C is independent of T and ε. Therefore, we get from Corollary 6.1(
〈u(x, t)〉k+1 +

2∑

=1

[∂
u(x, t)]k
)
(1 + |x| + t)−q (6.13)
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≤ Cε + C(U[ k+1
2

]+1(t))
2
[
ε + C3(q)(1 + |y| + s)−

1
2
−q[∂u(y, s)]k+2

]
,

for (x, t) ∈ R
2 × [0, T ) and k ≤ N + 2.

Hence, if we could show that for (x, t) ∈ R
2 × [0, T ), q ≥ 0, and k ≤ N +2

[∂tu(x, t)]k(1 + |x| + t)−q (6.14)

≤ Cε + C(U[ k+1
2

]+1(t))
2
[
ε + C3(q)(1 + |y| + s)−

1
2
−q[∂u(y, s)]k+2

]
holds, then there is a constant B1, independent of T and ε, such that

UN (t) ≤ B1ε(1 + (UN (t))2) for 0 ≤ t < T. (6.15)

In fact, (6.13) and (6.14) with k = N + 2 and q = 1/2 yield

(1 + |x| + t)−
1
2 [∂u(x, t)]N+2 ≤ Cε + Cε(UN (t))2, (6.16)

since C3(q) = 0 for q ≥ 1/2 and [(N + 3)/2] + 1 ≤ N . Substituting (6.16)
into (6.13) and (6.14) with k = N and q = 0, we get (6.15).

Once we get (6.15), we are able to show the existence of the global solution
of (1.1) and (1.2) for 0 < ε ≤ ε0 from the standard argument (see also, for
instance, Theorem 2.2 or its Corollary 2 of [20]), where ε0 is supposed to
satisfy

0 < ε0 ≤ ε∗, 2B1ε0 ≤ B0, 2(2B1ε0)2 ≤ 1.

Thus it remains to prove (6.14). We put T0 = min{T, 1}(≤ 1). Then for
(x, t) ∈ R

2 × [0, T0) we have (6.14) from Sobolev’s inequality and (6.12), due
to the finite speed of the propagation. While, if (x, t) ∈ R

2 × [T0, T ), then
we use the operator S = t∂t + r∂r and see that

wi(r, t)|∂tu
i(x, t)|k ≤ C

2∑

=1

[∂lu(x, t)]k + C〈u(x, t)〉k+1

since t ≥ 1. This means that (6.14) follows from (6.13); hence, (6.15) holds.
This completes the proof of Theorem 1.1. �
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