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WHY LARGE TIME-STEPPING METHODS FOR THE

CAHN-HILLIARD EQUATION IS STABLE

DONG LI

Abstract. We consider the Cahn-Hilliard equation with standard double-well
potential. We employ a prototypical class of first order in time semi-implicit
methods with implicit treatment of the linear dissipation term and explicit
extrapolation of the nonlinear term. When the dissipation coefficient is held
small, a conventional wisdom is to add a judiciously chosen stabilization term
in order to afford relatively large time stepping and speed up the simulation.
In practical numerical implementations it has been long observed that the
resulting system exhibits remarkable stability properties in the regime where

the stabilization parameter is O(1), the dissipation coefficient is vanishingly
small and the size of the time step is moderately large. In this work we develop
a new stability theory to address this perplexing phenomenon.

1. Introduction

The Cahn-Hilliard equation was introduced in [1] to describe the phase separa-
tion and coarsening phenomena (i.e. formation of domains) in binary systems. If c
denotes the concentration difference of the two components, then the Cahn-Hilliard
equation can be written as

∂tc = DΔμ = DΔ(c3 − c− νΔc),(1.1)

where D is the diffusion coefficient, μ denotes the chemical potential and
√
ν char-

acterizes the length scale of the transition regions between the domains. In a typical
non-dimensionalized form, we take D = 1 and rewrite c as u. Then⎧⎨

⎩∂tu = Δ(f(u))− νΔ2u, f(u) = u3 − u , (t, x) ∈ (0,∞)× Ω;

u
∣∣∣
t=0

= u0.
(1.2)

For convenience we take the spatial domain Ω to be the 2π-periodic torus Ω =
[−π, π]d in physical dimensions d = 1, 2, 3. With some adjustments our analysis
can be generalized to other boundary conditions. The system (1.2) admits a free
energy given by

E(u) =
∫
Ω

(1
2
ν|∇u|2 + 1

4
(u2 − 1)2

)
dx.(1.3)

For smooth solutions the energy dissipation law takes the form

d

dt

(
E(u)

)
= −

∫
Ω

|∂tμ|2dx. μ = u3 − u− νΔu.(1.4)
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2502 D. LI

This simple balance relation is quite natural since the system (1.2) corresponds to
the gradient flow of E(u) in H−1. It is not difficult to check that the average of u is
preserved in time. For convenience we shall tacitly assume u has mean zero in our
analysis. Whilst the a priori control (1.4) yields strong H1 bounds on the solution,
the lack of maximum principle renders it a nontrivial task to obtain O(1) bounds
on the maximum norm of the solution. In the numerical context this issue turns
out to be nontrivial even in the parabolic setting (cf. [2, 4]).

In the past decades, there has been a lot of progress on designing efficient, accu-
rate and stable numerical schemes to resolve the plethora of vastly different tempo-
ral and spatial scales in phase field models such as Cahn-Hilliard and Allen-Cahn.
Many powerful numerical methods such as the convex-splitting scheme [10–12], the
stabilization scheme [13,14], the scalar auxiliary variable (SAV) methods [15], semi-
implicit/implicit-explicit (IMEX) schemes [4–7] are introduced in order to track
accurately the dynamical evolution of the phase field variable. However many fun-
damental questions still remain unsolved concerning the analysis of these schemes.
In this work we consider a class of semi-implicit schemes which were considered by
He, Liu and Tang in [3]. In a semi-discrete formulation, it reads

un+1 − un

τ
= −νΔ2un+1 +AΔ(un+1 − un) + Δ(f(un)), n ≥ 0,(1.5)

where τ > 0 is the time step, and A > 0 is the coefficient for the O(τ ) regularization
term. In [3], He, Liu and Tang showed that (see Theorem 1 therein) if

A ≥ max
x∈Ω

{1
2
|un(x)|2 + 1

4
|un+1(x) + un(x)|2} − 1

2
, ∀n ≥ 0,(1.6)

then E(un) ≤ E(u0) for all n ≥ 0. Note that the condition (1.6) is not satisfac-
tory since the right hand side (RHS) depends also on A. An even more startling
observation is that one can even take relatively large time stepping for moderately
large A and miniscule dissipation coefficient ν. For example (see Table 1 in [3]),
numerically one has the following list of admissible tuple of (ν, A, τc) where τc is
the maximal time step for which energy decay holds monotonically in time:

ν A τc

ν = 0.01
A = 0 τc ≈ 0.02
A = 0.5 τc ≈ 0.2
A = 1 τc ≈ 0.2

ν = 0.001
A = 0 τc ≈ 0.003
A = 0.5 τc ≈ 0.013
A = 1 τc ≈ 0.03

In particular, for ν = 0.001, A = 1, one can take large time step τ ≈ 0.03 whilst
not losing energy dissipation! As far as we know, no existing theory can address
this rather perplexing phenomenon. The purpose of this work is to develop a new
stability theory to clarify this issue. Our first result reveals a deep connection
between the stabilization parameter A and the maximum norm of the numerical
solution.

Theorem 1.1 (Uniform in time L∞ bound for (1.5)). Let the spatial domain Ω
be the 2π-periodic torus in physical dimensions d = 1, 2, 3, i.e. Ω = [−π, π]d.
Let ν > 0. Consider (1.5) with u0 ∈ L∞(Ω) having zero mean. Assume A ≥
Acr := 1 + 2

√
1 + 4

3 · ν
τ . If the initial data u0 satisfies (here ‖u0‖∞ := ‖u0‖L∞(Ω))
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CAHN-HILLIARD EQUATIONS 2503

‖u0‖∞ ≤ M =
√

A+1
3 , then in (1.5),

‖un‖∞ ≤ M, ∀n ≥ 1.

Remark 1.1. Note that the threshold value Acr is not inversely proportional to
the diffusion coefficient ν. Our L∞ bound here explains why (1.5) is stable when
the diffusion coefficient ν is small and large time step τ is taken. For example, if
ν = 0.001 and τ = 0.03, then Acr ≈ 3.04 which is O(1)! Of course some further
nontrivial work is needed to achieve the optimal stabilization parameter A ≈ 1.

Remark 1.2. We should point out that the maximal time step restriction in the
aforementioned table is due to the fact that the choice of A does not satisfy the
condition A ≥ Acr in Theorem 1.1. Under the condition A ≥ Acr > 1, there is no
maximal time step restriction, whereas for 0 ≤ A ≤ 1 there exists some threshold
τc. In this connection further research is needed to calibrate the precise relationship
between the maximal time step τc and stabilization parameter Acr for moderately
small values of Acr.

Remark 1.3. There is some flexibility in choosing the upper bound M . See Lemma

2.1 where one can choose any number M ∈ [M0,M1] with M1 =
√

A+1
3 and M0 =

2

√
1+( 1

2−
√

1
4−

1
A2 · ντ )A

3 .

Remark 1.4. For general initial data with nonzero mean, it is possible that one can
develop a corresponding version of the maximum principle. However we shall not
dwell on this rather technical point here in this work.

Remark 1.5. We should point out that the solvability of the iterative scheme (1.5)
is not an issue even under the rough data assumption that u0 ∈ L∞(Ω) with zero
mean. This is due to the fact that one can recast (1.5) into the form:

(1 + τνΔ2 −AτΔ)un+1 = un − τAΔun + τΔ(f(un)),(1.7)

or equivalently

un+1 = (1 + τνΔ2 −AτΔ)−1(1−AτΔ)un + (1 + τνΔ2 −AτΔ)−1τΔ(f(un)).

(1.8)

For τ > 0, the operators (1+τνΔ2−AτΔ)−1(1−AτΔ) and (1+τνΔ2−AτΔ)−1τΔ
roughly correspond to the Fourier multiplier |k|−2 for wave number |k| � 1. As
such it leads to regularity upgrade in the same spirit of the usual elliptic theory.

Theorem 1.1 elucidates the appearance of L∞ bound due to time discretiza-
tion. On the other hand, in practical numerical computations, the bi-harmonic and
Laplacian operators on the RHS of (1.5) would also have to be computed numeri-
cally. In this situation the L∞ bound on the numerical solution certainly needs to
be proved as well. To keep some generality, we denote the numerical approximation
of Δ by ΔNUM. For example, on a 1D uniform mesh with mesh size Δx, a function
f is represented by numerical sequence fi, and a typical central difference scheme
on mesh vertex i (away from the boundary) takes the form

(ΔNUMf)i =
fi+1 + fi−1 − 2fi

(Δx)2
.
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2504 D. LI

In the literature, ΔNUM is sometimes called the graph Laplacian as it acts on
functions defined a discrete graph with suitable weights on the edges. We need
some “stability” property of the graph Laplacian ΔNUM. This is illustrated by
Definition 1.1.

Definition 1.1. We say a graph Laplacian ΔNUM on a graph X obeys a sharp L∞

estimate if the following holds for any constant k > 0: for any bounded f : X → R,
there exists a unique function u : X → R solving the equation

u− kΔNUMu = f ;(1.9)

moreover

‖u‖∞ ≤ ‖f‖∞.

In yet other words, for all k > 0, we have

‖(I − kΔNUM)−1f‖∞ ≤ ‖f‖∞.

Remark. One can certainly consider a more general operator (not necessarily the
graph Laplacian) and introduce the notion of sharp L∞ estimates in more abstract
settings. However we do not pursue this generality here.

Remark. For ΔNUM introduced via typically finite difference schemes, one can easily
verify the the solvability of (1.9) and the sharp L∞ estimate. See Section 2 for some
examples.

We now consider the following fully discretized (in both space and time) scheme:

un+1 − un

τ
= −ν(ΔNUM)2un+1 +AΔNUM(un+1 − un) + ΔNUM(f(un)), n ≥ 0.

(1.10)

Corollary 1.1. Assume ΔNUM satisfies the sharp L∞ estimate in the sense of

Definition 1.1. Let A ≥ Acr := 1 + 2
√
1 + 4

3 · ν
τ . If the initial data u0 satisfies

‖u0‖∞ ≤ M =
√

A+1
3 , then in (1.10),

‖un‖∞ ≤ M, ∀n ≥ 1.

We state Corollary 1.1 as a conditional result just to keep some generality. On
the other hand, as was already mentioned earlier, the condition on ΔNUM can be
easily checked for typical finite difference schemes (see Section 2). Corollary 1.2
records this fact.

Corollary 1.2. The graph Laplacian ΔNUM introduced by typical finite difference
schemes satisfies the sharp L∞ estimate in the sense of Definition 1.1. Therefore
Corollary 1.1 holds for (1.10) with corresponding ΔNUM.

Theorem 1.2. Consider (1.5) in physical dimensions d ≤ 3 and assume u0 ∈
L∞(Ω) ∩H1(Ω) with zero mean. Recall

E(u) =
∫
Ω

(1
2
ν|∇u|2 + F (u)

)
dx,
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where F (u) = 1
4 (u

2− 1)2. Assume (as in Theorem 1.1) A ≥ Acr = 1+2
√
1 + 4

3 · ν
τ

and the initial data u0 satisfies ‖u0‖∞ ≤
√

A+1
3 . Then

E(un+1) +
A

2
‖un+1 − un‖22

+ τ‖∇
(
−νΔun+1 +A(un+1 − un) + f(un)

)
‖22

≤ E(un), ∀n ≥ 0.

In particular

E(un+1) ≤ E(un), ∀n ≥ 0.

Remark. To understand the role of the stabilization term AΔ(un+1 − un), it is
useful to consider the general case

un+1 − un

τ
= −νΔ2un+1 +B(un+1 − un) + Δf(un),

where B is an operator to be determined. Taking the L2 inner product with
(−Δ)−1(un+1 − un) on both sides, one arrives at (see (1.12) for the definition
of |∇|s = (−Δ)s/2)

1

τ
‖|∇|−1(un+1 − un)‖22 + En+1 − En +

ν

2
‖∇(un+1 − un)‖22

+ (B(un+1 − un), (−Δ)−1(un+1 − un))

≤ L

2
‖un+1 − un‖22,

where L = sup0≤s≤1 ‖f ′(un + s(un+1 − un))‖∞ and we have denoted En = E(un).
It should be noted here the rough estimate of f ′ makes no use of the spectral
information around linearization of the continuous PDE solution. Clearly if B ≡ 0,
then to ensure En+1 ≤ En, one must enforce

1

τ
‖|∇|−1(un+1 − un)‖22 +

ν

2
‖∇(un+1 − un)‖22 ≥ L

2
‖un+1 − un‖22.

In view of the interpolation inequality (for mean-zero functions)

‖g‖2 ≤ ‖|∇|−1g‖
1
2
2 ‖∇g‖

1
2
2

and Cauchy-Schwartz, we deduce the constraint

2

√
ν

2τ
≥ L

2
⇒ τ ≤ 8ν

L2
.

This is the main reason why small time step τ is needed when ν is small and no
stabilization term is present. On the other hand, from the above computation, one
can also see the necessity of having the operator B = const ·Δ: it is precisely used
to balance out the term L

2 ‖un+1 − un‖2 on the RHS.

We gather below some notation used in this work.
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Notation. Throughout this work we denote by Ω = [−π, π]d the usual 2π-periodic
torus in physical dimensions d ≤ 3. For a real-valued Borel measurable function
u : Ω → R, we denote by

‖u‖p := ‖u‖Lp(Ω) =

⎧⎨
⎩
(∫

Ω
|u(x)|dx

) 1
p

, 1 ≤ p < ∞;

esssupx∈Ω|u(x)|, p = ∞,
(1.11)

the usual Lebesgue Lp-norm of u. For smooth periodic u : Ω → R with zero mean
(i.e. û(0) = 0) and s ∈ R, we denote |∇|s = (−Δ)s/2 as the Fourier multiplier |k|s,
i.e.

|̂∇|su(k) = |k|sû(k), 0 �= k ∈ Zd,(1.12)

where û(k) =
∫
Ω
u(x)e−ik·xdx. For smooth periodic u : Ω → R with zero mean,

the usual Ḣs-norm is defined as

‖u‖Ḣs(Ω) := ‖|∇|su‖2.(1.13)

The rest of this paper is organized as follows. In Section 2 we give the proof of
the main result Theorem 1.1. In Section 3 we give a resolvent bound. In the last
section we prove Theorem 1.2.

2. Proof of Theorem 1.1, Corollary 1.1 and 1.2

Proof of Theorem 1.1. Write

un+1 − un = −ντΔ2un+1 +AτΔ(un+1 − un) + τΔ(f(un)).

Let β > 0 be a parameter whose value will be chosen later. Then

(1− βAτΔ)(un+1 − un) = −ντΔ2un+1 + (1− β)AτΔ(un+1 − un) + τΔ(f(un))

= τΔ
(
(1− β)A− νΔ

)
un+1 + τΔ

(
f(un)− (1− β)Aun

)
.

Now choose β such that

1

βAτ
=

(1− β)A

ν

or simply

β(1− β) =
ν

A2τ
.

The existence of β is out of question since ν/(A2τ ) ≤ 1/4 by assumption (see
below).

Clearly by the definition of β (using ν = (1− β)A · βAτ ), we have

τΔ
(
(1− β)A− νΔ)− νΔ

)
1− βAτΔ

=
τΔ

(
(1− β)A− (1− β)A · βAτΔ

)
1− βAτΔ

=(1− β)AτΔ.

It follows that

un+1 − un

=(1− β)AτΔun+1 + (1− βAτΔ)−1τΔ
(
f(un)− (1− β)Aun

)
.
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CAHN-HILLIARD EQUATIONS 2507

Rearranging the terms, we get(
1− (1− β)AτΔ

)
un+1

= un + (1− βAτΔ)−1τΔ
(
f(un)− (1− β)Aun

)
.

The proof of Theorem 1.1 then follows from Lemma 2.1.

Lemma 2.1. Let k = ν/τ . Define Acr = 1 + 2
√
1 + 4

3k. If A ≥ Acr, then the

following hold:

• ν/A2τ ≤ 1
4 and β = 1

2 +
√

1
4 − 1

A2 k ∈ [ 12 , 1).

• Define M0 = 2
√

1+(1−β)A
3 , M1 =

√
A+1
3 . Then M0 ≤ M1.

• For any M with M0 ≤ M ≤ M1, if ‖un‖∞ ≤ M , then

‖un + τΔ(1− βAτΔ)−1
(
f(un)− (1− β)Aun

)
‖∞ ≤ M ;

and consequently ‖un+1‖∞ ≤ M .

Remark 2.1. Lemma 2.1 shows that for k > 0, the nonlocal operator (1− kΔ)−1Δ
exhibits some form of maximum principle. Interestingly there exist also some “in-
verse Sobolev” type equalities for this operator, see [8] for more details.

To complete the proof of Lemma 2.1, we need the following simple lemma which
in a sense identifies the “invariant region” of certain auxiliary cubic polynomials.

Lemma 2.2. Let α1 > 0 and f1(x) = x3 − α1x. If L ≥ 2
√

α1

3 , then

max
|x|≤L

|f1(x)| ≤ f1(L).(2.1)

Similarly let α2 > 0 and f2(x) = −x3 + α2x. If 0 < L ≤
√

α2

3 , then

max
|x|≤L

|f2(x)| ≤ f2(L).(2.2)

Proof of Lemma 2.2. For f1(x), calculating f ′
1(x) = 0 yields that x1 = ±

√
α1/3.

It is then easy to check that at L = 2x1, f1(L) ≥ |f1(x1)|. An inspection of the
graph of f1 easily gives (2.1). For (2.2), one just need to notice that f ′

2 ≥ 0 for
|x| ≤

√
α2

3 . �
Proof of Lemma 2.1. First note that

τΔ(1− βAτΔ)−1 = (τΔ− 1

βA
+

1

βA
)(1− βAτΔ)−1

= − 1

βA
+

1

βA
(1− βAτΔ)−1.

Thus

un + τΔ(1− βAτΔ)−1
(
f(un)− (1− β)Aun

)
=un − 1

βA
(f(un)− (1− β)Aun) +

1

βA
(1− βAτΔ)−1

(
f(un)− (1− β)Aun

)

=
1

βA

(
−(un)3 + (A+ 1)un︸ ︷︷ ︸

:=f2(un)

+(1− βAτΔ)−1
(
(un)3 − ((1− β)A+ 1)un︸ ︷︷ ︸

:=f1(un)

))
,

(2.3)

where in the last equality above, we plugged in f(u) = u3 − u.
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2508 D. LI

By Lemma 2.2, we have if ‖un‖∞ ≤ M , then

‖(1− βAτΔ)−1
(
f1(u

n)
)
‖∞

≤ max
|z|≤M

|f1(z)| ≤ f1(M),

provided M ≥ 2
√

1+(1−β)A
3 .

Then under the condition ‖un‖∞ ≤ M and for M ≤
√

A+1
3 (by using Lemma

2.2),

‖RHS of (2.3)‖∞ ≤ 1

βA

(
max
|z|≤M

|f2(z)|+ f1(M)
)

≤ 1

βA

(
f2(M) + f1(M)

)
= M.

Collecting all the inequalities, we get the following:
Under the conditions

• β(1− β) = ν
A2τ ≤ 1

4 , 0 < β < 1;

• 2
√

1+(1−β)A
3 ≤

√
A+1
3 ,

if ‖un‖∞ ≤ M (M ≤
√

A+1
3 ), then ‖un+1‖∞ ≤ M .

It is then easy to deduce the condition A ≥ Acr. �

2.1. Proof of Corollary 1.1 and 1.2. We first note that in view of (1.9), the
proof of Corollary 1.1 is a repetition of that of Theorem 1.1 (with Δ simply replaced
by ΔNUM). Therefore we only focus on Corollary 1.2. This amounts to checking
Definition 1.1 for typical finite difference schemes. We present several illustrative
examples.

Example 2.1. 1D central difference with periodic boundary condition. Let N ≥ 2
be an integer and Δx > 0. Let u = (u0, · · · , uN−1) and define

(ΔNUMu)i =
ui+1 + ui−1 − 2ui

(Δx)2
.

Here ui+N = ui. With data f = (fi), we need to examine solvability to the equation

ui − k(ΔNUMu)i = fi(2.4)

and prove the estimate

‖u‖∞ ≤ ‖f‖∞.(2.5)

First we note that (2.5) follows from a simple maximum principle argument: if
i1 = argmax(ui), then obviously (ΔNUMu)i1 ≤ 0, and ui1 ≤ fi1 . To show existence,
we can rewrite (2.4) as

ui = (Tu)i :=
θ

2
(ui−1 + ui+1) + (1− θ)fi,(2.6)

where θ = 2k
2k+(Δx)2 . Since 0 < θ < 1, easy to check that T is a contraction operator

(in l∞-norm) and the existence follows from the standard fixed point theorem.1

1Actually from (2.6) one can also directly deduce the estimate ‖u‖∞ ≤ ‖f‖∞ without appealing
to the maximum principle.
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Example 2.2. 1D central difference with Dirichlet boundary condition. This is
similar to Example 2.1 except that the boundary condition is modified to u−1 =
uN = 0. Easy to check that in this case ΔNUM still satisfies Definition 1.1.

Example 2.3. Graph Laplacian with special weights. Let X be a finite set with
cardinality |X| = N . Without loss of generality we identify X as {0, · · · , N − 1}.
Let wij , 0 ≤ i, j ≤ N − 1 be nonnegative numbers such that wii =

∑
j �=i wij , for all

i. For any u : X → R, define

(ΔNUMu)j = −wiiui +
∑
j �=i

wijuj .(2.7)

Then ΔNUM satisfies Definition 1.1. Indeed the equation u− kΔNUMu = f can be
rewritten as

ui = (Tu)i :=
∑
j �=i

kwij

1 + kwii
uj +

1

1 + kwii
fi.(2.8)

Easy to check that ‖T (u− v)‖∞ ≤ θ‖u− v‖∞ with

θ = max
1≤i≤N

kwii

1 + kwii
< 1.

The estimate ‖u‖∞ ≤ ‖f‖∞ is also obvious.

Remark. Example 2.3 includes many finite difference schemes as special cases. For
example, on a 2D mesh with mesh size h, the usual five-point stencil discretized
Laplacian has the form

(ΔNUMu)(x1, x2)

=
u(x1 − h, x2) + u(x1 + h, x2) + u(x1, x2 − h) + u(x1, x2 + h)− 4u(x1, x2)

h2
.

This certainly can be rewritten in the style of (2.7).

3. Improved resolvent bounds

The resolvent bound ‖(I − kΔNUM)−1f‖∞ ≤ ‖f‖∞ discussed in the previous
section is generally optimal, as can been seen by taking f to be a constant function.
On the other hand, for Cahn-Hilliard type equations, we usually work with functions
with mean zero. As it turns out, for discretized Laplacians, one can refine the
resolvent bound slightly if we restrict to the class of mean-zero functions.

Proposition 3.1. Consider (2.6). There exists a constant 0 < ε < 1 (possibly
depending on θ and N) such that

‖u‖∞ ≤ ε‖f‖∞,

for any f with mean zero, i.e.
∑N−1

i=0 fi = 0.

Remark 3.1. To see why Proposition 3.1 should hold, one can consider the special
case N = 3. In this case by using u0 + u1 + u2 = 0, one can explicitly solve ui in
terms of fi as

ui =
1− θ

1 + θ
2

fi.

Obviously ‖u‖∞ ≤ 1−θ
1+ θ

2

‖f‖∞.
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2510 D. LI

To prove Proposition 3.1, we need a simple lemma. The subtlety lies in the
incorporation of the mean-zero constraint.

Lemma 3.1. Let N ≥ 2 be an integer. Suppose 0 ≤ c0 ≤ c1 · · · ≤ cN−1. Let

X =
{
σ = (σ0, · · · , σN−1) : max

j
|σj | ≤ 1,

N−1∑
j=0

σj = 0.
}
.

Then

max
σ∈X

(c · σ) =
N−1∑

j=N−[N2 ]

cj −
[N2 ]−1∑
j=0

cj .

Here [x] denotes the integer part of any real number x, for example [3/2] = 1.

Remark. If N is even, then the maximum of c · σ is achieved by

σ = (−1,−1, · · · ,−1, 1, · · · , 1)
with equal number of 1s and −1s. If N is odd, then this is achieved by

σ = (−1,−1, · · · ,−1, 0, 1, · · · , 1)
with (N − 1)/2 ones and minus ones.

Proof of Lemma 3.1. Consider the function f(σ) = c · σ. Since X is a compact
set, the maximum of f must be attained at some point σ̃ = (σ̃0, · · · , σ̃N−1). Since
0 ≤ c0 ≤ · · · cN−1 and

∑
j σ̃j = 0, we can assume σ̃0 ≤ · · · σ̃j1 ≤ 0 ≤ σ̃j1+1 ≤ · · · ≤

σ̃N−1. By a simple optimization argument,2 one can further assume that σ̃ has
three possible forms:

• σ̃ = (−1, · · · ,−1, σj1 , σj1+1, 1, · · · , 1), where −1 < σj1 ≤ 0 and 0 ≤ σj1+1 <
1. Now since cj1 ≤ cj1+1, for ε > 0, we have

cj1σj1 + cj1+1σj1+1 ≤ cj1(σj1 − ε) + cj1+1(σj1+1 + ε).

By using this argument together with the fact
∑

j σ̃j = 0, it is easy to see

that we can change σ̃ to σ̃ = (−1, · · · ,−1, 1, · · · , 1) and the value of c · σ̃
does not decrease.

• σ̃ = (−1, · · · ,−1, σ̃j1 , 1, · · · , 1) where −1 < σ̃j1 ≤ 0. Since
∑

j σ̃j = 0, easy
to see that in this case we must have σ̃j1 = 0.

• σ̃ = (−1, · · · ,−1, σ̃j1 , 1, · · · , 1 where 0 ≤ σj1 < 1. Easy to see that σ̃1 = 0
again due to

∑
j σ̃j = 0.

The rest of the argument is now obvious. One just need to discuss separately the
case N is even and the case N is odd. �

Proof of Proposition 3.1.

Step 1. We first show that there exists c = (c0, · · · , cN−1), such that

uk = (c ∗ f)k =
∑
j

ck−jfj ,

2One can fix the sum
∑j1

l=0 σ̃l and maximize
∑j1

l=0 σ̃l · cl. Similarly fix
∑N−1

l=j1+1 σ̃l and

maximize
∑N−1

l=j1+1 σl · cl. Also observe that one can assume without loss of generality that there

is at most one zero in σ̃.
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CAHN-HILLIARD EQUATIONS 2511

with the identification that ck±N = ck. This follows easily from the discrete Fourier
transform, which we briefly recall here. For a sequence of numbers a0, . . . , aN−1,
define

âj =

N−1∑
k=0

ake
− 2πijk

N .

Then ak can be reproduced from âj by

ak =
1

N

N−1∑
j=0

âje
2πijk

N .

For any two sequences a = (a0, · · · , aN−1) and b = (b0, · · · , bN−1), easy to check
that

(â ∗ b)k = âk b̂k.

Now return to (2.6). Clearly

(1− θ cos(
2πk

N
))ûk = (1− θ)f̂k.

Thus

uj = (c ∗ f)j ,
where

cj =
1

N

N−1∑
k=0

1− θ

1− θ cos( 2πkN )
e

2πijk
N .

Step 2. We show that
∑N−1

j=0 cj = 1 and

min
0≤j≤N−1

cj > 0.(3.1)

By Step 1, if we solve

uj =
θ

2
(uj−1 + uj+1) + (1− θ)fj ,(3.2)

with f = (1, 0, · · · , 0). Then uj = cj−1. By a simple maximum principle argument
we have uj ≥ 0 for all j. Now assume uj∗ = 0 for some j∗. Then from (3.2)
evaluated at j = j∗, we get uj∗−1 = uj∗+1 = 0. Iterating this argument a couple of
times, we get uj = 0 for all j which is obviously impossible. Thus minuj > 0 and
(3.1) holds. The fact

∑
j uj = 1 is obvious from summing j on both sides of (3.2).

Step 3. Define

X =
{
f̃ = (f̃0, · · · , f̃N−1) : max

j
|f̃j | ≤ 1,

∑
j

f̃j = 0
}
.

By Lemma 3.1 and Step 2, we have

max
f̃∈X

|c · f̃ | ≤

⎧⎨
⎩1− 2

∑N
2 −1
j=0 cj , if N is even,

1− cN−1
2

− 2
∑N−1

2 −1
j=0 cj , if N is odd.

Thus

max
f̃∈X

|c · f̃ | ≤ 1−N min
j

cj .
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Therefore

‖c ∗ f‖∞ ≤ ε‖f‖∞,

where

ε ≤ 1−N min
j

cj < 1. �

Remark. By Lemma 3.1, one can get the sharp constant

ε =
N−1∑

j=N−[N2 ]

cj −
[N2 ]−1∑
j=0

cj .

On the other hand, to get the bound ‖c ∗ f‖∞ ≤ (1 − N minj cj)‖f‖∞, one could
just argue directly without using Lemma 3.1. Let ε0 = minj cj and define c̃j =
cj − ε0 ≥ 0. Then since f has mean zero, we have c ∗ f = c̃ ∗ f . Thus

‖c ∗ f‖∞ ≤ ‖c̃‖1‖f‖∞
= (1−Nε0)‖f‖∞.

A similar perturbation idea is exploited in recent [9] to show some generalized
Poincaré inequalities.

We record below the generalization of Proposition 3.1.

Proposition 3.2. Consider (2.8). There exists a constant 0 < ε < 1 such that

‖u‖∞ ≤ ε‖f‖∞,

for any f with mean zero.

Proof of Proposition 3.2. This is similar to the proof of Proposition 3.1 and we
only point out the needed modifications. First let δli be the usual Kronecker delta

function and let c
(l)
i solves (see (2.8))

c
(l)
i =

∑
j �=i

kwij

1 + kwii
c
(l)
j +

1

1 + kwii
δli.

Then clearly the solution to (2.8) can be represented by

ui =
∑
l

c
(l)
i fl.

Easy to check that ε0 = minj,l c
(l)
i > 0. Furthermore (by taking f to be a constant

function) easy to check that
∑N−1

l=0 c
(l)
i = 1 for any i. Using the fact that f has

mean zero, clearly we have

|ui| =
∣∣N−1∑
l=0

(c
(l)
i − ε0)fl

∣∣ ≤ (1−Nε0)‖f‖∞,

i.e. ‖u‖∞ ≤ ε‖f‖∞ for ε = 1−Nε0 < 1. �
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CAHN-HILLIARD EQUATIONS 2513

4. Proof of Theorem 1.2

In this proof we denote by (·, ·) the usual L2 inner product for real-valued func-
tions. Denote

H = −νΔun+1 +A(un+1 − un) + f(un).

Here we suppress the notational dependence of H on n for simplicity. The scheme
(1.5) simply reads as

un+1 − un

τ
= ΔH.

Clearly then

(un+1 − un, H) = τ (ΔH,H) = −τ‖∇H‖22.

We now evaluate (un+1 − un, H) by examining the contribution of each term in
H. First

(un+1 − un,−νΔun+1)

= − ν
(
(un+1,Δun+1)− (un,Δun+1)

)
= ν

(
‖∇un+1‖22 − (∇un,∇un+1)

)
≥ ν

(1
2
‖∇un+1‖22 −

1

2
‖∇un‖22

)
.

Here we used the simple inequality a2 + ab ≥ 1
2a

2 − 1
2b

2 for any a, b ∈ R.
Next observe

(un+1 − un, A(un+1 − un)) = A‖un+1 − un‖22.

Finally

(un+1 − un, f(un)) = (f(un)(un+1 − un), 1),

where 1 denotes the constant function with value 1 on Ω. By the Fundamental
Theorem of Calculus, we have

F (un+1)− F (un) = f(un)(un+1 − un) +

∫ un+1

un

(un+1 − s)f ′(s)ds

= f(un)(un+1 − un) +

∫ un+1

un

(un+1 − s)(3s2 − 1)ds

= f(un)(un+1 − un) + 3

∫ un+1

un

(un+1 − s)s2ds

− 1

2
(un+1 − un)2.

By using Theorem 1.1, we have ‖un‖∞ ≤ M =
√

A+1
3 , ∀n ≥ 0. This gives∣∣∣∣∣3

∫ un+1

un

(un+1 − s)s2ds

∣∣∣∣∣ ≤ 3

2
|un+1 − un|2 ·M2.
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2514 D. LI

Thus

(un+1 − un, f(un))

≥
∫
Ω

F (un+1)dx−
∫
Ω

F (un)dx+
1

2
‖un+1 − un‖22

− 3

2
‖un+1 − un‖22 ·M2.

Collecting all the estimates, we get

(un+1 − un, H)

≥ E(un+1)− E(un) + (A+
1

2
− 3

2
M2)‖un+1 − un‖22

= E(un+1)− E(un) +
A

2
‖un+1 − un‖22.

The desired inequality follows easily.
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