Weighted L^{∞} and L^{1} Estimates for Solutions to the
 Classical Wave Equation in Three Space Dimensions

SERGIU KLAINERMAN
Courant Institute

1. Introduction

The aim of this paper is to present some new estimates, which we consider of independent interest, necessary to extend our previous work [1] on "semiglobal existence" to nonlinear wave equations in three space dimensions from the spherical symmetric case, considered there, to the general case. The extension will appear shortly in a joint paper with F. John [4].

We start with a study of the reduced initial value problem

$$
\begin{align*}
\square u & =0, \\
u(x, 0) & =0, \quad u_{1}(x, 0)=g(x), \tag{1.1}
\end{align*}
$$

where \square denotes the D'Alembertian $\partial_{1}^{2}-D_{1}^{2}-D_{2}^{2}-D_{3}^{2}$ of the four-dimensional Minkovski space-time and $\partial_{1}, D_{1}, D_{2}, D_{3}$ the partial derivatives with respect to the variables t and $x=\left(x_{1}, x_{2}, x_{3}\right)$. The solution $u=u(x, t)$ of (1.1) can be expressed in the simple form

$$
\begin{equation*}
u(x, t)=\frac{1}{4 \pi t} \iint_{|x-y|=1} g(y) d S_{y}, \tag{1.2}
\end{equation*}
$$

where $d S_{y}$ is the area element of the sphere $|y-x|=t$. Throughout this paper we shall assume g to be smooth and compactly supported in \mathbb{R}^{3}; however both conditions can be appropriately relaxed.

The following well-known estimates are immediate consequences of the closed formula (1.2):

$$
\begin{array}{lr}
\text { (i) }|u(x, t)| \leqq c \frac{1}{t} \int|D g(y)| d y, & x \in \mathbb{R}^{3}, t>0 \\
\text { (ii) }\|u(t)\|_{L^{\prime}} \leqq C t\|g\|_{L^{\prime}}, & t \geqq 0 \tag{1.3}
\end{array}
$$

where $\left\|\|_{L^{\prime}}\right.$ denotes the usual L^{1} norm in \mathbb{R}^{3} and $|D g|=\sum_{i=1}^{3}\left|D_{i g}\right|$. The inequality (i) can be somewhat refined by

$$
\text { (i') }|u(x, t)| \leqq C \frac{1}{t} \int_{|y-x| z t}|D g(y)| d y,
$$

whence, in particular,

$$
\text { (i") }|u(x, t)| \leqq C \frac{1}{t(t-|x|)^{k}}\left\||y|^{k} D g\right\|_{L^{1}},
$$

with

$$
\left\||y|^{k} D g\right\|_{L^{\prime}}=\int|y|^{k}|\operatorname{Dg}(y)| d y,
$$

for every positive integer $k, 0 \leqq|x|<t$. Though (i") seems sharper than (i), in practice it does not help much; when applied to nonlinear problems the gain in powers of $1 /(t-|x|)$ is more than compensated by the loss in powers of $|y|$. On the other hand, if g is spherical symmetric, i.e., $g(x)=g(r)$ with $r=|x|$, we can express u in the form (see [1])

$$
u(r, t)=\frac{1}{2 r} \int_{|r-t|}^{r+t} \lambda g(\lambda) d \lambda
$$

from which we can easily derive (see [1])

$$
\begin{equation*}
\text { (i) } \quad|u(r, t)| \leqq \frac{1}{2 r|r-t|}\|g\|_{L^{\prime}} \quad \text { for all } \quad r \neq 0, t . \tag{1.4}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& \text { (ii) } \int_{0}^{\infty} r|u(r, t)| d r \leqq \int_{0}^{\infty} \lambda^{2}|g(\lambda)| d \lambda=\|g\|_{L^{\prime}\left(R^{3}\right)}, \\
& \text { (iii) } \int_{0}^{\infty} r\left|u_{r}(r, t)\right| d r \leqq \int_{0}^{\infty} \lambda|g(\lambda)| d \lambda, \\
& \text { (iii } i_{2} \text {) } \int_{0}^{\infty} r\left|u_{r}(r, t)\right| d r \leqq \int_{0}^{\infty} \lambda|g(\lambda)| d \lambda+\frac{1}{2} \int_{0}^{\infty} \lambda \log \frac{\lambda+t}{|\lambda-t|}|g(\lambda)| d \lambda .
\end{aligned}
$$

One aim of this paper is to generalize the estimates (1.4) to the nonspherical symmetric case. The lack of spherical symmetry is best measured by the angular momentum operators

$$
\begin{equation*}
\Omega_{1}=x_{2} D_{3}-x_{3} D_{2}, \quad \Omega_{2}=x_{3} D_{1}-x_{1} D_{3}, \quad \Omega_{3}=x_{1} D_{2}-x_{2} D_{1} \tag{1.5}
\end{equation*}
$$

which have the remarkable property of commuting with \square,

$$
\left[\square, \Omega_{i}\right]=0 \quad \text { for } \quad i=1,2,3 .
$$

These operators are intimately connected to the radiation operators

$$
\begin{equation*}
L_{i}=D_{i}-\sum_{j=1}^{3} \frac{x_{i} x_{j}}{|x|^{2}} D_{j}, \quad i=1,2,3 \tag{1.6}
\end{equation*}
$$

which have played a major role in the recent fundamental work of F. John [2].

Indeed, introducing $R_{i}=|x| L_{i}$ and $X_{i}=x_{i} /|x|$ for $i=1,2,3$, we have

$$
\begin{equation*}
R=-X \times \Omega \tag{1.7}
\end{equation*}
$$

In particular, (1.7) shows that for any given solution u of (1.1) the vector $R u$ must have the same asymptotic properties as those of u. Together with (1.3) (i") this remark gives a very simple interpretation for the improved uniform decay properties of $L_{1} u, L_{2} u, L_{3} u$ which were derived and used in [2]. Our main results are included in Theorems 1, 2 and 3; Theorem 3 is the most important for applications to nonlinear problems.

Theorem 1. Consider $u=u(x, t)$ to be a solution of (1.1). Then,

$$
\text { (i) }|u(x, t)| \leqq C \frac{1}{|x| \| x|-t|}\left(\|g\|_{L^{1}}+\|\Omega g\|_{L^{\prime}}+\left\|\Omega^{2} g\right\|_{L^{\prime}}\right)
$$

for all $x \neq 0,|x| \neq t$,
(ii) $\int \frac{1}{|x|}|u(x, t)| d x \leqq\|g\|_{L^{\prime}}$,
(iii) $\int \frac{1}{|x|}|\nabla u(x, t)| d x$

$$
\leqq C \int \frac{1}{|x|}\left(1+\log \frac{|x|+t}{| | x|-t|}\right)(|\Omega g(x)|+|g(x)|) d x
$$

where $\nabla u=\left(u_{t}, u_{x_{1}}, u_{x_{2}}, u_{x_{3}}\right)$ and $t \geqq 0$.
Here, and eisewhere in this paper, $\Omega^{k} g=\left(\Omega_{t_{1}} \cdots \Omega_{t_{k}} g\right)_{1_{1} \cdots, k_{k}=1,2,3}$ for every $k \geqq 0$.

Remark 1. The inequality (i) can also be expressed in the form
(i') $\int_{|X|=1}|u(r X, t)| d S_{X} \leqq \frac{1}{r|r-t|}\|g\|_{L^{\prime}}$
for all $r \geqq 0, r \neq t$, or, sharper,
(ii') $\int_{|X|=1}|u(r X, t)| d S_{X} \leqq \frac{1}{2} \int_{A \leq|y| \leq B} \frac{1}{|y|}|g(y)| d y$,
where $A=|r-t|, B=r+t$.
In fact, (i) follows immediately from (i^{\prime}) and the classical Sobolev inequality on the sphere $|X|=1$ (see Lemma 1).

Remark 2. To remove the singularities in (i) we observe that, according to (1.3)(i),

$$
|u(x, t)| \leqq C \frac{1}{1+t} \int\left(|g(y)|+|D g(y)|+\left|D^{2} g(y)\right|\right) d y
$$

which, together with (i), yields
(i') $\quad|u(x, t)| \leqq \frac{1}{(1+|x|)(1+\| x|-t|)} \sum_{i=0}^{2}\left(\left\|D^{i} g\right\|_{L^{\prime}}+\left\|\Omega^{i} g\right\|_{L^{1}}\right)$
for any $x \in \mathbb{R}^{3}, t>0$.
Remark 3. As in (1.3)($\mathrm{i}^{\prime \prime}$) we can sharpen ($\mathrm{i}^{\prime \prime}$) so that it reflects the fact that the solutions to (1.1) decay faster in the interior of their domain of propagation:
($i^{\prime \prime \prime}$)

$$
\begin{aligned}
|u(x, t)| \leqq C & \frac{1}{(1+|x|)(1+||x|-t|)^{1+p}} \\
& \times \sum_{i=0}^{2}\left(\left\|(|y|+1)^{p} D^{i} g\right\|_{L^{\prime}}+\left\|(|y|+1)^{p} \Omega^{i} g\right\|_{L^{\prime}}\right)
\end{aligned}
$$

for any $p \geqq 0, x \in \mathbb{R}^{3}, t \geqq 0$. As a consequence of ($\mathrm{i}^{\prime \prime \prime}$) we dèrive

$$
\frac{1}{(1+|x|)^{p}}|u(x, t)| \leqq C \frac{1}{(1+t)^{1+p}}
$$

uniformly for $x \in \mathbb{R}^{3}, t \geqq 0$.
The estimates (ii), (iii) show that the derivatives of u behave better, for large t, than u itself. Though, somewhat less transparent, this also holds true in the sup norm, a fact which is crucial in the proof of Theorem 3(i).

ThEOREM 2. Let $u=u(x, t)$ be a solution of (1.1); then for all $r, t \geqq 0$

$$
\begin{aligned}
& \int_{|X|=1}|\nabla u(r X, t)| d S_{X} \\
& \leqq C \frac{1}{r}\left(1+\frac{A}{r}\right) \int_{A S|y| \leqslant B} \frac{1}{|y|^{2}}\left(|g|+|\Omega g|+\left|\Omega^{2} g\right|\right) d y \\
& \quad+C \frac{1}{r}\left[A^{-1} \int_{|y|=A}|g(y)| d S y+B^{-1} \int_{|y|=B}|g(y)| d S y\right]
\end{aligned}
$$

where $A=|r-t|, B=r+t$.
The proofs of both theorems are based on the following "polar expression" of formula (1.2) used by F. John in his appendix to [2]:

$$
\begin{equation*}
u(x, t)=\frac{1}{2 r} \int_{|r-t|}^{r+t} \lambda j_{g}(x, \lambda, Q) d \lambda \tag{1.8}
\end{equation*}
$$

where $r=|x|, Q=\left(\lambda^{2}+r^{2}-t^{2}\right) / 2 \lambda r$ and $j_{k}(x, \lambda, q)$ is the average of g on the circle of intersection between the cone $y \cdot x=q|y||x|$ with the sphere $|y|=\lambda$, i.e.,

$$
\begin{equation*}
j_{g}(x, \lambda, q)=j_{g}\left(\frac{x}{|x|}, \lambda, q\right)=\frac{1}{2 \pi} \int_{y \cdot x=q|y||x| \cdot|y|=\lambda} g(y) d \phi \tag{1.9}
\end{equation*}
$$

for $x \neq 0,|q| \leqq 1, \phi$ being the angular measure on the circle. The formulas (1.8), (1.9) follow easily from (1.2) by introducing spherical coordinates θ, ϕ on the sphere $|y-x|=t$ with the polar axis pointing in the direction from x to 0 and introducing the new variable of integration

$$
\begin{equation*}
\lambda^{2}=r^{2}+t^{2}-2 r \cos \theta \tag{1.10}
\end{equation*}
$$

In the last section of this paper we shall apply Theorems 1 and 2 to prove a theorem concerning the inhomogeneous problem

$$
\begin{equation*}
\square u=g, \quad u=u_{t}=0 \quad \text { at } \quad t=0 \tag{1.11}
\end{equation*}
$$

where g is assumed to be a smooth function of the arguments x, t compactly supported in $x \in \mathbb{R}^{3}$ for each fixed t. We define the following weighted norms for g:

$$
\begin{align*}
& M(g)=\sup _{s \geq 0} \int_{\mathbf{R}^{3}}(1+|y|)(1+||y|-s|)|g(y, s)| \frac{1}{1+|y|} d y \\
& N(g)=\sup _{s \geq 0}\left(\int_{\mathbf{R}^{3}}(1+|y|)^{2}(1+||y|-s|)^{2}|g(y, s)|^{2} d y\right)^{1 / 2}, \tag{1.12}
\end{align*}
$$

and also

$$
\begin{align*}
& M_{k}(g)=\sum_{|\alpha|+|\beta| \leq k} M\left(D^{\alpha} \Omega^{\beta} g\right), \\
& N_{k}(g)=\sum_{|\alpha|+|\beta| \leq k} N\left(D^{\alpha} \Omega^{\beta} g\right), \tag{1.13}
\end{align*}
$$

where, for any given multi-indices $\alpha, \beta, D^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha} D_{3}^{\alpha_{3}}$ and $\Omega^{\beta}=\Omega_{1}^{\beta_{1}} \Omega_{2}^{\beta_{2}} \Omega_{3}^{\beta_{3}}$.
Given this notation we have (compare it with [2], Appendix):
Theorem 3. The solution $u(x, t)$ of (1.11) verifies the estimates
(i) $|\nabla u(x, t)| \leqq C \frac{\log (1+t)}{(1+|x|)(1+||x|-t|)} M_{6}(g)$
for all $x \in \mathbb{R}^{3}, t \geqq 0$,
(ii) $\int \frac{1}{(|x|+1)}|\nabla u(x, t)| d x \leqq C \log (1+t) \cdot N_{1}(g)$
for all $t \geqq 0$ and C a positive constant.

Remark. The estimates (i), (ii) of Theorem 3 are, in general, invalid if one replaces ∇u by u itself. However, if in (1.11), g has the form $g=D_{i} h$ for some $i=0,1,2,3$ with $D_{0}=\partial_{t}$ and h a smooth function compactly supported in x, we have
(i') $|u(x, t)| \leqq C \frac{\log (1+t)}{(1+|x|)(1+||x|-t|)} M_{6}(h)$,
(ii') $\int \frac{1}{1+|x|}|u(x, t)| d x \leqq C \log (1+t) N_{1}(h)$.
Before ending the introduction we make a few more remarks about the radiation operators L_{1}, L_{2}, L_{3} and $L_{0}=\partial_{t}+\sum_{i=1}^{3}\left(x_{i} /|x|\right) D_{i}$ which were considered in [2]. We introduce the "Lorentz operators"

$$
\begin{equation*}
\Lambda_{i}=x_{i} \partial_{t}+t D_{i}, \quad i=1,2,3 \tag{1.14}
\end{equation*}
$$

and the dilation operators (see [3])

$$
\begin{equation*}
\Lambda_{0}=t \partial_{i}+\sum_{i=1}^{3} x_{i} D_{i} \tag{1.15}
\end{equation*}
$$

Like the angular momentum operators Ω_{i}, the Λ_{i} operators commute with \square while $\left[\Lambda_{0}, \square\right]=-\square$. On the other hand, we can write $L_{0}, L_{1}, L_{2}, L_{3}$ as linear combinations of $\Lambda_{0}, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}$,

$$
\begin{align*}
L_{0} & =\frac{1}{t+|x|}\left(\sum_{i=1}^{3} \frac{x_{i}}{|x|} \Lambda_{i}+\Lambda_{0}\right), \tag{1.16}\\
L_{i} & =\frac{1}{t}\left(\Lambda_{i}-\sum_{i=1}^{3} \frac{x_{i} x_{j}}{|x|^{2}} \Lambda_{j}\right)
\end{align*}
$$

for $i=1,2,3$. The formulas (1.13) and (1.7) together with the commutation properties of $\Omega_{i}, \Lambda_{i}, \Lambda_{0}$ give a very simple, quantitative explanation of the improved decay properties of $L_{i} u, i=0,1,2,3$, where u is a solution of (1.1), in both L^{2} and L^{∞} norms.

2. Proof of Theorem 1

The proof of (i) follows quite easily from (1.8). Indeed,

$$
\begin{equation*}
|u(x, t)| \leqq \frac{1}{2 r|r-t|} \int_{0}^{\infty} \lambda^{2} \sup _{|Y|=1}|g(\lambda Y)| d \lambda . \tag{2.1}
\end{equation*}
$$

On the other hand,

$$
\begin{gather*}
\sup _{|Y|=1}|g(\lambda Y)| \leqq C\left(\int_{|Y|=1}|g(\lambda Y)| d S_{Y}+\int_{|Y|=1}|\Omega g(\lambda Y)| d S_{Y}\right. \tag{2.2}\\
\left.+\int_{|Y|=1}\left|\Omega^{2} g(\lambda Y)\right| d S_{Y}\right)
\end{gather*}
$$

which is an immediate consequence of the following form of the Sobolev inequality on spheres.

Lemma 1. Consider f to be a smooth function defined on $|Y|=1$. We have

$$
\begin{equation*}
\sup _{|Y|=1}|f(Y)| \leqq C\left(\|f\|_{L^{1}(s)}+\|\Omega f\|_{L^{1}(S)}+\left\|\Omega^{2} f\right\|_{L^{\prime}(S)}\right) \tag{2.3}
\end{equation*}
$$

where $\left\|\|_{L^{1}(S)}\right.$ is the L^{1} norm on the sphere $S=\left\{Y \in \mathbb{R}^{3} \| Y \mid=1\right\}$.
Proof of Lemma 1: It suffices to prove (2.3) for $Y \in S$ in a neighborhood of the great circle $Y_{1}=0$. Introducing polar coordinates $Y_{1}=\cos \alpha, Y_{2}=$ $\sin \alpha \cos \beta, Y_{3}=\sin \alpha \sin \beta$, we have $\partial_{\beta}=\Omega_{1}$ and $\partial_{\alpha}=-\sin \beta \Omega_{2}+\cos \beta \Omega_{3}$ and the proof follows that of the classical Sobolev inequality.

In the proof of (ii) and (iii) we shall need the following
Lemma 2. Let g be a smooth function with compact support and let $j_{g}(x, \lambda, q)$ be defined by (1.9). We have

$$
\begin{equation*}
\int_{|X|=1} j_{g}(X, \lambda, q) d S_{X}=\int_{|X|=1} g(\lambda X) d S_{X} \tag{2.4}
\end{equation*}
$$

for every $\lambda>0,|q| \leqq 1$.
Proof: The lemma follows from the invariance, with respect to rotations of the measure on S, induced by the linear continuous functional $g \rightarrow$ $\int_{|X|=1} j_{g}(X, 1, q) d S_{X}$.

The proof of (ii) of the theorem is now easily deduced. By (1.8) and Lemma 2,

$$
\begin{aligned}
\int \frac{1}{|x|}|u(x, t)| d x & =\int_{0}^{\infty} r d r \int_{|x|=1}|u(r X, t)| d S_{X} \\
& \leqq \frac{1}{2} \int_{0}^{\infty} d r \int_{|X|=1} d S_{X} \int_{|r-t|}^{r+t} \lambda\left|j_{g}(X, \lambda, Q)\right| d \lambda \\
& \leqq \frac{1}{2} \int_{0}^{\infty} d r \int_{|r-t|}^{r+t} \lambda d \lambda \int_{|X|=1}|g(\lambda X)| d S_{X}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{\infty} \lambda d \lambda \int_{|X|=1}|g(\lambda X)| d S_{X} \int_{|\lambda-t|}^{\lambda+t} d r \\
& \leqq \int_{0}^{\infty} \lambda^{2} d \lambda \int_{|X|=1}|g(\lambda x)| d S_{X} \\
& =|g|_{L^{1}\left(R^{3}\right)},
\end{aligned}
$$

which proves (ii).
It remains to prove (iii). According to formula (1.8) we have, for $i=1,2,3$,

$$
\begin{equation*}
D_{i} u(x, t)=\frac{1}{2 r} \int_{|r-t|}^{r+t} \lambda j_{D_{i s}}(x, \lambda, Q) d \lambda . \tag{2.5}
\end{equation*}
$$

$Q=\left(\lambda^{2}+r^{2}-t^{2}\right) / 2 \lambda r, r=|x| \neq 0$. We now split the derivatives $D_{i}=D_{y_{i}}=$ $\partial / \partial y_{i}, i=1,2,3$, into their radial component $D_{|y|}=D_{\lambda}=\sum_{j=1}^{3} y_{j} /|y| \cdot D_{y}$, and the angular components

$$
\begin{gather*}
L_{i}=D_{y_{i}}-\sum_{i=1}^{3} \frac{y_{i} y_{i}}{|y|^{2}} D_{y_{i}}=\frac{1}{\lambda} R_{i} \\
D_{i} g(y)=L_{i} g(y)+Y_{i} D_{\lambda} g \tag{2.6}
\end{gather*}
$$

where

$$
Y_{i}=\frac{y_{i}}{|y|}, \quad|y|=\lambda
$$

Accordingly, we obtain the following important decomposition of $j_{D_{\mathrm{g}}}$ (see also [2], Appendix):

$$
\begin{equation*}
j_{D_{i} s}(x, \lambda, Q)=j_{L_{i g}}+D_{\lambda} j_{Y_{i} g}-Q_{\lambda} \frac{d}{d q} j_{Y_{i 8}} \tag{2.7}
\end{equation*}
$$

with $Q_{\lambda}=D_{\lambda} Q=\left(t^{2}+\lambda^{2}-r^{2}\right) / 2 \lambda^{2} r$, and, as a consequence,

$$
\begin{equation*}
D_{i} u=u_{1}+u_{2}+u_{3} \tag{2.8}
\end{equation*}
$$

where, with $X_{i}=x_{i} / r$,

$$
\begin{aligned}
u_{1}(x, t)= & \frac{1}{2 r} \int_{|r-t|}^{r+t} j_{R_{i}}(x, \lambda, Q) d \lambda \\
u_{2}(x, t)= & \frac{1}{2 r} \int_{|r-t|}^{r+t} j_{Y_{i g}}(x, \lambda, Q) d \lambda \\
& +\frac{1}{2 r}\left[(r+t) X_{i}(g(r+t) X)-\left(\pm|r-t| X_{i}\right) g(\pm|r-t| X)\right],{ }^{1} \\
u_{3}(x, t)= & -\frac{1}{2 r} \int_{|r-t|}^{r+t} \lambda Q_{\lambda} \frac{d}{d q} j_{Y, g}(x, \lambda, Q) d \lambda .
\end{aligned}
$$

[^0]Similarly, we have

$$
\begin{equation*}
u_{t}(x, t)=u_{1}^{\prime}+u_{2}^{\prime}, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{2 r}\left[(r+t) X_{i} g((r+t) X)-\left(\mp|r-t| X_{i}\right) g(\pm|r-t| X)\right], \\
& u_{2}^{\prime}=\frac{1}{2 r} \int_{|r-t|}^{r+t} \lambda Q_{t} \frac{d}{d q} j_{g}(x, \lambda, Q) d \lambda,
\end{aligned}
$$

for all $|x|=r \neq 0$ and $Q_{t}=-t / \lambda r$.
As in the proof of part (ii) of the theorem, we find

$$
\begin{equation*}
\int \frac{1}{|x|}\left|u_{1}(x, t)\right| d x \leqq \int \frac{1}{|x|}\left|R_{i} g\right| d x \tag{2.10}
\end{equation*}
$$

and,

$$
\begin{align*}
\begin{aligned}
\int \frac{1}{|x|}\left|u_{2}(x, t)\right| d x \leqq & \int \frac{1}{|x|}|g(x)| d x+\frac{1}{2} \int_{0}^{\infty}(r+t) d r \int_{|X|=1}|g((r+t) X)| d S_{X} \\
& +\frac{1}{2} \int_{0}^{\infty}(r-t) d r \int_{|X|=1}|g((r-t) X)| d S_{X} \\
\leqq & 2 \int \frac{1}{|x|}|g(x)| d x, \\
\text { 12) } \quad & \int \frac{1}{|x|}\left|u_{1}^{\prime}(x, t)\right| d x \leqq \int \frac{1}{|x|}|g(x)| d x .
\end{aligned}
\end{align*}
$$

It only remains to estimate u_{3} and u_{2}^{\prime} in (2.8), respectively (2.9). To do this we need the following (see [2], Appendix):

Lemma 3. Consider g as above; then

$$
\begin{equation*}
\left|\frac{d}{d q} j_{8}(x, \lambda, q)\right| \leqq \frac{\lambda}{\left(1-q^{2}\right)^{1 / 2}}\left|j_{L_{8}}(x, \lambda, q)\right| \tag{2.13}
\end{equation*}
$$

for all $x \neq 0, q \neq \pm 1$ and $j_{L_{8}}=\left(j_{L_{18}}, j_{L_{28}}, j_{L_{38}}\right)$.
Proof: We start by verifying the formula

$$
\begin{equation*}
\frac{d}{d q} j_{g}(x, \lambda, q)=\frac{\lambda}{1-q^{2}} \sum_{i=1}^{3} X_{i} j_{L ;}(x, \lambda, q) . \tag{2.14}
\end{equation*}
$$

Indeed, performing a rotation of x, it is enough to verify (2.14) for $x=E_{1}=$ $(1,0,0)$. Thus,

$$
j_{8}\left(E_{1}, \lambda, q\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(\lambda q, \lambda\left(1-q^{2}\right)^{1 / 2} \cos \phi, \lambda\left(1-q^{2}\right)^{1 / 2} \sin \phi\right) d \phi
$$

Hence,

$$
\begin{aligned}
\frac{d}{d q} j_{g}\left(E_{1}, \lambda, q\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \lambda\left(D_{1} g-\frac{q}{\left(1-q^{2}\right)^{1 / 2}} \cos \phi D_{2} g-\frac{q}{\left(1-q^{2}\right)^{1 / 2}} \sin \phi D_{3} g\right) d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \lambda\left(D_{1} g-\frac{q}{1-q^{2}} Y_{2} D_{2} g-\frac{q}{1-q^{2}} Y_{3} D_{3} g\right) d \phi \\
& =\frac{\lambda}{1-q^{2}} j_{L,}\left(E_{1}, \lambda, q\right) .
\end{aligned}
$$

On the other hand, since $\sum_{i=1}^{3} Y_{i} L_{i} \equiv 0$, we can rewrite (2.14) as

$$
\frac{d}{d q} j_{g}(x, \lambda, q)=\frac{\lambda}{1-q^{2}} \sum_{i=1}^{3}\left(X_{i}-q Y_{i}\right) j_{L, 8}(x, \lambda, q)
$$

and, since $X \cdot Y=q,|x|=|Y|=1$ we have $\left|X_{i}-q Y_{i}\right| \leqq|X-q Y|=\left(1-q^{2}\right)^{1 / 2}$ for all $i=1,2,3$, which proves the lemma.

We now proceed to estimate u_{3} and u_{2}^{\prime}. From the definition of $u_{3}(x, t)$ in (2.8) we have, applying first Lemma 3 and then Lemma 2,

$$
\begin{align*}
\int \frac{1}{|x|}\left|u_{3}(x, t)\right| d x & \leqq \frac{1}{2} \int_{0}^{\infty} d r \int_{|X|=1} d S_{X} \int_{|r-t|}^{r+1}\left|\lambda Q_{\lambda}\right|\left|\frac{d}{d q} j_{Y_{i 8}}(X, \lambda, O)\right| d \lambda \\
& \leqq \frac{1}{2} \int_{0}^{\infty} d r \int_{|r-r|}^{r+t} \frac{\left|\lambda Q_{\lambda}\right|}{\left(1-Q^{2}\right)^{1 / 2}} d \lambda \tag{2.15}\\
& \times\left(\int_{|X|=1}|R g(\lambda X)| d S_{X}+\int_{|X|=1}|g(\lambda X)| d S_{X}\right) .
\end{align*}
$$

Since,

$$
\frac{\left|\lambda Q_{\lambda}\right|}{\left(1-Q^{2}\right)^{1 / 2}} \leqq 2 \lambda t \frac{1}{((\lambda+r-t)(r+t-\lambda)(\lambda+t-r)(\lambda+r+t))^{1 / 2}},
$$

we have

$$
\begin{align*}
& \int \frac{1}{|x|}\left|u_{3}(x, t)\right| d x \tag{2.16}\\
& \quad \leqq \int_{0}^{\infty} \lambda t I(\lambda, t) d \lambda\left(\int_{|X|=1}|R g(\lambda X)| d S_{X}+\int_{|X|=1}|g(\lambda X)| d S_{Y}\right),
\end{align*}
$$

where

$$
\begin{align*}
I(\lambda, t) & =\int_{|\lambda+t|}^{\lambda+1} \frac{d r}{((\lambda+r-t)(r+t-\lambda)(\lambda+t-r)(\lambda+r+t))^{1 / 2}} \\
& =\frac{1}{2} \int_{\max (\lambda, t)}^{\lambda+1} \frac{d p}{\left((p(p-t)(p-\lambda)(\lambda+t-p))^{1 / 2}\right.} \tag{2.17}
\end{align*}
$$

with $2 p=\lambda+r+t$.
Similarly, from (2.9),

$$
\begin{equation*}
\int \frac{1}{|x|}\left|u_{2}^{\prime}(x, t)\right| d x \leqq \int_{0}^{\infty} \lambda t I(\lambda, t) d \lambda \int_{|X|=1}|R g(\lambda X)| d S_{X} . \tag{2.18}
\end{equation*}
$$

On the other hand, the following lemma holds.
Lemma 4. $I=I(\lambda, t)$ can be estimated by

$$
\begin{equation*}
I(\lambda, t) \leqq C \frac{1}{t}\left(1+\log \left(1+\left(\frac{\min (\lambda, t)}{|\lambda-t|}\right)^{1 / 2}\right)\right) \tag{2.19}
\end{equation*}
$$

for all $\lambda, t \geqq 0, \lambda \neq t$.
Together with (2.17), (2.18) and (2.10)-(2.12) we thus conclude the proof of part (iii) of the theorem.

Proof of Lemma 4: From (2.17) we have

$$
\begin{equation*}
I(\lambda, t) \leqq \frac{1}{2 t^{1 / 2}} \int_{\max (\lambda, t)}^{\lambda+t} \frac{d p}{((p-t)(p-\lambda)(\lambda+t-p))^{1 / 2}} . \tag{2.20}
\end{equation*}
$$

We shall distinguish now between the following cases.
Case $1^{\circ} .0 \leqq \lambda \leqq \frac{1}{2} t$ or $\lambda \geqq 2 t$.
Case 2°. $\frac{1}{2} t \leqq \lambda \leqq 2 t, \lambda \neq t$.
Assume we are in the first case. If $0 \leqq \lambda \leqq \frac{1}{2} t$, then,

$$
\begin{align*}
I(\lambda, t) & \leqq \frac{1}{2 t^{1 / 2}} \int_{1}^{\lambda+t} \frac{d p}{((p-t)(p-\lambda)(\lambda+t-p))^{1 / 2}} \\
& \leqq C \frac{1}{t} \int_{1}^{\lambda+t} \frac{d p}{((p-t)(\lambda+t-p))^{1 / 2}} . \tag{2.21}
\end{align*}
$$

Introducing $\sigma=((p-t))^{1 / 2} / \lambda^{1 / 2}$, we have

$$
\begin{align*}
I(\lambda, t) & \leqq C \frac{1}{t} \int_{0}^{1} \frac{d \sigma}{\left(1-\sigma^{2}\right)^{1 / 2}} \\
& \leqq C \frac{1}{t} \cdot 2 \pi \tag{2.22}
\end{align*}
$$

If $\lambda \geqq 2 t$, then

$$
\begin{align*}
I(\lambda, t) & \leqq \frac{1}{2 t^{1 / 2}} \int_{\lambda}^{\lambda+t} \frac{d p}{((p-t)(p-\lambda)(\lambda+t-p))^{1 / 2}} \\
& \leqq C \frac{1}{t} \int_{\lambda}^{\lambda+t} \frac{d p}{((p-\lambda)(\lambda+t-p))^{1 / 2}} \tag{2.23}\\
& =C \frac{1}{t} \int_{0}^{1} \frac{d \sigma}{\left(1-\sigma^{2}\right)^{1 / 2}}=C \frac{1}{t} 2 \pi
\end{align*}
$$

Hence, $I(\lambda, t) \leqq C 1 / t$ for case 1°. On the other hand, in the second case, performing the change of variables $\sigma=((p-\max (\lambda, t)) /|\lambda-t|)^{1 / 2}$, for the integral in (2.21) we find

$$
\begin{equation*}
I(\lambda, t)<\frac{1}{2(t \lambda)^{1 / 2}} \int_{0}^{A} \frac{d u}{\left(\left(1+u^{2}\right)\left(1-\frac{1}{A^{2}} u^{2}\right)\right)^{1 / 2}} \tag{2.24}
\end{equation*}
$$

where $A=(\min (t, \lambda) /|t-\lambda|)^{1 / 2}$. Taking $\alpha=u / A$ we obtain

$$
\begin{align*}
I(\lambda, t) & \leqq \frac{1}{2(t \lambda)^{1 / 2}} \int_{0}^{1} \frac{A}{\left(1+\alpha^{2} A^{2}\right)^{1 / 2}} \frac{d \alpha}{\left(1-\alpha^{2}\right)^{1 / 2}} \tag{2.25}\\
& \leqq C \frac{1}{t} \log (1+A)
\end{align*}
$$

which completes the proof of Lemma 4.
Remark. At the end of this section we derive an L^{2}-estimate which might be of some interest. With the same assumptions as those of Theorem 1 we have

$$
\begin{equation*}
\int|u(x, t)|^{2} d x \leqq C \int(1+|y|)^{2} \log ^{2}(1+|y|)|g(y)|^{2} d y \tag{2.26}
\end{equation*}
$$

The proof is similar to that of part (ii) of Theorem 1. By virtue of (1.8),
(1.9), Cauchy-Schwartz inequality and Lemma 2, we derive

$$
\begin{align*}
\int|u(x, t)|^{2} d x & =\int_{0}^{\infty} r^{2} d r \int_{|X|=1}|u(r X, t)|^{2} d S_{X} \\
& =\frac{1}{4} \int_{0}^{\infty} d r \int_{|X|=1} d S_{X}\left[\int_{|r-t|}^{r+t} \lambda j_{g}(X, \lambda, Q) d \lambda\right] \tag{2.27}\\
& \leqq C I(r, t) \int_{\mathbf{R}^{3}}(1+|y|)^{2} \log ^{2}(1+|y|)|g(y)|^{2} d y
\end{align*}
$$

where

$$
\begin{aligned}
I(r, t) & =\int_{0}^{\infty} d r \int_{|r-1|}^{r+t} \frac{1}{(1+\lambda)^{2} \log ^{2}(1+\lambda)} d \lambda \\
& =\int_{|r-t|}^{r+t} \frac{\min (\lambda, t)}{(1+\lambda)^{2} \log ^{2}(1+\lambda)} d \lambda \leqq C
\end{aligned}
$$

for every $r, t \geqq 0$. Together with (2.27) this proves the assertion.

3. Proof of Theorem 2

As in the proof of part (iii) of Theorem 2 we shall make use of the decompositions (2.8), (2.9). We shall also need the following modifications of Lemma 2, 3.

Let

$$
S_{(x, \lambda, q)}=\left\{y \in \mathbf{R}^{3} /|y|=\lambda ; y \cdot x \geqq q|y||x|\right\}
$$

for any $x \neq 0, \lambda \geqq 0 \leqq q \leqq 1$. Given a function on \mathbb{R}^{3} we define

$$
J_{f}^{+}(x, \lambda, q)=\frac{1}{A(x, \lambda, q)} \int_{S_{(x, \lambda, q)}} f(y) d S_{y}
$$

where $A(x, \lambda, q)$ is the area of $S_{(x, \lambda, q)}$. Denoting by $\Delta_{S}=\Omega_{1}^{2}+\Omega_{2}^{2}+\Omega_{3}^{2}=$ $R_{1}^{2}+R_{2}^{2}+R_{3}^{2}$ the Laplace-Beltrami operator of the unit sphere S, we have the following Green's identity on $|y|=\lambda$;

$$
\begin{equation*}
\int_{S_{x, \lambda, q}} \Delta_{s} f(y) d S_{y}=-(2 \pi)\left(1-q^{2}\right) \frac{d}{d q} j_{f}(x, \lambda, q) \tag{3.1}
\end{equation*}
$$

which, for $q \geqq 0$, yields

Lemma 3. Given gas in Lemma 3,

$$
\begin{equation*}
\left|\frac{d}{d q} j_{g}(x, \lambda, q)\right| \leqq J_{\left|\Delta_{s g}\right|}^{+}(x, \lambda, q) \tag{3.2}
\end{equation*}
$$

for all $x \neq 0, q \geqq 0, \lambda \geqq 0$.

Following the same proof as that of Lemma 2 we deduce
Lemma 2^{\prime}. Given g as above, $q \geqq 0$,

$$
\begin{equation*}
\int_{|X|=1} J_{g}^{+}(X, \lambda, q) d S_{X}=\int_{|X|=1} g(\lambda X) d S_{X} \tag{3.3}
\end{equation*}
$$

Using both these lemmas, we obtain

$$
\begin{equation*}
\int_{|X|=1}\left|\frac{d}{d q} j_{g}(X, \lambda, q)\right| d S_{X} \leqq \int_{|X|=1}\left|\Delta_{s} g(\lambda X)\right| d S_{X} \tag{3.4}
\end{equation*}
$$

The proof of Theorem 2 as follows now easily. Indeed, from (2:8),

$$
\begin{align*}
& \int_{|X|=1}\left|u_{1}(r X, t)\right| d S_{X} \leqq \frac{1}{2 r} \int_{A \leq|y| \leq B} \frac{1}{|y|^{2}}|R g(y)| d y \tag{3.5}\\
& \int_{|X|=1}\left|u_{2}(r X, t)\right| d S_{X} \leqq \frac{1}{2 r} \int_{A \leq|y| \leq B} \frac{1}{|y|^{2}}|g(y)| d y \\
&+\frac{1}{2 r}\left[A^{-1} \int_{|y|=A}|g(y)| d S_{y}\right. \tag{3.6}\\
&\left.+B^{-1} \int_{|y|=B}|g(y)| d S_{y}\right] \\
& \int_{|X|=1}\left|u_{3}(r X, t)\right| d S_{X} \leqq \frac{1}{2 r} \cdot \int_{A \leq|y| \leq B} \frac{1}{|y|^{2}}\left|\lambda Q_{X}\right|\left|\Delta_{S} g(y)\right| d y \tag{3.7}
\end{align*}
$$ where

$$
\lambda=|y|, \quad \lambda Q_{\lambda}=\frac{t^{2}+\lambda^{2}-r^{2}}{2 \lambda r} .
$$

On the other hand,

$$
\lambda Q_{\lambda}=Q-\frac{(r-t)(r+t)}{\lambda r}
$$

Hence, for $|r-t| \leqq \lambda \leqq r+t$,

$$
\begin{align*}
\left|\lambda Q_{\lambda}\right| & \leqq 1+\frac{|r-t|}{\lambda r} \leqq 1+\frac{r+t}{r} \tag{3.8}\\
& \leqq 3+\frac{|r-t|}{r}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\int_{|X|=1}\left|u_{3}(r X, t)\right| d S_{X} \leqq \frac{1}{2 r} \int_{A S|y| \leqslant B} \frac{1}{|y|^{2}}\left(1+\frac{A}{r}\right)\left|\Delta_{s} g(y)\right| d y . \tag{3.9}
\end{equation*}
$$

The inequalities (3.5), (3.6), (3.9) prove Theorem 2 for the spatial derivatives of u. The estimates of the time derivative follow in identical manner from (2.9).

4. Proof of Theorem 3

By Duhamel's principle the solution to the inhomogeneous Cauchy problem

$$
\begin{equation*}
\square u=g(x, t), \quad u=u_{r}=0 \quad \text { at } \quad t=0 \tag{4.1}
\end{equation*}
$$

can be expressed in the form

$$
\begin{equation*}
u(x, t)=\int_{0}^{t} U^{s}(x, t-s) d s \tag{4.2}
\end{equation*}
$$

where $U^{s}(x, t)$ is the solution to the homogeneous problem

$$
U=0, \quad U(x, 0)=0, \quad U_{t}(x, 0)=g(x, s) .
$$

Taking the gradient ∇, with respect to x, t, in (4.2) we deduce

$$
\begin{equation*}
\nabla u(x, t)=\left.\int_{0}^{t}\left[\nabla_{\left(x, s^{\prime}\right)} U^{s}\left(x, s^{\prime}\right)\right]\right|_{s^{\prime}=t-s} d s \tag{4.3}
\end{equation*}
$$

To prove part (i) of Theorem 3 we apply Theorem 2 to (4.3). Thus, for all $r, t>0$,

$$
\int_{|x|=1}|\nabla u(r X, t)| d S_{X}
$$

(4.4) $\leqq C \frac{1}{r} \int_{0}^{1}\left(1+\frac{A}{r}\right) d s \int_{A \leq|y| \leq B}\left(|g(y, s)|+|\Omega g(y, s)|+\left|\Omega^{2} g(y, s)\right|\right) \frac{1}{|y|^{2}} d y$

$$
+C \frac{1}{r}\left(\int_{0}^{1} A^{-1} d s \int_{|y|=A}|g(y, s)| d S_{y}+\int_{0}^{1} B^{-1} d s \int_{|y|=B}|g(y, s)| d S_{y}\right),
$$

where $A=|r+s-t|, B=r+t-s$.
We now make use of the norms $M_{k}(g)$ introduced by (1.12), (1.13) and of the following straightforward

Lemma 5. Assume h is a smooth, compactly supponed function in \mathbb{R}^{3}. Then,
(a) $\int \frac{1}{|y|}|h(y)| d y \leqq C \int|D h(y)| d y$,
(b) $\int \frac{1}{|y|^{2}}|h(y)| d y \leqq C \int \frac{1}{(1+|y|)^{2}}\left(|h(y)|+|D h(y)|+\left|D^{2} h(y)\right|\right) d y$,
(c) $\int_{|Y|=1}|h(A Y)| d \dot{S}_{Y} \leqq C \int_{A}^{\infty} \int_{|Y|=1}|D h(\lambda Y)| d S_{Y}$,
for all $A>0$. Consequently,

$$
\begin{equation*}
\int_{|x|=1}|\nabla u(r X, t)| d S_{X} \leqq C \frac{1}{r} M_{4}(g)\left(I_{1}+I_{2}+I_{4}\right) \tag{4.5}
\end{equation*}
$$

where C is a positive constant and

$$
\begin{aligned}
& I_{1}=I_{1}(r, t)=\int_{0}^{t}\left(1+\frac{A}{r}\right) \max _{A \leq \lambda \leq B} \frac{1}{(1+\lambda)^{2}(1+|\lambda-s|)} d s, \\
& I_{2}=I_{2}(r, t)=\int_{0}^{t} \frac{1}{(1+A)(1+|A-s|)} d s \\
& I_{3}=I_{3}(r, t)=\int_{0}^{t} \frac{1}{(1+B)(1+|B-s|)} d s
\end{aligned}
$$

with $A=|r+s-t|, B=r+t-s$.
If $r=|x| \geqq \frac{1}{2}$, part (i) of the theorem is an immediate consequence of the following lemma.

Lemma 6. Given $A=|r+s-t|, B=r+t-s$ and I_{1}, I_{2}, I_{3} defined above, we have, for all $r \geqq \frac{1}{2}, t \geqq 0$ and C a positive constant,
(a) $\quad I_{1}(r, t) \leqq C \frac{\log (1+t)}{1+|r-t|}$,
(b) $\quad I_{2}(r, t) \leqq C \frac{\log (1+t)}{1+|r-t|}$,
(c) $I_{3}(r, t) \leqq C \frac{\log (1+t)}{1+r+t}$.

Indeed, if $r \geqq \frac{1}{2}$ we derive, from (4.5),

$$
\int_{|x|=1}|\nabla u(r X, t)| \leqq C M_{4}(g) \frac{\log (1+t)}{(1+r)(1+|r-t|}
$$

where C is a positive constant. On the other hand, using Lemma 1 and the commutation properties of the Ω 's withwe conclude that

$$
\begin{equation*}
|\nabla u(x, t)| \leqq C M_{6}(g) \frac{\log (1+t)}{(1+r)(1+|r-t|)} \tag{4.6}
\end{equation*}
$$

for all $r=|x| \geqq \frac{1}{2}, t \geqq 0$ and C a positive constant.
If $0 \leqq|x| \leqq \frac{1}{2}$ we use, instead of Theorem 2, formula (1.2) of the introduction.

Applying it to (4.3) we derive

$$
\begin{equation*}
u(x, t)=\frac{1}{4 \pi} \int_{0}^{t}(t-s) d s \int_{|\xi|=1} g(x+(t-s) \xi, s) d S_{\xi}, \tag{4.7}
\end{equation*}
$$

and by virtue of Lemma 5 and the notation (1.12), (1.13) we infer that

$$
|\nabla u(x, t)| \leqq C M_{2}(g) \int_{0}^{t} \frac{1}{\left(t-s+\frac{1}{2}\right)\left(|t-2 s|+\frac{1}{2}\right)} d s
$$

or, since $t-s-\frac{1}{2} \leqq|y| \leqq t-s+\frac{1}{2}$,

$$
\begin{aligned}
|\nabla u(x, t)| & \leqq C M_{2}(g) \int_{0}^{t} \frac{1}{\left(t-s+\frac{1}{2}\right)\left(|t-2 s|+\frac{1}{2}\right)} d s \\
& \leqq C \frac{\log (1+t)}{1+t} \cdot M_{2}(g) \\
& \leqq C \frac{\log (1+t)}{1+|t-|x||} M_{2}(g) .
\end{aligned}
$$

Together with (4.6) this proves Theorem 3(i).
Proof of Lemma 6: We start with a proof of (b). Assume $r \geqq t$; then, $1+|A-s|=1+r-t$ and thus

$$
\begin{align*}
I_{2}(r, t) & =\frac{1}{1+r-t} \int_{0}^{t} \frac{d s}{1+r+s-t} \\
& =\frac{1}{1+r-t} \frac{\log (1+r)}{1+r-t} \tag{4.8}\\
& \leqq \frac{\log (1+t)}{1+r-t}
\end{align*}
$$

If $0 \leqq r<t$,

$$
\begin{align*}
I_{2}= & \int_{0}^{(t-r) / 2} \frac{1}{1+t-r-s} \frac{1}{1+t-r-2 s} d s \\
& +\int_{(1-r) / 2}^{t-r} \frac{1}{1+t-r-s} \frac{1}{2 s-t+r} d s \\
& +\int_{t-r}^{t} \frac{1}{1+s+r-t} \frac{1}{1+t-r} d s \tag{4.9}\\
\leqq & C \frac{\log (1+t)}{1+t-r},
\end{align*}
$$

which together with (4.8) proves (b). The proof of (c) follows exactly the same
lines. To prove (a) we first remark that

$$
\begin{align*}
\int_{0}^{1} \max _{A \leq \lambda \leq B} \frac{1}{(1+\lambda)^{2}(1+|\lambda-s|)} d s & \leqq \int_{0}^{t} \frac{1}{1+A} \max _{A \leq \lambda \leq B} \frac{1}{(1+\lambda)(1+|\lambda-s|)} d s \tag{4.10}\\
& \leqq \int_{0}^{t} \frac{1}{1+A} \frac{1}{1+s} d s \leqq C \frac{\log (1+t)}{1+|t-r|} .
\end{align*}
$$

Thus, it remains to estimate

$$
H=\int_{0}^{1} \frac{1}{r} \max \frac{1}{(1+\lambda)(1+|\lambda-s|)} d s
$$

Assume $3 r \leqq t$. Then,

$$
\begin{equation*}
0 \leqq \frac{1}{2}(t-r) \leqq \frac{1}{2}(t+r) \leqq t-r \leqq t \tag{4.11}
\end{equation*}
$$

Accordingly we split up H into $H=H_{1}+H_{2}+H_{3}$, where

$$
\begin{aligned}
& H_{1}=\frac{1}{r} \int_{0}^{(t-r) / 2} d s \sup _{A \leq \lambda \leq B} \frac{1}{(1+\lambda)(1+\lambda-s)} \\
& H_{2}=\frac{1}{r} \int_{(1-r) / 2}^{(1+r) / 2} d s \sup _{A \leq \lambda \leq B} \frac{1}{(1+\lambda)(1+|\lambda-s|)} \\
& H_{3}=\frac{1}{r} \int_{(t+r) / 2}^{r} d s \sup _{A \leq \lambda \leq B} \frac{1}{(1+\lambda)(1+s-\lambda)}
\end{aligned}
$$

Thus, we verify easily that

$$
H_{1} \leqq \frac{1}{r} \int_{0}^{(t-r) / 2} \frac{1}{1+t-r-s} \frac{1}{1+t-r-2 s} d s
$$

$$
\begin{equation*}
\leqq C \frac{1}{r} \frac{\log (1+t-r)}{1+t-r}, \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
H_{2} \leqq \frac{1}{r} \int_{(t-r) / 2}^{(t+r) / 2} \frac{1}{1+s} d s \leqq C \frac{1}{1+t-r} \tag{4.13}
\end{equation*}
$$

$$
H_{3} \leqq \frac{1}{r} \int_{(1+r) / 2}^{1} \frac{1}{2+s} d s \sup _{A \leq \lambda \leq B}\left(\frac{1}{1+\lambda}+\frac{1}{1+s-\lambda}\right)
$$

$$
\begin{equation*}
\leqq \frac{1}{r} \int_{(t+r) / 2}^{t} \frac{1}{2+s}\left(\frac{1}{1+|r+s-t|}+\frac{1}{1+2 s-(r+t)}\right) d s \tag{4.14}
\end{equation*}
$$

$$
\leqq C \frac{1}{r} \frac{\log (1+t)}{1+t-r}
$$

Hence, for every $r, t \geqq 0,3 r \leqq t$,

$$
\begin{equation*}
H(r, t) \leqq C\left(1+\frac{1}{r}\right) \frac{\log (1+t)}{1+t-r} . \tag{4.15}
\end{equation*}
$$

On the other hand, for $3 r \geqq t$ and $r \geqq \frac{1}{2}$ we have $1+|r-t| \leqq 4 r$. Hence,

$$
\begin{align*}
H(r, t) & \leqq C \frac{1}{1+|r-t|} \int_{0}^{t} \max _{A \leq \lambda \leq B} \frac{1}{(1+\lambda)(1+|\lambda-s|)} d s \tag{4.16}\\
& \leqq C \frac{1}{1+|r-t|} \int_{0}^{t} \frac{1}{1+s} d S \leqq C \frac{\log (1+t)}{1+|r-t|},
\end{align*}
$$

which, together with (4.15), (4.10) concludes the proof of part (i) of Theorem 3.
Proof of part (ii): This is a straightforward consequence of Theorem 1 (iii) applied to (4.3). Indeed, for all $t \geqq 0$,

$$
\int \frac{1}{|x|+1}|\nabla u(x, t)| d x
$$

$$
\begin{align*}
& \leqq \int \frac{1}{|x|}|\nabla u(x, t)| d x \tag{4.17}\\
& \leqq \int_{0}^{1} d s \int_{\mathbf{R}^{3}} \frac{1}{|x|}\left(1+\log \frac{|x|+t-s}{| | x|-t+s|}\right)(|\Omega g(x, s)|+|g(x, s)|) d x .
\end{align*}
$$

Applying the Cauchy-Schwartz inequality and the notation (1.12), (1.13), we derive

$$
\begin{equation*}
\int \frac{1}{(1+|x|)}|\nabla u(x, t)| d x \leqq C J(t) N_{1}(g) \tag{4.18}
\end{equation*}
$$

where C is a positive constant and

$$
\begin{align*}
J(t) & =\int_{0}^{t} d s\left(\int_{0}^{\infty} \frac{(1+\log (\lambda+t-s) /|\lambda+s-t|)^{2}}{(1+\lambda)^{2}(1+|\lambda-s|)^{2}} d \lambda\right)^{1 / 2} \tag{4.19}\\
& =\int_{0}^{1} I(t, s) d s
\end{align*}
$$

where

$$
\begin{equation*}
I(t, s)=\left(\int_{0}^{\infty} \frac{(1+\log ((\lambda+s) /|\lambda-s|))^{2}}{(1+\lambda)^{2}(1+|\lambda+s-t|)^{2}}\right)^{1 / 2} \tag{4.20}
\end{equation*}
$$

Splitting up the interval of integration in (4.20) into $\lambda \in\left[s-\frac{1}{2}, s+\frac{1}{2}\right]$ and $\lambda \in R_{+} \backslash\left[s-\frac{1}{2}, s+\frac{1}{2}\right]$ and using, for the second part, the inequalities

$$
\begin{equation*}
\log \frac{\lambda+s}{|\lambda-s|} \leqq \log \left(1+2 \frac{\min (\lambda, s)}{|\lambda-s|}\right) \leqq 2 \frac{\lambda}{|\lambda-s|} \tag{4.21}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\frac{1}{(1+\lambda)(1+|\lambda+s-t|)} \leqq \frac{1}{1+t-s}\left(\frac{1}{1+\lambda}+\frac{1}{1+|\lambda+s-t|}\right), \tag{4.22}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{|\lambda-s|(1+|\lambda+s-t|)} \leq \frac{1}{1+|t-2 s|}\left(\frac{1}{|\lambda-s|}+\frac{1}{1+|\lambda+s-t|}\right), \tag{4.23}
\end{equation*}
$$

we infer that, for all $0 \leqq s \leqq t$,

$$
\begin{equation*}
I(t, s) \leqq C\left[\frac{1}{2+t-s}+\frac{1}{1+|t-2 s|}\right] . \tag{4.24}
\end{equation*}
$$

Hence, $J(t) \leqq C \log (1+t)$ which, together with (4.18), concludes the proof of Theorem 3.

Acknowledgments. I am particularly indebted to F. John for his interest in this work and for some very helpful suggestions. I would also like to thank C . Morawetz for useful discussions and Lin Chang-Shou for his elegant proof of Lemma 2.

The work for this paper was supported by the National Science Foundation under contract NSF-MCS-79-01599.

Bibliography

[1] Klainerman, S., Solutions to quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math. 36, 1983, pp. 325-344.
[2] John, F., Lower bounds for the life span of solutions of nonlinear wave equations in three dimensions, Comm. Pure Appl. Math. 36, 1983, pp. 1-36.
[3] Morawetz, C. S., Note on time decay and scattering for some hyperbolic problems, Regional Conference Series in Applied Mathematics 19, SIAM, Buffalo, June 3-7, 1973.
[4] John, F., and Klainerman, S., Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., issue 4, Vol. 37, 1984.
[5] Klainerman, S., Global existence for a special class of nonlinear wave equations in three space dimensions, in preparation.

Received January, 1983.

[^0]: ${ }^{1}$ Plus or minus sign depending on whether $r \geqq t$ or $r<t$.

