
Weighted L“ and L’ Estimates for Solutions to the 
Classical Wave Equation in Three Space Dimensions 

SERGIU KLAINERMAN 
Courant Institute 

1. Introduction 

The aim of this paper is to present some new estimates, which we consider 
of independent interest, necessary to extend our previous work [l] on “semiglobal 
existence’’ to nonlinear wave equations in three space dimensions from the 
spherical symmetric case, considered there, to the general case. The extension 
will appear shortly in a joint paper with F. John [4]. 

We start with a study of the reduced initial value problem 

o u = o ,  
4 x 9  0) = 0, 

(1.1) 
u , ( x ,  0) = g(x), 

where 0 denotes the D’Alembertian t3f - 0: - 0:- 0: of the four-dimensional 
Minkovski space-time and a,, D, , 4, D3 the partial derivatives with respect to 
the variables t and x = ( x , , x 2 , x 3 ) .  The solution u = u ( x , t )  of (1.1) can be 
expressed in the simple form 

I r -yI=r 

where dSy is the area element of the sphere (y - X I  = t. Throughout this paper 
we shall assume g to be smooth and compactly supported in &I3; however both 
conditions can be appropriately relaxed. 

The following well-known estimates are immediate consequences of the closed 
formula (1.2): 

where 1) )ILi denotes the usual L1 norm in R3 and lDgl =El_,  lDigl. The inequality 
(i) can be somewhat refined by 

(i’) lu(x,  t ) lS C -  ’ 1 IDg(y)l d x  
t ly--xIzI 

Communications on Pure and Applied Mathematics, Vol. XXXVII, 269-288 (1984) 
@ 1984 John Wiley & Sons, Inc. CCC 0010-3640/84/020269-2OSO4.00 



S. KLAINERMAN 270 

whence, in particular, 

1 
(i") lu(x,  ?)Is C ~ ( t - ~ x ~ ) k ~ ~ ~ Y ~ k D g ~ ~ ~ '  9 

with 

IllYl"~llL~ = IYl"Dg(r)l dY9 

for every positive integer k, 0 5 1x1 < t. Though (i") seems sharper than (i), in 
practice it does not help much; when applied to nonlinear problems the gain in 
powers of l/(r-lxl) is more than compensated by the loss in powers of IyI. On 
the other hand, if g is spherical symmetric, i.e., g ( x )  = g ( r )  with r = J x l ,  we can 
express u in the form (see [l]) 

u(r,  r )  =- Ir+' Ag(A) dA 
2 r  11-11 

from which we can easily derive (see [l]) 

1 
2rlr - t1 

(i)  lu(r, Z ) I ~ -  llgllLI for all r z 0, t. ( 1.4) 

Also, 

(ii) loa rlu(r, t>l d r 5  A21g(A) l  dA =I(gllL1(R3), 

r -  r -  
(iii) J rlul(r, t)l d r s  J Alg(A)I dA, 

0 0 

One aim of this paper is to generalize the estimates (1.4) to the nonspherical 
symmetric case. The lack of spherical symmetry is best measured by the angular 
momentum operators 

(1.5) = xzD3-~3Dz.  Rz= x ~ D ,  -xlD3, R3= X~DZ-X~D, ,  

which have the remarkable property of commuting with 0,  

[a, a;] = 0 for i = 1,2 ,3 .  

These operators are intimately connected to the radiation operators 

(1.6) i = 1,2,3, 

which have played a major role in the recent fundamental work of F. John [2]. 
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Indeed, introducing Ri = lxlLi and Xi = x,/ lxl  for i = 1 , 2 , 3 ,  we have 

(1.7) R = - X x Q .  

In particular, (1.7) shows that for any given solution u of (1.1) the vector 
Ru must have the same asymptotic properties as those of u. Together with (1.3) 
(i") this remark gives a very simple interpretation for the improved uniform decay 
properties of L ,  u, Lzu, L3u which were derived and used in [2]. Our main results 
are included in Theorems 1, 2 and 3; Theorem 3 is the most important for 
applications to nonlinear problems. 

THEOREM 1. Consider u = u(x ,  t )  to be a solution of (1.1). Then, 

for all x # 0 , J X I  f t, 

where V u = (u , ,  u,, , uq, u,,) and t h 0. 

k Z O .  
Here, and elsewhere in this paper, R'g = (al, . . . R,,g),, ....., , , = l . 2 . 3  for every 

Remark 1.  The inequality (i) can also be expressed in the form 

for all r B 0, r # t, or, sharper, 

where A = l r - t l ,  B =  r f t .  

In fact, (i) follows immediately from (i') and the classical Sobolev inequality 
on the sphere 1x1 = 1 (see Lemma 1). 
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Remark 2. To remove the singularities in (i) we observe that, according to 
( 1 3 W ,  

l u ( x ,  t)l5 c- (Ig(r)l+lDg(r)l +lDzg(r>l) dy l + t  

which, together with (i), yields 
1 2 

(i") 1u(x, t)ls c (IlmlLl +lln'gllLl) 
( l + l ~ l ) ( 1 + l l ~ l - ~ l )  1-0 

for any x E d,  t > 0. 

Remark 3. As in (1.3)(i") we can sharpen (i") so that it reflects the fact that 
the solutions to (1.1) decay faster in the interior of their domain of propagation: 

2 

for any p 2 0, x E W3, t 2 0. As a consequence of (i"') we derive 

uniformly for x E R ~ ,  t z 0. 
The estimates (ii), (iii) show that the derivatives of u behave better, for large 

t, than u itself. Though, somewhat less transparent, this also holds true in the 
sup norm, a fact which is crucial in the proof of Theorem 3(i). 

THEOREM 2. Let u = u(x ,  t )  be u solution of (1.1); then for all r, t B 0 

whereA=Ir - t l ,B=r+ t .  

The proofs of both theorems are based on the following "polar expression" 
of formula (1.2) used by F. John in his appendix to  [2]: 
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where r = [ x I ,  O=(AZ+r2-t2)/2Ar and j , ( x , A , q )  is the average of g on the 
circle of intersection between the cone y - x = q1yI 1x1 with the sphere lyl =A, i.e., 

1 
(1.9) 

for x f 0,141 5 1,  4 being the angular measure on the circle. The formulas (1.8), 
(1.9) follow easily from (1.2) by introducing spherical coordinates 8, C$ on the 
sphere ly-x( = t with the polar axis pointing in the direction from x to 0 and 
introducing the new variable of integration 

(1.10) A'= r Z +  t z - 2 r l  cos 8. 

i, (5 A, 4 1 = i, ( 9 A, 4 )  = 2, I,, g(y) dC$ 
~ d Y ~ b ~ .  lYI3-+ 

In the last section of this paper we shall apply Theorems 1 and 2 to prove a 
theorem concerning the inhomogeneous problem 

(1.11) C l u = g ,  u=u ,=O at t = O ,  

where g is assumed to  be a smooth function of the arguments x, t compactly 
supported in x E R3 for each fixed t. We define the following weighted norms for 
g: 

and also 

Mk(g)= M(D"nPg), 

Nk(g)= C N(D"RBg), 

where, for any given multi-indices a, p, Do = D:lD,"2DYr and RP =nfl nf2n$;. 

1~1+1815k 
(1.13) 

l.l+lPIsk 

Given this notation we have (compare it with [2], Appendix): 

THEOREM 3. The solution u(  x,  t )  of (1.11) verifies the estimares 

for all x E B B ~ ,  t I 0, 

for al l  t B 0 and C a positive constant. 
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Remark. The estimates (i), (ii) of Theorem 3 are, in general, invalid if one 
replaces V u  by u itself. However, if in (1.11), g has the form g = Dih for some 
i = 0, 1 , 2 , 3  with Do = 3, and h a smooth function compactly supported in x, we 
have 

Before ending the introduction we make a few more remarks about the radiation 
operators L ,  , L 2 ,  L3 and Lo = d, +XL, ( x i / l x l )  Di which were considered in [2]. 
We introduce the "Lorentz operators" 

(1.14) =xis, + t ~ ~ ,  i = 1 ,2 ,3 ,  

and the dilation operators (see [3]) 

(1.15) 
3 

A ~ =  fa,+ 1 x ,D~.  
i - 1  

Like the angular momentum operators ni, the Ai  operators commute with 
0 while [Ao, 01 = -0. On the other hand, we can write Lo, L ,  , L 2 ,  L3 as linear 
combinations of Ao, A 1 ,  A 2 ,  A 3 ,  

(1.16) 

for i = 1 ,2 ,3 .  The formulas (1.13) and (1.7) together with the commutation 
properties of R i , A i , A o  give a very simple, quantitative explanation of the 
improved decay properties of Liu, i =0, 1,2 ,3 ,  where u is a solution of ( l . l ) ,  in 
both L2 and L" norms. 

2. Proof of Theorem 1 
The proof of (i) follows quite easily from (1.8). Indeed, 
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On the other hand, 

215 

which is an immediate consequence of the following form of the Sobolev inequality 
on spheres. 

LEMMA 1. Consider f to be a smooth function defined on I YI = I. We haue 

(2.3) 

where [ I  IIL1(s) is the L' norm on the sphere S = { Y E  R311 YI = 1). 

Proof of Lemma 1: It suffices to prove ( 2 . 3 )  for Y E  S in a neighborhood 
of the great circle Y I  =O. Introducing polar coordinates Y ,  =cos a, Yz  = 
sin a cos 8, Y ,  =sin a sin 8, we have a, = O, and a, = -sin 8 f12 +cos /3 0, and 
the proof follows that of the classical Sobolev inequality. 

In the proof of (ii) and (iii) we shall need the following 

LEMMA 2. Let g be a smooth function wirh compact support and let &(x, A ,  q )  
be defined by (1.9). We haue 

I i,(x, A, 4 )  dsX = 1 g ( A X ) d S x  
IXI= 1 1x1- 1 

(2.4) 

for every A > 0,141 5 1. 

Proof: The lemma follows from the invariance, with respect to rotations of 
the measure on S, induced by the linear continuous functional g-, 
jpq-, i ,(X 194) dSx. 

The proof of (ii) of the theorem is now easily deduced. By (1.8) and 
Lemma 2, 

1 L I U ( ~  t ) ~  d x =  Joa rdr  Jlx,., lu(rx,  r ) ~  ~ s X  
1x1 

= 2  lom dr cisx J'+' Alj,(X, A ,  o)I dA 
1x1-1 1r-11 

5 i Jom dr S,:I:l A dA I , x l ~ ,  I ~ ( W  d ~ x  
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Ig(AX)l dSx JA+'  dr 
IA-rI 

dorn A 2  dA L-, le(Ax)l dSx 

= k l L ' ( R 3  1 

which proves (ii). 
It remains to prove (iii). According to formula (1.8) we have, for i = 1,2,3, 

D i U ( X ,  c )  =- ' j,r+r Aj~&(x, A, Q) dA. 

Q = ( A 2 +  r2 - t2)/2Ar, r = 1x1 # 0. We now split the derivatives Di = Dyi = 
a/dy i ,  i = 1,2,3, into their radial component DlYl = DA =I;=., y j / l y l  - D , ,  and the 
angular components 

2r 1-11 
(2.5) 

(2.6) D d Y )  = L , g ( y ) +  YlD& 
where 

Yl Y,=-, I y l = A .  

Accordingly, we obtain the following important decomposition of jD,, (see also 
[2], Appendix): 

(2.7) 

lY l  

d .  
dq 

jD,,(X, A, Q) = jr,e + DA jy,, - Q A  -IY,, 

with QA = DAQ=( t2+A2-r2 ) /2A2r ,  and, as a consequence, 

(2.8) D1u = u, + u,+ u3, 

where, with X ,  = xJr, 

u,(x,  t )  =- jr+'  j R , , ( s  A, C?) dA, 

u2( x,  t )  = - ' lr+' jY, , (x ,  A, Q )  dA 

2r 11-11 

2r 11-11 

1 
2r  

+ - [ ( r +  t )X , (g ( r+  t)x) - (*Ir-- tIXl)g(*Ir- tlx)19' 

' Plus or minus sign depending on whether r 2 t or r < r. 
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Similarly, we have 

(2.9) 

where 

u,(x,  t )  = u ;  + u ; ,  

for all 1x1 = r ZO and Q, = - t /Ar .  
As in the proof of part (ii) of the theorem, we find 

(2.12) 

It only remains to estimate u3 and u;  in (2.8), respectively (2.9). To do this 
we need the following (see [2], Appendix): 

LEMMA 3. Consider g as above; then 

for all x + 0, q # *l and jLg = (IL,,,  j L 2 g , j L , s ) .  

We start by verifying the formula Proof: 
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Indeed, performing a rotation of x, it is enough to  verify (2.14) for x = El = 
(1, 0,O). Thus, 

Hence, 

On the other hand, since YiLi = 0, we can rewrite (2.14) as 

and, since X. Y=q.Ixl=IYI=l  we have I X i - 4 Y i I ~ l X - q Y ] = ( l - q 2 ) 1 ' 2  for 
all i = 1 , 2 , 3 ,  which proves the lemma. 

We now proceed to estimate u3 and ui. From the definition of u3(x, t )  in 
(2.8) we have, applying first Lemma 3 and then Lemma 2, 

(2.15) 
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where 

dr 
J ~ + ~ I  ( ( A  + r - t ) (  r + t - A ) ( A  + t - r ) ( A  + r + r))‘” 

dP 

s*” I ( A ,  t )  = 

(2.17) 

( A . 1 )  (( P ( P  - t ) (  P - A ) ( A  + r- P ) )  ‘ I 2  

with 2 p = A + r + t .  

Similarly, from (2.9), 

(2.18) -+u;(x, t)l d x s  lom M ( h ,  I )  dA 1 IRg(AX)I dS,. 
1x1 1x1-1 

On the other hand, the following lemma holds. 

LEMMA 4. I = I ( A ,  t )  can be estimated by 

(2.19) 

for all A, t h 0, A # 1. 

Together with (2.17), (2.18) and (2.10)-(2.12) we thus conclude the proof 
of part (iii) of the theorem. 

Proof of Lemma 4: From (2.17) we have 

We shall distinguish now between the following cases. 

Case 1”. O S A  S j t  or A B2t. 

Case 2”. j t  5 A B 21, A z r. 

Assume we are in the first case. If 0 5 A 5 i t ,  then, 
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Introducing u = (( p - t ) ) ’ I 2 /  A we have 

(2.22) 

If A Z2r, then 

(2.23) 

Hence, Z ( A ,  r)s Cl/t for case 1”. On the other hand, in the second case, 
performing the change of variables a = ( ( p - m a x  ( A ,  f ) ) / l A  - f I ) ” ’ ,  for the 
integral in (2.21) we find 

du 
(2.24) f ( A ,  r ) < -  

where A =(min ( f ,  A ) / l t - A l ) 1 ’ 2 .  Taking a = u / A  we obtain 

1 
S Ct log (1 + A ) ,  

which completes the proof of Lemma 4. 

Remark. At the end of this section we derive an L2-estimate which might 
be of some interest. With the same assumptions as those of Theorem 1 we have 

The proof is similar to that of part (ii) of Theorem 1. By virtue of (1.81, 
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(1,9), Cauchy-Schwartz inequality and Lemma 2, we derive 
m [ l 4 x ,  t)12 dx  = lo r2 dr lx,=, lu(rX, t)12 dS, 

(2.27) 

where 

for every r, r 20. Together with (2.27) this proves the assertion. 

3. Proof of Theorem 2 

As in the proof of part (iii) of Theorem 2 we shall make use of the decomposi- 
tions (2.8), (2.9). We shall also need the following modifications of Lemma 2, 3. 

Let 

S(lsr.q) = { Y E  ~ ' l l v l  = A  ; Y x 41YII41 

for any x f 0, A 2 0 5 q 5 1. Given a function on R3 we define 

where A(x, A , q )  is the area of Denoting by A,=fl:+fl:+fl;= 
R:+R:+R: the Laplace-Beltrami operator of the unit sphere S, we have the 
following Green's identity on IyI = A ;  

which, for q 2 0, yields 

LEMMA 3. Given g as in Lemma 3, 

(3.2) 

for all x f 0, q L 0, A 2 0. 

I--$(% A, 9 )  I 5 J;,I(x, A, 4 )  
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Following the same proof as that of Lemma 2 we deduce 

LEMMA 2'. Given g as above, q 8 0 ,  

(3.3) 

where 
t2+A2-rZ 

A =lyI, A Q , =  2hr . 
On the other hand, 

Hence, for IrL tl I A 5 r + t, 

s3+-, Ir- 4 
r 
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The inequalities ( 3 . 3 ,  (3.6), (3.9) prove Theorem 2 for the spatial derivatives 
of u. The estimates of the time derivative follow in identical manner from (2.9). 

4. Proof of Theorem 3 

By Duharnel’s principle the solution to the inhomogeneous Cauchy problem 

(4.1) Ou=g(x , t ) ,  u = u r = O  at t = O  

can be expressed in the form 

(4.2) 

where U’(x, 1 )  is the solution to the homogeneous problem 

U ( X ,  r )  = I,’ V’(x, t - s )  ds, 

0 II = 0, V(x,  0 )  = 0 ,  Vr( x ,  0 )  = g( x, s). 
Taking the gradient V ,  with respect to x ,  t, in (4.2) we deduce 

To prove part (i) of Theorem 3 we apply Theorem 2 to (4.3). Thus, for all 
r, r>0, I IVu(rX, t)l d& 

1x1-1 

B-’ ds 
r 

where A=Ir+s- t l ,  B = r + t - s .  

We now make use of the norms M,(g) introduced by (1.12), (1.13) and of 
the following straightforward 

LEMMA 5. Assume h is a smooth, compactly supported function in W3. Then, 

(a) 1 f~ Ih(y)l dy 5 C I M y ) l  dy, 
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for all A > 0. Consequently, 

1 
IVu(rX, t)l d&S C--M4(g)(I,+12+14), I 1x1-1 r (4.5) 

where C is a positive constant and 

f '  1 

P I  
1 I, ( l+B)( l+IB-sl)  ds7 

I3 = 4 ( r ,  t )  = 

with A = Ir+ s - tl, B = r + t - s. 
If r=lxlZ$, part (i) of the theorem is an immediate consequence of the 

following lemma. 

LEMMA 6. Given A = Ir+ s- tl ,  B = r +  t -  s and I,, I,, 1, defined above, we 
have, for all r 2 4, t 2 0 and C a positive constant, 

log (1 + t) 
l + l r - t l  ' 

(a) I l ( r ,  t )  5 C 

log ( 1  + t) 
1+Ir - t ]  ' 

(b) 12(r, t )  S C 

log (1 + t) 
l + r + t  ' 

(c) I,( r, t )  5 C 

Indeed, if r Z $  we derive, from (4.3, 

where C is a positive constant. On the other hand, using Lemma 1 and the 
commutation properties of the Q's with 0 we conclude that 

(4.6) 

for all r = 1x1 h $, t 2 0 and C a positive constant. 
If OS 1x1 5 f we use, instead of Theorem 2, formula (1.2) of the introduction. 
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Applying it to (4.3) we derive 

and by virtue of Lemma 5 and the notation (1.12), (1.13) we infer that 

1 or, since r -  s -IS IyI s t - s + t ,  
r :  1 

l og ( l+ t )  
S C  M A g )  l + f  

Together with (4.6) this proves Theorem 3(i). 

(4.8) 

Proof of Lemma 6: We start with a proof of 
1 + \ A  - s1= 1 + r - f and thus 

Z2( r, t )  = - 

1 l o g ( l + r )  -- - 
l + r - f  l + r - t  

log (1 + t) 
5 

l + r - - t  ' 

If O S f < f ,  

(b). Assume r l f ;  then, 

(4.9) 
ds 

1 
+ Jr:rl+s+r-f l + f - r  

log (1 +t) 
4 C  

l + t - r  ' 

which together with (4.8) proves (b). The proof of (c) follows exactly the same 
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lines. To prove (a) we first remark that 

ds 
1 d s 5  J" max 1 

~ + A A S A S B  ( l+A) ( l+ lA-~ l )  

dsSC 

jo' max 
A S A S B  ( I  +,\)'(I +!A - sl) 

(4.10) 
log (1 + t )  ' 1  1 

0 l + A  l + ~  l + ~ c - r ~  
-- 

Thus, it remains to estimate 

Assume 3r 5 t. Then, 

(4.11) 1 0 s + ( t  - r )  s z ( t +  r )  s t -  r s r. 

Accordingly we split up H into H = H I  + Hz+H3, where 

H, =- ds sup 
1 , 

ASAIB ( l + A ) ( l + A - S )  

1 
ds sup 

ds sup 
1 

A s A I B ( ~ ~ A ) ( I ~ ~ A - S ( )  ' 

H 3 = ~  I' ( r + r ) / 2  ASASS ( 1  +A)(1 + $ - A )  * 

Thus, we verify easily that 

ds 
1 

(4.12) 
1 log(l+t-r) 

5 C- 9 

r l + t - r  

(4.14) s!J' L( l +  ) d s  

5 C -  

r (r+r)/22+s l+Ir+s-rI 1+2s - (r+t )  

1 l og ( l+ t )  
r l + t - r  
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Hence, for every r, r Z 0 , 3 r  5 r, 

(4.15) 

On the other hand, for 3r B f and r Z we have 1 + ( r  - t l 1 4 r .  Hence, 

which, together with (4.15), (4.10) concludes the proof of part ( i )  of Theorem 3. 

Proof of part 6): This is a straightforward consequence of Theorem 1 ( i i i )  
applied to (4.3). Indeed, for all I Z 0, 

(4.17) 

Applying the Cauchy-Schwartz inequality and the notation (1.12), ( l . l 3 j ,  we 
derive 

where C is a positive constant and 

(4.19) 

where 

(4.20) 

= lot I (  r, s) ds, 
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1 Splitting up the interval of integration in (4.20) into A E [ S - ~ ,  s+4] and 
A E R+\[s -4, s ++I and using, for the second part, the inequalities 

(4.21) 

as well as 

1 --(-+ 1 1 
(4.22) (1 +,i)(l + l A  + s - tl>- 1 + t -  s 1 + A  1 +lr\ 

~A-S~(l+~A+~-t~) l+lt-2sl Ih-sl 
(4.23) 1 s ('+ 
we infer that, for all 0 S s 5 t, 

(4.24) 
2-t-t-s l+lt-2sl 

I (  t, s) 5 c[ -J-+ 

Hence, J ( t )  S C log (1 + r )  which, together with (4.18), concludes the proof of 
Theorem 3. 
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