
Global Well-Posedness of Incompressible Elastodynamics
in Two Dimensions

ZHEN LEI
Fudan University

Institute for Advanced Study

Abstract

We prove that for sufficiently small initial displacements in some weighted Sobo-
lev space, the Cauchy problem of the systems of incompressible isotropic Hook-
ean elastodynamics in two space dimensions admits a uniqueness global classical
solution. © 2016 Wiley Periodicals, Inc.

1 Introduction
This paper considers the global existence of classical solutions to the Cauchy

problem in incompressible nonlinear elastodynamics. The elastic body is assumed
to be homogeneous, isotropic, and hyperelastic. The systems of equations describ-
ing the motion exhibit a nonlocal nature when one solves the pressure by invert-
ing a Laplacian. The linearized system turns out to be of wave type. We exploit
the fact that the nonlinearities in the systems of incompressible isotropic Hookean
elastodynamics are inherently strong linearly degenerate and automatically satisfy
a strong null condition.1 We prove the global existence of classical solutions to this
Cauchy problem in the two-dimensional case for small initial displacements in a
certain weighted Sobolev space.

To place our result in context, we review a few highlights from the existence
theory of nonlinear wave equations and elastodynamics. If the spatial dimension
is no bigger than three, the global existence of these equations hinges on two basic
assumptions (see [37]): the initial data being sufficiently small and the nonlinear-
ities satisfying a type of null condition. The absence of either of these conditions
may lead to the finite-time blowup of solutions. In particular, for 3D compress-
ible elastodynamics, John [14] proved the formation of finite-time singularities for
arbitrarily small spherically symmetric displacements without the null condition.
On the other hand, Tahvildar-Zadeh [42] proved the formation of singularities for
large displacements. For nonlinear wave equations with sufficiently small initial
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data but without the null condition, the finite-time blowup was shown by John [13]
and Alinhac [4] in 3D, and Alinhac [2, 3, 6] in 2D. We remark that the 2D case is
highly nontrivial. See also some related classical results by Sideris [34, 35].

From now on, we will always assume that the initial data is sufficiently small in
certain weighted Sobolev space since we are concerned with the long-time behavior
of nonlinear elastodynamics and nonlinear wave equations. The first nontrivial
long-time existence result may be the one by John and Klainerman [16] where
the almost global existence theory is obtained for the 3D quasilinear scalar wave
equation. In the seminal work [19], Klainerman introduced the vector field theory
and the so-called generalized energy method based on the scaling, rotation, and
Lorentz invariant properties of the wave operator, providing a general framework
for studying nonlinear wave equations. Then in [20], Klainerman proved the global
existence of classical solutions for 3D scalar quasilinear wave equations under the
assumptions that the nonlinearity satisfies the null condition. This landmark work
was also obtained independently by Christodoulou [8] using a conformal mapping
method. We also mention that John [15] established the almost global existence
theory for 3D compressible elastodynamics via an L1-L1 estimate.

The generalized energy method of Klainerman can be adapted to prove almost
global existence for certain nonrelativistic systems of 3D nonlinear wave equations
by using Klainerman-Sideris’s weighted L2 energy estimate, which only involves
the scaling and rotation invariance of the system, as was first done in [21]. This
approach was subsequently developed to obtain the global existence under the null
condition in [41]; see also [44] for a different method. Of particular importance
is that Sideris [37] (independently by Agemi [1], see also an earlier result [36])
proved the global existence of classical solutions to the 3D compressible elas-
todynamics under a null condition. For 3D incompressible elastodynamics, the
Hookean part of the system is inherently degenerate and satisfies a null condi-
tion. The global existence was established by Sideris and Thomases in [38, 40].
We would like to point out that a unified treatment for obtaining weighted L2 esti-
mates (of second-order derivatives of unknowns) for certain 3D hyperbolic systems
appeared in [39].

As pointed out in [27], the existence question is more delicate in the 2D case
because, even under the assumption of the null condition, quadratic nonlinearities
have at most critical time decay. A series of articles considered the case of cubi-
cally nonlinear equations satisfying the null condition; see, for example, [11, 17].
Alinhac [5] was the first to establish the global existence for the 2D scalar wave
equation with null bilinear forms. His argument combines vector fields with what
he called the ghost energy method. We emphasize that Alinhac took the advantage
of the Lorentz invariance of the system. In particular, at the time of this writing,
under null conditions, the global well-posedness of the following problems (for
which Lorentz invariance is not available) still remains widely open:

� nonlinear nonrelativistic wave systems in two dimensions and
� systems of nonlinear elastodynamics in two dimensions.
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The first nontrivial long-time existence result concerning the above two prob-
lems is the recent work by Lei, Sideris, and Zhou [27], in which the authors proved
the almost global existence for incompressible isotropic elastodynamics in 2D by
formulating the system in eulerian coordinates. Their proof is based on Klainer-
man’s generalized energy method, enhanced by Alinhac’s ghost energy method and
Klainerman-Sideris’s weighted L2 energy method. This was the first time that Al-
inhac’s ghost weight method was applied to the case where the Lorentz invariance
is absent and the system is nonlocal. A novel observation is the treatment of the
term involving pressure, which is shown to enjoy a null structure. Unfortunately, at
present, it seems hard for us to improve the result in [27] to be a global one under
the framework there.

In this paper, we prove the global existence of the incompressible elasticity in
two dimensions. To better illustrate our ideas and to make the presentation as
simple as possible, we will only focus on the typical Hookean case and treat the
general case in another paper using similar ideas. Our proof here is a more struc-
tural than one requiring involved technical tools. We first formulate the system
in Lagrangian coordinates. Let p denote the pressure and X the flow map. Let
Y.t; y/ D X.t; y/ � y. The first observation is that the main part of the main non-
linearity r�˛p always contains a term of .@2t ��/�

˛Y or .@t C @r/D�˛Y . Here
D denotes a space or time derivative and � is a vector field that is defined in Sec-
tion 2, above (2.11). This gives us the so-called strong null condition2 (we suggest
using this terminology). When we perform the highest-order generalized energy
estimate, at first glance we always lose one derivative if we bound the pressure
term in L2 (see Sections 4 and 5).

A natural way to avoid this difficulty may be to introduce the new unknowns

U ˛ D �˛Y C .rX/�T
r.��/�1r � Œ.rX/T�˛Y �

to symmetrize the system. Unfortunately, this idea leads to complicated calcula-
tions, and more essentially, it may not work at all. But fortunately the inherent
strong null structure of nonlinearities helps us to obtain a kind of estimate in which
we gain one derivative when estimating theL2 norm ofr�˛p (see Section 5). The
price we pay here is to have a smaller decay rate in time, which will be overcome
by applying Alinhac’s ghost weight as in [1]. For the lower-order energy estimate,
our observation is that instead of estimating the L2 norm of D�˛Y , we turn to
estimate its divergence-free part and curl-free part. The divergence-free part is not
a main problem. When estimating the curl-free part of �˛Y , the strong linearly
degenerate structure is present once again by appropriately rewriting the system in
the form of (6.1). Then the generalized energy estimate for the curl-free part of
�˛Y can be carried out with a subcritical time decay, which is hti�3=2 (it is still
not clear to us whether the similar estimate is true in eulerian coordinates).

2 When the usual null condition is satisfied by a quasi-linear wave systems, the nonlinearities
contain the term of .@t C @r /�˛Y in general.
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As in [21, 37], we need to estimate a kind of weighted L2 generalized energy
norm. A technical difficulty here is to control the weighted generalized L2 energy
X� in terms of the generalized energy E� . For this purpose, we will have to estimate
the r-weighted null form of r.@2t � �/Y , which does not seem true since r is not
in the Ap class of a zero-order Riesz operator for p D 2 in two space dimensions
(see Lemma 3.3 for details). We overcome this difficulty by considering a variety of
the weighted L2 generalized energy of Klainerman-Sideris [21] (see its definition
(2.13) in Section 2) so that we only need to estimate hti.@2t � �/Y . A trick here
is that instead of a gain of one derivative as in performing the highest-order energy
estimate in Section 5, we use the strong null condition to gain a suitable decay rate
in time.

Before ending this introduction, let us mention some related works on vis-
coelasticity where there is viscosity in the momentum equation. The global well-
posedness with near-equilibrium states in 2D is first obtained in [30]. The 3D case
was obtained independently in [7] (see also the thesis [22]) and [26]. The initial
boundary value problem is considered in [31], and the compressible case can be
found in [12, 33]. For more results near equilibrium, readers are referred to the
nice review paper by Lin [29] and other works in [10, 28, 45, 46] as references.
In [24] a class of large solutions in two space dimensions is established via the
strain-rotation decomposition (which is based on earlier results in [23] and [25]).
In all of these works, the initial data is restricted by the viscosity parameter. The
work [18] was the first to establish global existence for 3D viscoelastic materials
uniformly in the viscosity parameter. We also mention that Hao and Wang recently
established the local a priori estimate for the free boundary incompressible elasto-
dynamics in [9].

We will give a self-contained presentation for the whole proof. The remaining
part of this paper is organized as follows: In Section 2 we will formulate the system
of incompressible elastodynamics in Lagrangian coordinates and present its basic
properties; then we introduce some notation and state the main result of this paper.
We will outline the main steps of the proof at the end of this section. In Section
3 we will prove some weighted Sobolev imbedding inequalities, the weighted L1

estimate, and a refined Sobolev inequality. We also give the estimate for good
derivatives and lay down a preliminary step for estimating the weighted generalized
L2 energy. Then we will explore the estimate for the strong null form in Section 4,
and at the end of that section we give the estimate for the weighted L2 energy.
In Section 5 we present the highest-order generalized energy estimate. Then we
perform the lower-order generalized energy estimate in Section 6.

REMARK 1.1. After posting this article on arXiv (see arXiv:1402.6605), Xuecheng
Wang informed the author that he could give another proof of the main result that,
as being claimed in Wang’s paper [43], can improve the understanding of the be-
havior of solutions in different coordinates using a different approach and from the
point of view of frequency space.

http://arxiv.org/abs/1402.6605
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2 Equation and Its Basic Properties
In the incompressible case, the equations of elastodynamics are in general more

conveniently written as a first-order system with constraints in eulerian coordinates
(see, for instance, [27, 38, 40]). But we will formulate the system in Lagrangian
coordinates below.

For any given smooth flow map X.t; y/, we call it incompressible ifZ
�

dy D

Z
�t

dX; �t D fX.t; y/ j y 2 �g;

for any smooth bounded connected domain �. Clearly, the incompressibility is
equivalent to

det.rX/ � 1:

Denote

(2.1) X.t; y/ D y C Y.t; y/:

Then we have

(2.2) r � Y D � det.rY /:

Moreover, a simple calculation shows that

(2.3) .rX/�1 D

�
1C @2Y

2 �@1Y
2

�@2Y
1 1C @1Y

1

�
D .r �X/I � .rX/T:

We remark that throughout this paper we use the following convention:

.rY /ij D
@Y i

@yj
:

We often use the following notation:

! D
y

r
; r D jyj; !? D

�
�!2; !1

�
; r? D

�
�@2; @1

�
:

For homogeneous, isotropic, and hyperelastic materials, the motion of the elastic
fluids is determined by the following Lagrangian functional of flow maps:

(2.4)

L.X IT;�/ D
Z T

0

Z
�

�
1

2
j@tX.t; y/j

2
�W.rX.t; y//

C p.t; y/Œdet.rX.t; y// � 1�
�
dy dt:

Here W 2 C1.GL2;RC/ is the strain energy function, which depends only on
F D rX , and p.t; y/ is a Lagrangian multiplier that is used to force the flow
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maps to be incompressible. We say that X.t; y/ is a critical point of L if for a
given T 2 .0;1/ and bounded smooth connected domain �, there holds

d

d�

ˇ̌̌̌
�D0

L.X�IT;�/ D 0

for all p 2 C 1.RC � R2 ! R/ and any one-parameter family of incompress-
ible flow maps X� 2 C 1.RC � R2 ! R2/ with d

dt

ˇ̌
�D0

X�.t; y/ D Z.t; y/,
X0.t; y/ D X.t; y/, and Z.0; y/ D Z.T; y/ � 0 for all y 2 �, Z.t; y/ � 0 for
all t 2 Œ0; T �, and y 2 @�.

Let us focus on the simplest case, i.e., the Hookean case, in which the strain
energy functional is simply given by

W.rX/ D
1

2
jrX j2:

Clearly, the Euler-Lagrangian equation of (2.4) takes

(2.5)

(
@2t Y ��Y D �.rX/

�Trp;

r � Y D � det.rY /:

Let us take a look at the invariance groups of system (2.5). Suppose that X.t; y/
is a critical point of L in (2.4). Clearly, �X.t; y/ are also critical points of L in (2.4),
which are defined either by

(2.6) �X.t; y/ D QTX.t;Qy/ 8Q D e�A; A D

�
0 �1

1 0

�
;

or by

(2.7) �X.t; y/ D ��1X.�t; �y/
for all � > 0. As a result, one also has

(2.8)

(
@2t
�Y ���Y D �.r �X/�Tr zp;

r � �Y D � det.r�Y /;
where zp.t; y/ D p.t;Qy/ if �X is defined by (2.6) and zp.t; y/ D p.�t; �y/ if �X
is defined by (2.7).

Let us first take �X as defined in (2.7). Differentiating (2.8) with respect to � and
then taking � D 1, one has

(2.9)

8̂̂<̂
:̂
.rX/T.@2t ��/.S � 1/Y C Œr.S � 1/Y �

T.@2t ��/Y D �rSp;

r � .S � 1/Y D @1.S � 1/Y
2@2Y

1 C @1Y
2@2.S � 1/Y

1

� @1Y
1@2.S � 1/Y

2 � @1.S � 1/Y
1@2Y

2:

Here S denotes the scaling operator:

S D t@t C y
j @j ;

and throughout this paper, we use Einstein’s convention for repeated indices.
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Similarly, denote the rotation operator by

� D I@� C A; @� D y
1@2 � y

2@1;

where A is given in (2.6). Let �X be defined in (2.6). Differentiating (2.8) with
respect to � and then taking �! 0, one has

(2.10)

8̂̂<̂
:̂
.rX/T.@2t�Y ���Y /C .r�Y /

T.@2t Y ��Y / D �r@�p;

r ��Y D @1�Y
2@2Y

1 C @1Y
2@2�Y

1 � @1Y
1@2�Y

2

� @1�Y
1@2Y

2:

For any vector Y and scalar p, we make the following conventions:(��Y , @�Y C AY; ��p , @�p; ��Y j D .��Y /j ;
zSY , .S � 1/Y; zSp , Sp; zSY j D . zSY /j :

Let � be any operator of the following set:

f@t ; @1; @2;��; zSg:
Then for any multi-index ˛ D f˛1; ˛2; ˛3; ˛4; ˛5gT 2 N5, using similar arguments
as in (2.9) and (2.10), we have (see the Appendix)

(2.11)

@2t�
˛Y ���˛Y D �.rX/�T

r�˛p

�

X
ˇCD˛;
¤˛

C ˇ˛ .rX/
�T.r�ˇY /T

�
@2t ��

�
�Y:

together with the constraint

(2.12) r � �˛Y D
X

ˇCD˛

C ˇ˛
�
@1�

ˇY 2@2�
Y 1 � @1�

Y 1@2�
ˇY 2

�
:

Here the binomial coefficient C ˇ˛ is given by

C ˇ˛ D
˛Š

ˇŠ.˛ � ˇ/Š
:

The structural identity (2.12) will be of extreme importance in our proof.
Throughout this paper, we use the notation D for space-time derivatives:

D D .@t ; @1; @2/:

We use hai to denote
hai D

p
1C a2

and Œa� to denote the biggest integer that is no more than a:

Œa� D biggest integer that is no more than a:

We often use the following abbreviations:

k��j˛jf k D
X
jˇ j�j˛j

k�ˇf k:
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We need to use Klainerman’s generalized energy, which is defined by

E� D
X
j˛j���1

kD�˛Y k2
L2 :

We define the following weighted L2 generalized energy by

(2.13) X� D
X
j˛j���2

� Z
r�2hti

ht�ri2jD2�˛Y j2 dyC

Z
r>2hti

hti2jD2�˛Y j2 dy

�
;

which is a modification of the original one by Klainerman-Sideris in [21]. To
describe the space of the initial data, we follow Sideris [37] and introduce

ƒ D fr; r@r ; �g

and

H �
ƒ D

n
.f; g/

ˇ̌̌ X
j˛j���1

.kƒ˛f kL2 C krƒ˛f kL2 C kƒ˛gkL2/ <1
o
:

Then as in [37], we define

(2.14)
H �
� .T / D

˚
Y W Œ0; T / �R2 ! R2

ˇ̌
�˛Y 2 L1.Œ0; T /IL2.R2//;

@t�
˛Y;r�˛Y 2 L1.Œ0; T /IL2.R2// 8j˛j � � � 1

	
with the norm

sup
0�t<T

E1=2� .Y /:

We are ready to state the main theorem of this paper.

THEOREM 2.1. Let W.F / D 1
2
jF j2 be an isotropic Hookean strain energy func-

tion. Let M0 > 0 and 0 < ı < 1
8

be two given constants and .Y0; v0/ 2 H �
ƒ with

� � 10. Suppose that Y0 satisfies the structural constraint (2.2) at t D 0 and

E1=2� .0/ D
X
j˛j���1

�
krƒ˛Y0kL2 C kƒ˛v0kL2

�
�M0;

E1=2��2.0/ D
X
j˛j���3

�
krƒ˛Y0kL2 C kƒ˛v0kL2

�
� �:

There exists a positive constant �0 < e�M0 that depends only on �,M0, and ı such
that, if � � �0, then the system of incompressible Hookean elastodynamics (2.5)
with initial data

Y.0; y/ D Y0.y/; @tY.0; y/ D v0.y/;

has a unique global classical solution such that

E1=2��2.t/ � � exp
˚
C 20M0

	
; E1=2� .t/ � C0M0.1C t /

ı ;

for some C0 > 1 uniformly in t .
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The main strategy of the proof is as follows: For initial data satisfying the con-
straints in Theorem 2.1, we will prove that

E 0�.t/ �
C0

4
hti�1E�.t/E1=2��2.t/;(2.15)

which is given in (5.6) and

E 0��2.t/ �
C0

4
hti�3=2E��2.t/E1=2� .t/;(2.16)

which is given in (6.2) and (6.3) for all t � 0 and some absolute positive constant
C0 depending only on �. Once the above differential inequalities are proved, it is
easy to show that the bounds for E1=2��2 and E1=2� given in the theorem hold true for
all t � 0 by taking an appropriate small �0, which yields the global existence result
and completes the proof of Theorem 2.1.

Indeed, one may just take

�0 D C
�1
0 ı exp

˚
�C 20M0

	
:

Note that
E1=2��2.0/ � � � �0; E1=2� .0/ �M0:

By continuity, there exists a positive time T <1 such that the bounds of E1=2��2.t/

and E1=2� .t/ in Theorem 2.1 are true for t 2 Œ0; T �:

E1=2��2.t/ � � exp
˚
C 20M0

	
� C�10 ı; E1=2� .t/ � C0M0.1C t /

ı :(2.17)

We claim that (2.17) is true for all t 2 Œ0;1/. We prove this claim by contra-
diction. Suppose that Tmax 2 ŒT;1/ is the largest time such that (2.17) is true on
Œ0; Tmax�. We are going to deduce a consequence that contradicts the assumption
on Tmax < 1. Keep in mind that now we have both (2.17) and the differential
inequalities (2.15)–(2.16) in hand for t 2 Œ0; Tmax�. By using (2.17) and the first
differential inequality (2.15), one has

E�.t/ � E�.0/ exp
�
ı

4

Z t

0

hti�1 dt

�
DM 2

0 .1C t /
ı=2; 0 � t � Tmax:

Similarly, by using (2.17) and the second differential inequality (2.16), one has

E��2.t/ � E��2.0/ exp
�
C 20M0

4

Z t

0

hsiı�
3
2 ds

�
< �2 exp

˚
C 20M0

	
; 0 � t � Tmax:

Consequently, we have proved that, by taking

�0 D C
�1
0 ı exp

˚
�C 20M0

	
;

one has

E��2.t/ < �2 exp
˚
C 20M0

	
; E�.t/ < M 2

0 .1C t /
2ı ; 0 � t � Tmax:
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The above inequalities show that (2.17) can still be true for t 2 Œ0; Tmax C �
0� for

some �0 > 0. This contracts to the assumption on Tmax. Hence we in fact proved
the a priori bounds (2.17) on Œ0;1/, which is stated in Theorem 2.1. Moreover,
we have

E1=2��2 � � exp
˚
C 20M0

	
� C�10 ı:

So from now on our main goal is going to show the two a priori differential
inequalities (2.15)–(2.16). The highest-order one will be done in Section 5, and
the lower-order one will be done in Section 6. By taking an appropriately large
C0 and an appropriately small ı, we can assume that E1=2��2 � 1, which is always
assumed in the remainder of this paper. We often use the fact that krXkL1 � 3

since krX � IkL1 . E1=2��2. Similarly, by (2.3), the above is also applied for
.rX/�1.

3 Preliminaries
In this section we derive several weighted L1-L2 types of decay in time esti-

mates. We remark that the idea of part of the proofs basically appeared in the earlier
work [27] and the references therein. The new weighted L2 energy X makes the
proofs slightly different. For a self-contained presentation, we still include their
proofs below.

We shall need to apply the Littlewood-Paley theory. Let � be a smooth function
supported in f� 2 RC W 3

4
� � � 8

3
g such thatX

j2Z

�.2�j �/ D 1:

For f 2 L.R2/, we set

�jf D F�1.�.2�j j�j/F.f // and Sjf D
X

�1<k�j�1;
k2Z

�kf:

Here F denotes the usual Fourier transformation in the y-variable and F�1 the
inverse Fourier transformation.

The following lemma takes care of the decay properties of the L1 norm of the
derivatives of unknowns. The 3D version of some of this kind of estimates has
already appeared in the work of Klainerman [19], Klainerman-Sideris [21], Sideris
[37], and the references therein. See also [27] for some 2D cases. It shows that
the L1 norm of the derivatives of unknowns will decay in time at least as hti�1=2.
This can be improved a little bit to get an extra factor ht � ri�1=2 near the light
cone region hti=2 � r � 3hti=2. By a refined Sobolev imbedding inequality, one
can even improve the decay rate in time to be hti�1 ln1=2.e C t / in the space-time
region away from the light cone (we remark that in this paper we don’t need the full
strength of the estimate in (3.2)). This will be used to break the criticality of the
lower-order generalized energy estimate in the space-time region jr � t j � hti=2.
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It also shows that the lack of Lorentz invariance only leads to a loss of time decay
of ln1=2.e C t / in (3.2).

LEMMA 3.1. Let t � 4. Then there holds

(3.1) hri1=2jD�˛Y j . kD��2�˛Y kL2 � E1=2
j˛jC3

:

Moreover, for r � 2hti=3, or r � 5hti=4, there holds

(3.2) t jD�˛Y j .
�
E1=2
j˛jC1

C X 1=2

j˛jC3

�
ln1=2.e C t /:

For hti=3 � r � 5hti=2, there holds

(3.3) hri1=2ht � ri1=2jD�˛Y j . E1=2
j˛jC2

C X 1=2

j˛jC3
:

PROOF. First of all, by the Sobolev imbedding H 2.R2/ ,! L1.R2/, (3.1) is
automatically true for r � 1. By the Sobolev imbedding on the sphereH 1.S1/ ,!
L1.S1/, one has

jf .r!/j2 .
X
jˇ j�1

Z
S1

j�ˇf .r!/j2 d�:

Consequently, we have

r jf .r!/j2 .
X
jˇ j�1

Z
S1

r j�ˇf .r!/j2 d�

D �

X
jˇ j�1

Z
S1

d�

Z 1
r

r@�Œj�
ˇf .�!/j2�d�

D �

X
jˇ j�1

Z
S1

d�

Z 1
r

r2�ˇf .�!/@��
ˇf .�!/d�

.
X
jˇ j�1

Z
S1

Z 1
r

j�ˇf .�!/jj@��
ˇf .�!/j� d� d�

.
X
jˇ j�1

k@r�
ˇf kL2k�ˇf kL2 :

Then (3.1) follows by taking f D D�˛Y in the above estimate.
Next, by the well-known Bernstein inequality

k�jf kL1 . 2j k�jf kL2 ; kSjf kL1 . 2j kSjf kL2 ;
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one has

kf kL1 D k

X
j

�jf kL1

. 2�N kS�Nf kL2 C

X
�N�j�N

2j k�jf kL2 C

X
j�NC1

2j k�jf kL2

. 2�N kf kL2 C
p
2N krf kL2 C 2�N kr2f kL2 :

Choosing N D ln.e C t /=ln 2, one has

(3.4) kf kL1 . krf kL2 ln1=2.e C t /C
1

1C t

�
kf kL2 C kr

2f kL2

�
:

Let us first choose a radial cutoff function ' 2 C10 .R
2/ that satisfies

' D

(
1 if 3

4
� r � 6

5
;

0 if r < 2
3

or r > 5
4
;
jr'j � 100:

For each fixed t � 4, let 't .y/ D '.y=hti/. Clearly, one has

't .y/ � 1 for
3hti

4
� r �

6hti

5
; 't .y/ � 0 for r �

2hti

3
or r �

5hti

4
;

and
jr't .y/j � 100hti�1:

Consequently, for r � 2hti=3 or r � 5hti=4, by using (3.4), one has

t jf j . htik.1 � 't /f kL1

. htikrŒ.1 � 't /f �kL2 ln1=2
�
e C t

�
C k.1 � 't /f kL2

C kr
2Œ.1 � 't /f �kL2

.
�
kf kL2 C htik.1 � 't /rf kL2

�
ln1=2.e C t /

C kf kL2 C k.1 � 't /r2f kL2 C hti�1k1supp'trf kL2 :

Here we use 1� to denote the characteristic function of �. Note that the weight in
the definition of Xj˛j.Y / is equivalent to hti on the support of 1 � 't .y/. Hence
we have

t jD�˛Y j .
�
kD�˛Y kL2 C khti.1 � 't /rD�˛Y kL2

�
ln1=2.e C t /

C kD�˛Y kL2 C k.1 � 't /r2D�˛Y kL2

C hti�1k1supp'trD�˛Y kL2

.
�
E1=2
j˛jC1

C X 1=2

j˛jC3

�
ln1=2

�
e C t

�
:

This completes the proof of (3.2).
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It remains to prove (3.3). Notice that r � 1 for t � 4. Similarly as in proving
(3.1), we calculate that

rht � rijf .r!/j2 . rht � ri
X
jˇ j�1

Z
S1

j�ˇf .r!/j2 d�

D �

X
jˇ j�1

Z
S1

d�

Z 1
r

r@�Œht � �ij�
ˇf .�!/j2�d�

.
X
jˇ j�1

Z
S1

d�

Z 1
r

�
ht � �ij�ˇf .�!/jj@r�

ˇf .�!/j C j�ˇf .�!/j2
�
� d�

.
X
jˇ j�1

Z
S1

d�

Z 1
r

�
ht � �i2j@r�

ˇf .�!/j2 C j�ˇf .�!/j2
�
� d�

D

X
jˇ j�1

�ht � ri@r�ˇf L2 C k�
ˇf kL2

�2
:

Slightly changing the definition of 't and then taking f D 'tD�˛Y in the above
inequality, one has

rht � rij'tD�˛Y j2 .
X
jˇ j�1

�
kht � ri@r�

ˇ Œ'tD�˛Y �kL2 C k�ˇD�˛Y kL2

�2
.
X
jˇ j�1

't ht � ri@r�ˇ ŒD�˛Y �2L2

C

X
jˇ j�1

@r't ht � ri�ˇ ŒD�˛Y �2L2 C Ej˛jC2

which yields (3.3). Here we used the fact that � commutes with 't due to the
symmetry of 't . �

Now let us study the decay properties of the second-order derivatives of un-
knowns in the L1 norm. The following lemma shows that away from the light
cone, the second derivatives of unknowns decay in time like hti�1. But near the
light cone, the decay rate is only hti�1=2, with an extra factor ht � ri�1. We em-
phasis that the 3D version has already appeared in [21].

LEMMA 3.2. Let t � 4. Then for r � 2hti=3 or r � 5hti=4, there hold

(3.5) t jD2�˛Y j . X 1=2

j˛jC4
:

For r � 5hti=2, there holds

(3.6) hri1=2ht � rijD2�˛Y j . X 1=2

j˛jC4
C E1=2
j˛jC3

:
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PROOF. Let us use the cutoff function 't in Lemma 3.1. Note that the weight in
the definition of X 1=2

j˛jC4
.Y / is equivalent to hti on the support of 1 � 't .x/. Thus,

by applying the simple Sobolev imbedding H 2.R2/ ,! L1.R2/, we have

t jD2�˛Y j . tk.1 � 't .y//D2�˛Y kL2 C tk.1 � 't .y//r2D2�˛Y kL2

C tkr.1 � 't .y//rD2�˛Y kL2 C tkr2.1 � 't .y//D2�˛Y kL2

. X 1=2

j˛jC4
C hti�1X 1=2

j˛jC3
C hti�2X 1=2

j˛jC2

. X 1=2

j˛jC4
:

This proves (3.5).
Next, let us prove (3.6). For r � 1, (3.6) is an immediate consequence of (3.5).

We consider the case when r � 1. Similarly as in proving (3.3), one has

rht � ri2jf .r!/j2

. rht � ri2
X
jˇ j�1

Z
S1

j�ˇf .r!/j2 d�

D �

X
jˇ j�1

Z
S1

d�

Z 1
r

r@�Œht � �i
2
j�ˇf .�!/j2�d�

.
X
jˇ j�1

Z
S1

d�

Z 1
r

�
ht � �i2j�ˇf .�!/j

ˇ̌
@r�

ˇf .�/
ˇ̌
C ht � �ij�ˇf .�!/j2

�
� d�

.
X
jˇ j�1

Z
S1

d�

Z 1
r

�
ht � �i2

ˇ̌
@r�

ˇf .�!/
ˇ̌2
C ht � �i2j�ˇf .�!/j2

�
� d�

D

X
jˇ j�1

�
kht � ri@r�

ˇf kL2 C kht � ri�ˇf kL2

�2
:

Now let us choose another cutoff function z' 2 C10 .R
2/ that is radial and satisfies

z' D

(
1 if r � 5

2
;

0 if r > 3;
jr z'j � 3:

For each fixed t � 4, let z't .y/ D z'.y=hti/. Clearly, one has

z't .y/ � 1 for r �
5hti

2
; z't .y/ � 0 for r � 3hti; and jr z't .y/j � 3hti�1:
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Taking f D z'tD2�˛Y , one has

rht � ri2jz'tD2�˛Y j2

.
X
jˇ j�1

ht � riz't@r�ˇD2�˛Y 2L2 C

X
jˇ j�1

ht � ri@r z't�ˇD2�˛Y 2L2

C

X
jˇ j�1

kht � riz't�ˇD2�˛Y k2
L2

. kht � riz'tD2� j˛jC2Y k2
L2 C

1supp z'tD2� j˛jC1Y
2
L2 ;

which gives (3.6) for r � 1. �

The next lemma gives a preliminary estimate for the weighted L2 generalized
energy norm X� . We remark that the definition of X� here is different from the
original one that appeared in [21,37], where similar results are obtained in 3D. For
a self-contained presentation, we still include the detailed proof below.

LEMMA 3.3. There holds

X 1=2
2 . E1=22 C hti

�@2t ���Y L2 :

PROOF. First of all, one may use the decomposition of the gradient operator

r D !@r C
!?

r
@�

and the expression of the Laplacian in polar coordinates

� D @2r C
1

r
@r C

1

r2
@2�

to derive that ˇ̌
�Y � @2rY

ˇ̌
�
j@rY j

r
C
j@2
�
Y j

r2
.
jrY j C jr�Y j

r
:(3.7)

Let us further write

.t2 � r2/�Y D �t2
�
@2t ��

�
Y � r2

�
�Y � @2rY

�
C t2@2t Y � r

2@2rY

D �t2
�
@2t ��

�
Y � r2

�
�Y � @2rY

�
C .t@t � r@r/.t@t C r@r � 1/Y:

Hence, using (3.7), one has

(3.8)
j.t � r/�Y j . t

ˇ̌�
@2t ��

�
Y
ˇ̌
C r

ˇ̌
�Y � @2rY

ˇ̌
C jDSY j C jDY j

. jD�Y j C jDY j C t
ˇ̌�
@2t ��

�
Y
ˇ̌
:

We remark that in (3.8), r can be even larger than 2hti.
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Next, using (3.8) and integration by parts, one immediately has

k.t � r/@i@jY k
2
L2 D

Z
.t � r/2@i@jY @i@jY dy

D 2

Z
.t � r/!i@jY @i@jY dy �

Z
.t � r/2@jY�@jY dy

D 2

Z
.t � r/!i@jY @i@jY dy � 2

Z
.t � r/!j @jY�Y dy

C

Z
.t � r/2�Y�Y dy

� 10krY k2
L2 C

1

2
k.t � r/@i@jY k

2
L2 C

Z
.t � r/2�Y�Y dy:

Using (3.8), one obtains that

k.t � r/@i@jY kL2 . E1=22 C hti
�@2t ���Y L2 :(3.9)

To estimate j.t � r/@trY j, let us first write

.t � r/@t@rY D �.@t � @r/.t@t C r@r � 1/Y C t@
2
t Y � r@

2
rY

D �.@t � @r/.t@t C r@r � 1/Y C t
�
@2t ��

�
Y

C .t � r/�Y C r
�
�Y � @2rY

�
:

Then using (3.7) and (3.8), one has

j.t � r/@t@rY j . jD�Y j C jDY j C t
ˇ̌�
@2t ��

�
Y
ˇ̌
:(3.10)

Consequently, we have

j.t � r/@t@jY j

D
ˇ̌
.t � r/@t!j @rY C .t � r/r

�1!?j @t@�Y
ˇ̌

� j.t � r/!j @t@rY j C
ˇ̌
r�1.t@t C r@r/@�Y � @� .@t C @r/Y

ˇ̌
. j.t � r/!j @t@rY j C r�1j@�SY j C j@�@tY j C j@� .! � rY /j

. j.t � r/!j @t@rY j C r�1j@�SY j C j@�@tY j C j!? � rY j C j! � @�rY j

. jD�Y j C jDY j C t j.@2t ��/Y j;

which gives that

k.t � r/@t@jY kL2 . E1=22 C hti
�@2t ���Y L2 :(3.11)

Finally, using (3.8), one hasˇ̌
.t � r/@2t Y

ˇ̌
�
ˇ̌
.t � r/

�
@2t ��

�
Y
ˇ̌
C j.t � r/�Y j

. j.t � r/
�
@2t ��

�
Y j C jD�Y j C jDY j C t

ˇ̌�
@2t ��

�
Y
ˇ̌

. jD�Y j C jDY j C hti
ˇ̌�
@2t ��

�
Y
ˇ̌
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if r � 2hti, and
hti
ˇ̌
@2t Y

ˇ̌
� hti

ˇ̌�
@2t ��

�
Y
ˇ̌
C htij�Y j

if r > 2hti. Hence, by (3.9), we have

(3.12)

Z
r�2hti

ht � ri2
ˇ̌
@2t Y

ˇ̌2
dy C

Z
r>2hti

hti2
ˇ̌
@2t Y

ˇ̌2
dy

. hti2
�@2t ���Y 2L2 C E1=22 .Y /C

Z
r>2hti

hti2j�Y j2 dy

. hti2
�@2t ���Y 2L2 C E2:

Then the lemma follows from (3.9), (3.11), and (3.12). �

At the end of this section, let us show the estimate for good derivatives !j @tC@j
(see some related results in [27]).

LEMMA 3.4. For hti=3 � r � 5hti=2, there holds

htij!j @tDY C @jDY j . jDY j C jD�Y j C t
ˇ̌�
@2t ��

�
Y j:

PROOF. First, let us calculate that

t .@t C @r/.@t � @r/Y D t
�
@2t ��

�
Y C t

�
� � @2r

�
Y

D t
�
@2t ��

�
Y C

t

r

�
@rY C

@2
�
Y

r

�
:

Consequently, we have

(3.13)

t j.@t C @r/.@t � @r/Y j

� t
ˇ̌�
@2t ��

�
Y
ˇ̌
C
t

r

�
jrY j C

j.xi@j � xj @i /@�Y j

r

�
. t

ˇ̌�
@2t ��

�
Y
ˇ̌
C
t

r
.jrY j C jr�Y j/:

Next, using (3.7), (3.8), (3.10), and (3.13), we calculate that

t j.@t C @r/@rY j

�
t

2
j.@t C @r/.@t � @r/Y j C

t

2
j.@t C @r/.@t C @r/Y j

.
t

2
j.@t C @r/.@t � @r/Y j C

1

2
jS.@t C @r/Y j C

1

2
j.t � r/@r.@t C @r/Y j

.
t

2
j.@t C @r/.@t � @r/Y j C

1

2
jS.@t C @r/Y j

C
1

2

ˇ̌
.t � r/@2trY

ˇ̌
C
1

2

ˇ̌
.t � r/

�
� � @2r

�
Y
ˇ̌
C
1

2
j.t � r/�Y j

. t
ˇ̌�
@2t ��

�
Y
ˇ̌
C

�
1C

t

r

�
.jrY j C jr�Y j/:
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Hence we have

(3.14)

t j.!j @t C @j /@kY j

D

ˇ̌̌̌
t!j .@t C @r/@kY C

t

r
!?j @�@kY

ˇ̌̌̌
. jt!j .@t C @r/!k@rY j C

ˇ̌̌̌
t

r

@�

r
@rY

ˇ̌̌̌
C
t

r
.j@�@kY j C j@r@�Y j/

. t
ˇ̌�
@2t ��

�
Y
ˇ̌
C

�
1C

t

r

�
.jDY j C jD�Y j/:

Finally, let us calculate that

t j.@t C @r/@tY j � t j.@t C @r/.@t � @r/Y j C t j.@t C @r/@rY j

� t j.@t C @r/.@t � @r/Y j C t j!j!k.!j @t C @j /@kY j

C t j!j @j!k@kY j;

which together with (3.13) and (3.14) gives that

(3.15)

t j.!j @t C @j /@tY j

� t j.@t C @r/@tY j C
ˇ̌
r�1@�@tY

ˇ̌
. t

ˇ̌�
@2t ��

�
Y
ˇ̌
C

�
1C

t

r

�
.jrY j C jr�Y j/:

Then the lemma follows from (3.14) and (3.15). �

4 Estimate of the L2 Weighted Norm
Now we are going to estimate the L2 weighted generalized energy X� . First of

all, we prove the following lemma, which says that the L2 norms of r�˛p and
k.@2t � �/�

˛Y kL2 , which involve the .j˛j C 2/th-order derivatives of unknowns,
can be bounded by certain matters that only involve .j˛j C 1/th-order derivatives
of unknowns. This surprising result is based on the inherent special structures of
nonlinearities in the system.

LEMMA 4.1. Suppose that krY kL1 � ı for some absolutely positive constant
ı < 1. Then there holds

kr�˛pkL2 C
�@2t ����˛Y L2 . ….j˛j C 2/

provided that ı is small enough, where

(4.1)

….j˛j C 2/ .
X

ˇCD˛;
¤˛

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2

C

X
ˇCD˛;
jˇ j>j j

…1 C
X

ˇCD˛;
jˇ j�j j

…2;
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where …1 and …2 are given by

…1 D
.��/�1=2r � �@t�ˇY 1r?@t�Y 2 � @j�ˇY 1r?@j�Y 2�L2 ;(4.2)

and

…2 D
.��/�1=2r � �@t�ˇY 2r?@t�Y 1 � @j�ˇY 2r?@j�Y 1�L2 :(4.3)

PROOF. By (2.11), one has

�r�˛p D .rX/T
�
@2t ��

�
�˛Y C

X
ˇCD˛; ¤˛

C ˇ˛ .r�
ˇY /T

�
@2t ��

�
�Y:

Applying the divergence operator to the above equation and then applying the op-
erator r.��/�1, we obtain that

r�˛p D
X

ˇCD˛;
¤˛

C ˇ˛
˚
r.��/�1r �

�
.r�ˇY /T

�
@2t ��

�
�Y /

�
Cr.��/�1r �

�
.rY /T

�
@2t ��

�
�˛Y

�
Cr.��/�1r �

��
@2t ��

�
�˛Y

�	
:

Hence, using the fact that the Riesz operator is bounded in L2, one has

(4.4)

kr�˛pkL2 .
X

ˇCD˛;
¤˛

.r�ˇY /T�@2t ����Y kL2

C
.rY /T�@2t ����˛Y L2

C
r.��/�1r � �@2t ����˛Y L2 :

Here we kept the Riesz operator in the last quantity on the right-hand side of
the above estimate, which needs additional treatments using the fantastic inherent
structures of the system.
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First of all, using (2.12), we compute that

(4.5)

r �
�
@2t ��

�
�˛Y

D
�
@2t ��

� X
ˇCD˛

C ˇ˛
�
@1�

ˇY 2@2�
Y 1 � @1�

Y 1@2�
ˇY 2

�
D

X
ˇCD˛

C ˇ˛
˚�
@1
�
@2t ��

�
�ˇY 2@2�

Y 1 � @1�
Y 1@2

�
@2t ��

�
�ˇY 2

�
C

X
ˇCD˛

�
@1�

ˇY 2@2
�
@2t ��

�
�Y 1 � @1

�
@2t ��

�
�Y 1@2�

ˇY 2
�

C 2
X

ˇCD˛

�
@1@t�

ˇY 2@2@t�
Y 1 � @1@t�

Y 1@2@t�
ˇY 2

�
� 2

X
ˇCD˛

�
@1@j�

ˇY 2@2@j�
Y 1 � @1@j�

Y 1@2@j�
ˇY 2

�	
:

Noting the inherent cancellation relation, one sees that the first two terms on the
right-hand side of (4.5) can be reorganized to be

r �

X
ˇCD˛

C ˇ˛
��
@2t ��

�
�Y 1r?�ˇY 2 �

�
@2t ��

�
�ˇY 2r?�Y 1

�
:(4.6)

We still need to take care of the last two terms on the right-hand side of (4.5).
We first divide them into three parts:

A11 C A12 C A13;

where A11 is the portion of the summation in which jˇj D j j:

(4.7)

A11 D 2
X

ˇCD˛;
jˇ jDj j

C ˇ˛
�
@1@t�

ˇY 2@2@t�
Y 1 � @1@t�

Y 1@2@t�
ˇY 2

�
� 2

X
ˇCD˛;
jˇ jDj j

C ˇ˛
�
@1@j�

ˇY 2@2@j�
Y 1 � @1@j�

Y 1@2@j�
ˇY 2

�
D �2r �

X
ˇCD˛;
jˇ jDj j

C ˇ˛
�
@t�

ˇY 2r?@t�
Y 1 � @j�

ˇY 2r?@j�
Y 1

�
;

A12 is responsible for the terms involving time derivatives in the summation when
jˇj ¤ j j:

A12 D 2

� X
ˇCD˛;
jˇ j>j j

C

X
ˇCD˛;
jˇ j<j j

�
C ˇ˛ @1@t�

ˇY 2@2@t�
Y 1

� 2

� X
ˇCD˛;
jˇ j>j j

C

X
ˇCD˛;
jˇ j<j j

�
C ˇ˛ @1@t�

Y 1@2@t�
ˇY 2;
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and A13 is the portion in the summation when jˇj ¤ j j that only involves spatial
derivatives:

A13 D 2

� X
ˇCD˛;
jˇ j>j j

C

X
ˇCD˛;
jˇ j<j j

�
C ˇ˛ @1@j�

Y 1@2@j�
ˇY 2

� 2

� X
ˇCD˛;
jˇ j>j j

C

X
ˇCD˛;
jˇ j<j j

�
C ˇ˛ @1@j�

ˇY 2@2@j�
Y 1:

Note that if j˛j is odd, then A11 D 0.
By symmetry of ˇ and  , we can rewrite A12 and A13 as

A12 D 2
X

ˇCD˛;
jˇ j>j j

C ˇ˛
�
@1@t�

ˇY 2@2@t�
Y 1 C @1@t�

Y 2@2@t�
ˇY 1

�
� 2

X
ˇCD˛;
jˇ j>j j

C ˇ˛
�
@1@t�

Y 1@2@t�
ˇY 2 C @1@t�

ˇY 1@2@t�
Y 2

�
;

and

A13 D 2
X

ˇCD˛;
jˇ j>j j

C ˇ˛
�
@1@j�

Y 1@2@j�
ˇY 2 C @1@j�

ˇY 1@2@j�
Y 2

�
� 2

X
ˇCD˛;
jˇ j>j j

C ˇ˛
�
@1@j�

ˇY 2@2@j�
Y 1 C @1@j�

Y 2@2@j�
ˇY 1

�
:

By merging the first and third terms, and the second and the last terms respectively,
we further rewrite A12 and A13 as follows:

A12 D 2r �
X

ˇCD˛;
jˇ j>j j

C ˇ˛
�
�@t�

ˇY 2r?@t�
Y 1 C @t�

ˇY 1r?@t�
Y 2

�

and

A13 D 2r �
X

ˇCD˛;
jˇ j>j j

C ˇ˛
�
@j�

ˇY 2r?@j�
Y 1 � @j�

ˇY 1r?@j�
Y 2

�
:
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Now it is clear that we may add up the above two identities and figure out the
contribution of A12 and A13 to (4.6), which is

A12 C A13

D 2r �
X

ˇCD˛;
jˇ j>j j

C ˇ˛
��
@t�

ˇY 1r?@t�
Y 2 � @j�

ˇY 1r?@j�
Y 2

�
C
�
@j�

ˇY 2r?@j�
Y 1 � @t�

ˇY 2r?@t�
Y 1

��
:

(4.8)

Let us insert (4.6), (4.7), and (4.8) into (4.5) to derive that

(4.9)

r.��/r � �@2t ����˛Y L2

.
X

ˇCD˛

�@2t ����Y 1r?�ˇY 2 � �@2t ����ˇY 2r?�Y 1L2

C

X
ˇCD˛;
jˇ j>j j

…1 C
X

ˇCD˛;
jˇ j�j j

…2:

Here…1 and…2 are given in (4.2) and (4.3). We emphasize that in the expressions
for …1 and …2 we still kept the zeroth-order Riesz operator. A crude estimate by
removing them directly is not enough to take full advantage of the structure of the
system, which may only lead to an almost global existence result and recovers what
we already proved in [27] by a different method.

Now let us insert (4.9) into (4.4) to derive that

kr�˛pkL2 . krY kL1

�@2t ����˛Y L2 C….j˛j C 2/;(4.10)

where ….j˛j C 2/ is given in (4.1). Using equations (2.11) and (4.10), one has�@2t ����˛Y L2

. k.rX/�T
kL1

�
kr�˛pkL2 C

X
ˇCD˛;
¤˛

.r�ˇY /T�@2t ����Y L2

�

. krY kL1

�@2t ����˛Y L2 C….j˛j C 2/;

which gives that �@2t ����˛Y L2 . ….j˛j C 2/(4.11)

provided that krY kL1 is appropriately smaller than an absolute positive constant
ı < 1. Inserting (4.11) into (4.10), one also has

kr�˛pkL2 . ….j˛j C 2/:

We have proved the lemma. �



GLOBAL WELL-POSEDNESS OF INCOMPRESSIBLE ELASTODYNAMICS IN 2D 23

In the next lemma, we will use Lemma 4.1 to estimate the main source of non-
linearities in (2.11) by carefully dealing with the last two terms in (4.1). On the
right-hand sides of those estimates that we are going to prove, we did not gain
derivatives since both sides are of the same order. But what we gain is the time
decay rate. In Section 5 where we perform the higher-order energy estimate, we
will deal with the last two terms in (4.1) once again, in a different way. The pur-
pose there is to gain one derivative, with the price of slowing down the decay rate
in time.

LEMMA 4.2. Suppose that � � 10. There exists ı > 0 such that if E��2 � ı, then
there hold

htikr����4pkL2 C hti
�@2t �������4Y L2 . E1=2��2

�
E1=2��2 C X 1=2

��2

�
and

htikr����2pkL2 C hti
�@2t �������2Y L2 . E1=2�

�
E1=2��2 C X 1=2

��2

�
:

PROOF. We need to deal with the two quantities in (4.2) and (4.3). They can be
estimated in a similar way. Below we only present the estimate for …1 in (4.2).
We first deal with the integrals away from the light cone. Let �t be as defined in
Lemma 3.1. It is easy to obtain the following first step estimate:X

ˇCD˛;
j j�Œj˛j=2�

�ˇ̌@t�ˇY 1r?@t�Y 2 � @j�ˇY 1r?@j�Y 2ˇ̌
C
ˇ̌
@t�

ˇY 2r?@t�
Y 1 � @j�

ˇY 2r?@j�
Y 1

ˇ̌�
.1 � �t /


L2

.
X

ˇCD˛;
j j�Œj˛j=2�

kD�ˇY kL2

1supp.1�'t /D
2�Y


L1 :

Using Lemma 3.2, the above is bounded by

hti�1E1=2
j˛jC1

X 1=2

Œj˛j=2�C4
:

Hence the estimate (4.1) is improved to be

(4.12)

….j˛j C 2/ . hti�1E1=2
j˛jC1

X 1=2

Œj˛j=2�C4

C

X
ˇCD˛;
¤˛

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2

C

X
ˇCD˛;
j j�Œj˛j=2�

�
…1.'

t /C…2.'
t /
�
;

where

…1.'
t / D

.��/� 1
2r �

�
't
�
@t�

ˇY 1r?@t�
Y 2 � @j�

ˇY 1r?@j�
Y 2

��
L2
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and

…2.'
t / D

.��/�1=2r � �'t�@t�ˇY 2r?@t�Y 1 � @j�ˇY 2r?@j�Y 1��L2 :

We will still need to use this estimate in Section 5.
Now let us deal with the third line of (4.12). First of all, we have

r �
�
't@t�

ˇY 1r?@t�
Y 2 � 't@j�

ˇY 1r?@j�
Y 2

�
D r �

�
't@t�

ˇY 1r?
�
!j .!j @t C @j /�

Y 2
�

� 't@j�
ˇY 1r?.!j @t C @j /�

Y 2
�

Cr �
�
't@j�

ˇY 1r?
�
!j @t�

Y 2
�
� 't@t�

ˇY 1r?
�
!j @j�

Y 2
��
:

The last line on the right-hand side of the above equality can be rewritten as

r
?
�
�
!j @t�

Y 2r
�
't@j�

ˇY 1
�
� !j @j�

Y 2r
�
't@t�

ˇY 1
��
;

which can be further reorganized as follows:

r
?
�
�
.!j @t C @j /�

Y 2r
�
't@j�

ˇY 1
�
� @j�

Y 2r't .!j @t C @j /�
ˇY 1

� @j�
Y 2't .!j @t C @j /r�

ˇY 1
�

D r �
�
't@j�

ˇY 1r?.!j @t C @j /�
Y 2

�
� r

?
�
�
@j�

Y 2't .!j @t C @j /r�
ˇY 1

�
� r

?
�
�
@j�

Y 2r't .!j @t C @j /�
ˇY 1

�
:

Consequently, we have

(4.13)

r �
�
't@t�

ˇY 1r?@t�
Y 2 � 't@j�

ˇY 1r?@j�
Y 2

�
D r �

�
't@t�

ˇY 1r?Œ!j .!j @t C @j /�
Y 2�

� 't@j�
ˇY 1r?.!j @t C @j /�

Y 2

C 't@j�
ˇY 1r?.!j @t C @j /�

Y 2
�

� r
?
�
�
@j�

Y 2't .!j @t C @j /r�
ˇY 1

C @j�
Y 2r't .!j @t C @j /�

ˇY 1
�
:

The expression in (4.13) will be rewritten in a different form in Section 5 for a
different purpose.

Now we are ready to estimate the third line on the right-hand side of (4.12) as
follows:.��/�1=2r � �'t�@t�ˇY 1r?@t�Y 2 � @j�ˇY 1r?@j�Y 2��L2

. kD�ˇY kL2

1supp't .!j @t C @j /r�
Y

L1

C
1supp'tD�Y


L1

1supp't .!j @t C @j /r�
ˇY

L2

C hti�1
1supp'tD�Y


L1kD�

ˇY kL2 :
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Note that the last term in the above is due to the commutation between r and good
derivatives.

We first use Lemma 3.4 to bound the quantities on the right-hand side of the
above estimate by

hti�1kD�ˇY kL2

�1supp't hti
�
@2t ��

�
�Y


L1 C

1supp'tD��j jC1Y

L1

�
C hti�1

1supp'tD�Y

L1

�hti�@2t ����ˇY L2 C kD�
�jˇ jC1Y kL2

�
C hti�1

1supp'tD�Y

L1kD�

ˇY kL2 :

Consequently, noting j j � Œj˛j=2� and using (3.1) in Lemma 3.1 (slightly chang-
ing its proof by using the cutoff function 't to keep the wave operator @2t ��), one
can estimate the third line on the right-hand side of (4.12) as follows:

(4.14)

X
ˇCD˛;
j j�Œj˛j=2�

…1.'
t / . hti�3=2E1=2

Œj˛j=2�C4
E1=2
j˛jC2

C hti�3=2E1=2
j˛jC1

hti�@2t �����Œj˛j=2�C2Y L2

C hti�3=2E1=2
Œj˛j=2�C3

hti�@2t �����j˛jY L2 :

As we have already mentioned, …2.'t / in the last line on the right-hand side of
(4.12) can be bounded similarly as …2.'t /.

It remains to estimate the second line in (4.12). Using the Sobolev imbedding
H 2 ,! L1, we have

(4.15)

X
ˇCD˛;
¤˛

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2

.
X

ˇCD˛;
j j�Œj˛j=2�

kr�ˇY kL2

�@2t ����Y L1

C

X
ˇCD˛;

Œj˛j=2�<j j<j˛j

kr�ˇY kL1

�@2t ����Y L2

. hti�1E1=2
j˛jC1

hti�@2t �����Œj˛j=2�C2Y L2

C hti�1E1=2
Œj˛j=2�C3

hti�@2t �����j˛j�1Y L2 :

We now insert (4.15) and (4.14) into (4.12) to obtain that

(4.16)

….j˛j C 2/ . hti�1E1=2
j˛jC2

�
E1=2
Œj˛j=2�C4

C X 1=2

Œj˛j=2�C4

�
C hti�1E1=2

j˛jC1

hti�@2t �����Œj˛j=2�C2Y L2

C hti�1E1=2
Œj˛j=2�C3

hti�@2t �����j˛jY L2 :
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Now for � � 10 and j˛j � ��4, one has j˛jC2 � ��2 and Œj˛j=2�C4 � ��3.
Hence, by (4.16), we have

….� � 2/ . hti�1E1=2��2

�
E1=2��3 C X 1=2

��3

�
C hti�1E1=2��3

hti�@2t �������4Y L2 :

Inserting the above inequality into the estimate in Lemma 4.1 and noting that
E��2.Y / � ı, one has

(4.17) htikr����4pkL2 C hti
�@2t �������4Y L2 . E1=2��2

�
E1=2��2 C X 1=2

��2

�
:

This proves the first estimate in Lemma 4.2.
Next, for j˛j � � � 2, there holds Œj˛j=2�C 4 � � � 2. Hence, one can derive

from (4.16) that

….�/ . hti�1E1=2�

�
E1=2��2 C X 1=2

��2

�
C hti�1E1=2�

hti�@2t �������4Y L2

C hti�1E1=2��2

hti�@2t �������2Y L2 ;

which, by combining (4.17) and Lemma 4.1, gives the second estimate in the
lemma. �

We are ready to state the following lemma:

LEMMA 4.3. Suppose that � � 10. There exists ı > 0 such that if E��2 � ı, then
there hold

X��2 . E��2; X� . E� :

PROOF. Applying Lemma 3.3 and Lemma 4.2, one has

X 1=2
��2 . E1=2��2 C hti

�@2t �������4Y L2

. E1=2��2 C E1=2��2

�
E1=2��2 C X 1=2

��2

�
;

which gives the first estimate of the lemma by noting the assumption.
Next, applying Lemma 3.3 and Lemma 4.2 once more, one has

X 1=2
� . E1=2� C hti

�@2t �������2Y L2

. E1=2� C E1=2�

�
E1=2��2 C X 1=2

��2

�
:

Then the second estimate of the lemma follows from the first one and the assump-
tion. �

5 Higher-Order Energy Estimate
This section is devoted to the higher-order generalized energy estimate. We will

see that the ghost weight method introduced by Alinhac in [5] plays an important
role.
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Let � � 10 and j˛j � � � 1. Let � D t � r and q.�/ D arctan � . Taking the
L2 inner product of (2.11) with e�q.�/@t�˛Y and using integration by parts, we
have

d

dt

Z
e�q.�/.j@t�

˛Y j2 C jr�˛Y j2/dy

D �

Z
e�q.�/

1C �2
.j@t�

˛Y j2 C jr�˛Y j2/dy

C 2

Z
e�q.�/@t�

˛Y �
�
@2t ��

�
�˛Y dy � 2

Z
@j e
�q.�/@j�

˛Y @t�
˛Y dy

D �

X
j

Z
e�q.�/

1C �2

ˇ̌
.!j @t C @j /�

˛Y
ˇ̌2
dy

� 2

Z
e�q.�/@t�

˛Y �
�
.rX/�T

r�˛p
�
dy

� 2

Z
e�q.�/@t�

˛Y �
X

ˇCD˛;
¤˛

C ˇ˛ .rX/
�T.r�ˇY /T

�
@2t ��

�
�Y dy;

which gives that

(5.1)

d

dt

Z
e�q.�/

�ˇ̌
@t�

˛Y
ˇ̌2
C jr�˛Y j2

�
dy

C

X
j

Z
e�q.�/

1C �2
j.!j @t C @j /�

˛Y j2 dy

. E1=2� k.rX/
�T
kL1

�

�
kr�˛pkL2 C

X
ˇCD˛;
¤˛

.r�ˇY /T�@2t ����Y L2

�
;

We will use the simple estimate k.rX/�TkL1 � 4. At the first glance, we will
always lose one derivative since kr�˛pkL2 contains the j˛j C 2 derivatives of Y .
Fortunately, we may modify the proof for Lemma 4.2 so that we have similar esti-
mates but gain one derivative and at the same time lose hti�1=2 decay rate. More-
over, whenever we lose hti�1=2 decay rate, we have a good derivative !j @t C @j .
Then the ghost weight method of Alinhac enables us to take the advantage of the
null structure of nonlinearities when we perform the highest-order energy estimate.
We emphasize that all of those calculations are based on the physical structures of
the system.
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We still use the estimate in (4.12), but we need to refine the last line of (4.13) as
follows:

(5.2)

r
?
�
�
@j�

Y 2�t .!j @t C @j /r�
ˇY 1 C @j�

Y 2r�t .!j @t C @j /�
ˇY 1

�
D r

?
�
�
@j�

Y 2r
�
�t .!j @t C @j /�

ˇY 1
��

Cr
?
�
�
@j�

Y 2�tr!j @t�
ˇY 1

�
D r �

��
�t .!j @t C @j /�

ˇY 1
�
r
?@j�

Y 2
�

Cr
?
�
�
@j�

Y 2�tr!j @t�
ˇY 1

�
:

Replacing the last line in (4.13) by (5.2), one has

(5.3)

r �
�
�t@t�

ˇY 1r?@t�
Y 2 � �t@j�

ˇY 1r?@j�
Y 2

�
D r �

�
�t@t�

ˇY 1r?
�
!j .!j @t C @j /�

Y 2
�

� �t@j�
ˇY 1r?.!j @t C @j /�

Y 2

C �t@j�
ˇY 1r?.!j @t C @j /�

Y 2

�
�
�t .!j @t C @j /�

ˇY 1
�
r
?@j�

Y 2
�

� r
?
�
�
@j�

Y 2�tr!j @t�
ˇY 1

�
:

Using (5.3), we may re-estimate …1.'t / in (4.12) as follows:.��/�1=2r � �'t�@t�ˇY 1r?@t�Y 2 � @j�ˇY 1r?@j�Y 2��L2

. kD�ˇY kL2

1supp't .!j @t C @j /r�
Y

L1

C hti�1=2
1supp't hri1=2ht � riD2�Y


L1

ht � ri�1.!j @t C @j /�ˇY L2

C hti�1
1supp'tD�Y


L1kD�

ˇY kL2 :

Again, the last term in the above inequality is due to the commutation of r with
good derivatives. Using Lemma 3.4 and Lemma 3.2, we can bound the above by

hti�1kD�ˇY kL2

�1supp't hti
�
@2t ��

�
�Y


L1 C

1supp'tD��j jC1Y

L1

�
C hti�1=2.Xj jC4 C Ej jC3/1=2

ht � ri�1.!j @t C @j /�ˇY L2

C hti�1kD�Y kL1kD�ˇY kL2 :

Notice that j j � Œj˛j=2�. We further use Lemma 3.1 (again, we need modify the
proof slightly by adding a cutoff function 't to keep the wave operator @2t � �)
and Lemma 4.3 to bound the above by

hti�1=2E1=2
j jC4

ht � ri�1.!j @t C @j /�ˇY L2

C hti�
3
2E1=2
j˛jC1

hti�@2t �����Œj˛j=2�C2Y L2 C hti
�3=2E1=2

Œj˛j=2�C4
E1=2
j˛jC1

:
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Since Œj˛j=2� C 4 � � � 2, we can use Lemma 4.2 and Lemma 4.3 to bound the
above quantities by

hti�1=2E1=2��2

ht � ri�1.!j @t C @j /�ˇY L2 C hti
�3=2E1=2��2E

1=2
� :(5.4)

Similarly, the last line in (4.12) can also be bounded by the quantity in (5.4).
Consequently, we can derive by inserting (5.4) into (4.12) that

kr�˛pkL2 .
X

ˇCD˛;
¤˛

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2

C hti�1=2E1=2��2

ht � ri�1.!j @t C @j /�ˇY L2

C hti�1E1=2��2E
1=2
� :

Inserting the above estimate into (5.1), we have

(5.5)

d

dt

Z
e�q.�/

�
j@t�

˛Y j2 C jr�˛Y j2
�
dy

C

Z
e�q.�/

1C �2

�
j!@t�

˛Y Cr�˛Y j2
�
dy

. E1=2�

X
ˇCD˛;
¤˛

.r�ˇY /T�@2t ����Y L2

C hti�1=2E1=2��2E
1=2
�

ht � ri�1.!j @t C @j /�ˇY L2 C hti
�1E1=2��2E� :

Now let us estimate the remaining terms in (5.5). Using Lemma 3.1 and Lemma
4.2, it is easy to derive thatX

ˇCD˛;
¤˛

.r�ˇY /T�@2t ����Y L2

.
X

ˇCD˛;
j j�Œj˛j=2�

kr�ˇY kL2

�@2t ����Y L1

C

X
ˇCD˛;
jˇ j�Œj˛j=2�;

¤˛

kr�ˇY kL1

�@2t ����Y L2

. E1=2�

�@2t �������4Y L2 C hti
�1=2E1=2��2

�@2t �������2Y L2

. hti�1E1=2� E��2:
Inserting the above estimates into (5.5) and using the Cauchy inequality, we have

d

dt

X
j˛j���1

Z
e�q.�/

�
j@t�

˛Y j2 C jr�˛Y j2
�
dy . hti�1E�E1=2��2:(5.6)
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Here we used E��2 � 1. This gives the first differential inequality (2.15) at the end
of Section 2.

6 Lower-Order Energy Estimate
In this section we perform the lower-order energy estimate. Let j˛j � ��3. We

rewrite (2.11) as

.rX/T
�
@2t ��

�
�˛Y Cr�˛p D �

X
ˇCD˛;
¤˛

C ˇ˛ .r�
ˇY /T

�
@2t ��

�
�Y:

Applying the curl operator to the above equation, one has�
@2t ��

�
r
?
� �˛Y D �

X
ˇCD˛;
¤˛

C ˇ˛
˚
r
?
�
�
.r�ˇY /T

�
@2t ��

�
�Y

�
� r

?
�
�
.rY /T

�
@2t ��

�
�˛Y

�	
:

Consequently, we have

(6.1)
�
@2t ��

�
.��/�1=2r? � �˛Y DX

ˇCD˛

C ˇ˛ .��/
�1=2
r
?
�
�
.r�ˇY /T

�
@2t ��

�
�Y

�
:

Multiplying (6.1) by @t .��/�1=2r? � �˛Y and then integrating over R2, one
has

1

2

d

dt

Z �
j@t .��/

�1=2
r
?
� �˛Y j2 C jr.��/�1=2r? � �˛Y j2

�
dy

.
X

ˇCD˛

k@t .��/
�1=2
r
?
� �˛Y kL2

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2

. E1=2��2

X
ˇCD˛

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2 :

Let us first use Lemma 3.1, Lemma 4.2, and Lemma 4.3 to estimate thatX
ˇCD˛;
jˇ j�Œj˛j=2�

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2

. kr��Œj˛j=2�Y kL1

�@2t �����j˛jY L2

. hti�3=2E1=2��2

hti�@2t �������2Y L2 . hti�3=2E��2E1=2� :
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Similarly, by Œj˛j=2�C 4 � � � 2, one also hasX
ˇCD˛;
j j�Œj˛j=2�

jr�ˇY jˇ̌�@2t ����Y ˇ̌L2

. k.1 � 't /r����3Y kL1

.1 � 't /�@2t �����Œj˛j=2�Y L2

C k'tr����3Y kL2

't�@2t �����Œj˛j=2�Y L1

. hti�3=2E1=2�

hti.1 � 't /�@2t �����Œj˛j=2�Y L2

C hti�3=2E1=2��2

hti't�@2t �����Œj˛j=2�C2Y L2

. hti�3=2E��2E1=2� :

Hence, we have

d

dt

X
j˛j���3

Z
jD.��/�1=2r? � �˛Y j2 dy . hti�3=2E1=2� E��2:(6.2)

Now let us estimate .��/�1=2r �D�˛Y . Using (2.12), one has

.��/�1=2r �D�˛Y

D .��/�1=2D
X

ˇCD˛

C ˇ˛
�
@1�

ˇY 2@2�
Y 1 � @1�

Y 1@2�
ˇY 2

�
D .��/�1=2

X
ˇCD˛

C ˇ˛
�
@1D�

ˇY 2@2�
Y 1 � @1�

Y 1@2D�
ˇY 2

�
C .��/�1=2

X
ˇCD˛

C ˇ˛
�
@1�

ˇY 2@2D�
Y 1 � @1D�

Y 1@2�
ˇY 2

�
D .��/�1=2r? �

X
ˇCD˛

C ˇ˛ ŒD�
ˇY 2r�Y 1 � r�ˇY 2D�Y 1�:

Hence, one has

(6.3)

k.��/�1=2r �D�˛Y kL2 .
X

ˇCD˛

kjD�ˇY jjD�Y jkL2

. kD��j˛jY kL2kD��Œj˛j=2�kL1

. E��2:

Hence, we see that k.��/�1=2r? �D����3Y kL2 is equivalent to kD����3Y kL2

sinceˇ̌
kD����3Y k2

L2 � k.��/
�1=2
r
?
�D����3Y k2

L2

ˇ̌
. E2��3 . �2E��2:
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Then we can replace all E��2 appearing throughout this paper by k.��/�1=2r? �
D����3Y k2

L2 without changing the final result. Then (6.2) gives the second dif-
ferential inequality (2.16) at the end of Section 2.

Appendix
In this appendix we explain how to obtain (2.11) and (2.12). Let

�i 2 f@t ; @1; @2;��; zSg; i D 1; : : : ; 5:

Recall that we have defined the scaling and rotation groups in Section 2 so that
their generators are zS and ��. Similarly, we can define translation groups so that
their generators are @t , @1, and @2.

Now for each multi-index ˛ and

�˛ D �
˛1

1 � � �
zS j̨ � � ��

˛5

5 ;

we can naturally define the group T˛ such that

(A.1)
d˛1

d�
˛1

1

� � �
d˛5

d�
˛5

5

T˛X

ˇ̌̌̌
.�1;:::;�5/Dej

D �˛X:

Here ej is the unit vector in R5 whose j th component is 1. Indeed, T˛X can be
defined as follows:

T˛X D .T�1
/˛1 � � � .T�5

/˛5X;

where each group T�j
has a generator �j . A similar definition is applied to T˛p.

Due to the invariance property of the system, one has the fact that .T˛X; T˛p/
is still a solution of the system (2.5). Consequently, we have(

.rT˛X/
T.@2t T˛Y ��T˛Y / D �rT˛p;

r � T˛Y D � det.rT˛Y /:

Clearly, differentiating the above equations with respect to the �j ’s and then using
(A.1), one deduces (2.11) and (2.12).
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