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Trigonometric Spectral Collocation Methods on Lattices
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This paper is dedicated to Stan Osher on the occasion of his 60th birthday.

ABSTRACT. Trigonometric spectral collocation methods can be very accurate
for computing approximate solutions to periodic problems on rectangular do-
mains. They obtain their answers by sampling the input function on a grid.
This article shows how spectral methods can be extended to the situation
where the input function is sampled on the nodeset of an integration lattice, a
generalization of a grid. The error analysis is derived for a general approxima-
tion problem. Numerical examples illustrate how spectral methods on rank-1
lattices can give higher accuracy than spectral methods on grids.

1. Introduction
Given any function f:R® — R with unit period interval, i.e.,
fx+y) = f(x) forallx e R®°, y € Z°,

one may consider the general linear problem of finding the periodic function u such
that

(1) u(x) = (Af)(x) for all x € R®,

where A is some operator. The dimension s is assumed to be arbitrary, perhaps
large. Furthermore, it is assumed that A(f) can be easily expressed in terms of
the trigonometric Fourier coefficients of f. Suppose that f and v may both be
expressed by absolutely convergent Fourier series:

(2) f(x) = Z F(k)e*™ ™ *  where F(k)= / f(x)e= 2k gx

keZs [0,1)®

U(X) = z U(k)ezlﬂk.x, where U(k) :f u(x)e—'}rr%kvx dx,
kezs 0,1)*
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and 1 = +/—1. It is assumed that some function A : Z°* — R exists such that
(3) U(k) = Ak)F(k).

Examples of problems of this form include

Integration: Af = f(x) dx, A(k) = bk,
[0,1)°

Function approximation: (Af)(x) = f(x), Ak) =1,

—(4n |k[3)7Y, k#0,

Poisson’s equation: (Af)(x) = ALf, A(k) = {0 e

where §; ; denotes the Kronecker delta function and A is the Laplacian operator.

Because f may not be known in closed form, or may be somewhat complicated,
it is desirable to be able to compute an approximation to u given the N data points
{f(xi) :1=0,...,N — 1}. Trigonometric spectral methods often provide highly
accurate approximations [1, 2, 10]. In these cases, the sampling points P = {x; :
i=0,...,N — 1} are typically chosen to form an s-dimensional rectangular grid s
aligned parallel to the coordinate axes. For simplicity, such sets will be referred to
as grid samples in this article.

Choosing P to be the node set of a lattice, a generalization of a grid, yields
accurate approximations to high dimensional integrals that are much better than
those obtained by grid sampling [5, 8, 9] for certain classes of integrands. Several
scholars have proposed sampling the input function on the nodeset of a lattice when
approximating a function or solving a partial differential equation [5, 6, 7], but few
details have been given regarding an efficient algorithm and its error analysis. This
article attempts to fill that gap. It is shown that trigonometric spectral collocation
methods may also be implemented for general linear problems of the form (1) if
the sampling points are chosen as the nodeset of an integration lattice. Here too,
nodesets of non-grid lattices may yield higher accuracy than that obtained by using
grids for certain classes of input functions, f and certain classes of problems.

The next section gives a brief review of spectral methods using Poisson’s equa-
tion as an example. Section 3 introduces lattice sampling. The error using spectral
collocation methods on lattices is derived in Section 4, and an upper bound on the
convergence rate is derived in Section 5. A numerical example demonstrating the
superiority of spectral methods using lattices is given in Section 6. This article ends
with a discussion of the relative merits of different kinds of lattices.

2. Trigonometric Spectral Methods

To illustrate trigonometric spectral methods, consider Poisson’s partial differ-
ential equation:

(4a) V2u(x) = f(x) for all x = (z1,23) € (0,1)?,

(4b) U(I]_,O) = u(I].: 1)! U(O, I‘Z) = u(l': x2))
du du

(4c) a—Iz(ihﬂ?z) o = 6—:c2(z1’m2) s’
Ju

(4d) a—m(il,l‘ﬂ o = '3}‘1'(-"«‘1@2) :1=1’
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where f, not only is periodic, but also has zero integral over the unit square. The
analytical solution to this partial differential equation is easily found via the method
of Fourier expansion. The solution is unique up to an additive constant, which is
determined by requiring the integral of u over the unit square to vanish. Then

-1 F(k) 2mik-x
(5) u(x) = (Af)(x) = A7 f(x) = BT RING :
PR

The basic idea of trigonometric spectral methods is to represent the approxi-
mate solution as an expansion in terms of a suitably chosen basis of trigonometric
polynomials. Define the following grid of N = ning points,

p = {(i]/ﬂ],ﬁ.g/ng) : ?.']. = 0117“' yN — 1,é2 = 0!13"' yg — 1}:
as shown in Figure 1 and the associated grid of wavenumbers,
(6) K:= ’{(kl,kg) : kl =1- fn1/2],...,n1 - |'n1/2],
k2 =1-[n2/2],...,n2 — [n2/21},

where [z] denotes the smallest integer greater than or equal to z. One approximates
f by a truncated Fourier series,

fx) =" F(k)e k>,

kek

The interpolation conditions, f(z) = f(z) for all z € P, determine the approxima-
tions, F(k), to the true Fourier coefficients. Noting that

1
(7) ﬁ Z e21rt(l—k)‘¥ = 5](,1 fOI’ all k,l [S K,
zEP

it follows that

” 1 7 -k)-z 1 ; —2mik-z
(®) F)= 5> > F)emi=9% = T3 7 f(z)e>mk
leK zeP zeP
- % Y f@)e ™ = forallk € K.
zeP

The above sum can be evaluated efficiently by the Fast Fourier Transform (FFT)
for suitable N, e.g. N = 2™. The approximation to u(x) is found by replacing
F(k) in (5) by F(k):

. Fk) e
i(x) = Z — e T,
ocex AP (kT +k3)

The error in this approximation arises from the error in F'(k). From (8) it
follows that

(9) F(k] = % Z f(z)e—27mk‘z _ % Z Z F(l)ez’”(l_k)"

zeP 1€Z? zeP

=Y Fk+)=Fk+ > Fk+l),

leL+ 0#leL+
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where Lt = {(min1,mang) : (m1,m2) € Z%}. That is, F'(k) is contaminated by
terms F(k +1) with 0 # 1 € L+, If these terms are small because F(1) decays
quickly with increasing 1, then the error is small.

The above procedure is not restricted to solving this particular partial differen-
tial equation. Any linear equation that can be represented in Fourier space as (3)
can be solved in the same way. Moreover, the sets P and K need not be grids. The
key property they need to satisfy is (7). Also, there should be an efficient method
for evaluating the sum in (8) giving the F(k) from the data. Integration lattices
are generalizations of grids that have these desired properties.

3. Integration Lattices

Integration lattices [3, 5, 8, 9] have been used for over forty years for mul-
tidimensional integration, and they are still an area of active research. An s-
dimensional integration lattice, L, is a set satisfying the following:

Z° C L CR®, y¥,2z € L implies y +z € L.

Furthermore, the nodeset of a lattice, P := LN|0, 1) is assumed to be finite. Shifted
lattices are also of interest. A shifted lattice is defined as La := {z+ A : z € L},
where the shift A € [0,1)° is often chosen randomly to eliminate the bias in the
algorithm.

A rectangular grid is one example of a lattice, but there are many other pos-
sibilities. Examples of three two-dimensional lattices and their nodesets are given
below:

(10) L=’{(i1/4,2‘2/4):t‘1,%‘2€2}, 'P={(3'1/4,1'2/4):z‘l,z’2=0,1,2,3},

(11a) L ={(1,7)i1/16 + (0,1)iz : i1, i3 € Z},

(11b) P ={(1,7)i1/16 mod1:i; =0,...,15},

(12a) L ={(1,3)i1/8 + (0,1)iz/2: i1, iz € Z},

(12b) P ={(1,3)i1/8+ (0,1)iz/2 mod 1:i;=0,...,7, ip = 0,1},

These three nodesets are plotted in Figures 1-3. The lattices in (10) and (12a) are
rank-2 lattices because they require two generating vectors, whereas the lattice in
(11a) is a rank-1 lattice. For details on determining the rank of a lattice see [9].
General integration lattices share several important properties with grids that
make them amenable to spectral methods. Suppose that the nodeset of an unshifted
lattice, P = L N [0,1)°, has cardinality N. The dual lattice, L* is defined as the

set of k € Z* satisfying
% Z e21nk-z =1

z€P
It then follows that for the nodeset of a shifted lattice, P = La N[0, 1)°,
2mik-A L
(13) l z e??nk-z _ € § for k € La ) .
N = 0, fork € Z°, k¢ L+.

The set of all integer wavenumber vectors, Z° may be written as X & L+, where
@® denotes the direct sum, and K is a set of NV integer vectors having the property
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FIGURE 1. The nodeset (10).
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FIGURE 2. The nodeset (11b).

125

that any two distinct vectors in K differ by a vector that is not in the dual lattice,

i.e.,

(14) kleKandk#1 => k-1¢L"

There are many ways to choose K such that Z° = K @ L*. In (6) the vectors in
K were chosen to be the smallest possible in terms of the Euclidean norm. For
general lattices the condition to uniquely determine X from L, or its nodeset P,
also assumes that the k in & are the smallest in some sense, but does not necessarily

use the Euclidean norm. Details are provided in the following sections.
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FIGURE 3. The nodeset (12b).

Because of property (13) it is possible to perform spectral methods using node-
sets of general shifted integration lattices (not only grids) by following the procedure
in Section 2. The approximate solution to the general problem (1) may be written
as

(15a) a(x) =Y A(k)F(k)e*™kx,
kek

where K is some wavenumber set satisfying (14) and F'(k) is the approximation to
F(k) given by a lattice rule:

- _— 1 —2mik-z
(15b) F(k) =+ > f(z)e for all k € K.
zEP
Analogous to (9), it is true for general shifted lattices that EF (k) is contaminated
by terms proportional to F(k +1) for 1€ L*:
(16) Fk)=F(k)+ > Fk+De*™2 forallkek.
0#leL+
The quality of the approximation depends on how fast ﬁ'(l) decays as | increases

in size, and also on the quality of P and K. To understand this dependence the
worst-case error is now analyzed.

4. Worst-Case Error Analysis

Before deriving the worst-case error for the general linear problem (1), the
known error analysis for integration is reviewed [3, 8, 9]. For an integrand of the
form (2) and a numerical integration rule that takes the mean of the integrand
sampled at the nodeset of a shifted lattice, the error is

1 rik-
f[o LSS DWW ORI

zeP O¢kel+
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2mkX yanishes for all nonzero

2mkex correctly for all
2mik-x

This formula is derived by noting that the integral of e
wavenumbers, and the numerical integration rule integrates e
wavenumbers not in the dual lattice. For wavenumbers in the dual lattice e
is aliased with the constant term, which is integrated exactly.

To separate the error dependence on the integrand from the dependence on the
lattice, Holder’s inequality is applied to the formula above. First one defines the
semi-norm

(17) Vop(f) = IF(K)r(K)® - Iizol,, a>0, 1<p< o0,
where
&
r(k) =r(ki, -, ko) = [ [ max(|k;|, 1).
=1
The exponent a measures how fast the Fourier coefficients of f are expected to
decay. Now, Holder’s inequality implies that

/[0,1)_ f(x) dx — %éf(z) < [Dag(P)]*Vap(f), i + é 1, ag>1,
where
1 .
18) D(P) = || 2255+ 1<a<oo

q
Furthermore, this error bound is tight. The quantity D,(P) may be called a dis-
crepancy because it may be interpreted as some norm of the difference between the
uniform distribution over [0,1)° and the empirical distribution of P. In this way it
is related to the discrepancy of Weyl [11]. Upper bounds on Dy(P) that may be
achieved by good choices of lattices are given by [4, 5, 8, 9].

One may wonder about the choice of r(k) that arises in the definition of the
semi-norm V,, ,. The subsets of Z? defined by r(k) < c take the shape of hyperbolic
crosses. The reason for such a definition is that for multidimensional problems one
might expect f to vary strongly in only one or two dimensions. Defining V,, , as
above, and then choosing P with small D,4(P) ensures that P samples f at many
different values in each coordinate direction. This is why nodesets of the form (11b)
tend to be better for numerical integration than grids with the same numbers of
points for this class of periodic integrands.

To analyze the error for the general linear problem let w denote a nonnegative
weight function on Z°. The error of the approximate solution ¢ may be measured
by the semi-norm

lu=all, = Y lwl)(u(k) — k)| = Y [w(k)AK)(F(K) - F(K))|.
keZ» keZs

For each integer vector k in Z*, let k/K denote the unique vector in K such that
k =k/K +1 for some 1 € L+ (see (14)). It is assumed that 0 € K. By the aliasing
property (16) it follows that the error is bounded by

19 fu-ial, <> > |Fk+De¥™Awk)AK)| + > [F(k)w(k)A(k)]

kek 0#£leLt k¢K

< D IFR)| {lw(k/K)A(k/K)| + |w(k) AK)]}.

kgkK
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Applying Holder’s inequality yields the following upper bound on the error.

THEOREM 1. Consider problems of the form (1) and spectral method approxi-
mations of the form (15). The error is bounded by
1 1
”u - ﬁ'”u < DQ,Q(P; ’CsA)Va,p(f)a 5 + a =1, 1<p,q<co.

where the semi-norm of f was defined in (17) and

|w(k/K)A(k/K)| + lw(k)A(K)|
r(k)® kgx

(20) Do 4(P;K,A) = ‘

q

The quantity defined in (20) depends on the node set of the lattice, P, the
wavenumber set, X', and the norm on the space of input functions. However,
Dg4(P; K, A) does not depend on the particular function f. Good P and K are
those that make D, 4(P; K,.A) as small as possible.

One drawback of D, 4(P; K, A) is that it does depend on the particular kind
of problem being solved, A. To remove this dependence, suppose that there exist
constants C > 0 and 3 such that

(21) lw(k)A(K)| < Clr(k))’.

In the Poisson’s equation example of Section 2 A(k) = 1/[47?(k? +k3)] for k # 0. If
w(k) = A(k)~? for some number ¢ and for k # 0, and w(0) = 1, then this inequality
takes the form
: [4m2r (k)] T, t<1,
|lw(k)A(k)| = [4n?(k] + k3))""! < 1, t=1,
2v27rr(k))2¢-D. t>1

This assumption is discussed further at the end of this article.
Furthermore, assume that K is chosen to satisfy the condition

(22) r(k) > r(k/K) for all k € Z°.

This may be done by ranking wavenumbers in terms of their r(k) values, and
then choosing the first N that have distinct values of k/K. Then D, 4(P; K, A) <
2C[D(a_5)q (‘P)]“_ﬁ, where

lkex

1/q
} , 1<g<oo,
r(k)

{+2c@i - ugs ]

(28)  Do(P):= =
q supygx (k), q =09,

and ( is the Riemann zeta function. The last expression above is more suited to
numerical evaluation since it involves looking at only a finite number of terms.

COROLLARY 2. Under the same assumptions as in Theorem 1 the worst-case
error has the somewhat looser error bound of

R ~ a— 1
llu = @ll, < 2C[Da—p)e(P)* PVar(f), +5=L (@=PBg>1,

1

p
where C' and (3 are absolute constants arising in (2
being solved.

1) that depend on the problem
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5. Asymptotic Bounds on the Worst-Case Error for Large N

The quantity Dy(P) defined in (23) is similar in form to Dy(P) defined in
(18). There have been many studies of the best obtainable convergence rate for the
discrepancy or integration error for lattice rules, D,(P), but none yet for f)q (P).
The following theorem relates these two.

THEOREM 3. For any P that is the node set of a shifted lattice,
Dy(P) < 2/2NY9[Dyyy(P)V?  for all g > 2.
The key fact needed to prove this theorem is the following lemma.
LEMMA 4. For any integer wave number vectors k and 1 it follows that
r(1)
< 2°r(k).
(24) ety < 27H

PrOOF. The proof is given for the case s = 1. The case of general s follows
immediately. If (k + l)kl = 0, then (24) holds automatically, so, suppose that
(k+ Dkl # 0. Under this condition r(k) = |k|, r(I) = |l|, and r(k+ 1) = |k + | > 1.
Therefore,

r@ _ W [kl [E
r(k+1) |k+1] = |k+]
establishing the lemma. Note that equality holds above whenk =1andl=-2. O

<1+ k| < 2r(k),

PROOF oF THEOREM 3. By (23) it follows that

- lyex 1
D,(P) = || -XEX|| = — | = _
e R e B
For any k € K and 1 € L' the lemma above and condition (22) imply that
8 ] s 71/2
1 SSZ?'(k)S2*r(k+l)1 © 1 < 2 .
r(k+1) r(1) r(1) r(k+1) r(1)
Thus,
9s q/2 ta
3 — Nl/ags/2 1/2
DAGGES DY {r(l)} = NY/995/2[D, o (P)]}/2.
keK 0#le Lt

O

It is known by [4] and the references therein that there exist extensible integra-
tion lattices with Dy(P) = O(N~1*¢) for any € > 0. Theorem 3 then immediately
leads to the following corollary.

COROLLARY 5. For 2 < g < oo and any € > 0 there exist extensible integration
lattices with Dy(P) = O(N~1/2+1/ate),

Referring to Corollary 2 it follows that the worst-case error for problems of
the form (1) is ||u — ||, = O(N(@=A)(=1/2+1/a)+€) The parameter o indicates the
smoothness of f. The larger « is, the higher the convergence rate. If all derivatives
of f exist, then a can be made arbitrarily large. The parameter 3 depends on
the particular problem and the function w used to define the norm of the true
solution minus its approximation. Notice that for the class of functions considered
the convergence rate using good lattices is basically independent of the dimension,
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FIGURE 4. A comparison of errors using spectral methods to solve
(25) on a rank-1 lattice (solid) and on a grid (dashed).

s. In contrast, using grids one has Ijq(P) = O(N1/9), since one can sample at only
N1/¢ different values in each coordinate direction. For large s this may lead to very
slow convergence of the spectral method.

6. Numerical Example

To illustrate the advantages of using general integration lattices the example
of the two-dimensional Poisson’s equation in (4) is revisited with

(25a) Au = f(x) = —4n?sin(27z,) {e‘“’i“@”*) sin(2mz2) [1 + sin(27rz1)]
+ €°(2722) cos(27z2) [1 + cos(27rm2)]} ,

and the solution
(25b) u(x) = ") gin(27zy) + ™) sin(27z; ).
For N = 16,32,...,512, the solution is computed using spectral methods where P
is an ny X ny grid with n, := 2182 N)/21 > . Spectral method approximations
are also computed using the nodeset of a rank-1 lattice,
(26) P={1,a)i/N modl:i=0,...,N},
with
a 7 7 19 47 75 149
N 16 32 64 128 256 512

These values of a are those for which P of the form (26) minimize Do, (P). The
error of the approximate solution is computed as sup,¢p |u(z) — %(z)| and plotted
in Figure 4. For this example the error using the rank-1 lattice is substantially less
than that using the grid for some values of N.

7. Discussion

The quality of the algorithm described here depends on the set of wavenumbers
K, which should include those wavenumbers which are more important. As seen
in (19) this depends upon three factors: i) which Fourier coefficients of the input
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function, F'(k), are large, ii) the particular problem as defined through A(k), and
iii) the norm defining the error as given through w(k). If all these factors are all
well understood, then one can design the integration lattice and its nodeset, grid
or not grid, to fit the problem. An interesting topic for further research is to find a
correspondence between the rank of a lattice (1 through s) and the possible shapes
of the set K.

If a priori knowledge is difficult to obtain, e.g., the input function is quite
complicated, then it is better to find a lattice nodeset and corresponding X that
work for a wide variety of problems. This is the spirit of work presented here and
the reason behind several of the choices made above. The theory above has been
directed to choose sets K with r(k), specifically to minimize a figure of merit such
as Do (P). An intuitive rationale for minimizing (k) rather than, say, the £-norm
of k is now explained.

For spectral method problems using sampling on grids, the grids are not always
square because there may be known strong dependencies on one or another of the
coordinates. The input function may have a strong dependence on a particular
coordinate or not even depend on some of the coordinates. Also, the operator A
may be non-isotropic, as in the problem

Pu
If one samples on the grid,
Pgria = {(t1/n1,...,8s/Ns) 181 =0,1,...,ny — 1,...4,=0,1,...,np — 1},

with ny ---ns = N, then the natural choice for K is the following rectangular box
with volume N:

K:grid = {(kl,‘..,ks) : kl =1- |'n1/2'|,‘..,n1 - |'n1/2'|,..‘,
ks =1-[ns/2],...,ns — [ns/2]}.

Now consider the alternative, Kpyp, the set of N wavenumbers that minimizes
Do (P). This set, whose two dimensional projections are hyperbolic crosses, in-
cludes all k with r(k) < M for M as large as possible. Corollary 5 implies that
there exist lattices with M = O(N'/27¢) for any € > 0. Moreover, the set Kpyp
automatically includes all rectangular boxes Kgyiq with volume < M = O(N1/2-¢),
By contrast, if one chooses a fixed Kgiq with volume N, it is only guaranteed to
contain all other Kgiq Wwith volume equal to the smallest side of the original box,
i.e., at best O(N'/%). In summary, for an isotropic problem, a square grid is a
good choice, but if one may have unknown anisotropy, then a rank-1 lattice with
wavenumber set of the form Ky, is a safer choice. Note that the example in the
previous section has not been chosen to be particularly anisotropic, however, the
rank-1 lattice still outperforms the grid.
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