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We consider the two dimensional dissipative surface quasi-geostrophic equation on the
unit square with mixed boundary conditions. Under some suitable assumptions on the
initial stream function, we obtain existence and uniqueness of solutions in the form of a fast
converging trigonometric series. We prove that the Fourier coefficients of solutions have a
non-uniform decay: in one direction the decay is exponential and along the other direction
it is only power like. We establish global wellposedness for arbitrary large initial data.
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1. Introduction and the formulation of the main results

In this paper we are concerned with the following
Cauchy problem for the 2D dissipative surface quasi-
geostrophic (SQG) equation

@h
@t þ u � rh ¼ �mð�DÞc=2h; ðt; x; yÞ 2 Rþ �X;

hð0; x; yÞ ¼ h0ðx; yÞ; ðx; yÞ 2 X;

(
ð1:1Þ

where m > 0, c 2 (0,2] are fixed parameters. The parameter
m is usually called the viscosity coefficient and it controls
the strength of the dissipation term. The unknown function
h ¼ hðt; xÞ : Rþ �X! R represents the potential tempera-
ture in geostrophic flows and its distribution indicates the
temperature at different locations on the earth surface (see
[5,26]). The vector-valued function u ¼ uðt; x; yÞ : X�
Rþ ! R2 is called the velocity and it is expressed in terms
of the stream function:

u ¼ ðu1;u2Þ ¼ � @w
@y

;
@w
@x

� �
: ð1:2Þ

The stream function w : Rþ �X! R is then related to the
so-called ‘‘potential temperature’’ h by the following non-
local differentiation:
. All rights reserved.

Chernov), dli@math.
ð�DÞ1=2w ¼ h: ð1:3Þ

Here if the set X is the whole of R2 or the torus, then the
fractional Laplacian (�D)a for any a 2 R is defined by the
Fourier transform:

dð�DÞaf ðnÞ ¼ jnj2a f̂ ðnÞ; n 2 R2; ð1:4Þ

where f̂ is the Fourier transform (or Fourier coefficient in
the periodic case) of f. In the physical space, the fractional
Laplacian has an integral representation by a singular ker-
nel of power law form. If the set X is a bounded domain in
R2, then one has to consider (1.1) with appropriate bound-
ary conditions, e.g. one can fix the value of the solution for
the whole exterior. In this paper we shall take X to be the
square in the positive quadrant of the plane with side
lengths equal to p. We will impose mixed boundary condi-
tions for the stream function w (see below). By using the
special boundary conditions, we will express w, h and u
in terms of convergent trigonometric series. The fractional
Laplacian (�D)a can then be defined the same way as in
(1.4).

The SQG system is a very important model in geostro-
phy and has been widely used in the study of atmosphere
and oceanic flows (cf. [26]). It is derived from the 3D Euler
equation and temperature equation in Boussinesq approx-
imation set in a strongly rotating half-space. For SQG the
cases when the set X ¼ R2 or the torus have been widely
studied in the literature. The case m = 0 is called inviscid
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SQG since no dissipation is present. When m > 0, the cases
c > 1, c = 1 and c < 1 are called subcritical, critical and
supercritical respectively. The inviscid SQG is derived from
general quasi-geostrophic equations in the special case of
constant potential vorticity and buoyancy frequency (see
[5,26]). It is an outstanding open problem whether smooth
initial data would blow up in finite time. The dissipative
SQG (i.e. m > 0) has been studied intensively. In the subcri-
tical case the global wellposedness result for initial data in
certain Sobolev spaces is well-known (cf. [6,2,14,16,24,25]
and references therein). In the critical case the global well-
posedness of SQG was recently settled by Kiselev, Nazarov
and Volberg [17] with C1 periodic initial data and by Caf-
farelli, Vasseur [7] in the whole space case with L2 initial
data (see also the extension by Dong and Du [13]). The pro-
blem of global regularity or finite-time blow-up for large
initial data in the supercritical case is still open. However
some partial results are available (cf. [8,9]) and blowup
can occur in a few related models in which u is not diver-
gence free (cf. [1,15,20,19,4] and references therein).

The main purpose of this paper is study the SQG Eq.
(1.1) on the two dimensional square with mixed boundary
conditions. This is a generalization of our earlier works (see
[10,12,11]) where we consider two dimensional Navier–
stokes systems with special boundary conditions. The
objective is to study the quantitative decay of Fourier coef-
ficients of the solutions depending on the geometry of the
underlying domain. As we shall see, in our case the Fourier
coefficients will display a rather non-uniform behavior: in
the horizontal direction they decay exponentially while in
the vertical direction they decay only power-like. This is
perhaps a bit surprising as opposed to the torus case where
the Fourier coefficients decay uniformly exponentially in
time. On the other hand one can attribute this non-uniform
decay pattern to the fact that our solution tries to accom-
modate the mixed boundary conditions. We now formu-
late more precisely our boundary conditions.

1.1. The mixed boundary conditions for the stream function

Consider the 2D SQG inside the two dimensional square
X whose sides are equal to p. On the vertical two sides, we
assume the stream function w and the potential tempera-
ture vanishes, i.e.

wðt;0; yÞ ¼ wðt;p; yÞ ¼ 0; 8 t P 0; 0 6 y 6 p; ð1:5Þ
hðt;0; yÞ ¼ hðt;p; yÞ ¼ 0; 8 t P 0; 0 6 y 6 p: ð1:6Þ

On the horizontal two sides, we assume a Neumann type
boundary condition, i.e.

@w
@y
ðt; x;0Þ ¼ @w

@y
ðt; x;pÞ ¼ 0; 8 t P 0; 0 6 x 6 p; ð1:7Þ

@h
@y
ðt; x;0Þ ¼ @h

@y
ðt; x;pÞ ¼ 0; 8 t P 0; 0 6 x 6 p: ð1:8Þ

The Cauchy problem (1.1)–(1.3) together with the bound-
ary conditions (1.5)–(1.8) then form a complete system
for which we shall construct our solutions. Remark that
the boundary conditions (1.5), (1.7) in general do not
preserve the L2

x norm of h, i.e. the quantity
Z p

0

Z p

0
hðt; x; yÞ2dxdy

may grow in time. This is in sharp contrast to the usual
case when X ¼ R2 or the torus, where one can prove that
the L2

x norm (more generally Lp
x norm, see [3]) of h does

not increase in time. As will become clear soon, the ab-
sence of L2

x conservation is an obstruction to global wellpo-
sedness even when the dissipation is subcritical (i.e.
1 < c 6 2).

We shall consider solutions of SQG with finite L2
x norm.

Therefore by (1.5)–(1.7) the stream function w can be ex-
panded into Fourier series:

wðt; x; yÞ ¼
X

mP1;nP0

hðt;m;nÞ sin mx cos ny: ð1:9Þ

We assume that this series and all series below like (1.9)
converge fast enough so that formal operations like differ-
entiations are possible. The formal operation can be easily
justified once we prove the decay of the corresponding
Fourier coefficients. By (1.3) and (1.4), we obtain

hðt; x; yÞ ¼
X

mP1;nP0

ðm2 þ n2Þ
1
2 � hðt;m;nÞ � sin mx cos ny:

ð1:10Þ

Therefore
@h
@x
ðt; x; yÞ ¼

X
mP1;nP0

ðm2 þ n2Þ
1
2 �m � hðt;m;nÞ � cos mx cos ny;

ð1:11Þ
@h
@y
ðt; x; yÞ ¼

X
mP1;nP0

ðm2 þ n2Þ
1
2 � ð�nÞ � sin mx sin ny: ð1:12Þ

For the expansion for the velocities, we use (1.2) to obtain

u1ðt; x; yÞ ¼
X

mP1;nP0

n � hðt;m;nÞ � sin mx sin ny; ð1:13Þ

u2ðt; x; yÞ ¼
X

mP1;nP0

m � hðt;m;nÞ � cos mx cos ny: ð1:14Þ

Note that in the expansion for @h
@y and u1 the effective sum-

mation actually only extends over n P 1 since the term
n = 0 vanishes. We shall make use of the expansions
(1.9)–(1.14) to derive an ODE system for the Fourier coeffi-
cients h(t,m,n), m P 1, n P 0.
1.2. System of ODE for h(t,m,n)

By (1.10) and (1.4), we get

@h
@t
þ mð�DÞc=2h

� �
ðt; x; yÞ ¼

X
mP1;nP0

ðm2 þ n2Þ
1
2 � _hðt;m;nÞ

�
þm � ðm2 þ n2Þ

cþ1
2 � hðt;m;nÞ

�
� sin mx cos ny: ð1:15Þ

Here _h denotes time differentiation.
By using (1.11) and (1.13), we have
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u1 �
@h
@x

� �
ðt;x;yÞ¼

X
m0P1;n0P0

n0 �hðt;m0;n0Þ �sinm0xsinn0y

 !

�
X

m00P1;n00P0

ððm00Þ2þðn00Þ2Þ
1
2 �m00 �hðt;m00;n00Þ

 

�cosm00xcosn00y

!

¼1
4

X
m0P 1;m00P 1
n0P 0;n00P 0

n0 � ððm00Þ2

þðn00Þ2Þ
1
2 �m00 �hðt;m0;n0Þ �hðt;m00;n00Þ

� ðsinðm0 þm00Þxþsinðm0 �m00ÞxÞ

� ðsinðn0 þn00Þyþsinðn0 �n00ÞyÞ; ð1:16Þ

where we have used the trigonometric formula

sina cos b ¼ 1
2

sinðaþ bÞ þ 1
2

sinða� bÞ:

Similarly by using (1.12) and (1.14) we compute

u2 �
@h
@y

� �
ðt; x; yÞ ¼ 1

4

X
m0 P 1;m00 P 1

n0 P 0;n00 P 0

m0 � ððm00Þ2

þ ðn00Þ2Þ
1
2 � ð�n00Þ � hðt;m0; n0Þ � hðt;m00; n00Þ

� ðsinðm0 þm00Þx� sinðm0 �m00ÞxÞ

� ðsinðn0 þ n00Þy� sinðn0 � n00ÞyÞ; ð1:17Þ

Adding together (1.16) and (1.17) and grouping the sums,
we obtain
u1 �
@h
@x
þ u2 �

@h
@y
¼

X
mP1;~nP0

sin mx cos ~ny
X
nP1

Cðn; ~nÞ 1
4

m0 P 1;n0 P
m0 �
n0 �

0BBBBBBBB@
� ððm00Þ2 þ ðn00Þ2Þ

1
2 � m00n0 � ð�1Þm1ðm0 ;m00 ;mÞþm1ðn0 ;n00 ;n
�

¼
X

mP1;nP0

sin mx cos ny
X
kP1

Cðk; nÞ 1
4

m0 P 1;n0 P
m0 �
n0 �

0BBBBBBBB@
þ ðn00Þ2Þ

1
2 � m00n0 � ð�1Þm1ðm0 ;m00 ;mÞþm1ðn0 ;n00 ;kÞ
�

�m0n00 �
u1 �
@h
@x
þu2 �

@h
@y
¼

X
mP1;nP1

sinmxsinny

� 1
4

X
m0 P 1;n0 P 0;m00 P 1;n00 P 0

m0 �m00 ¼�m
n0 �n00 ¼�n

hðt;m0 ;n0Þhðt;m00 ;n00Þ

0BBBBBBBB@
� ððm00Þ2þðn00Þ2Þ

1
2

� m00n0 � ð�1Þm1 ðm0 ;m00 ;mÞþm1 ðn0 ;n00 ;nÞ
�

�m0n00 � ð�1Þm2 ðm0 ;m00 ;mÞþm2ðn0 ;n00 ;nÞ
�!

:

ð1:18Þ

Here m1, m2 are integer functions defined as

m1ðm0;m00;mÞ ¼
1; if m0 �m00 ¼ �m;

0; otherwise:

�

m2ðm0;m00;mÞ ¼
1; if m0 �m00 ¼ m;

0; otherwise:

�
The formulae (1.15) and (1.18) are not enough for giving
the equations for h(t,m,n) and an additional step is needed.
We remark that the sequence {cos nx, n P 0} is an orthogo-
nal basis in the Hilbert space L2([0,p],dx). Therefore we can
write

sin nx ¼
X
~nP0

Cðn; ~nÞ cos ~nx; ð1:19Þ

where

Cðn; ~nÞ ¼

4n
ðn2�~n2Þp ; if n� ~n is odd; n P 1; ~n P 1;
2

np ; if n P 1; ~n ¼ 0 and n is odd;
0; otherwise:

8><>:
ð1:20Þ

Consider again the formula (1.18). In the product
sinmx � sinny we replace the second factor by the series
X
0;m00 P 1;n00 P 0
m00 ¼ �m
n00 ¼ �n

hðt;m0;n0Þhðt;m00;n00Þ

Þ�m0n00 � ð�1Þm2ðm0 ;m00 ;mÞþm2ðn0 ;n00 ;nÞ
�!

X
0;m00 P 1;n00 P 0
m00 ¼ �m
n00 ¼ �k

hðt;m0;n0Þhðt;m00;n00Þ � ððm00Þ2

ð�1Þm2ðm0 ;m00 ;mÞþm2ðn0 ;n00 ;kÞ
�!

: ð1:21Þ
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(1.19) and this gives us a series w.r.t. sin mx � cosny,
The equality between the coefficients of the series of this
new expression and Eq.(1.15) will give us the needed sys-
tem of equations for h(t,m,n). Collecting the formulae
1.1,1.15,1.21, we obtain

_hðt;m;nÞ þ 1

ðm2 þ n2Þ
1
2

Nðt;m; nÞ

¼ �m � ðm2 þ n2Þ
c
2hðt;m;nÞ; 8 m P 1; n P 0: ð1:22Þ

Here for m P 1, n P 0,

Nðt;m;nÞ¼
X
kP1

Cðk;nÞ 1
4

X
m0P 1;n0 P 0;m00P 1;n00P 0

m0 �m00 ¼�m
n0 �n00 ¼�k

hðt;m0;n0Þhðt;m00 ;n00Þ

0BBBBBBBB@
� ððm00Þ2þðn00Þ2Þ

1
2

� m00n0 � ð�1Þm1 ðm0 ;m00 ;mÞþm1ðn0 ;n00 ;kÞ
�

�m0n00 � ð�1Þm2ðm0 ;m00 ;mÞþm2ðn0 ;n00 ;kÞ
��
:

ð1:23Þ

The RHS of (1.22) describes the influence of viscosity.
The infinite system of Eq. (1.22) is our basic ODE system
for the coefficients h(t,m,n), m P 1, n P 0. We now state
the main results of this paper.

Theorem 1.1 (Wellposedness and mixed decay). Let m > 0
and 1 < c 6 2. Let h(0,m,n) satisfy the inequalities

jhð0;m;nÞj 6 D0

maðnþ 1Þb
� 1

ðm2 þ n2Þ
1
2
; 8 m P 1; n P 0;

ð1:24Þ

and a > 2, 2 < b < 3, D0 > 0. Then there exists a time
T = T(D0,a,b,m,c) > 0, a constant D1 = D1(D0,a,b,m,c) > 0, such
that (1.23) has a unique solution h(t,m,n) which satisfies
for all 0 6 t < T the inequalities

jhðt;m;nÞj6 D1

maðnþ1Þb
�e�m

2mt � 1

ðm2þn2Þ
1
2
; 8m P 1; n P 0:

ð1:25Þ

In fact h(t,m,n) satisfies an even stronger inequality. For any
0 < t0 < T, there exists a constant D2 = D2(D0,a,b,m,c, t0) > 0
such that for any t0 6 t < T, we have
Table 1
Power-law decay rates of the Fourier modes: the decay in n is given by b1

and the decay in m is given by b2.

t D0 = 1 D0 = 10

K = 20 K = 30 K = 20 K = 30

b1 b2 b1 b2 b1 b2 b1 b2

0.00 2.0 2.5 2.1 2.5 2.0 2.5 2.1 2.5
0.05 3.2 3.9 3.6 5.0 2.3 3.9 2.6 5.0
0.10 3.7 5.3 4.1 7.5 2.6 5.3 2.7 7.4
0.15 4.1 6.8 4.3 9.9 2.8 6.5 2.8 9.7
0.20 4.4 8.2 4.4 12.4 2.9 7.9 2.9 12.1
0.30 4.6 10.9 4.6 16.9 2.9 9.7 2.9 13.3
0.40 4.6 13.6 4.5 20.6 3.0 10.2 3.0 14.1
0.50 4.5 16.1 4.3 23.7 3.0 10.7 3.0 14.9
0.60 4.4 18.3 4.2 26.2 2.9 11.2 2.9 15.9
jhðt;m;nÞj 6 D2

ðnþ 1Þ3þc e�
m
10mt ; 8 m P 1; n P 0: ð1:26Þ

Finally if D0 is sufficiently small, then the corresponding solu-
tion is global and the estimates (1.25) and (1.26) hold for
T = +1.
Remark 1.2. The decay assumption (1.24) is a bit unusual:
namely the decay in the n-direction is only power-like and
limited to a certain range (n�2,n�3) (if we count the factor
1/(m2 + n2) then it is (n�3, n�4)). The upper bound b < 3 is
actually not necessary for the initial data. The main point
is that only the regularity (n�2, n�3) is propagated by the
nonlinear flow (see (1.25)). Such a slow decay is connected
with our special boundary condition and the switching of
Fourier basis when we make the nonlinear estimates (see
(1.19)). It is possible that one can work with other types
of solutions (say weak solutions) and push down further
the regularity assumption in (1.24). We shall not dwell
on this issue here.
Remark 1.3. The inequality (1.26) shows that the smooth-
ing effect of the fractional Laplacian is non-uniform: in the
horizontal direction the solution is infinitely smooth while
in the vertical direction it has finite number of derivatives
on the boundary. By Theorem 1.1 and especially the decay
estimate (1.25) and (1.26), we obtain a classical solution to
(1.1) satisfying aforementioned boundary conditions (1.5)
and (1.7). In particular it is not difficult to check that h
has strong derivatives up to the boundary and therefore
the boundary conditions (1.5) and (1.7) hold in the usual
sense.

Theorem 1.1 is a bit unsatisfactory since it is a local re-
sult. Our next theorem establishes global wellposedness
for arbitrary large initial data.

Theorem 1.4 (Global wellposedness for large data). Let m > 0
and 1 < c 6 2 be the same as in Theorem 1.1. Let h(0,m,n)
satisfy (1.24). Then the corresponding solution constructed in
Theorem 1.1 exists globally.

The proof of Theorem 1.4 relies on an important Hopf-
type maximum principle (Proposition 4.1 in Section 4)
which gives a priori control of L1 norm of the solution.
The main work needed to continue the solution is to up-
grade this L1 estimate to Sobolev estimates needed in The-
orem 1.1. The proof of Theorem 1.4 is given in Section 4.

Remark 1.5. With some small modifications, our method
here applies to the 2D Navier–Stokes system considered in
[12] and establishes global wellposedness for arbitrary
large initial data. It is worthwhile pointing out the
difference between 2D Navier–Stokes equation and the
2D surface quasi-gestrophic equation. In vorticity formula-
tion, the 2D Navier–Stokes equation takes the form

@txþ ðu � rÞx ¼ Dx;

where u =r\w and Dw = x. The potential temperature h
in (1.1) is analogous to the vorticity x. Formally speaking,
the advection velocity u in (1.1) scales like h (up to a Riesz
transform). On the other hand, in 2D Navier–stokes the
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velocity u scales like ð�DÞ�
1
2x which is more ‘‘smoothing’’

than the quasi-gestrophic case. This is the main reason
why in general the analysis of the quasi-geostrophic
equation is more difficult than the 2D Navier–Stokes
equation.
2. Numerical simulations

To verify and illustrate the conclusions of Theorem 1.1,
we have computed the Fourier modes h(t,m,n) and f(t,m)
in a numerical experiment where the initial values were
set to

hð0;m;nÞ ¼ D0

maðnþ 1Þb
� 1

ðm2 þ n2Þ
1
2
; 8 m P 1;n P 0

ð2:1Þ

with a = 2.5 and b = 2.5 and some D0 > 0, so that the as-
sumptions (1.24) are valid. We set m = 1 and c = 1.5.

In our numerical solution of the ODE system (1.22) we
restricted the indices m,n to a finite interval 1 6m 6 K,
0 6 n 6 K (which is a Galerkin approximation to the
infinite system (1.22)). Then we solved the resulting finite-
dimensional system numerically by the classical Runge–
Kutta method. To test the accuracy we have changed the
Galerkin size parameter K and the time step Dt in the
Runge–Kutta scheme several times to make sure that our
results remained stable.

After computing the Fourier modes h(t, m, n) we esti-
mated their decay rates in m and n by approximating their
logarithms

~hðt;m; nÞ ¼ log jhðt;m;nÞj

by two linear functions:

~hðt;m;nÞ ¼ a1 � b1n ðwhen m is kept fixedÞ;
~hðt;m;nÞ ¼ a2 � b2m ðwhen n is kept fixedÞ:

The slopes b1 and b2 represent the powers of the decay
rates of h(t, m, n) in n and m, respectively. Since the value
of b1 depends on m and the value of b2 depends on n, we
averaged the values of b1 over m = 1, 2, 3 and averaged
the values of b2 over n = 0, 1, 2.

Table 1 shows how the computed values of b1 and b2

change in time. We see that the decay rates in m (given
by b2) increase steadily (in the case D0 = 1 it appears that
b2 grows linearly in t, while in the case D0 = 10 the growth
is less regular), indicating that the true decay becomes fas-
ter than any power function, which is consistent with the
exponential bound (1.25). On the other hand, the decay
rate in n (the value of b1), after a short initial growth, sta-
bilizes and in fact starts decreasing. Interestingly, for D0 = 1
the value of b1 stabilizes near 3 + c = 4.5, which agrees with
the stronger bound (1.26).

Our results support the conclusions and conjectures
stated in Theorem 1.1: the decay of the Fourier modes in
m is indeed much faster than the decay in n. Actually, the
former is faster than any power function, while the latter
remains power-like.
3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. Let h(0,
m, n) satisfy (1.24). The system (1.22) in the integral form
can be written as

hðt;m;nÞ¼ e�mðm2þn2 Þ
c
2 thð0;m;nÞ

�
Z t

0

1

ðm2þn2Þ
1
2
e�mðm2þn2Þ

c
2 sNðt� s;m;nÞds; 8m P 1; n P 0: ð3:1Þ

Note here the terms N(t,m,n), m P 1, n P 0 are nonlinear
functionals of h(t,m,n), m P 1, n P 1. We then seek a solu-
tion of (3.1) by iterations. Define the iterates

hð1Þðt;m;nÞ ¼ e�ðm
2þn2Þc=2mthð0;m;nÞ; 8 m P 1; n P 0;

ð3:2Þ

and for j P 2

hðjÞðt;m;nÞ ¼ hð1Þðt;m;nÞ �
Z t

0

1

ðm2 þ n2Þ
1
2

e�mðm2þn2Þ
c
2sNðj�1Þ

� ðt � s;m;nÞds; 8 m P 1; n P 0: ð3:3Þ

Here for m P 1, n P 0,

Nðj�1Þðt;m;nÞ

¼
X
kP1

Cðk;nÞ 1
4

X
m0P 1;n0P 0;m00P 1;n00P 0

m0 �m00 ¼�m
n0 �n00 ¼�k

hðj�1Þðt;m0;n0Þhðj�1Þ

0BBBBBBBB@
t;m00;n00Þð � ððm00Þ2þðn00Þ2Þ

1
2 � m00n0 � ð�1Þm1ðm0 ;m00 ;mÞþm1ðn0 ;n00 ;kÞ
�

�m0n00 � ð�1Þm2ðm0 ;m00 ;mÞþm2ðn0 ;n00 ;kÞ
�!

: ð3:4Þ

We begin with the following two lemmas which were
proved in [12].

Lemma 3.1. Let 0 < ~a <1, n P 0. There exists a constant
C1 > 0 depending only on ~a, such that

X
k–n

k P 1

jCðk;nÞj � 1

k
~a 6

C1; if 0 6 n 6 4

C1 � log n
n~a ; if 0 < ~a 6 2;n P 5

C1 � 1
n2 ; if ~a > 2;n P 5:

8>>><>>>:
ð3:5Þ

Here C(k,n) is defined in (1.20).
Proof 1. See [12]. h
Lemma 3.2. Let a1 > 1, a2 > 1. Let k P 1 be an integer. There
is a constant C2 > 0 depending only on (a1,a2) such thatX
k1 P 1; k2 P 1
jk1 � k2j ¼ k

1
ka1

1

� 1
ka2

2

6 C2 �
1

ka3
; ð3:6Þ

where a3 = min{a1, a2}.
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Proof 2. See [12]. h
Lemma 3.3. Let a > 2, b > 2. Let m P 1, k P 1 be integers.
There exists a constant C3 > 0 depending only on (a,b) such
that X
m0 P 1;n0 P 0;m00 P 1;n00 P 0

jm0 �m00j ¼ m
jn0 � n00j ¼ k

1
ðm0Þaðn0 þ 1Þb

� 1
ðm00Þaðn00 þ 1Þb

� m0n00

ðm0Þ2 þ ðn0Þ2
� �1

2

6 C3 �
1

makb�1 ; ð3:7Þ

X
m0 P 1;n0 P 0;m00 P 1;n00 P 0

jm0 �m00j ¼ m
jn0 � n00j ¼ k

1
ðm0Þaðn0 þ 1Þb

� 1
ðm00Þaðn00 þ 1Þb

� m00n0

ðm0Þ2 þ ðn0Þ2
� �1

2

6 C3 �
1

ma�1kb : ð3:8Þ
Proof of Lemma 3.3. We first deal with (3.7). By Lemma
3.2,

jLHS ofð3:7Þj

6

X
m0P1;n0P0;m00P1;n00P0

jm0 �m00 j¼m
jn0 �n00 j¼k

1

ðm0Þa�1ðn0 þ1Þb
� 1

ðm00Þaðn00 þ1Þb�1 �
1

ððm0Þ2þðn0 Þ2Þ
1
2

6

X
m0;m00P1
jm0 �m00 j¼m

1
ðm0Þaðm00Þa

�
X

n0 ;n00P0
jn0 �n00 j¼k

1

ðn0 þ1Þbðn00 þ1Þb�1

6C3 �
1

makb�1 :

Similarly
jNðj0�1Þðt;m; nÞj 6 1
4

X
kP1

jCðk;nÞj
X

m0 P 1;n0 P 0;m00 P 1;n00 P 0
m0 �m00 ¼ �m
n0 � n00 ¼ �k

jhðj0�1Þðt;m

0BBBBBBBB@

6 D2
0

X
kP1

jCðk;nÞj �
X

m0 P 1;n0 P 0;m00 P 1; n00 P 0
m0 �m00 ¼ �m
n0 � n00 ¼ �k

e�
1
2ðm

0þm

0BBBBBBBB@
jLHS ofð3:8Þj

6

X
m0P1;n0P0;m00P1;n00P0

jm0 �m00 j¼m
jn0 �n00 j¼k

1

ðm0Þaðn0 þ1Þb�1 �
1

ðm00Þa�1ðn00 þ1Þb
� 1

ðm0Þ2þðn0Þ2
� �1

2

6

X
m0;m00P1
jm0 �m00 j¼m

1

ðm0Þaðm00Þa�1 �
X

n0;n00P0
jn0 �n00 j¼k

1
ðn0 þ1Þbðn00 þ1Þb

6C3 �
1

ma�1kb : �

Now for any a > 2, b > 2, T > 0, we introduce the Banach
space Xa,b,T consisting of continuous functions ~hðtÞ ¼
ð~hðt;m;nÞÞmP1;nP0, endowed with the norm

k~hkXa;b;T
:¼ sup

06t6T
sup

mP1;nP0
j~hðt;m;nÞj � ðm2 þ n2Þ

1
2 �maðnþ 1Þb � e1

2mmt ;

We will prove Theorem 1.1 by a contraction argument in
the space Xa,b,T for some sufficiently small T > 0.

Proof of Theorem 1. Let m > 0, 1 < c 6 2. Define the
iterations according to (3.2) and (3.3). We first show that
if T is sufficiently small depending on (D0,a, b, m, c), then

khðjÞkXa;b;T
6 2D0; 8 j P 1: ð3:9Þ

By (1.24) and (3.2), we have

khð1ÞkXa;b;T
6 sup

m P 1;n P 0
0 6 t 6 T

D0 � e
� ðm2þn2Þ

c
2�m

2

� �
mt

6 D0;

where the last inequality follows from the fact that m P 1,
n P 0 and 1 < c 6 2. Assume (3.9) holds for 1 6 j < j0,
j0 P 2. Then for j = j0, n P 0, we have
Now remark that if jm0 ± m00j = m, then m0 + m00 P m. There-
fore by Lemmas 3.1–3.3, we have

jRHS of ð3:10Þj 6 D2
0 � e�

1
2mmt �

X
kP1

jCðk;nÞj � C3

� 1

ma�1kb þ
1

makb�1

� �
6 C4 � e�

1
2mmt

� 1
ma�1ðnþ 1Þb

þ logðnþ 5Þ
maðnþ 1Þb�1

 !
;

0;n0Þj � jhðj0�1Þðt;m00; n00Þj�ððm00Þ2 þ ðn00Þ2Þ
1
2 � ðm00n0 þm0n00Þ

�

00 Þmt � 1

ððm0Þ2 þ ðn0Þ2Þ
1
2
� 1
ðm0Þaðn0 þ 1Þb

� m00n0 þm0n00

ðm00Þa � ðn00 þ 1Þb

!
: ð3:10Þ
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where C3, C4 are constants depending only on (D0, a, b).
Substituting this estimate into (3.3), we get

jhðj0Þðt;m;nÞj 6 e�mðm2þn2Þ
c
2t � 1

ðm2 þ n2Þ
1
2
� D0

maðnþ 1Þb

þ 1

ðm2 þ n2Þ
1
2
� C4 �

Z t

0
e�ðm

2þn2Þ
c
2ms

� e�1
2mmðt�sÞds

� 1
ma�1ðnþ 1Þb

þ logðnþ 5Þ
maðnþ 1Þb�1

 !

6 e�mðm2þn2Þ
c
2t � 1

ðm2 þ n2Þ
1
2
� D0

maðnþ 1Þb

þ 1

ðm2 þ n2Þ
1
2
� C4 � e�

1
2mmt

�
Z t

0
e�mððm2þn2Þ

c
2�1

2mÞsds

� 1
ma�1ðnþ 1Þb

þ logðnþ 5Þ
maðnþ 1Þb�1

 !
: ð3:11Þ

Now since m P 1, n P 0, 1 < c 6 2, we have

1
2
ðm2 þ n2Þ

c
2 P

1
2

m;

and thereforeZ t

0
e�mððm2þn2Þ

c
2�1

2mÞsds 6
Z t

0
e�

m
2ðm

2þn2Þ
c
2sds 6

2
m
� 1� e�

m
2ðm

2þn2Þ
c
2t

ðm2 þ n2Þ
c
2

:

Plugging this estimate into the RHS of (3.11), we obtain

jRHS of ð3:11Þj 6 e�mðm2þn2Þ
c
2t � 1

ðm2 þ n2Þ
1
2
� D0

maðnþ 1Þb

þ e�
1
2mmt � 1

ðm2 þ n2Þ
1
2
� C4 �

2
m
� 1

ðm2 þ n2Þ
cþ1

2

� 1� e�
m
2ðm

2þn2Þ
c
2t

ðm2 þ n2Þ
c
2 � m2 t

� �c�1
c
� m

2

� �c�1
c
� t

c�1
c

� 1
ma�1ðnþ 1Þb

þ logðnþ 5Þ
maðnþ 1Þb�1

 !
: ð3:12Þ

Now remark that since 1 < c 6 2,

sup
x>0

1� e�x

x
c�1
c
6 C5 <1;

where C5 is a constant depending only on c. Also it is clear
that

m
2

� ��1
c
� 1

ðm2 þ n2Þ
cþ1

2

� 1
ma�1ðnþ 1Þb

þ logðnþ 5Þ
maðnþ 1Þb�1

 !

6 C6 �
1

ma �
1

ðnþ 1Þb
;

where C6 is another constant depending only on (D0, a, b, c,
m). Substituting the above two estimates into the RHS of
(3.12), we obtain
jhðj0Þðt;m;nÞj 6 e�
1
2mmt � 1

ðm2 þ n2Þ
1
2
� 1
maðnþ 1Þb

� ðD0 þ t
c�1
c

� C4 � C5 � C6Þ:

Let T 6 D0
C4 �C5 �C6

� � c
c�1

. Then for 0 < t < T we get

jhðj0Þðt;m;nÞj 6 e�
1
2mmt � 1

ðm2 þ n2Þ
1
2
� 1
maðnþ 1Þb

� 2D0;

ð3:13Þ

which implies that (3.9) holds for j = j0. This finishes the in-
duction step and (3.9) is proved for all j P 1. By essentially
repeating the above estimates, we also obtain strong con-
traction of the sequence h(j)(t). Namely there exists
T0 = T0(D0, a, b, m, c) > 0 and a constant 0 < h < 1, such that
if T 6 T0 then

khðjþ1Þ � hðjÞkXa;b;T
6 h � khðjÞ � hðj�1ÞkXa;b;T

; 8 j P 2:

This shows that (h(j)(t)) is Cauchy in Xa,b,T and hence we
have shown the existence and uniqueness of a solution
to (3.1) in Xa,b,T. Consequently (1.25) holds with D1 = 2D0.
We still have to show (1.26). We shall establish this by a
bootstrap argument. Without loss of generality assume

t0 <
T

100. Denote ĥðtÞ ¼ h t þ t0
2

� �
. Then ĥðtÞ solves (3.1) with

h t0
2

� �
as initial data. For 0 6 t < T � t0

2 , by (1.25), we get

jĥðt;m;nÞj ¼ h t þ t0

2
;m;n

� �				 				
6

D1

maðnþ 1Þb
� e�1

2mmt � e�1
4mmt0 � 1

ðm2 þ n2Þ
1
2

6 D1 � e�
1
2mmt � 1

ðnþ 1Þbþ1 �
e�

1
4mmt0

ma :

Since m P 1 and t0 > 0, we have

D1 � sup
mP1

e�
1
4mmt0

ma �m10
6 D3 <1;

where D3 is a constant depending only on (D0,a,b,m, t0).
Therefore we obtain
jĥðt;m;nÞj 6 D3 � e�
1
2mmt � e�1

4mmt0 � 1

ðnþ 1Þbþ1m10
;

8 m P 1;n P 0: ð3:14Þ

Denote bNðtÞ as the expression in (1.23) with h(t) now re-
placed by ĥðtÞ. Then by Lemmas 3.1–3.3 and (3.14), we
have for any 0 6 s < T � t0

2 ,

jbNðs;m;nÞj 6 e�
1
2mms�1

4mmt0 � D4 �
logðnþ 5Þ
ðnþ 1Þb�1 ;

where D4 is another constant depending only on
(D0,a,b,m,c,t0). Plugging this estimate into the RHS of (3.1)
and using again (3.14) for ĥð0;m;nÞ, we obtain for t P t0

100,



N. Chernov, D. Li / Chaos, Solitons & Fractals 45 (2012) 1192–1200 1199
jĥðt;m;nÞj 6 e�ðm
2þn2Þ

c
2mt jĥð0;m;nÞj þ e�

1
4mmt0 � D4 �

logðnþ 5Þ
ðnþ 1Þb

� e�1
2mmt �

Z t

0
e�ððm

2þn2Þ
c
2�m

2 Þmsds

6 e�ðm
2þn2Þ

c
2mt � D3 � e�

1
4mmt0 � 1

ðnþ 1Þbþ1m10
þ 10c

� e�1
4mmt0�1

2mmt � D4 �
logðnþ 5Þ
ðnþ 1Þbþc

6 D5 � e�
1
2mmt�1

4mmt0 � logðnþ 5Þ
ðnþ 1Þbþc ;

where D5 depends only on (D0,a,b,m,c,t0). Compare this
bound with (3.14), we have a better estimate of ĥðt;m;nÞ
with the decay in n improved from n�(b+1) to n�(b+c) � log
(n + 5). Iterating the above process once more and noting
that (3.5) only produces a decay of n�2 for ~a > 2, we obtain
for any t0

100 6 s < T � t0
2 ,

jbNðs;m;nÞj 6 e�
1
2mms�1

7mmt0 � D6 �
1

ðnþ 1Þ2
;

and consequently

jĥðt;m;nÞj 6 D7 � e�
1
2mmt�1

8mmt0 � ðnþ 1Þ�3�c
:

Here again D6, D7 are constants depending only on
(D0,a,b,m,c,t0). Hence (1.26) holds. Finally we remark that
the small data result follows along the same lines as in
the proof of the local contraction argument. We omit the
standard details. The theorem is proved. h
4. Global wellposedness for large data

To upgrade Theorem 1.1 to a global result, we need a
priori control of the solution. For this purpose we shall first
prove a maximum principle which gives control of L1-
norm of the solution. The situation here is slightly non-
standard due the boundary condition (1.5)–(1.8) and the
nonlocal fractional Laplacian ð�DÞ

c
2 (when c – 2).

To this end, let 1 < c 6 2 and m > 0 be the same as in The-
orem 1.1. Let X ¼ ½0;p� � ½0;p�. Let T1 > 0 be arbitrary but
fixed. Suppose a function / = /(t,x,y) has the expansion

/ðt; x; yÞ ¼
X

mP1;nP0

gðt;m;nÞ sin mx cos ny;8 0 6 t 6 T;

ð4:1Þ

where for some constants A1 > 0, b1 > 0,

jgðt;m;nÞj 6 A1

ðnþ 1Þ2þc e�b1m; 8 m P 1; n P 0: ð4:2Þ

Assume / 2 C1
t C2

x;yð½0; T� �XÞ solves the equation

@t/þ aðt; x; yÞ � r/ ¼ �mð�DÞ
c
2/; ð4:3Þ

where a 2 C0
t C0

x;yð½0; T� �XÞ and

ð�DÞ
c
2/

� �
ðt; x; yÞ ¼

X
mP1;nP0

gðt;m; nÞðm2 þ n2Þ
c
2 sin mx cos ny:

ð4:4Þ

Then we have
Proposition 4.1 (Maximum principle). For any 0 6 t 6 T1,
we have

k/ðt; �; �ÞkL1x;yðXÞ
6 k/ð0; �; �ÞkL1x;yðXÞ

: ð4:5Þ
Proof 3. By (4.1) and (4.2), we can regard / as a periodic
function with period 2p. Observe that

/ðt; x; yÞ ¼ �/ðt;2p� x; yÞ; /ðt; x; yÞ
¼ /ðt; x;2p� yÞ: ð4:6Þ

Therefore it is easy to check that the function /2(t,x,y) = /
(t,x,y)2 must achieve its maximum in X.

If 1 < c < 2, then by (4.4) and Proposition 2.2 from [3],
we have (suppressing the t-dependence for the moment)

ð�DÞ
c
2/2

� �
ðx; yÞ ¼ Cc

X
b2Z2

PV
Z

T2

/2ðx; yÞ � /2ðx0; y0Þ
jðx; yÞ � ðx0; y0Þ � 2pbj2þc dx0dy0;

ð4:7Þ

where Cc is a constant depending on c and PV is the princi-
pal value. In particular if (x⁄,y⁄) is a maximum point of /2,
then by (4.7)

ð�DÞ
c
2/2

� �
ðx�; y�ÞP 0: ð4:8Þ

It is easy to check that (4.8) also holds when c = 2.
By Proposition 2.3 from [3], we have

/ðx�; y�Þ ð�DÞ
c
2/

� �
ðx�; y�ÞP ð�DÞ

c
2/2

� �
ðx�; y�ÞP 0: ð4:9Þ

Let � > 0 and consider

/�ðt; x; yÞ ¼ /ðt; x; yÞ2 � �t:

For 0 6 t 6 T1, 0 6 x, y 6 2p, by (4.6) we can assume /� at-
tains its maximum at ðt�; x�; y�Þ 2 ½0; T1� �X. If 0 < t⁄ 6 T1,
then by (4.9)

ð@t/�Þðt�; x�; y�Þ ¼ ��� 2m/ðt�; x�; y�Þ ð�DÞ
c
2/

� �
ðt�; x�; y�Þ

6 �� < 0

which is clearly impossible.
Therefore we get for any ðx; yÞ 2 X, 0 6 t 6 T1,

/ðt; x; yÞ2 � �t 6 k/ð0; �; �Þk2
L1x;yðXÞ

:

Sending �? 0 yields (4.5). h

We are now ready to complete the

Proof of Theorem 1.4. In this proof, to simplify the
presentation we denote by X ± any quantity of the form
X ± � for any � > 0. We use X [ Y whenever X 6 CY for some
constant C > 0.

By Theorem 1.1, to continue the local solution it suffices
for us to show

sup
0<t<T

sup
mP1;nP0

hðt;m;nÞm2þðnþ 1Þ2þðm2 þ n2Þ
1
2

			 			 6 CðTÞ;

ð4:10Þ
for any T > 0. Here C(T) is some finite constant depending
on T. We shall adopt this notation for the rest of the proof.
Without loss of generality we may assume the initial data
satisfies



1200 N. Chernov, D. Li / Chaos, Solitons & Fractals 45 (2012) 1192–1200
jhð0;m;nÞj 6 B1

ðnþ 1Þ3þc e�b1m; 8 m P 1;n P 0; ð4:11Þ

where B1 > 0, b1 > 0. Otherwise we can choose t0 suffi-
ciently small and replace h(0,m,n) by h(t0,m,n) and do a
simple shift in time.

Let 0 < b2 < c � 1 and denote K ¼ ð�DÞ
1
2. To show (4.10),

it is enough for us to prove

kj@xjkhðtÞkL2
x;yðXÞ

6 CðTÞ; ð4:12Þ

and

kK2þb2 hðtÞkL2
x;yðXÞ

6 CðTÞ; ð4:13Þ

where k P k0(b) and k0(b) is an integer sufficiently large
depending on b.

We shall only prove (4.13). The proof of (4.12) is similar
and actually simpler. In the mild formulation, we write
(1.1) as

hðtÞ ¼ e�mKcthð0Þ þ
Z t

0
e�mKcðt�sÞðuðsÞ � rhðsÞÞds: ð4:14Þ

By using Proposition 4.1, we have for some 0 < d < 1 (note
that 0 < b2 < c � 1 and actually d = (1 + b)/c), that

kK1þb2 hðtÞkL2
x;y

K kK1þb2 hð0ÞkL2
x;y
þ
Z t

0
ðt � sÞ�dkuðsÞ � rhðsÞkL2

x;y
ds

K kK1þb2 hð0ÞkL2
x;y
þ
Z t

0
ðt � sÞ�dkuðsÞkL1�x;y

krhðsÞkL2þ
x;y

ds

K kK1þb2 hð0ÞkL2
x;y
þ khð0ÞkL1x;y

Z t

0
ðt � sÞ�dkK1þb2 hðsÞkL2

x;y
ds:

By (4.11) and a simple Gronwall-type argument, we get

sup
0<t<T

kK1þb2 hðtÞkL2
x;y
6 CðTÞ: ð4:15Þ

It follows that

sup
0<t<T

kuðtÞkL1x;y
6 CðTÞ: ð4:16Þ

By using (4.16) and a similar argument to the derivation of
(4.15), we then obtain

kK2þb2 hðtÞkL2
x;y
6 CðTÞ:

The estimate (4.12) can be proved in a similar manner. We
omit the details h
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