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Foreword 

The content of this book corresponds to a one-semester course taught 
at the University of Paris-Sud (Orsay) in the spring 1994. It is accessible to 
students or researchers with a basic elementary knowledge of Partial Dif
ferential Equations, especially of hyperbolic PDE (Cauchy problem, wave 
operator, energy inequality, finite speed of propagation, symmetric systems, 
etc.). 

This course is not some final encyclopedic reference gathering all avail
able results. We tried instead to provide a short synthetic view of 
what we believe are the main results obtained so far, with self-contained 
proofs. In fact, many of the most important questions in the field are still 
completely open, and we hope that this monograph will give young mathe
maticians the desire to perform further research. 

The bibliography, restricted to papers where blowup is explicitly dis
cussed, is the only part we tried to make as complete as possible (despite 
the new preprints circulating everyday) j the references are generally not 
mentioned in the text, but in the Notes at the end of each chapter. 

Basic references corresponding best to the content of these Notes are 
the books by Courant and Friedrichs [CFr], Hormander [HoI] and [Ho2], 
Majda [Ma] and Smoller [Sm], and the survey papers by John [J06], Strauss 
[St] and Zuily [Zu]. 

Finally, I would like to thank all my colleagues and students who 
helped me imRrove this text, especially C. Zuily. 



INTRODUCTION 

This book deals with the phenomenon of blowup of classical solutions 
of global Cauchy problems for hyperbolic equations or systems. 

(1) 

1. We will consider either quasilinear systems of the form 

n 

atU + L Aj(u)ajU + B(u) = 0 
j=l 

or quasilinear wave equations of the form 

(2) a;U + L gij(VU)a;jU + F(u, Vu) = o. 
O:Si,j:Sn 

The systems are assumed to be symmetric (or else at least strictly hyper
bolic), and the principal parts of the equations are close to the 
wave operator 

a; - t. x . 

By "global" Cauchy problem we mean that the given initial values are 
smooth with compact support. This seems to be the easiest case to con
sider because decay and decoupling tend to make the solution simpler with 
time. The case of periodic data or problems with boundaries is much more 
intricate and will not be considered here. 

Our attention will not be restricted to the case of one space dimension 
(n = 1), though 'of course more results are available in this case. On the 
contrary, we will try to emphasize multidimensional results which appear 
to us as the first contours of a foggy landscape still to be described. 

2. The striking feature of nonlinear global Cauchy problems with 
smooth data is that in general the solution will not remain smooth for 
all time (thus, "global" refers to space variables only). This phenomenon 
is called "blowup" for convenience, though it is generally hard to say what 
exactly "blows up" . 

The first concept which can be defined in this context is the "lifespan" 
T of the solution, that is, the biggest time up to which the smooth solution 
exists. Even the simplest question whether T < 00 or T = 00 is not yet 
properly understood for multidimensional problems (that is, n ?: 2). 

If T < 00, it remains to say where the solution stops being smooth, and 
what is the exact mechanism of the blowup; one can also try to continue 
the solution as a weak (that is, nonclassical) solution after T. We will not 
discuss this later aspect. 

Even when we know T = 00, the qualitative behavior of the solution 
for large times is often poorly understood. 
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3. Our approach is based on the display and study of two local 
blowup mechanisms, which we call the "Ordinary Differential Equation 
mechanism" and the "Geometric Blowup mechanism" . 

The simplest occurrence of the first is the blowup of the solution of a 
system of Ordinary Differential Equations, such as y' = y2, y(O) > 0, for 
example. The classical example of the second is provided by scalar quasi
linear equations, which can be handled by the method of characteristics. 
Thus the first chapter of this book is devoted to explaining what these 
mechanisms are. 

The first mechanism is characterized by a nonlinear self-increase of 
the solution in an influence domain leading to the blowup locus (where 
the solution itself becomes infinite). Besides the systems of ODE, we study 
semilinear hyperbolic systems in one space variable and wave equations 
in higher dimensions. By calling this mechanism the "ODE mechanism", 
we do not mean that some ODE are responsible for the blowup, but that 
it is analogous to what happens for ODE, intervals being replaced more 
generally by influence domains. 

The "Geometric Blowup mechanism" is defined in the very general 
context of quasi-linear systems in any number of dimensions. It is a gen
eralization of the "focusing of rays" known for scalar equations. Its main 
feature is that the solution remains continuous at the blowup locus, only 
its gradient becoming infinite there. 

We end this first chapter with a brief discussion of occurrences where 
these two mechanisms are combined, or compete. 

The remaining chapters deal with global situations, for which we try 
to show that th~ solution behaves, locally near blowup points, according to 
the previously displayed local models. 

4. Before distinguishing the various cases, we discuss in Chapter II 
the concept of lifespan and the striking fact that a smooth solution does 
not become gradually nonclassical, but undergoes a brutal change of 
regularity at time T (the lifespan). This brutal change is usually described 
as the "blowup criterion" in the literature. This result can be viewed as 
a nonlinear propagation of regularity (from the past to the future), and is 
obtained using energy methods. 

After that, we address the question: "blowup or not ?" We give typical 
examples (Burgers' equation, semilinear and quasilinear wave equations, 
Euler system) and a very rough classification of the many methods used 
to give positive answers to this question. We distinguish the "functional 
methods" and the "comparison and averaging methods". We will see that 
in general these methods hardly provide more than just a "yes", giving in 
particular no information on the blowup mechanism at time T. 

5. In Chapter III, we study specifically semilinear wave equations 
(mostly the case where F(u, 'Vu) = F(u), for rather special F). 
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In this case, a more refined concept than the lifespan can be intro
duced: the maximal influence domain. The shape of this domain and 
the behavior of the solution when approaching its boundary is a rich field 
to study. Of course, this boundary is space-like or characteristic, and one 
expects the solution on it to become infinite. 

In the most favorable cases, the presently available results give the 
picture of a blowup taking place uniformly (that is, everywhere and with 
a constant rate) on a differentiable space-like surface, very close to the 
description by the ODE mechanism discussed in Chapter I. We close the 
chapter by just quoting a typical example of a sharp estimate of the lifespan. 

6. Chapter IV is devoted to quasilinear systems or equations in one 
space dimension. 

For 2 x 2 systems, assuming that Riemann invariants can be used 
to diagonalize the system, finite time blowup is established unless all the 
eigenvalues are linearly degenerate. If blowup occurs after the decoupling of 
the two modes, it is just a well understood scalar phenomenon; if it occurs 
before, we show that it is of a geometrical nature in the sense of Chapter 
I. 

For general systems with genuinely nonlinear eigenvalues, no diagonal
ization is available, and the waves do not "decouple". A satisfying picture 
is only obtained for sufficiently small data (an assumption which ensures in 
particular that blowup occurs only after a partial, first order, decoupling 
of the waves). The proof uses crucially Ll estimates in the space variable, 
which do not seem to be available in the higher dimensional case. Here 
again, it is possible to show that blowup occurs according to the geometric 
mechanism displayed in Chapter I. 

It seems however reasonable to conjecture that the geometric mech
anism also gives the correct description for general genuinely nonlinear 
systems and arbitrary "generic" data (not necessarily small). 

We incorporate also in this chapter the case of rotationally invari
ant wave equations and data, which can be handled using essentially the 
same tools as in the one-dimensional case (method of characteristics, L1 
estimates) . 

7. In the last chapter, we first develop the approximation technique 
known as "nonlinear geometrical optics" in one- and multidimensional sit
uations, restricting our attention to the Cauchy problem with small data. 
We explain how the "slow time" appears (sometimes many of them) i~ 
asymptotic expansions, and how the main terms, after an initial "free" pe
riod where the nonlinear interactions are not strongly felt, are governed by 
simple nonlinear equations (the "reduced equations"). A rather complete 
picture can thus be obtained for general systems in one space dimension. 

In higher dimensions, we discuss only wave equations, for which rele
vant information can be obtained close to the boundary of the support of 
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the solution. This technique, in addition to providing a large time descrip
tion of the behavior of solutions, is a powerful tool for establishing precise 
lower bounds for the lifespans. We formulate these consequences and sketch 
their proofs. 

Finally, combining nonlinear geometrical optics, geometric blowup and 
energy estimates, one can prove, for quasilinear wave equations, the exis
tence of an "asymptotic lifespan" at which the second order derivatives of 
the solution become very large. Again, these results are beyond the scope 
of this volume, but we give an outline of the main steps. 



CHAPTER I 

The Two Basic Blowup Mechanisms 

Introduction 

In this chapter, we display examples of local solutions of systems or 
equations which blow up at a certain point. 

The first class of examples (part A) involves systems of Ordinary Dif
ferential Equations (ODE) or semilinear equations or systems. In these 
cases, the solution u itself becomes infinite at a point XO by a process 

of "self-increase" in an influence domain leading to this point. In all the 

given examples, the constructed u is in fact infinite on a portion of hyper

surface through xo. We like to think of these various examples as occur

rences of a single blowup mechanism which for convenience we call the 

ODE mechanism. It should be emphasized here that this mechanism has 

in general nothing to do with ODEs; the name comes only from the fact 
that ODEs are the simplest example. 

In contrast with the first class of examples, the second class (part 

B) involves only quasilinear systems or equations. The solution u under 
consideration has a limit UO at the given point xO, and only Vu becomes 

infinite at this point. Typical examples of this situation are obtained when 

solving scalar conservation laws by the method of characteristics; blowup 
is then due to focusing of characteristics at xo. Similar examples can be 

obtained for any quasilinear system whose principal symbol has a branch 

of real zeroes. The constructed u are either singular on a portion of hyper
surface through XO or only at XO itself. We call the blowup mechanism 

at hand the "geometric blowup" mechanism, because it is independent of 
the existence of any "characteristics" , existence which would be implicitly 
assumed if we used the term "focusing". 

Finally, there are occurrences of blowups involving simultaneously 

the two mechanisms. We analyze one in part C. 
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A. The ODE mechanism 

1. Systems of ODE 

Let for simplicity F(t, Y) be of class CIon the whole of]R x ]RN, 

and consider the system 

(1.1) Y' = F(t, Y), a < t < b, Y(t) E ]RN. 

The following theorem holds. 

Theorem 1.1. Let Y be a C 1 solution of (1.1) for a < t < b. Assume 

that lY(t)1 :::; M for t close to b, t < b. Then Y can be continued as a C 1 

solution of (1.1) on an interval a < t < b + c for some c > O. 

PROOF OF THEOREM 1.1. IfY is bounded, so is F(t, Y), hence Y'. Thus 

Y(t) has a limit Y(b) when t --r b; by the equation, Y' has also a limit, 

and Y is of class C 1 for a < t :::; b. By solving (1.1) locally near b with 

initial data Y(b), we obtain the desired continuation. <:; 

In other words, either "nothing happens" at b, or IYI is unbounded. 

A stronger description of the blowup behavior would be, according to the 

equation, 

(1.2) Jb IF(s, Y(s))lds = 00. 

Of course, if F E Coo and Y is Coo for a < t < b and does not blow 

up at b, Y can be continued beyond b as a Coo solution of (1.1). 

Example. Consider, for t < T, the solution y(t) = [(k - l)(T - t)l-~ 
(k 2: 2) of the equation y' = yk. Note that the speed of blow up decreases 

with k. 

For more complicated equations or systems, it is often possible to 

analyze the structure of the singularity by guessing the main singular term 

(say, for instance, C(T-t)->"), and then setting y(t) = C(t)(T-t)-\ this 

procedure leads to an equation in C with a singular point at T, which can 

be studied by standard techniques (see for example Wasow [Wa], Chapter 

9). 
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2. Strictly hyperbolic semilinear systems 
in the plane 

3 

Let us consider in the plane with coordinates (x, t), a system of the 
form 

(2.1) Lu = 8t u + A(x, t)8x u = F(x, t,u), u E ]RN, 

where the (N x N) matrix A and F are Coo functions of their arguments 

and A has real distinct eigenvalues Al(X, t) < ... < AN(X, t). We assume 
A, F and ureal. 

By a smooth change of unknowns u = P(x, t)v, we can replace A by 
the diagonal matrix p-l APj thus, we assume A diagonal. 

We define the real field L j by 

Lj = 8t + Aj(X, t)8x , 

and call an integral curve of L j a j-characteristic. 

We will call a domain D = D~~ = {(x, t), to ~ t ~ t1, 'Yo(t) ~ x ~ 
'Yl(t)} an influence domain for L of its basis {a ~ x ~ b, t = to} if 
x = 'Yo(t) (resp. x = 'Yl(t)) is the integral curve of LN (resp. Ll) through 
the point (a, to) (resp. (b, to)). The name is justified by the fact that any 
j-characteristic ~hrough a point (x, t) E D meets the line {t = to} at a 
point (Xj(x, t), to) inside the basis segment. 

The following Theorem is analogous to Theorem 1.1. 

Theorem 2.1. Let u be a Coo solution of (2.1) in D n {t < tl}' Assume 

lui ~ M. Then u can be extended as a function in COO(D). 

Theorem 2.1 is a consequence of the following precise local existence 
theorem which we state and prove for convenience. 

Theorem 2.2. Let D = Dr; be an in1J.uence domain as above with basis 

[a, bl in {t = O} and Uo E COO ([a, b]), luol ~ M. Set 

K = {(x,t,v),t = O,a ~ x ~ b,v E [-M, +M1N}. 

Choose Ko a compact neighborhood of K and let Fo be the supremum 

of IFI over Ko. Then there exists TJ > 0, depending only on Fo. Ko and 
the distance from K to the complement of K o, such that the system (2.1) 
has a Coo solution u with initial value u(x, 0) = uo(x) in Dri. 
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PROOF OF THEOREM 2.2. 

a. Define uO(x, t) = uO(x) as a smooth extension of uo, and suc

cessively un +l as the (COO) solution in D of Lun+l = F(x, t, un) with 

value uo on {t = O}. Writing the i-component 

where mi (s) describes the i-characteristic through (x, t), we see that if TJ 

is such that TJ(l+VNFo) is less than the distance of K to the complement 

of Ko, the graph of the function ul on Dri is contained in Ko, and so are 

the graphs of all the un. In particular, lun(x, t)1 :S Mo. 

h. Let us pause here to emphasize that this rough way of choosing TJ 

to obtain a uniform bound on the lunl gives relevant estimates in practical 

cases; for example, for the ODE y' = y2 with initial value a > 0, we can 

take K o = [-1, +1] x [a - A, a + A], Fo = (a + A)2, hence TJ = (a+AA)2; 

maximizing on A gives TJ = 4la' while the true value is ~. 

c. We fix now an TJ as in (a) and prove that 8e; tUn is bounded in , 
Dri independently of n. 

We have first, with 8 any x- or t-derivative, 

Lj 8uj+1 = -8A j 8x uj+l + 8Fj + Fj8un . 

Hence, with Mr(t) = max 18unl in Db, we obtain 

(2.3) Mr+l(t) :S C + C fat (Mr+l(s) + Mr(s))ds 

with C independent of n. 

We take Ml ::::: 2C such that MP(t) = MP(O) :S Ml . Assume now 

for some n ::::: 0. Then (2.3) implies 

(2.4) Mr+1(t) :S C exp Mlt + C fat Mr+1(s)ds. 

Setting z(t) = exp -Ct J~ Mr+l(s)ds, we deduce from (2.4) 

z'(t) :S Cexp(Ml - C)t,z(O) = 0, 
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hence 

+1 CMl 
M~ (t)::; Ml _ C expMlt::; Ml expMlt 

because Ml 2: 2C. Thus IBunl::; MlexpNhTJ· 

Assume now, with obvious notations, MJ:(t) ::; Mk exp Mkt for some 

k 2: 1. We observe first that W'un(x,O)I::; Ck+! for all lad = k+1 and all 

n. This is obvious if the derivatives are purely tangential; otherwise, it can 

be computed, using the equation, in terms of derivatives of un involving 

one less t-derivative, or of derivatives of un - l of order at most k. We 

can now repeat the preceding argument to obtain a uniform estimate 

MJ:+1 (t) ::; Mk+l exp Mk+l t . 

d. Finally, set Nn(t) = max lun+l (., t) - un(., t)l; we have Nn(t) ::; 
C f; Nn-l(s)ds, hence Nn(t) ::; 2Mocn~~ and the sequence un converges 

uniformly in D'6. 
The limit u is the desired solution. 

It is important to notice here that the constant M does not allow 

a control of the smallness of u - uo; this would require comparing the 

values of Uo at various nearby points, which can be as far apart as 2M. 

PROOF OF THEOREM 2.1. We apply Theorem 2.2 in D with an initial 

value on t = t2 < tl equal to u(., t2 ); we can take a compact Ko indepen

dent of t2, thus the corresponding TJ does not depend on t2 either and we 

can choose t2 = tl - ¥. 
When the two curves /'0 and /'1 meet at one point (Xl, tl) of D, the 

behavior of u in D near this point depends only on the values of u on the 

base of the "backward cone" D. The situation is very analogous to the 

ODE situation described in (1), intervals ending at b being replaced by 

cones of influence with vertex (Xl, tl)' 

Let us remark that, in the framework of Theorem 2.1, if u is not 

bounded in D, then in general all components of u blow up simultane

ously at points where u blows up. The reason for this can be seen in the 

following simple example. 

Example. Consider the system 
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with to = O,tl = 1,a = -l,b = +1,u2(x,O) = O,UI(X,O) having a 

maximum at a with value 1. We have immediately 

() UI(X-t,O) 
U I X, t = ---'-'---,;---'---''---:-

1- tUI(X-t,O) 

thus UI (1- t, t) blows up like (I~t) when t -7 1. Hence U2 also blows up. 

In this example, we can see that UI blows up "by itself", while U2, 
satisfying a linear differential equation with UI as a source term, is forced 

to blow up by UI. 

3. Semilinear wave equations 

The analogy observed between the one- and the two-dimensional 

situations handled in the previous sections is not really a surprise because 

they both involve integrating differential equations along curves. With the 

following theorem, we turn now to truly multidimensional situations. 

Theorem 3.1. Consider the wave equation 

(82 A) _ 2(m + 1) m ~I ( ) j 
(3.1) t - U x U - c (m _ 1)2 U + ~ aj x, t u, c = ±1 

-00 

where m is an integer, m 2 2, the aj' s are given analytic functions 

near some point mo = (xo, to) and the sum is finite. Fix S an analytic 

space-like hypersurface through mo with equation {t = ,¢(x)} (that is, 

1\7,¢12 < 1). Then, for c = +1, equation (3.1) has singular solutions 

defined for t > ,¢(x) which, near mo, blow up precisely on S, and satisfy 

(3.2) lim (t - ,¢(x)) (m~l) u(x, t) = (1 -1\7,¢(x)12) (m:'l) • 

t-.1fJ(x) 

Remark. We will see that for c = -1, the construction of singular 

solutions breaks down. In fact, for m not too large, one can prove that 

no blowup occurs. 

PROOF OF THEOREM 3.1. 
1 

a. Set T = (t - '¢) (m-l) and look for U of the form U = T- 2V(X, T). 

By substitution in (3.1), we find an equation for v of the form 

(3.3~1 -1\7,¢12)(T8r - 2) (T8r - m - l)v - 2c(m + l)vm = 

= Tg(X, T, v, TVr , \7 xTVr) + (m - 1)2T2m-2.6.v. 
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h. Let us pause here to explain some elementary facts about 
Fuchsian PDE. 

An ordinary differential equation with smooth coefficients ak of the 
form 

tmy(m) + L ak(t)tJ.Lky(k) = 0 
O~k~m-l 

is said to have a regular singular point at the origin t = 0 (or to be 
Fuchsian) if the weights k - JLk of the terms tJ.Lk (it)k in the equation are 

all less than or equal to zero. Such an equation is reduced to a first order 
system by adapting the usual procedure and setting 

Yo =y, Y1 =ty', ... ,Ym- 1 = (t!)m-l y. 

We obtain a system 

d 
t dtY + A(t)Y = O. 

For more details, consult [Wal, Chapter II. 

Consider now an operator 

k<m,k+lo:l~m 

We call it Fuchsian if we can write ak,o:(x, t) = tJ.Lk,abk,o: with bk,o: smooth 

and 

JLk,o: ~ k, 

with strict inequality if lal ~ l. 
This definition is motivated by the case of ODE and by the following 

example: the integral curves of the field tat + tJ.L8x do not meet {t = O} 

(except for the x-axis itself), unless JL > O. Thus, for JL = 0, the Cauchy 
problem is certainly not locally well-posed with respect to the initial 

surface {t = O}. 
Again, such an operator can be reduced to a system 

t8tY + AY = tF(x, t, Y, \7 xY). 

For such systems, the Cauchy problem is known to be well-posed in the 
analytic case (see [BG]). 

c. We come back now to (3.3), and see that this equation is Fuchsian. 
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If we try to insert v = Vo + TVI + ... into (3.3), we obtain first 

(1 - 1V''I/112)vo - €VO = 0, 

which gives, if € = +1, Vo = (1 - 1 V''I/1 1 2) "':'1 as announced in (3.2). If 

€ = -1, only Vo = 0 is a solution, and the construction does not work. 

We can go on like this and compute recursively Vb . .. , V2m+1' but 

not V2m+2; in fact, if we set 

2m+l 

V = L Vj (x )Tj + T2m+2w(x, T) 
o 

we obtain for w the equation 

(1 -1V''I/112)(Tor ) (Tar + 3m + l)w = <p(x) + hex, T, TW, T2Wn V' xT2Wr) 

+(m _1)2T2m-2LlW 

where h vanishes for T = O. This is a hint of the presence of some loga

rithmic terms, classical in this context. 

d. If we set 

<pinT 
W = (3m + 1)(1 _ 1V''I/112) + Z, 

where Z = z(~, T, TinT), we get an equation for z which finally can be 

reduced, by introducing the n + 2 unknowns Yo = Z, Y1 = TOrZ, Y2+j = 

TOjZ, to a system 

(3.4) NY + AY = f(x, T, 1], Y, V' xY). 

Here, 1] = TinT, N = Tar + (T + 1])011 , A is a constant matrix and f is 
analytic and vanishing for T = 1] = O. The appearance of N comes from 

the fact that Tar [f(T, TinT)] = N f(T, 1]). In [KLJ, such systems are called 
"generalized Fuchsian" (because of the extra variable 1]) equations and 

the following theorem is proved, generalizing the theorem of [BG]. 

Theorem. If A has no eigenvalue with negative real part, the system 

(3.4) has, near the origin, exactly one analytic solution which vanishes 
for T = 1] = o. 

Applying this theorem to (3.4) yields Z (depending on one arbitrary 
function of x), and finishes the proof. 0 
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In the previous theorem, it would be interesting to understand how 

much hyperbolicity from the wave equation finally remains in the system 

in Y, in order to solve it for smooth data. 

Obviously, this kind of technique can be used to construct singular 

solutions in many similar situations. 

B. The geometric blowup mechanism 

(1.1) 

1. Burgers' equation and the method 
of characteristics 

a. We consider, in the plane, Burgers' equation 

with a smooth enough initial value u(x, 0) = uo(x) defined near X O, and 

u~(XO) < O. 

A given smooth solution u of (1.1) is constant along the integral 

curves of at + uOx , hence these curves are the straight lines x = X + 
suo(X), t = s, indexed by X and parametrized by s (this is the so-called 

"method of characteristics"). 

Taking an x-derivative of (1.1), we obtain 

Thus oxu, restricted to the characteristic through (X, 0), is a function 

q( s) which satisfies the equation q' + q2 =·0, hence becomes infinite for 

S-l = -u~(X). 

We define, to be the locus of all these blowup points 

, = {(x, t), x = X + sUo(X), t = s, s-l = -u~(X)}. 

(i) Assume first u~(XO) # 0: the set, is then a smooth curve to which 

the characteristics are tangent. The solution u, defined near the point 

mo = (XO + souo(XO), so) (SOl = -u~(XO)) on one side of, by the 

fact of being constant on the characteristics, is singular everywhere 

on ,. 

(ii) Assume now u~(XO) = 0, u~'(XO) > 0 (resp. < 0); the curve, has 

a cusp at the point mo, pointing downwards (resp. upwards). In the 

first case, the solution u is defined at least for t < so, and is singular 
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at the cusp point; in the second case, u is defined below 'Y, and is 

singular everywhere on 'Y. 

To prove these elementary facts, we note that by the definition of 'Y, 

( dx dt) u" 
dX' dX (X) = (u:)2 (uo(X), 1), 

Remark that it is natural for 'Y to be the envelope of the characteris

tics; in fact, the solution being constant along the characteristics, blowup 

occurs when two infinitesimally closed characteristics meet. 

h. We now reinterpret the facts established in (a). 

Consider the functions 

¢(X, T) = X + Tuo(X), veX, T) = uo(X) 

and the mapping 

(1.2) (X,T) f-+ ill(X,T) = (x, t) = (¢(X,T),T). 

The characteristics are the images by ill of the lines X 

solution u satisfies 

(1.3) u(ill(X, T)) = veX, T). 

The set 'Y is the image by ill of the set 

{(X, T), ox¢(X, T) = a}, 

C and the 

that is, the set of points where the differential ill' is not invertible. Since 

the vanishing of ox¢ is precisely the reason for the blowup of oxu (as

suming oxv f a then). Remark finally that ¢ and v satisfy 

(1.4) OT¢ = v, OTV = a. 
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Suppose now, conversely, that we are given, near some point rno = 
(XO, TO), a solution of (1.4), with 

Whenever a function u can be defined satisfying (1.3), it is a solution of 

Burgers' equation, and 8x u becomes infinite at <I>(rnO). For example, in 

the case (i) above, ¢ satisfies 

which means that <I> has a fold singularity at rno. The image of <I> is one 

side of 'Y, and U can be defined on this side by 

(1.5) U(x, t) = v('¢(x, t)), 

where '¢ is one of the two possible choices of a point (X, T) such that 

<I> ('¢(x, t)) = (x, t). 
In the case (ii), ¢ satisfies 

which means that <I> has a cusp singularity at rno. The image of <I> is a 

neighborhood of <I> (rnO); the points (x, t) exterior to the cusp correspond 

to only one point {X, T), while the points interior to the cusp correspond 

to three. Singular solutions U of Burgers' equation can be defined in these 

regions by appropriate choices of '¢. 
In both cases, the choices of '¢ are visualized here by the picture of 

the various characteristics through (x, t) tangent to 'Y. 

(1.6) 

c. For more general scalar equations of the form 

n-l 

8t u + L aj(u)8j u= 0, 
1 

the theory is completely similar, 8x u being replaced by ~aj(u)8ju. Note 

that this quantity is the divergence d of the field 

In fact, the derivative of d = ~aj(u)8ju along a characteristic is 
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2. Blowup of a quasilinear system 

It turns out that the construction of singular solutions to Burgers' 
equation explained in (1 b) can be extended to any quasilinear system 
whose symbol has a branch of real zeroes. In this theory, the analog of 

system (1.4) will be called "blowup system", and singular solutions sat

isfying the analog of (1.5) will be called "blowup solutions". We develop 
now the general theory. 

Consider a quasilinear system 
n 

(2.1) LU=LAj(x,u)8ju+B(x,u) =0, xElRn , UEIRN , 

1 

where Aj and B are real smooth matrices of size N x Nand N x 1 defined 
near (xO,uO). 

Set A( x, u,~) = ~Aj (x, U )~j and (j = det A the principal symbol of 
the linearized operator of L on u. We make on L the following assumption: 

Assumption. There exists ~o "# 0 and a real simple eigenvalue .\(x, u,~) 
of A(x,u,~), defined near (xO,uO,~O), such that 

(2.2) 

We will denote by e and r left and right eigenvectors of A for the 
eigenvalue .\. 

a. Recall first the classical definition by Lax of a genuinely nonlinear 

(shortly written GNL) eigenvalue. 

Definition. A simple eigenvalue .\(x, u,~) of the symbol A(x, u,~) of the 
system L is said to be genuinely nonlinear at (xO, uO, ~O) if 

(2.3) 

For instance, in the case of the scalar equation 

8tu+~(u)8xu= 0, 

we have .\(U,~,T) = T + ~(u)~, and.\ GNL is equivalent to ~'(u)"# O. 
For a 2 x 2 system in diagonal form 
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Ai GNL is equivalent to 8Ui Ai f. O. 

h. Let now K, be some index with ~~ f. 0 and P a real (N - 1) x N 

matrix such that the matrix pO with first line £ and 

P~,j = Pk-1,j, k> 1 

is invertible (such a pair will be called "admissible"). 

Assume for simplicity x O = 0, and set, for X E ~n close to zero and 

¢ real 

(2.4) <I>(X) = (X1 , ... ,X",-1,¢(X),X",+1,""Xn ) 

(2.5) 'T](X) = -c(81¢, ... ,8",-1¢,-1,8"'+1¢, ... ,8n ¢) 

where c is the sign of ~~. 

We introduce the following definition of the blowup system of L. 

Definition 2.2. We call the blowup system of L (for the admissible pair 

(K" P)) the system Lb of size N + 1 in the unknown (¢, v) given by 

(2.5)a A(<I>(X), v(X), 'T](X)) = 0, 

(2.5)b 
t£(<I>(X), v(X), 1](X)){ L Aj(<I>(X), v(X))8j v + B(<I>(X), v(X))} = 0, 

jf-", 

(2.5)c p{ cA(<I>(X), v(X), 'T](X)) 8",v + {L Aj 8j v + B} 8",¢} = O. 
jf-", 

Clearly, Lb is just L where we have formally performed the change 

(2.6) x = <I>(X), u(<I>(X)) = v(X), 

multiplied on the left by diag(l, 8",¢, ... , 8",¢ )po. 

In the future, we will only consider solutions of Lb with the following 

properties: 

(i) (¢, v) is of class C 2 , 

(ii) <I>(O) = X O = 0, v(O) = uO, 'T](O) = J-L~o, J-L > 0, 

(iii) 8",¢(0) = 0, d(8",¢) f. O. 
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c. Examples. 

(i) For Burgers' equation and K. corresponding to x, we find for Lb 

(2.7) 8T¢> = v, 8Tv = 0, 

which has been already considered in (1 b). 

(ii) For a system 

(2.8) 

let the J.Lj be the eigenvalues of A with left and right eigenvectors 
.ej (u),rj (u). The blowup corresponding to x and to the first eigen
value >'1 = T + J.L1t;, yields the system Lb 
(2.9) 

8T¢> = J.L1(V), t.e1(v)8rv = 0, (J.Lk-J.Ld(v) t.ek8xv+8x¢>t.ek8TV = 0. 

In this case, the whole procedure is just straightening out the 1-
characteristics. 

(iii) Let us consider the equation 

(2.10) 8;tu + 8x u8;2U + a8;2u = 0, (x, y, t) E ]R3, a = constant. 

By setting U1 = 8x u, U2 = 8yu, one reduces (2.10) to a system L 
whose blowup system Lb is equivalent (after elimination of V2 ) to 

8T¢> = V1 + a( 8y¢»2, 8l-TV1 - 2a8y¢>8l-y v1 

(2.11) 

In all these examples, we observe the appearance of a double char
acteristic field: 8r for the first two, 8r - 2a8y¢>8y for the last one. This 
will be confirmed in general by Proposition 4.1. 

3. Blowup solutions 

We will now associate to any solution of the blowup system Lb pf a 
given system L one or several singular solutions u of L, according to the 
following definition. 

Theorem and Definition 3.1. Let (K., P) an admissible pair for (L, >.) 
and (¢>, v) a solution of the blowup system Lb. Assume that there are a 
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connected open set D (xO E 15) and a continuous map 1j; from [) to ]Rn 

with 

(3.1) 1j;(xo) = 0, <.p(1j;(x)) = x, det <'pI (1j;(x)) =f 0, xED. 

Set then u(x) = v(1j;(x)), xED. The function u is a C 2 solution of Lin 

D, called the "blowup solution". The class of all the solutions obtained in 

this manner does not depend on the choice of the admissible pair ("" P). 

Strictly speaking, we should say "germs of solutions" in the preceding 

theorem; in fact, we consider only germs (at the origin) of solutions of 

Lb, the corresponding u being then defined in the intersection of D with 

some neighborhood of xO; moreover, one may have to again shrink these 

neighborhoods when comparing two solutions. 

PROOF OF THEOREM 3.l. 

a. We prove first the following 

Proposition. If ("'1, Pd and ("'2, P2 ) are admissible pairs with corre

sponding systems L~ and L~ and ((PI, vd is a solution of L~, there is a, 

C2 local diffeomorphism h (Y = h(X),h(O) = 0) and a solution (¢2,V2) 

of L~ such that 

In fact, define Y = h(X) = (hI (X), ... , hn(X)) by 

hK2 (X) = XKl' hK1(X) = ¢1(X), hj(X) = Xj, j =f "'1,"'2· 

Because OX"2 ¢1 i- 0 by assumption, h is a local C 2 diffeomorphism; the 

map <.P2(Y) = <.Pl(h-1(y)) is of the form XK2 = ¢2(Y), Xj = Yj, j =f "'2, 
with 

We thus obtain 

1]2(Y) = -E2 (oYl ¢2, ... , OY"2-1 ¢2, -1, ... , oYn (2) 

= IOX"2¢11-11]I(h-1(y)). 

Set now V2 (Y) = VI (h -1 (Y)); the equation 
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implies 

because of the positive homogeneity of A. 

Let X close to ° with <P~ (X) invertible; <PI is then a local diffeo
morphism near X, and we obtain a solution u of L near <PI(X) by 

U(<PI(X)) = VI(X). Thus V2(Y) = U(<P2(Y)) is a solution near Y = heX) 
of L~; points as Y being dense near 0, (¢2, V2) is everywhere a solution 

of L~. 

b. Let now u be a blowup solution corresponding to D, 'tj; and a so

lution (¢l, VI) of L~; according to (a), there exists (¢2, V2) such that, with 

iJ;(x) = h('tj;(x)), we have iJ;(0) = 0, <P2(iJ;(x)) = X, <P~(iJ;(x)) invertible for 

xED, and u(x) = V2(iJ;2(X)). 

Examples. 
(i) Burgers' equation 

The various solutions displayed in (1) for the Burgers' equation are 

obtained from the solution veX, T) = uo(X), ¢(X, T) = X + Tuo(X) of 
the blowup system by choosing an appropriate domain D and a "branch" 

'tj; on D. We ha~e then 'tj;(x, t) = (X, t) and X represents geometrically the 
point of intersection with the x-axis of the chosen characteristic through 

(x, t). 
In the first case 1 (i), among the two characteristics through (x, t) 

tangent to 'Y, we choose the one for which the contact point (Xl, tl) sat
isfies tl 2: t; the other choice defines of course another local solution of 
Burgers' equation, corresponding to different boundary conditions. 

In the case of a downward pointing cusp, there is only one possible 

choice, which we call the "exterior cusp solution". For an upward point

ing cusp, the choice of the characteristic is the same as before, that is, 

the contact point is above (x, t) (we call this solution the "interior cusp 
solution" ); the other choice yields two different possibilities, correspond

ing to the continuation of the exterior cusp solution (viewed now upside 
down) as a multivalued solution in the interior of the cusp. 
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(ii) Simple waves 
For systems like (2.8), solutions of the form 

(3.2) u(x, t) = v(((x, t)), ( E IR 

are traditionally called "simple waves" in the literature (see for instance 
[CFr] , [Ma] or [Sm]). For u to be a solution, we need 

v' = rj(v), 8t ( + f..Lj(v(())8x ( = 0 

for some j. Thus, in addition to integrating the field r j (u) in IR N, we just 
have to solve a scalar nonlinear equation on (. 

If we consider now Lb, we see that special solutions exist of the form 

v == v(X), v'(X) colinear to r(v(X)), 8T¢ = f..Ll(V(X)). 

These solutions correspond exactly to the simple waves. We see in this 
way that the class of blowup solutions is a generalization of the class 
of simple waves. Moreover, blowup solutions exist also for higher space 
dimensions. 

We close this section with two definitions. 

Definition. Let u be a blowup solution corresponding to (¢, v). If the 
map <P has a fold point at the origin (that is, 8~¢(0) =I 0), we say that u 

is a fold solution; if the map <P has a cusp point at the origin (that is, 

8~¢(0) = 0, 8~¢(0) =I 0 and, as we have already assumed, d(8~¢) =I 0), 
we say that u is a cusp solution. 

In the case of a fold solution, the image of <P is easily seen to be one 
half-space limited by the characteristic fold surface S, image by <P of the 
surface {x,8,.;¢(x) = O}j we then take automatically this half-space for 
D. 

We could of course go on like this for arbitrary type of singularities 
of <Pj the classification of blowup solutions follows the classification of 
singularities (see for instance [GG]). We can also define a stable u as 
corresponding to a germ of <P stable at the origin, etc. 

We turn now to solving the blowup system of a given system. 
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4. How to solve the blowup system 

Let us say right away that, except in the case n = 2 (that is, the 

case of one space dimension for hyperbolic systems), we do not know of a 

general procedure to obtain enough Coo solutions of the blowup system 

Lb of a given system L. This is due to some degeneracy of Lb at the 

origin, which we see by computing its principal symbol at the origin. 

Proposition 4.1. At the origin, the (scalar) principal symbol O"b of the 

linearized operator of Lb on a solution (¢, v) is 

O"b(O, () = C([:!-1 (L Ot;j>'(j) 2, 

j¥", 

where C i= 0 and the coefficients Ot;j>' are not all zero. 

PROOF. 

a. The last statement follows from the identity I:.ej0t;j>' = 0, Ot;>' i= 0 

and e~ i= O. 

h. By inspection of (2.5), we have 

( t.eI:.A-(") 
O"b = (I:. Ot;j >'(j) det c p i(",J . 

Since A has rank N - 1, the lines .e 1, ... , .eN -1 of P A are independent, 

and orthogo~al to r. Hence we can write t.eAj = (t.eAjr)rlrl-2 + I:.Q:j.ej 
and 

det C;"l) = Ir l-2 det (;A) (t.eAjr). 

On the other hand, by taking a ej-derivative of the identity A(e)r(e) = 
>.(e)r(e), we obtain t.eAjr = Ot;j>.t.er; finally, t.er i= 0 because>. is simple. 
() 

In the case of analytic coefficients, we can use the Cauchy-Kovalevsky 

theorem with respect to any noncharacteristic hypersurface to obtain 

solutions of Lb, as explained in the following theorem. 

Theorem 4.2. Assume that the coefficients Aj and B of L are ana

lytic near (xO, uO). We can choose Ox v (0) such that (2.5) is satisfied at 

X = 0, by taking ox,,- v(O) colin ear to r and the other OXjv(O) appropri

ately chosen. For any noncharacteristic 8 (that is, 8", i= 0, L Ot;j >.(xO, uO, 
#'" 
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~0)8j #- 0), we choose new orthogonal coordinates (Yl, ... , Yn ) for which 8 
is colinear to the Y1-axis. The system Lb is then equivalent (for functions 

with the chosen jets at the origin) to a system 

(4.2) 

where Y' denotes the Yj, j ~ 2; we can solve this system for any analytic 

data (cpo, vo) given on {Y1 = O}. Moreover, 

(i) we can choose the 2-jet of CPo at 0 to obtain a fold solution. 

(ii) If n ~ 3, we can choose the 3-jet of <Po at 0 to obtain a cusp solution. 

(iii) Ifn = 2, we can choose the 3-jet of <Po at 0 to obtain a cusp solution 
if and only if ,\ is genuinely nonlinear. 

The proof of the theorem is obvious, except for the last three tech
nical statements, for which we refer to [AI8]. 

In other words, we can use the Cauchy-Kovalevsky theorem to obtain 
solutions of Lb for which ~ displays the various types of singularities we 

are interested in. 
The difference between (ii) and (iii) in Theorem 4.2 is easy to un

derstand: for a linear system, we can obtain a cusp solution by "propa

gating" a cusp ed, (in dimension n - 1) initial datum; this is not possible 

for n = 2. 

Let us finally remark that in some cases, only partial analyticity is 
required for solving Lb; this is the case in Example (iii) of (2), for instance 

(see [AI8]). 

5. How V'u blows up 

The blowup solution u itself is, by construction, continuous on D; 
only its gradient blows up at xO, in a way indicated in the following 

theorem. 

Theorem 5.1. Let u be a blowup solution of L corresponding to a so

lution (<p, v) of Lb for which 8I\;v(0) #- O. Then, for xED, 

(5.1) 8x u(x) = C(x)(81\;<p)-1('¢(x))r(x,u(x),~(x))t~(x) + R(x), 

where C(x) and R(x) are continuous on D, C(xO) #- 0 and ~(x) = 
ry(,¢(x)). 
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PROOF OF THEOREM 5.1. Let K = 1 for simplicity. The function v 

being a solution of (2.5), we have 81v = ar + 81¢w for some w and 
a =f. O. Moreover, we have the relations 

81u = (81¢)-181v,8j u = 8j v - (81¢)-18j ¢81v. 

This yields (5.1). 

For instance, if u is a blowup solution of (2.8), because of (2.9), we 
have 

tik8x u = -(ILk - ILl)-l tik8TV, k =f. 1, 

which shows that only the component ti18x u can blow up. 

In particular, the formula (5.1) reduces the question "how does V'u 

become infinite when x approaches xO ?" to a purely geometric problem 
on the behavior of the factor [8K ¢('IjJ(X))]-1 in D close to xO. 

For a fold solution, this factor is easily seen to behave like [d(x)]-!, 
where d(x) is the distance from x to the fold surface. For an exterior 
cusp solution, the rate depends on the direction of approach to xO (see 

for instance Chapter IV, 1 or [LeD. 

6. Singular solutions and explosive solutions 

Up to now, we have made no distinction between linear and nonlinear 
cases. 

If L is a linear system, the blowup solutions that we have considered 

are singular on (smooth or not) characteristic hypersurfaces. In particu
lar, fold solutions are singular on the smooth characteristic fold surface 

8, a configuration easy to obtain by the methods of linear geometrical 
optics; the bicharacteristic strip through (xO, eO) ( let us recall that eO is 

normal to 8 at XO) is entirely contained in S. Similarly, cusp solutions 

can be obtained by "propagating" cusp data, and so on. 

For a nonlinear system, the situation is completely different: roughly 
speaking, one can say that the singularities of the blowup solution are 
created, and not "propagated". 

To give a precise meaning to this statement, we have to study the 

behavior of the characteristic curves of the linearized operator of L on u 

leading to xO. When these curves are in D, they are obtained as images (by 
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<I» of characteristic curves of the part of Lb corresponding to equations 

(2.5)b' (2.5)c (linearized in v only), the symbol of which is, according to 

the proof of Proposition 4.1, ih = C(~-l E aej)..(j' We will not give 
#". 

here a complete study of these curves, referring to [A18] for details. We 
give only the result for the special family of the bicharacteristic strips 

issued from points of the form (0, (0), (~ =I 0. 

Proposition 6.1. Let (c/J, v) be a solution of Lb witb a".v(O) =I 0. Denote 

byC«(O) = (X(s), (s)), s close to 0, tbe bicbaracteristic strip ofCh issued 
from (0, (0) wbere (0 satisfies 

(6.1) (~=I 0, Laej)..(xO,uO,~O)(J = 0. 
#". 

(i) Assume tbat <I> bas a fold and tbat ).. is GNL. Tben tbe image 

<I>(X(s)) is a smootb curve, tangent to tbe fold surface for s = ° 
witb a contact of order exactly two. Tbe image of eacb of tbe 

two balf-curves C±«(O) = {(Xes), (s)), ±s > O} is an arc of bicbar

acteristic (x(s),~(s)) (above D) oftbe linearized operator of L on a 

blow up solution u corresponding to (c/J, v), tbe two balf-curves corre

sponding to ~be two different cboices of'ljJ. Moreover, tbe projections 

(x(s), I~~:~I) oftbese arcs on tbe cospbere bundle tend to one oftbe 
oL points (x ,± leol)' 

(ii) Assume tbat <I> bas a cusp and tbat ).. is GNL. Tben tbe image 

<I>(X(s)) is a smotb curve crossing tbe cusp and transverse to tbe 

edge of tbe cusp. Tbe image of eacb of tbe two balf-curves ± «(0) 
is an arc of bicbaracteristic (above D) of tbe linearized operator of 

Lon tbe exterior and interior cusp solution corresponding to (c/J, v). 

Moreover, tbe projections of tbese arcs on tbe cospbere bundle tend 

to one of tbe points (XO, ±~). 

(iii) In all cases, tbe tangent to <I>(X(s)) at s = ° is tbe cbaracteristic 
issued from (xO, ~O) for tbe operator L frozen at (xO, uO). 
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C. Combinations of the two mechanisms 

In this section, we will only consider the very simple example of 

Burgers' equation with a nonlinear zero order term 

(1.1) 

where f ( u) is a given real function. 

1. Which mechanism takes place first? 

Let u be a smooth solution of (1.1) defined for t < To. Along each 

integral curve of L = Ot + uOx , (1.1) reduces to a nonlinear ODE of the 

type studied in A, and u may blow up at time To on one of these curves. 

On the other hand, there is no reason why the nonlinearity f(u) should 

prevent the focusing of characteristics studied in B; thus oxu may blow 

up at some point when t ---+ To. 

Can both mechanisms take place simultaneously, or which one occurs 

first? 

A first result is given by the following proposition. 

Proposition 1.1. Consider the solution u of (1.1) with f(u) = u 2 and 

initial value Uo E CJ. Assume that Uo reaches its maximum at a point 

XO where Uo ::> 0, u~ t= O. Then, if u exists for t < To, u remains bounded 

for t < To. 

PROOF OF PROPOSITION 1.1. If we define ¢(X, T) for t < To to be the 

abscissa of the point of ordinate T on the integral curve of L starting 

from (X,O) and set v(X,T) = u(¢(X,T),T), then (¢,v) is a solution of 

the blowup system 

OT¢ = V, OTV = f(v), ¢(X,O) = X, v(X,O) = uo(X). 

uo(X) 
v(X, T) = 1 _ Tuo(X) 

cannot live longer than TI , To ::; TI . We have also ¢(X, T) = X - fn(l

Tuo(X)). 

Suppose now To = TI , and let XO a point for which uo(XO) 

TI- I , u~ (XO) t= 0; we claim that there are points close to (XO, To) at 
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which ax¢; = 0, oxv i O. In fact, for T < To, ax¢; = 0 is equivalent to 
(uo - u~)(X)T = 1; by the implicit function theorem, there is a curve 
T = h(X) through (XO, To) of such points, with h' (XO) = T6u~ (XO) i O. 
Hence the curve contains points with T < To and blowup of oxu occurs 

before To· 0 

If we anticipate Chapter II a little and think of To as being the 
maximal time of existence of u, by a general theorem that we will prove 
also in Chapter II (Theorem 2.3), we see that oxu cannot remain bounded 
for T < To (otherwise, there would be no blowup at time To). We can then 
conclude roughly that, if the nonlinearity f is not too strong, focusing 
always occurs first. 

2. Simultaneous occurrence of the two mechanisms 

If the nonlinearity f is strong enough, both mechanisms can take 
place simultaneously, as we see in the following example. 

Proposition 2.1. Consider the solution u of (1.1) with f(u) = u4 and 
initial value Uo E CJ. We can choose Uo such that u exists for t < To and 
max lu(., t)l-t 00 when t -t To. 

PROOF OF PROP-OSITION 2.1. We have here 

v(X,T) = uo(X,T)(I- 3Tug(X,T))-t, 

ox¢;(X, T) = 1 + u~uo3[(1 - 3Tug)-t - 1]. 

We take TOI = max3u~, and we show that we can choose Uo such that 
ax¢; i 0 for t < To. We take for simplicity uo(X) = W(eX), where w 2:: 0 
has a unique positive quadratic maximum at 0 and supp w = [a, b]; for 
eX tJ. [a, b], ax¢; = 1; thus it is enough to prove -u~ ::; (1 - 3Tou~)t 
everywhere, because b 2:: 1 - (1 - b)t for 0 ::; b ::; 1. The inequality is 
true for elXI ::; 0: since the righthand side is then equivalent to leXlj; 
elsewhere the inequality is true for e small enough. 0 

It does not seem that this sort of blowup solution can be obtained 
by the Ansatz techniques of A.3. 

We believe that the two mechanisms considered in this chapter are 
involved in all "generic" blowups. According to Proposition 1.1, it would 
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seem that the geometric mechanism occurs first for homogeneous (B == 
0) systems or small data. The semilinear cases, where this ''primary'' 

mechanism is suppressed, can then be viewed as linearly degenerate cases 

for which only the "secondary" ODE mechanism may cause blowup. 

Notes 

The bibliographical references for this chapter are few. 

The statements about ODEs can be found in any textbook, for in

stance Coddington and Levinson [CL], while asymptotic expansions near 

a point are discussed in Wasow [Wa]. 
The discussion of semilinear wave equations is taken from Kichenas

samy and Littman [KL], which seems to be the first case of a systematic 
approach. Related results may be found in Leichtnam [Lei]. 

The material for Section B comes essentially from Alinhac [A18]. The 
special case of simple waves is crucially used in the theory of systems of 

conservation laws in one space dimension (see for instance Courant and 

Friedrichs [CFr], Lax [La2] or Smoller [Sm]). The concept of genuinely 

nonlinear eigenvalue is introduced in Lax [La2], and an approach of simple 
waves specifically related to it and to blowup can be found in Majda [Ma] 

and also in John [Jo6]. 
Some indications about the role of dissipative terms in quasilinear 

systems are given in [Na]. 



CHAPTER II 

First Concepts on Global 
Hyperbolic Cauchy Problems 

Introduction 

a. We consider here for simplicity quasilinear hyperbolic systems 

of the form 
n 

(1.1) LU=OtU+LAj(U)Oju+B(u) =0, B(O)=O, 
j=l 

for x = (Xl, ... , Xn) E IRn , Xo = t E [0, T], U E IRN. The coefficients Aj , B 
are assumed to be real and smooth functions of U in an open domain G 

containing the origin in its interior. All the solutions we consider will be 

classical (i.e. CI ) solutions. 

For such systems, we always make the following hyperbolicity 
assumption: L is symmetrizable hyperbolic, that is, there exists on G a 

symmetric positive definite matrix S(u) such that all the matrices SAj 

are symmetric. 

We do not consider general stricly hyperbolic systems since the nat

ural examples are symmetrizable and the proofs are more delicate. 

All we have to say will apply as well to scalar equations; in particular 

we will often consider quasilinear wave equations of the form 

i,j'20 

(1.2) 

These equations will always be assumed strictly hyperbolic. 

By a global Cauchy problem we mean that the initial value of U 

on {t = O} is a given function Uo E Cff. We make this choice for sim

plicity, though for most discussions, enough smoothness and decay at 
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infinity would suffice. We dropped dependence of the coefficients on (x, t) 
to obtain simpler statements in these global situations. 

We do not consider here the case of periodic Cauchy data, for which 

we refer to [GL] and [LFX]. 

h. This chapter is devoted to the very first concept which can be 

introduced for global Cauchy problems: the lifespan. This is the time T up 

to which a given solution retains its initial regularity. The key fact here is 

that an initially smooth enough solution does not undergo a gradual loss 

of its regularity; it keeps its initial smoothness up to T, and undergoes 

a brutal change at time T, where either the solution or its gradient (or 

both) become infinite. This fact can be viewed as a nonlinear propagation 

of regularity for the Cauchy problem. Traditionally, the brutal change is 

described in the literature under the name "blowup criterion" . 

A large number of ingenious methods have been used to test whether 

or not T < 00; they all make use of appropriate sign and structure (con

vexity for example) of the nonlinearity. We distinguish here for clarity be

tween "functional methods" and "averaging and comparison methods". 

These methods, besides proving T < 00, provide upper bounds for T. 
However, they do not display in general the correct blowup mechanisms; 

thus the obtained upper bounds are very rough and much larger than the 

true ones. 

We will study in the next chapters cases where more precise infor

mation can be obtained. 

1. Short time existence 

We will denote by HS = HB(lRn) the usual Sobolev space with norm 

1.ls and by Ok the space of k-times continuously differentiable functions; 

the LOO norm will be denoted by 11.1100' For vectors U E (Hs)N, we will 
write simply u E HB, etc. 

The following theorem is of constant use. 

Theorem 1.1. Consider a quasilinear system (1.1), which is assumed to 

be symmetrizable hyperbolic. For some integer s > ¥ + 1, assume that 

(1.3) 

where Go a relatively compact subset ofG. Then, for any compact neigh

borhood G1 of Go contained in G and any M ~ luol s , there existsT > 0, 
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depending only on M and on G1, and a unique u solution of (1.1) for 
o ::; t ::; T satisfying 

(1.4) 

u E CO([O, TJ, H S ) n C 1 ([0, TJ, H S - 1), u(x, t) E Gl. u(x,O) = uo(x). 

For symmetric hyperbolic systems, we refer to [Ma] for a proof; for 

strictly hyperbolic systems or equations, the corresponding statement is 
also true, and we refer to [Me]. Note in particular that solutions satisfying 

(1.4) are of class C1 ("classical solutions"). 

2. Lifespan and Blowup Criterion 

As a consequence of Theorem 1.1, we can define the lifespan of a 
solution. 

Definition 2.1. Consider a solution u of (1.1) with initial value Uo E HS, 
as in Theorem 1.1. The lifespan Ts of u will be defined as the supremum 
of all T > 0 such that u exists for 0 ::; t ::; T and 

(2.1) 

Note that Ts > 0 and, possibly, Ts = +00. For ~ + 1 < s' ::; s, 
we have by definition TSI 2:: Ts; in other words, u could live longer if 
we are less demanding on its regularity. One could thus imagine a given 

solution becoming worse and worse with time. The essential fact is that 

this cannot happen. 

Theorem and Definition 2.2. Consider Uo E CO'. For any integer 

s > ~ + 1, the unique solution u of (1.1) with initial value Uo lives for 
0::; t < Ts with the regularity (2.1). In fact, Ts is a constant in s which 
we denote by T and call simply the lifespan of u. 

Note that in the situation of Theorem 2.2, the solution u is Coo for 

t<T. 

Example: The lifespan for Burgers' equation 

Consider a solution u of Burgers' equation (Chapter I, B 1, B. 2) 

with initial value Uo E CO'. Then 

- , -1 
T = (max-uo) . 
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Remark that the support assumption on uo implies T < 00 (unless of 

course uo == 0). 
Define To = (max -UO)-I; as explained in B. 1, T cannot be bigger 

than To. On the other hand, for the solution (¢, v) of the blowup system 

(2.7), one has 8x¢(X, T) > 0 for T < To; for fixed T < To, the map 

X I-t X = ¢(X,T) 

is an increasing bijection from IR onto itself, hence <[> is a Coo diffeomor

phism of T < To onto itself and the corresponding u is Coo for T < To. 

o 
Theorem 2.2 is a consequence of the more precise 

Theorem 2.3. Consider u a C I solution of (1.1) for 0 ~ t < T < 00 

with initial value Uo E HS (s integer, s > ~ + 1). Assume that there 

exist a constant M and a relatively compact subset G I of G such that, 

for 0 ~ t < T, 

lV'u(x, t)1 ~ M, u(x, t) E G I . 

Then 

and, with C depending only on s, M and GI, 

(2.3) lu(.,t)ls~Cluols, t<T. 

PROOF OF THEOREM 2.3. 

a. Let Ts be the lifespan corresponding to Uo. For t < Ts and lal ~ s, 
we consider U a = 8<;u, which is a solution of (8t + EAj (u)8j )ua = Fa 
with 

(2.4) Fa = - L C~8~(Aj(u))8~-{38ju - 8 a (B(u)). 
j,{3~a, {3#O 

h. To evaluate the L2 norm of Fa, we use the two following propo
sitions: 

Proposition 1. If f : IRN ---+ IR is a smooth function with f(O) = 0, 
then, for s > 0, f(u) E LOO n HS if u E LOO n HS and 
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(2.5) If(u)ls ::; cluls 
for a constant C depending only on f, s and Ilulloo . 

Proposition 2. If u, v E LOO n HS for a positive integer s, then for all 

a, (3, lal + 1{31 = s, 

(2.6) 1(8°u)(8,8v)lo ::; Cs(llulloolvls + Ilvllooluls). 

These two propositions can be proved in at least two ways: 

(i) One can use the Gagliardo-Nirenberg inequality (as in [MaJ, Propo

sition 2.1); for w E Loo n HS, s being a positive integer, 

(2.7) 118°w11L ~ ::; Csllwll~(~)lwl!, k = lal, 0::; k ::; s. 

(ii) One can also use elementary properties of the Littlewood-Paley de
composition, as in [AG], Chapter II. 

c. Using Proposition 2 for s - 1 , we obtain 

where lulLip = Ilulloo + II\7ulloo denotes the Lipschitz norm; Proposition 
1 gives then IAj(u) - Aj(O)ls ::; Cluls, so finally 

(2.8) !Folo ::; Cluls. 

d. An important fact is that for symmetric systems, the constants in 

the L2 energy inequality only involve the Lipschitz norm of u. Applying 
this inequality to U o and summing over a, we obtain 

(2.9) lu(., t)ls ::; C ~ luo(., t)lo::; C(luols + lot IU(.,T)lsdT). 

e. Let us recall the classical Gronwall Lemma. 

Gronwall Lemma. Let ¢ E CO ([0, a)) satisfy 

¢(t) ::; A + B lot ¢(s)ds. 

Then ¢(t) ::; AexpBt. 

Applying this lemma to (2.9) gives (2.3) for t < Ts. 



30 Blo'UYUp for Nonlinear Hyperbolic Equations 

f. Finally, assume Ts < T; using Theorem 1.1 with initial value 
u(., 0) on t = 0 for 0 < Ts close enough to Ts yields a contradiction with 

the definition of Ts· 0 

PROOF OF THEOREM 2.2. Let s > s' > ~ + 1; choose T',T' < Tst; by 
definition of Tst, the hypotheses of Theorem 2.3 are satisfied with T = T'. 
Thus Ts 2:: T', and Ts = Tst. 0 

Let us remark that in the situation of Theorem 2.3, the solution u 
can in fact be continued after T. Thus we can rephrase Theorem 2.3 in 
the following way. 

Blowup criterion. LetT < 00 be the lifespan of a solution u of (1.1) 
with initial value Uo E C(f'. Then, either 

(i) lim sup IIVu(., t)lloo = +00 as t ---t '1' or 

(ii) u(x, t) is not contained in any compact subset of G for t < '1'. 

The conclusion of this section is that there is no gradual worsening 
of a solution u, but a brutal change in regularity at timeT, of one of 
the two types (i) or (ii) described above. We have seen in the examples 
of Chapter I that actually one of the two or both may occur. 

Remark finally that Theorems 2.2 and 2.3 do not seem to have ana
logue in the Ck category. Hence the way the regularity of the solution, 
described in this category, changes with time, is not clear (see however 
Theorem 3.1 of Chapter III). 

3. Blowup or not? Functional methods 

Consider a quasilinear system (1.1) and a compactly supported 
smooth initial value Uo. The first question to answer seems to be: is the 
lifespan '1' of the corresponding solution u finite or not? 

Many methods have been proposed to answer this question in a rough 
way; we will call them rather vaguely "functional and comparison" meth
ods. Let us start with a very simple example. 

a. A functional method for Burgers' equation 

Let u be the solution of Burgers' equation with Uo E C(f'([a, b]). For 
t < T, u(., t) E C(f'([a, b]), because the characteristics starting outside 
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[a, b] are vertical lines on which u = O. Choose cp E COO ([a, bj), cp' > 0 and 
set 

F(t) = J cp(x)u(x, t)dx. 

Using the equation, we obtain 

F'(t) = ~ J cp'(x)u2(x, t)dx. 

On the other hand, by the Cauchy-Schwarz inequality, 

F2(t) ::; C J cp'(x)u2(x, t)dx ::; 2CF'(t), C = lab ::i;j dx. 

Thus, if F(O) = J cp{x)uo(x)dx > 0, F cannot remain smooth beyond 
2C -To = F(O) , hence T ::; To· 

This example is typical of the functional method, which we can 
describe roughly as follows: 

(i) An appropriate functional F of u, depending on time, is introduced. 

(ii) A (first or second order) differential inequality is proved on F, im
plying finite time blowup for well chosen data. 

This is of course a very old method, and one can consult [LeI] for 
a survey. The re:rp.arkable fact about the above example is this: we know 
that T = (max -u~)-l and that, for t --t T, u remains bounded and 
only oxu becomes infinite; thus, the predicted blowup of F in fact never 

. occurs. The blowup mechanism hinted at in the proof is not the correct 
one, and the estimate To of the lifespan is not sharp. 

Unfortunately, one is forced to recognize that very often, functional 
methods present the above mentioned drawbacks. To evaluate the effi
ciency of a given method, we suggest considering the following criteria: 

(i) Is it possible to obtain from the method a reasonably explicit upper 
bound To for the lifespan? If no, we call this method a "yes or not" 

method. 

(ii) Assuming that we are considering a case where blowup can occur 
even for arbitrary small data say, of size c (a case to which we will 
return in subsequent chapters), we can distinguish three situations: 

a) The obtained To(c) is much bigger than the correct T(c) ("rough" 
method). 
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b) The obtained To(E) has the correct order of magnitude, that is, 

To (E) ::; CT (E) ("semisharp" method). 

c) The obtained To (E) is equivalent to the true one ("sharp" method). 

(iii) Does the method display the correct mechanism? 

For instance, the functional method proposed in the example is semi

sharp (because, in one space dimension, any method gives the magnitude 

c 1 for To). 

We present now two classical situations where a functional method 

is used. 

h. Sernilinear wave equation 

Consider, in three space dimensions, the semilinear wave equation 

(3.1) 

Theorem 3.1. Let u be a solution of (3.1) with initial data 

u(x,O) = f(x), Otu(x, 0) = g(x), f, 9 E Cgo 

supported in Ixl ::; R. Assume 1 < p < 1 + V2 and J gdx > O. Then 

T < 00. 

PROOF OF THEOREM 3.l. 
a. Set F(t) = J u(x, t)dx; using the equation and the fact that the 

support of u is contained in Ixl ::; R+t, we have F"(t) = J lulPdx; hence, 

by the Holder inequality applied to the integral defining F, 

(3.2) 

We make now use of the two well known facts: 

(i) In dimension three, the elementary solution of the wave operator is 

a positive measure. 

(ii) This measure is supported by the boundary t = Ixl of the light cone, 

so that the strong Huygens principle is valid: the free solution Uo 

of o;uo - b..uo = 0 with data f, 9 is supported in the set {(x, t), t-R ::; 

Ixl ::; t + R}. 
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By (i), we have u(x, t) 2': uo(x, t); by (ii), we can write 

Fo(t) = J uo(x, t)dx = r uo(x, t)dx::; r u(x, t)dx 
Jt-R~lxl~t+R Jt-R~lxl~t+R 

::; C(t + R) 2(P;1) (J lu(x, t)IPdx) ~ ::; C(t + R) 2(Pp-
1

) [F"l~ . 

But Fo can be computed explicitly because 

F~'(t) = 0, Fo(O) = Cf = J f(x)dx, F'(O) = Cg = J g(x)dx. 

We get Fo(t) = Cf + tCg, hence, if t 2': to, because of our assumption 

Cg > 0, 

Fo(t) 2': C(t + R), C> 0. 

Finally, we have obtained 

(3.3) F"(t) 2': C(t + R)2-p , C > 0, t 2': to, 

which implies 

F(t) 2': C(t + R)4-p , C> 0, t 2': to. 

h. We use now the following elementary ODE lemma. 

Lemma. Consider F(t) E C2[0, b) and suppose 

F(t) 2': Co(t + RY, F"(t) 2': Cl(t + R)-qF(t)P, t 2': 0, Co, Cl , R> 0. 

Ifp> 1, r 2': 1, (p - l)r > q - 2, then b must be finite. 

Here, r = 4 - p, q = 3(p - 1), thus the conditions read p > 1, 

p2 _ 2p - 1 < 0, hence 1 < p < 1 + -)2. <) 

The value 1 + -)2 in Theorem 3.1 is not a technical artifact: it cannot 

be improved, as shown in [Jo6]. 

c. The Euler system 

The motion of a polytropic, ideal compressible gas is described by 

the Euler system 

(3.4)a OtP + div(pu) = 0, 
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Ot5 + (u.'\7)5 = 0, 

where p is the density of the gas, u E ]R3 its velocity (u. '\7 = ~UjOXj)' 5 
its entropy and p its pressure given by p = Ap1' exp 5 (A > 0, l' > 1). 

'For some physical background, see [CFr]. 
This system can be written as a hyperbolic symmetrizable system to 

which the conside-rations of (1) and (2) apply (see for instance [Maj). 
For given 15 > 0, 8, p = Aj51' exp 8, consider initial data 

p(x, 0) = pO(x) = 15 + pl(X) > 0, u(x,O) = uO(x), 

(3.4) 5(x, 0) = 50 (x) = 8 + 5 1(x) , 

where pi, uO and 51 are smooth and supported in the ball of radius R, and 
denote by '1' the lifespan of the smooth solution. For t < '1', the support of 
the disturbance pi, uO, 51 propagates with speed at most u = (opp(15, 8))! 
(u is called the sound speed). A proof of this essential fact can be found for 
instance in [Jo3]. This means more precisely that (p(., t), u(., t), 5(., t)) = 

(15,0,8) outside B(t) = {x, Ixl::; R+ut}. 
Define the functionals 

(3.5)a m(t) = J (p(x, t) - 15)dx, 

(3.5)c F(t) = J xpu(x, t)dx. 

Theorem 3.1. If 

(3.6) m(O) 2: 0, 71(0) 2: 0, F(O) 2: O!uR4 maxpO(x), 
1611" 

O!=-, 
3 

then '1' < 00. 

PROOF OF THEOREM 3.1. 

a. We have 

m'(t) = - J div(pu)dx = ° 
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and 

r!,(t) = - J div(puexP%)dX = 0, 

hence met) = m(O), TJ(t) = TJ(O). Moreover, 

F'(t) = J XOt(pu)dx = - J div[(xu)pu + x(p - p)] 

+ J [plul 2 + 3(p - p)] dx = J [plul 2 + 3(p - p)] dx. 

35 

b. Now J(p - p)dx ~ O. In fact, (p - p)(., t) is supported in B(t) 
and 

r pdx=A r p'YexpSdx~A(voIB(t»l-'Y( r pexp~dxr 
J B(t) J B(t) J B(t) I 

= A(voIB(t»l-'Y (TJ(t) + VOIB(t)pexp~) 'Y 

by Holder's inequality; hence, since TJ(t) = TJ(O) ~ 0, 

r pdx ~ pvoIB(t) = r pdx. 
J B(t) J B(t) 

bigskip 

c. By the Cauchy-Schwarz inequality and point (b), 

F2(t) ~ F'(t) r Ixl 2pdx; 
JB(t) 

moreover, JB(t) Ixl 2pdx ~ (R+O"t)2 (m(t)+ JB(t) pdx) , hence, since met) = 
m(O), 

41T 3 
p2(t) ~ F'(t)(R + O"t)2 3 [max pO R + peeR + O"t)3 - R3)] ~ 

~ F'(t) 4; (R + O"t)5 maxpO(x) 

since p ~ max pO. 

d. From this differential inequality, we get, for t < '1', F(t) > 0 

(because F(O) > 0) and 

F(O)-l > F(O)-l - F(t)-l ~ (cwmaxpO)-1(R-4 - (R + O"t)-4). 



36 Blowup for Nonlinear Hyperbolic Equations 

This implies T < 00. If (3.6) is strengthened to F(O) > CR4 , C = 
a (J max pO, we obtain the estimate 

(3.7) 

In Example (b) of the semilinear wave equation, the simple method 
explained there using F(t) = J u(x, t)dx is not unrealistic, because we 
already know, by analogy with Theorem 3.1 of Chapter I, that u itself 
may blow up. As a matter of fact, the method can be improved to a 
semisharp method, giving for instance in the case p = 2, a lifespan of the 
correct magnitude e-2 (we will come back to this case in Chapter III). 

For the Euler system considered in Example (c), the given proof is 
analogous to Example (a) and does not display realistic behavior of the 
solution; it is believed that only V p and V u do in fact blow up at time T 
(this has been proved only in the special case ofaxisymetric data in two 
space dimensions; see [AI6]). 

4. Blowup or not? Averaging and comparison 
methods 

In the following example of a quasilinear wave equation, we use 
a more sophisticated method than the functional method presented in 
section 3. One could call it the "averaging and comparison" method. 

The idea is to introduce polar coordinates (r,w) in the x-variable, 
and to consider the average it (in w) of the given u. Under appropriate 
convexity assumptions on the nonlinear terms, this leads to a partial 
differential inequality (in the two variables (r, t)) on it, which can be 
analyzed using characteristics, and so on. 

Theorem 4.1. Consider v the solution in IRt x IR; of 

(4.1) o;v - ~xv = 2ot vo;v, v(x, 0) = f(x), Otv(x, O) = g(x) 

where f, 9 E Cgo are supported in the ball of radius R. Assume 

(4.2) L = (41[")-1 J h(x)dx > 0, h(x) = g(x) - g2(X). 

Then T < 00. 
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PROOF OF THEOREM 4.1. 

a. For t < T, v is smooth and supported in Ixl :S t + R (again, we 

refer to [Jo3] for a proof). Let u(x,t) = I~v(x,s)ds; u satisfies 

(4.3) u(x,O) = 0, Otu(x,O) = f(x), 8;u - D..u = w 

where w(x, t) = (8;u(x, t))2 + h(x). 

h. To any function p(x, t), we associate the function p defined by 

(4.4) p(r, t) = (411")-1 r p(rw, t)dw. 
J1wl=1 

By construction, p is an even function of r, which is just the average (in 

x) of p on a sphere of radius r about the origin when r > O. 

Since, in polar coordinates, D.. = 8; + ~Or - r12 D..w , we have D..p = 

r -1 8; (rp). Hence u satisfies 

(4.5) 

This equation can be solved explicitly and we obtain 

2ru(r, t) = (r + t)u(r + t, 0) + (r - t)u(r - t, 0)+ 

(4.6) + l~:t POtu(p, O)dp + kr./W(P, T )dpdT , 

where Rr,t is the triangle with vertices (r, t), (r - t, 0), (r + t, 0) in the 

plane. 

c. We will now prove the integral inequality 

(4.7) L 3 18 

U(s) ~ - + -R3 uU2(u)du 
s 16s R 

for the function U(8) = U(8,8 + R), 8 ~ R. Note that because of the 

strong Huygens principle, U would be zero if w were zero in (4.3). 

Since W is an even function of r, (4.6) gives us 

U(8) = (28)-11 uw(u,T)dudT 
Ts 

where Ts is the rectangle with vertices (R, 0), (8 + R, 8), (8,8+ R), (0, R). 
- - R -

For the part h(r) of W, we have ITs uh(u)dudT = 2 Io u2h(u)du = 

2L, because h is zero for Ixl ~ R. 
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On the other hand, the Cauchy-Schwarz inequality applied to (4.4) 
gives (p)2 :s p2; thus 

r a-(8';u) 2 da-dT 2: 1 a-(8;iJlda-dT 2: r a-da- l a +R (8;iJl dT 
JTs Ts JR a-R 

since Ts contains the parallelogram bounded by the lines a- = R, a- = s, 

T = a- - R, T = a- + R. 
Finally, since 8; (u) vanishes for T :S a- - R, we have 

j S+R 
U(s)= s-R (S+R-T)8;(u)(S,T)dT 

and, by the Cauchy-Schwarz inequality, 

8R3 jS+R 
U2(s):S - (8;u)2(S,T)dT, 

3 s-R 

which is (4.7). 

d. Using Gronwall's lemma, we find that sU(s) 2: W(s), where W 
is the solution of the integral equation 

3 r 
W(s) = L + 16R3 JR a-- 1W2(a-)da-. 

In fact, W(s) = L(l- 1~~3.en-:krl; hence T:S 2Rexp l~f. 

Again, as emphasized by John in his survey paper [Jo6], one expects 

only the second order derivatives of v to blow up at time T; this has been 

proved only in the axisymmetric case, which we will consider in detail in 

Chapter IV. 

Roughly speaking, one can say that the above proofs rely in an es

sential way on the sign and the convexity of the nonlinearity, and, in 

some cases, on the space dimension (because up to dimension three, the 

elementary solution of the wave operator is positive). In the case of the 

three dimensional semilinear wave equation with nonlinear terms of the 

opposite sign 

8;u - b.u = -lulp-1u, 

no blowup result is known. In fact, one can prove T = 00 for p :S 5 (5 is 
said to be the "critical index"); it is not known whether T = 00 for all p. 
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Notes 

The first two sections are taken from Majda [Ma] (Chapter II), where 
more details can be found about hyperbolic symmetric systems. For some 
background on symmetric systems, see for example Friedrichs [Fr] or, 
more recently, Rauch [Ra]. 

An extension to the case of strictly hyperbolic systems using a pseu
do differential symmetrizer can be found in Metivier [Me]. 

Specific blowup criteria have been established for the incompressible 
and the compressible Euler systems (see respectively Beale, Kato and 
Majda [BKM] and Chemin [Ch]). 

There is important literature about functional methods. One can 
find in Levine [LeI] and Keller [Ke] a good survey of earlier references. 
The more recent references are given in the two survey papers by John 
[Jo6] and Strauss [St]. 

The presentation of Example (b) of Section 3 is due to Sideris [Sil], 
though the example itself goes back to John [Jol] and Glassey [GIl], 
[Gl2]. Again, Example (c) of Section 3 is taken from Sideris [Si3], while 
Section 4 is due to John [Jo6]. 

We avoided discussing the huge literature on global existence for 
semilinear wave equations. A recent survey is due to Zuily [Zu]. 



CHAPTER III 

Semilinear Wave Equations 

Introduction 

In the general framework of quasilinear systems or equations, we 

could only define in Chapter II the lifespan of a solution. For semilinear 

systems or equations, it is possible to go further and define a maximal 

domain of existence of a given solution. The essential questions are then 
about the shape of this domain and the behavior of the solution near its 

boundary. 
In the first section, we discuss the modifications of Theorems 2.2 and 

2.3 of Chapter II in the semilinear cases, and formulate the corresponding 

blowup criteria. 
The seco~d section contains a brief discussion of the concept of max

imal influence domain for smooth solutions of semilinear wave equations. 
In Section 3, we extend this concept to weak solutions and prove 

an analogue of Theorem 2.2 of Chapter II; this approach makes it also 

possible to give a strong blowup criterion at the boundary of the maximal 

influence domain. 
Finally, in a rather special situation, we obtain uniform blowup rates 

along the space-like boundary of the maximal influence domain, a picture 
{locally) very close to the examples displayed in Chapter I A. 

1. Semilinear blowup criteria 

Consider a system 

n 

(1.1) Lu = OtU + LAjoju + B(u) = 0 
j=1 
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with the same hyperbolicity assumptions as in Chapter II, the only dif

ference being that the coefficients Aj do not depend on u any more. 

We assume for simplicity that B is defined everywhere. 

The short time existence Theorem 1.1 of Chapter II can then be 

modified in the following way. 

Theorem 1.1. Consider a semilinear system (1.1). For some integer 

s > i, assume that 

(1.2) 

Then, for any M 2: luols, there exists T > 0, depending only on M and 

B, and a unique u solution of (1.1) for 0 :S t :S T satisfying 

This theorem can be proved exactly as its homologue (Theorem 2.2) 

of Chapter 1. 

It is important here to remark that, just as in Theorem 2.2 of Chapter 

I, u is not close to Uo; only luis is bounded by a constant times luol s. 
The analogue of Theorem 2.3 is 

Theorem 1.2. Consider u a C 1 solution of (1.1) for 0 :S t < T < 00 

with initial value Uo E HS, s > i. Assume that there exists M such that, 

for O:S t < T, 

(1.4) lu(x, t)1 :S M. 

Then 

and 

(1.6) lu(., t)ls :S Cluols, t < T, 

where C depends only on sand M. 

The proof is a simple modification of that of Theorem 2.3, using the 

above Theorem 1.1. 

The whole "theory" of the lifespan can then be repeated as in Chap

ter II, and the blowup criterion corresponding to Theorem 1.2 is the 

following. 
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Blowup criterion. Let T be the lifespan of a solution u of (1.1) with 

initial value uo E C[{'. Then u is not bounded for t < T. 

(1.7) 

For semilinear equations 

8;u + L gij 8;ju + F(u, Vu) = O. 
i,j~O 

A completely analogous theory can be developed if F depends only on 
Vu. In this case, the first order derivatives of u are the unknowns of 

the corresponding first order system, and blowup occurs only if IVul is 
not bounded (the restriction on F comes from the fact that the energy 
inequality controls only Vu). In the general case, assuming that the initial 
data have compact support and using finite propagation speed, one can 
control u by Vu and obtain the same result. 

Finally, if F depends only on u, similar considerations lead to the 

fact that blowup can only occur if lui in not bounded. 

2. Maximal influence domain 

In the remaining part of this chapter, we restrict ourselves to semi
linear wave equations 

(2.1) 8;u -,flu + F(u, Vu) = 0, u(x, 0) = f(x), 8tu(x, 0) = g(x). 

Let us denote by C(xO, to) the open backward cone 

(2.2) 

We introduce the following definition. 

Definition 2.1. An open set n is called an influence domain if(x, t) E 

n implies C(x, t) c n. 

It follows from this definition that </>(x) = max{t, (x, t) En} is either 
identically ±oo or else Lipschitz continuous with 

(x, t) En{=> t < </>(x) 

and 

I</>(x) - </>(y) I ::; Ix - YI· 

We define now the maximal influence domain. 
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Theorem and Definition 2.2. Consider equation (2.1) with initial 

data j, 9 E CD' Let Omax be the union of all influence domains 0 con

taining {t :s O} such that there is a Coo solution of (2.1) in 0 n {t 2': O} 

with initial data j, g. Then Omax is the unique maximal domain with this 

property. 

PROOF OF THEOREM 2.2. 

a. We know that there exist T > 0 and a Coo solution u of (2.1) for 

t < T with initial data j,g. Thus the class S of all the influence domains 

considered in the theorem is not empty. 

h. Let (01 , u 1 ) and (02 , u 2 ) two domains of S with their corre

sponding solutions. If (xO, to) E 0 1 n O2 , to > 0, u1 and u2 are two Coo 
solutions of (2.1) in C(xO, to) n {t 2': O} with the same initial data. Hence 

u1 (xO, to) = u2(XO, to). We have obtained a smooth solution u in 0 1 U02' 

o 
By the definition of Omax, the supremum of all T such that the strip 

{t < T} is contained in Omax is just the lifespan T. Since we restricted 

Durselves to initial data with compact supports say, in {Ixl :s R}, Omax 

contains in fact the open set {t < T}u{lxl > t+ R}. Hence the hyperplane 

{t = T} intersects the complement of Omax along a compact K; using the 

blowup criterion, we see that (u, V'u) cannot remain in a compact subset 

Df G in some neighborhood of K. In other words, blowup must occur at 

some boundary point of Omax in K. 

3. Maximal influence domains for 
weak solutions 

In the preceding section, we have defined the maximal influence 

domain Omax of a smooth solution u, and we have observed that lul+lV'ul 
cannot remain bounded near certain points of aOmax . The proof relies on 

local existence of smooth solutions and global uniqueness in cones. 

If we consider, instead of Coo solutions, solutions with a limited 

smoothness (expressed by u E W for some Banach space W), we can 

define as well a maximal influence domain provided solutions in W exist 

locally and are unique in cones. It turns out that this influence domain is 

essentially independent of W, if W is small enough. While, in Theorem 
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2.2 of Chapter II, we considered strips {O :::; t :::; T} and Sobolev regularity 

in x, we consider here analogously influence domains and C k smoothness. 

This approach allows us also to analyze the behavior of the solution close 

to the boundary of the domain. 

We will develop this point of view in the special case of the equation 

(3.1) 8;u - tlu = u2 , u(x,O) = f(x), 8tu(x, 0) = g(x) 

in three space dimensions. 

Remark first that if u E C2 is a classical solution of (3.1) in an 

influence domain 0, then 

(3.2) 

Here, the tilde denotes extension by 0 for {t < O}, the star the convo

lution, Uo the free solution with data f, g, and E the usual fundamental 

solution of the wave equation 

(3.3) 

Thus formula (3.2) reads for t 2 0 

(3.4) u(x,t) =uo(x,t)+(47r)-1 r\t-s)ds r u2 (x+(t-s)w,s)dw. 
. Jo J1wl=1 

We introduce now the space of weak solutions of (3.2). 

Definition 3.1 . Let 0 be an influence domain. Then 

(3.5) W(O) = {u, t < 0 => u(x, t) = 0, u E Lfoc(O), E*u2 E L~c(O) }. 

We define in the same way W(O). 

Remark that W is a vector space (because E is positive), and that 

functions in W need not be bounded. 

The main result of this section is the following. 

Theorem 3.1. Assume Uo E W(JR4 ). Then there exists a unique max

imal influence domain Omax containing {t :::; O} and a unique solution 

u E W(Omax) of (3.2). If (xO, to) E 80max and 

(3.6) 
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then E*u2 is unbounded in Omaxnv for any neighborhood V of (xO, to). 
Moreover, if 

then 

The proof will be divided into three steps. 

Step 1: Local existence and uniqueness in a cone 

a. We prove first a uniqueness result. 

Uniqueness lemma. 

(i) Let 0 be an influence domain, U1 E LOO(O), U1 = 0 for t < 0 and 

U2 = E * U1. Set 

where max means the essential supremum in x for (x, t) E O. Then 

m2(t) ::; lot (t - s)m1(s)ds. 

(ii) Assume v, h E L1 [0, T) and 

v(t) ::; C lot (t - s)v(s)ds + h(t). 

Then 

(3.7) 
1 1 i t 

v(t) ::; C2 ° sin h(C2(t - s))h(s)ds + h(t). 

(iii) If Ui E W(C(xO, to)), i = 1,2, are two solutions of an equation 

U = E*u2 +v 

PROOF OF THE UNIQUENESS LEMMA. 

(i) This point is an immediate consequence of (3.4). 
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(ii) Let H(s) = 1 for s 2:: 0 and H(s) = 0 for s < O. Set vo(s) = 

v(s)H(s), hoes) = h(s)H(s), Eo(s) = sHes) and w = Eo * Vo. Then 

w" = Vo ~ Cw + ho. 

Since the fundamental solution 

Ec(t) = C-tH(t) sin h(Ctt) 

of ~ - C is positive, it follows that 

wet) ~ Ee * ho(t), 

which gives (3.7). 

(iii) We have 

hence 

because of the Cauchy-Schwarz's inequality which gives 

Since the E*u~ are bounded, the uniqueness lemma (i) can be applied 
to the function IUl - u21 2 , and (ii) of the same lemma implies then 

Ul = U2· ~ 

b. The local existence result is the following. 

Local existence lemma. Let 

v E W(C(xO, to)), to> 0, E * v2 ~ Co 

and assume 8Co(tO)2 ~ 1. Then the equation 

(3.8) u= E*u2 +v 

has a unique solution u E W(C(xO, to)) with E * u 2 ~ 4Co. 

PROOF OF THE LOCAL EXISTENCE LEMMA. We use a fix point argument, 
setting uO = V, uk+l = E * (uk )2 + v. Assume first v 2:: O. Then u l 2:: UO 2:: 
0, and uk 2:: Uk - l 2:: 0, k 2:: 1, implies 

uk = E * (Uk - l )2 + V ~ E * (uk )2 + V = uk+!. 
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Hence the sequence uk is increasing, and 

E * (uk+1)2 ::; 2E * (E * (Uk )2)2 + 2E * v2. 

The induction hypothesis E * (uk )2 ::; 4Co implies, by the uniqueness 
lemma (i) and our assumption 8CO(tO)2 ::; 1 

E * (uk+l )2 < 16C2(tO)2 + 2C < 4C . _ ° ° _ ° 
Hence uk - v is bounded, so u = lim uk exists and satisfies (3.8) . 

If v may be negative, let w be the solution of w = E * w 2 + lvi, and 
define also w k as before. By induction, one obtains 

lukl ::; w k , luk+l _ ukl ::; w k+1 _ wk. 

Hence the convergence of w k implies the convergence of uk. 

Step 2: Existence of flmax and behavior at the 
boundary 

a. The proof of the existence of Omax is identical to the proof of 
Theorem 2.2, using the lemmas of Step l. 

h. Let (xO, to) E 80max satisfying (3.6) and assume that there exists 
a neighborhood V of (xO, to) such that E * u2 is bounded in V n Omax. 
For el small enough, 

- ° ° C(x ,t + e) n O~ax C V, e::; el, 

the letter c denoting the complement. Let 

v = (1 - X)(E * (xu2 ) + uo), 

where X is the characteristic function of Omax. We have E * v2 ::; C' in 
C(xO, to + el)' Since 

C(XO, to + e) n O~ax C {t > to - 8} 

for e ::; e2(8), we can solve w = E * w2 + v in C(xO, to + e) if 

8C'(e + 8)2 ::; 1, e::; et, e::; e2(8), 

according to the local existence lemma. Then w is supported in O~ax and 
u = w + Xu satisfies 

u = E * w2 + V + X(E * (xu2) + uo) = E * u2 + uo 
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in C(xO, to + c) U Omax. We have thus obtained an extension of u to a 

larger set than Omax, a contradiction. 

Step 3: Additional smoothness of the solution 

Choose cones C and C' such that 

G c C' c G' c Omax. 

A. Assume Uo continuous in Omax n {t ~ a}. Then luol :::; M, 
E * u2 :::; M in C', hence lui:::; 2M in C'. 

a. For to > 0 small enough, we can use the proof of the local 

existence and uniqueness lemma in each cone G(XO, to) c C' to see that 

u coincides almost everywhere in G(xO, to) with the everywhere limit u 
of the continuous uk. Since, as a consequence of the uniqueness lemma 

(i) , 

luk - uol :::; wk -Iuol :::; At2, 

the continuity of Uo at a point (xO, 0) implies that of u at the same point. 

b. Let now (xO, to) E C, to > O. We denote by ThU(.) = u(h+.) the 

translation of u with h = (ho, ... , h3 ), ho < 0, h + C c C'. Since Uo is 

continuous in C' n {t ~ O}, we have 

(3.9) 

in C for Ihl :::; Dl(c), where Xh(t) = 1 for 0 :::; t :::; -ho and 0 otherwise. 
By the properties of convolution, we have 

hence 

Wh :::; 4CE * Wh + c + MXh(t), Wh = IThU - ul. 

With m(t) = maxc Wh(., t), the uniqueness lemma gives 

m(t) :::; 4M it (t - s)m(s)ds + c + MXh(t), 

and thus 

For (x, t) in a fixed neighborhood of (xO, to), we will have in particular 

IThU - ul(x, t) :::; c if Ihl :::; D2(c). Consider now standard regularizations 
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U71 of u, for which u1J -+ u almost everywhere near (XO, to) (because we 

already know u E L2). We have 

hence the u1J converge everywhere to a continuous function u; u is equal 

to u almost everywhere close to (xO, to). 

We have proved that u is continuous in C n {t 2': a}. 

B. Assume now Uo E C k, k 2': 1. 

a. Since Uo is Lipschitz continuous, (3.9) holds with £ = M21hl, and 
it follows that u is Lipschitz continuous for t 2': a. 

h. We have OXi u2 = 2uw with w = ox, u, hence 

w = 2E * (uw) + Wo 

where Wo = ox,uo E Ck - 1 for t 2': O. We obtain the same equation for 

w = OtU with now 

Wo = OtUO + E * fL, fL = 8(t) ® j2(X). 

Since E * fL is just Ct ~wl=l j2(X + tw)dw, we have Wo E Ck- 1 for t 2': a 
also in this case. 

Now 

nW - W = 2E * (ThWThU - wu) + ThWO - wo0 

Using the bound for E*IThU-ul obtained in A., we get for Vh = IThW-wl 
the estimate 

We may now proceed as before to conclude that W is continuous and 
Lipschitz continuous if k 2': 2. Repeating this process yields u E C k . <.:; 

Some remarks are in order after this proof: 

(i) If we take initial data j E C~+l, 9 E C~, we will have Uo E Ck in 

r2max. In particular, if k = +00, we are in the simple situation of 
Theorem 2.2 above. 

(ii) The blowup criterion "E * u2 is unbounded" of Theorem 3.1 is an 

improved version of the usual "u is bounded" in the spirit of the 

criterion (1.2) obtained in Chapter I for ODEs. 
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4. Blowup rates at the boundary of the 
maximal influence domain 

We will now consider a very special situation where it is possible 
to obtain a rather complete picture of what happens at the boundary of 

Omax. 

Let f(x), g(x) be defined and smooth for Ixl :::; R + T, where Rand 
T are given positive constants. Consider the solution u of 

(4.1) o;u - f:l.u = F(u), F(u) = lulP , P > 1, 

u(x,O) = f(x), Otu(x, 0) = g(x), x E ]R3 

in (a subdomain of) KRT = U (C(x, T) n (t ~ 0)). 
, Ixl$R 

We make first the two following assumptions on the initial data. 

Assumptions I. 
(4.2) 

f(X) + tg(X) > tlV f(X)I, X = x + tw, Ixl:::; R, 0:::; t :::; T, Iwl:::; 1. 

For some", > 0, 

g(X) - (1 + ",)IVf(X)1 + t(f:l.f(X) + F(f(X)) - (1 + ",)IVg(X)I) > 

(4.3) > tIVg(X)1 + (1 +1J)tIV2f(X)I. 

These strange looking assumptions are related to the explicit rep
resentation of solutions of the linear wave equation in three dimensions: 
the solution u of 

O;u - f:l.u = h, u(x,O) = f(x), Otu(x,O) = g(x) 

is given by 

47l"u(x, t) = lWI=l {f(x + tw) + t[(wV)f(x + tw) + g(x + tw)]}dw+ 

(4.4) + rt(t_s)ds r h(x+(t-s)w,s)dw. 
Jo J1wl=1 

The assumptions (4.2), (4.3) have the following consequences: con
sider the solution Ul of 

Then 
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(i') (4.2) implies U1 2: 0 in K R,T. 

(ii') (4.3) implies atU1 2: (1 + 7])I'VU11 in KR,T. 

More generally, conditions (4.2) and (4.3) will always ensure the 

positivity of various solutions of the wave equation appearing in the proof. 

Finally, to actually see some blowup in the cylinder Ixl ::; R, t ::; T, 
we impose the rough following size assumption on the initial data. 

Assumption II. Choose constants /'1 and /'2 such that the solution w 

of 

w"(t) = F(w), w(O) = /'1, w'(O) = /'2, t> 0 

blows up at a time Tl, 0 < T1 < T and moreover /'1 > T1b1 - /'2)' We 

assume then 

(4.5) 

The picture obtained is described in the following theorem. 

Theorem 4.1. Suppose (4.2), (4.3) and (4.5). Then there exists a clas

sical solution u.of (4.1) in n = {(x, t), Ixl ::; R + T,O ::; t < ¢(x)}, 
satisfying 

(a) 

(b) 

(i) 0 < ¢(x) < T for Ixl::; R, 0 < ¢(x)::; R+T-Ixl for R::; Ixl::; 
R+T, 

(ii) ¢ is Lipschitz continuous with constant 1 in Ixl ::; R + T, with 
constant at most (1 + 7])-1 for Ixl ::; R. 

(i) u(x, t) -+ +00 when t -+ ¢(x), Ixl ::; R, 

(ii) Let d = d(x, t) denote the distance from (x, t) to an. Then there 
exist (5 > 0 and positive c, C such that we have, for Ixl ::; R, 

d ::; (5, with q = p: 1 ' 
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PROOF OF THEOREM 4.1. 

A. Construction of u, ¢, n. 

a. As usual, the solution U is obtained by a fix point argument. 

Define Uo = 0 and un + 1 by 

(4.7) (8;- .6.)un+l = F(un), Un+1(X, 0) = f(x), 8tUn+l(x, 0) = g(x). 

Then 0 ::; un(x, t) ::; Un +1 (x, t) in KR,T. 

In fact, U1 2: 0 by condition (4.2), and, by the monotony of F and 

(4.4), Un - Un-1 2: 0 implies Un+1 - Un 2: O. 

b. We prove now 8t un 2: (1 + 7])IVunl in KR,T. 

Let e be a unit vector in IR3 and set I n = 8tun + (1 + 7])eVun. We 

have 

(8;- .6.)Jn+l = F'(un)Jn,Jn+l(x, 0) = [g + (1 + 7])eV f](x) , 

(4.8) 8t Jn+l (x, 0) = [.6.f + F(J) + (1 + 7] )eV g](x). 

Clearly, Jo = 0; suppose I n 2: 0: then F'(un)Jn 2: 0, and condition (4.3) 

and (4.4) imply I n +1 2: O. 

c. Let u(x, t) = lim un(x, t) (possibly +00). Since U is increasing in 

t, there is a function ¢(x), defined in Ixl ::; R + T, such that 

(i) 0 < ¢(x), ¢(x) ::; T if Ixl ::; Rand ¢(x) ::; R + T - Ixl if R ::; Ixl ::; 
R+T, 

(ii) u(x, t) < +00 if t < ¢(x), u(x, t) = +00 if t > ¢(x). 

Remark that at this stage, we have not proved yet any blowup in 

KR,T. This will be done in (f). 

d. Consider the set n = {(x, t) E KR,T,O ::; t < ¢(x)}: we prove 

that n is an influence domain (strictly speaking, we should add to n the 

half-space {t ::; O}). Let m = (x, t) and m' = (x', t') be two points in 

KR,T with t' < t, t - t' 2: (1 + 7])-1Ix - x'l; since 

Un (x' , t') = Un (x, t) + (t' - t) [11 (8t Un (p) + ~: = ; V Un (p) ) dS] , 
p=m+s(m'-m), 

the result of (b) implies un(x', t') ::; un(x, t). Hence m' En if mEn and 

in particular, n is an influence domain. 



Chapter III. Semilinear Wave Equations 53 

We can also conclude from this that ¢ is Lipschitz with constant at 

most (1 + 1])-1 for Ixl ::::: R. 

e. Using (d), we see that any point in 0 belongs to some closed 

truncated cone K' contained in 0; we prove now u E C2 (K'). First, 

Un ::::: Co. Let Wn = OtUn; we have 

(4.9) (0; - ~)wn = F'(un-r}Wn-1, wn(x,O) = g(x), 

OtWn(x, 0) = (~f + F(J))(x). 

We shall compare Wn with the function W = M exp Bt which satisfies 

(4.10) (0; - ~)W = B 2W, W(x,O) = M, OtW(x, 0) = MB. 

Let us prove lV 2: Wn in K' for all n if M and B are chosen big enough. 

We have W 2: Wo = 0, and suppose W 2: Wn -1; the function z = 
W - Wn satisfies, if B2 2: F'(Co), 

(0; - ~)z = B2W - F'(Un)Wn-1 2: (B2 - F'(un))W 2: 0, 

(4.11) z(x,O) = M - g(x), OtZ(x, 0) = MB - (~f + F(J))(x). 

If M > Igl, M B > l\7gl + I~f + F(J)I, we conclude from (4.11) and the 

representation formula that Z 2: 0. 

Similarly, weprove -Wn ::::: W; hence 10tuni ::::: C, and also l\7un l ::::: C 

because of (b). 

To bound the second derivatives of u, set Wn = D2un, where D2 
means some second order derivative. We have now 

(4.12) 

and the last term in (4.12) is bounded. We can now proceed exactly as 

before, comparing Wn with W = M exp Bt for an appropriate choice of 

M, B independent of n. 

We thus obtain ID 2un i ::::: C, and so on for higher order derivatives. 

f. Finally, we prove that ¢(x) < T for Ixl ::::: R. This will be done 

by comparing u with the function W in (4.5). Set 0 1 = 0 n (t < T1 ). 

The function u - W is defined in 0 1 (which is an influence domain) and 

satisfies 

(0; - ~)(u - w) = F(u) - F(w), (u - w)(x, 0) = f(x) - 1'1, 

(4.13) Ot(u - w)(x, 0) = g(x) - 1'2. 
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For t small enough, u > w. We claim that u > w in nl . Otherwise, there 

would be a smallest value to such that u = w at some (xo, to) E nl ; but 

u 2: w in the backward cone C(xo, to), hence (4.13) and the representation 

formula imply, because of (4.3), u > w at (xo, to), a contradiction. 

Since, by construction, w does blow up at time T l , we get ¢( x) ::; T l . 

B. Blowup rates 

a. Let I n = 8;un -F(Un-l)+M8t un, M > O. We verify easily that 

(8;- /:).)Jl = 0 and that In+l satisfies, for n 2: 1, 

(8; - /:)')In+l = F'(un)Jn + F"(un)lV7unI2, 

(4.14) 

In+l(x,O) = (h + Mg)(x), 8t Jn+l (x,0) = [gl + M(/:).f + F(J))](x), 

where ft, gl are functions independent of nand M. 
The condition required on the traces of I n to obtain positivity 

reduces, for M large, to 

g(X) + t[/:).f(X) + F(J(X))] > tlV7g(X)I, X = x + tw 

which is a consequence of (4.3). Hence h 2: 0, and, recursively, I n 2: O. 

h. Similarly, set Hn = r+ 8;un - F(Un-l) - M8tun· We obtain 
, 17 

(8;-/:)')Hn+l = F' (un)Hn -( 1 ~ 1] (8tun)2-IV7unI2)F" (Un) ::; F' (un)Hn. 

Moreover, the positivity condition (4.2) holds for the initial data of -Hn; 
therefore, as in (a), we obtain Hn ::; O. 

c. From (b), we deduce 8;w ::; Gwp + M8t w, w = Un. 
Multiplying by 8twexp -2Mt and integrating, we get 

8t w ::; [GwP+l + G l ] ~ . 

It follows that 

(4.15) 

Taking t = ¢(xo) + E and letting n --t 00, we get 

100 [Gsp+l + Glr~ ds ::; to + E - T. 

u(xo,r) 
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Letting £ ~ 0 and evaluating the integral, we obtain, for some c > 0, 

c 2 
u(xo, T) 2:: ( ) , to = ¢(xo), q = --1. 

to-Tq p-

Note that an upper bound for o;w does not imply blowup; what we prove 

here is that if blowup occurs, it is strong enough. 

d. From (b), we also obtain o;u:::; F(u) + MOtu, and exactly as in 
(c), we get (Otu)2 :::; CuP+! + C1 and finally o;u :::; Cup. 

e. Using now (a) and proceeding as in (c), (d), we get o;u 2:: CouP-
C1 ,Co > 0 and o;u 2:: cuP close to on (c > 0). Multiplying this last 

inequality by OtU and integrating, we find (OtU)2 2:: cuP+!, which yields 

(as in ( c)) 

We see that in this special situation, where monotony and positivity 

properties play an important role, we have a blowup behavior very close 

to the examples displayed in Chapter I A: the blowup surface on is time

like, and the solution behaves uniformly, close to the surface, like an 

appropriate power of the distance. 

The question that arises naturally in this context is: Does the solution 

u coincide, locally near points of on, with solutions of the type actually 

constructed by Kichenassamy and Littman? 

To answer this question, one should first notice that Cafarelli and 

Friedman actually prove that the function ¢ in Theorem 4.1 is differ

entiable. Then, one should of course develop a differentiable version of 

Theorem 3.1 of Chapter I A. 

5. An example of a sharp estimate 
of the lifespan 

It seems almost impossible to give an account of the numerous papers 

devoted to the blowup of semilinear equations (see Notes). One of the best 

understood cases is again the equation 

(5.1) o;u - ~u = lulP , u(x,O) = f(x), Otu(x,O) = g(x). 
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We will only quote the results of [Lin], since a detailed proof would exceed 
the scope of this book. 

Theorem 5.1. Let f E C~+1(lR3), g E C~(lR3), k ?:: 1, be supported 
in Ixl :::; M. Denote by ne the maximal influence domain for which the 
Cauchy problem 

(5.2) 8;u - flu = u2, u(x, 2M) = gf(x), 8tu(x,2M) = gg(x), 

has a solution u E Ck(ne n (t ?:: 2M». Then, when g -+ 0, 

(i) g2ne -+ n. 
(ii) If we set w = u - gUo, we have 

g-4W (g-2 X , g-2t) -+ v(x, t) 

in Lfoc(n) and in C(n n (t > Ix!). 

(iii) If we denote by Te the lifespan of u, then 

Ig2Te - TI :::; Cglengl 

for g sufficiently small. 

We must of course define the asymptotic objects n, uo, v and T 
appearing in Theorem 5.1. 

a) Uo is the C k solution of 

(8; - fl)uo = 0, uo(x, 2M) = f(x), 8tuo(x, 2M) = g(x). 

b) The free solution Uo has the asymptotic behavior 

ruo(rw,r+p)-+Fo(p,w) r=lxl, x=rw, r-+oo. 

The function Fo is called the Friedlander radiation field, and is given by 

Fo(p,w) = (47r)-1[R(w, 2M - Pi g) - 8s R(w, 2M - p; f)] 

where 

R(w, s; h) = J 8(s - wy)h(y)dy 

denotes the Radon transform of h. 

c) If J-l is the measure 

J-l = C(w)r-28(t - r), C(w) = J F~(p,w)dp, 
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we consider the equation 

(5.3) 

A solution will mean a function v such that 

v = E * v2 + E * j.£, vlt<o = 0, v E L?oc, E * v2 E L~c' 

where E is the usual fundamental solution of the wave equation. Then n 
is the maximal influence domain for which (5.3) has a solution v. 

d) Finally, T is the lifespan of v, that is 

T = inf{t, (x, t) E an}. 

The proof of Theorem 5.1 relies on a scaling argument (as indicated 

in point (ii) of the theorem), combined with comparison techniques which 
make use of the positivity of the fundamental solution E. We will come 

back to such scalings in Chapter V, when dealing with the case of small 
data. 

Note that, in addition to a sharp estimate for Te , an approximate 

shape of the existence domain ne is obtained. In particular, the first 

blowup takes place very far from the boundary of the light cone. We will 

see that this is in contrast with the situation for quasilinear hyperbolic 
wave equations, where blowup seems to take place at a finite distance 

from the boundary of the light cone. 

Notes 

The version of the blowup criterion adapted to semilinear cases is well 

known, though we could not find a precise reference in the litterature. For 

closely related discussions, we refer to Gerard and Rauch [GR]. 
The developments in Section 2 and 3 concerning the maximal in

fluence domain and the corresponding blowup criteria are taken from 

Linblad [Lin]. 
Section 4 is entirely due to Cafarelli and Friedman [CF1], who have 

also given a one dimensional result with less restrictive assumptions 

[CF2]. 
Finally, Section 5, dealing with the case of small data, is again taken 

from Linblad [Lin] and seems to be the only case where the first term in 
an asymptotic expansion of Te has been obtained. 



58 Blowup for Nonlinear Hyperbolic Equations 

The numerous papers about semilinear wave equations quoted in the 

bibliography generally use "functional" or "comparison and averaging" 
methods to get upper bounds of the lifespan. Most of them deal only 
with the lifespan and discuss neither the shape of the maximal influence 

domain nor the mechanism of the blowup. Sharp estimates seem to be 

obtained only in one space dimension or in rotationally invariant cases. 



CHAPTER IV 

Quasilinear Systems in One 
Space Dimension 

Introduction 

We will consider here quasilinear N x N systems of the form 

(1.1) OtU + A(u)oxu = 0, 

or rotationally invariant wave equations of the form 

(1.2) 

Even for the simple case of Burgers' equation (N = 1) already consid

ered in Chapters I and II, it is not possible to define a maximal influence 
domain as we have done for semilinear equations in Chapter III. This is 

due to the fact that solutions Ui defined in influence domains Di need not 
coincide in Dl n D 2 , as is easily seen by considering various extensions of 
an "exterior cusp solution" defined in I 3. 

For 2 x 2 systems, we can use the Riemann invariants to make the 
system diagonal and show a decoupling of the two modes in finite time, 

thus reducing the problem to the well known scalar case. This allows 
us to prove finite time blowup for systems with at least one nonlinearly 

degenerate eigenvalue. 
As to the mechanism of the blowup, it can be shown that in general it 

is a geometric blowup (in the sense of Chapter I), even when the explosion 

takes place before the decoupling of the two modes. 
These aspects are discussed in the first three sections. 

For general systems, only the case of small data is well understood; 
approximate decoupling occurs then before blowup, and the behavior of 

the solution can be partially described up to the time T (the unknown 
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lifespan). The proof of this striking result makes an essential use of certain 

boundedness properties of first order derivatives of the solution in Ll 

norm (see Section 2). It is then rather easy to obtain upper bounds and 

lower bounds for the lifespan, by considering the system as an ODE along 

characteristics and using elementary results on blowup or existence for 

ODEs. 

Finally, we include in this chapter the case of rotationally invariant 

wave equations with small data, since the proof of the upper bound for 

the lifespan is essentially the same as for systems in one space variable. 

1. The scalar case 

Though we have already discussed this case in Chapters IB3 and 112, 

we collect here simple facts which are essential to the understanding of 

the cases N :::: 2. 

a. Lifespan 

For the equation (1.1) with N = 1, we assume that A is genuinely 

nonlinear in the sense that A'(O) =I- 0 (see Chapter I, B 2.3). If the smooth 

initial value Uo is compactly supported, the lifespan is then given by 

(1.3) - -1 " (T) = max-A (uo)uo. 

On each characteristic line 

x = Xo + A(uo(Xo))s, t = 8, 

the derivative q(s) = oxu satisfies the equation 

q' + A'(uo(XO))q2 = O. 

If the maximum in (1.3) is attained at X o, q blows up at time T like 
C(T - 8)-1. 

Note that along any other curve 

x - Xo = A(t - T), Xo = Xo + A(uo(Xo))T, A =I- A(uo(Xo)) 

reaching the blowup point, the derivative oxu has an integrable singular

ity because 
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b. L1-boundedness 

For t < T, the solution u(x, t) of (1.1) is given by the solution of the 

blowup system 

8T ¢ = A(v), 8T v=0, ¢(X,O)=X, v(X,O)=uo(X) 

through the change of variables 

x = ¢(X,T), t = T. 

Hence, for fixed t, dx = 8x ¢dX, and 

In other words, 8x u does not blow up in the L1 norm. 

2. Riemann invariants, simple waves, 
L 1_ boundedness 

For a general system (1.1), we denote by A1(U) < ... < AN(U) the 

real and distinct eigenvalues of A(u), with corresponding left and right 

eigenvectors Rj (u), r j (u). 
Integral curves of the field L j = 8 t + Aj(U(X, t))8x are called j-cha

racteristics. 

Remark that if we make the change of variables U = «I>(U) , the system 

becomes 

Thus the eigenvalues remain the same while the right eigenvectors are 

changed to «I>,-l rj (<<I>(U)). In other words, rj is a well defined vector field 

on the u-manifold. 

a. Riemann invariants 

For each j, N - 1 independent functions R{ satisfying 

rj(u)8uR~(u) = 0, k = 1, ... , N - 1, 

are called Riemann invariants. 
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In the case N = 2, we set simply Rt = W2, R~ = WI; since VWj is 
colinear to fj, we obtain by multiplying the system on the left, 

tVwj 8tu + Aj(u)tVwj 8x u = 0, 

that is, for smooth u, 

In the sequence, we will always assume that the application 

U 1-+ (WI(U), W2(U)) 

is a diffeomorphism of the domain D C ~2 we are interested in onto its 
image. 

We will then rewrite the system (1.1) as 

(2.1) 8tw + A(w)8x w = 0, A(w) = (~I ~2)' 
keeping abusively the same notation Aj for the eigenvalues expressed in 
terms of the Wk. 

General systems cannot be made diagonal by an appropriate change 
of unknowns, but we still can find new unknowns w(u) such that the 
j-axis is the integral curve of rj(w) through the origin. 

h. Simples waves 

Let us comment a little about the concept of a simple wave intro
duced in IB3. These waves are solutions of the form 

u(x, t) = v(((x, t)), ((x, t) E~. 

This is equivalent to saying that v (() is an integral curve of some r j while 
the function ((x, t) satisfies the scalar equation 

(2.2) 

We will call such a solution a j -simple wave. 
Note that for a j-simple wave, we have 

(2.3) 

and 

(2.4) 
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1 
c. L -boundedness 

The Ll-boundedness already observed for scalar equations (see (1.4)) 
has the following counterpart for systems. 

Ll-Iemma. Consider a 0 2 solution U of (1.1), and write 

N 

8x u(x, t) = L Wj(x, t)rj(u(x, t)). 
I 

Then the Wj satisfy a system 

(2.5) 

where Li = 8t + Ai(U(X, t))8x. If we define rijk(U) by the equality 

(2.6) L "fijk(U)WjWk + wi~wkrk(u)· 8u Ai(U) = Lrijk(U)Wj ~ Wk, 
j,k j,k 

the coefficients rijk have the following properties: 

(i) rijj = 0, and "fijj = 0 for j #- O. 

(ii) If Di is a domain bounded by an interval [a,b] in {t = O}, two 

segments of integral curves of Li through (a, 0), (b, 0) and an arc "f 
transverse to L i , then 

PROOF OF THE LEMMA. 

a. It is obvious that 

where ql is a quadratic form in z with coefficients depending on u. More-
over, 

8xz = ~ri8xwi + q2(W) 

with q2 a quadratic form in W = (WI, ... , W N) (and coefficients depending 
on u) and similarly for 8t z; thus we obtain (2.5). 
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h. We now compute 

d( wi(dx - Ai( u)dt)) = {at Wi + Ai( u) ax Wi + Wiax(Ai( u)) } dtdx 

(2.8) = {~rijk(U) Wj Wk } dtdx 

by the definition of the Cjk. If we take for u a j-simple wave, we have 

seen in (2.3) and (2.4) that Wi = 0 for i #- j, Wj = axe; hence r ijj = 0 in 

this case. Since we can find a simple wave with ax ( #- 0 taking a given 

value at a given point, we get point (i) of the lemma. 

c. Note that IWi I is Lipschitz continuous, hence differentiable almost 

everywhere with differential cdWi, c being the sign of Wi. Hence we can 

write (2.8) in the form 

d(lwil(dx - Ai(U)dt)) = c{~rijkWjWk}dtdx. 

Using Stokes' formula for Lipschitz continuous forms, one obtains (2.7). 

<> 

3. The case of 2x2 systems 

3.1. The following theorem shows that blowup always occurs in this 

case for smooth compactly supported initial data, unless the eigenvalues 

are linearly degenerate. 

Theorem 3.1. Consider a 2 x 2 system in diagonal form 

with initial data wO E Co [a, b]. Denote by [mi' M i ] the range of w? 

(i = 1,2), and set 

J-l1 = max A1(0, W2), J-l2 = min A2(W1'0). 
[m2,M2] [ml,M1] 

We make on the eigenvalues and on the data the following assumptions: 

(i) J-l1 < J-l2, 

(n) We have 
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or 

for some Wi E [mi' Md. Then the lifespan ofw is finite. 

PROOF OF THEOREM 3.1. 

65 

a. Assume T = 00. Then the values of Wi are always contained 

in the interval [mi' Md. Let r1 the j-characteristic issued from (x,O). 
On r~, we have WI = 0, hence x :S b + t/-li' Similarly, on r~, we have 

W2 = ° and x;::: a+t/-l2' Thus, at time To = (b-a)(/-l2 - /-lI)-r, these two 

characteristics have already crossed each other, and the Wi are supported 

in disjoint strips for t > To. 

b. Suppose that it is A2(0,') which is not constant. The function 

A2(0,w2(x,To)) is smooth and equal to A2(0,0) outside the interval im

age of [a, b]. If it were constant, this would imply that A2 is a constant 

as a function of W2, because W2 (x, To) takes on all values in the interval 

[m2' M2]' Thus there is an x for which Ox{A2(0, W2(X, To))} < 0. Accord
ing to the study of the scalar case in section 1, this implies finite time 

blowup for the scalar equation OtW2 +A2(0, W2)OxW2 = 0, a contradiction. 

\> 

3.2. To investigate further the exact nature of the blowup, we must 

distinguish two situations: 

(i) The blowup occurs after the decoupling of WI and W2 (that is, after 

q has crossed r~): then we are left with a scalar situation where the 

mechanism is well understood ("geometric blowup"). 

(ii) The blowup occurs before the decoupling. 

We will now show that, in general, the blowup is of a geometric 

nature also in this second situation. 

Changing slightly the notations, consider a system in diagonal form 

and assume given a smooth bounded solution W in a rectangle 

{(x, t), Ixl < M, -To:S t < 0, M> O}. 

We make the two following assumptions: 
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HI (Geometric assumption) 

(i) There exist two I-characteristics r~ and rb issued from points 

a = (a, -To), {3 = (b, -To), a < b, 

reaching points 

a' = (a',O), {3' = (b',O), a' < ° < b' 

and such that the 2-characteristic r~ from a intersects rb in 
a", a point of negative ordinate. 

(ii) There exists a 2-characteristic from a point 'Y ofr~ with negative 
ordinate, reaching 'Y" = (c", 0), e" < 0. 

(iii) There exists a I-characteristic from 'Y' = (e, -To) reaching 'Y"' 

H2 (Analytic assumption) 

In the polygon w bounded by r~,rb,{t = -To} and {t = O}, we 

have IOxW21 ~ C. 

Recall from Chapter I that the blowup system (along ..\1) of a diag
onal system is given by 

where v and ¢ are related to w by the formal change 

(3.2) x = <p(X, T), t = T, w(<p(X, T), T) = v(X, T). 

From the solution win w we obtain the solution (<p, v) of (3.1) in 

n = {(X, T), a ~ X ~ b, -To ~ T < O} 

by defining <p(X, T) as the abscissa of the point of ordinate T on the 
I-characteristic issued from (X, -To). 

We can now state our theorem. 

Theorem 3.2. Consider wE Coo a solution satisfying the assumptions 

HI and H 2 • Let (<p, v) be the corresponding solution of (3.1) in n. Then 

(<p, v) can be extended as a smooth solution (;p, v) of (3.1) in a domain n 
containing n and the segment 

{(X, T), e < X < b, T = O} 

in its interior. 
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Before giving the proof of Theorem 3.2, let us comment on assump
tion H 2 in a simplified example. 

Consider Burgers' equation coupled with another equation 

and assume that WI blows up at the origin. 
Along a 2-characteristic, we have 

(3.3) 

(8t + A28x)(8xW2) + 82A2(Wl, w2)(8xW2)2 = -81A2(Wl, w2)8xWI8xW2. 

Since 

(8t + A28x)Wl = (A2 - Ad8x wI, 

the integral t 18xWlids along a 2-characteristic is finite and the presence 
of 8xWl in the right-hand side of (3.3) does not imply blowup of W2. 

We believe that, in general, 8xWl and 8xW2 do not both blow 
up at time t. 

Note that this situation is in contrast with the similar situation of a 
semilinear system considered in Chapter IA2. 

PROOF OF THEOREM 3.2. 

1. Let us 'denote by A = (XA, TA) the point of image a by the 
application 

(X, T) I-t (¢(X, T), T), 

and so on. Since 8TVI = ° and Vl(X, -To) = Wl(X, -To), we consider 
the function VI as known. 

Since 

we deduce from H2 that 18TV21 :::; C in O. Because 

82Al 
8T 8x¢ = 81A18XVl- A A 8x ¢8TV2, 

2 - 1 

we obtain 18x¢1 :::; C in O. Moreover, we obtain from (3.1), with k = 

(A2 - Al)-18X¢, 

(3.4) 8x V2 + k8TV2 = 0, (A2 - Al)8Tk +82A2k8TV2 - 81 Al 8x VI = 0. 
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2. In the polygon n1 = AA' B' A" A of the (X, T) plane, we consider 
the 2-characteristic from (a, T'): the ordinate of its point of abscissa X', 
which exists for X' in a maximal interval [a, «(T')) (for a nonincreasing 

function «(T') :::; b), will be denoted by 't/J(X', T'). Thanks to HI, «(T') = 
b for -To:::; T' :::; -To + el and «(Te) = CI for some c}, a < CI :::; c. 

We thus define an application 

(X',T') 1-+ (X,T), X=X', T='t/J(X',T') 

which is a bijection from the domain 

th = {([a, bJ x [-To, -To + el]) U (a:::; X' :::; «(T'), -To + e1 :::; T' < O)} 
onto n1 . 

3. We define now in fh the functions .e and h by 

k(X','t/J(X', T')) = .e(X', T'), V2(X','t/J(X', T')) = h(X', T') 

and .e, h, 't/J satisfy the system 

(3.5) 

(3.6) 

(h,.e+,\ 82'\~ (VI(X'), h).e8T , h-,\ 81'\~ (VI (X'), h) aI"'t/J8x VI(X') = o. 
2- 1 2- 1 

The boundary conditions are the following: 

(i) On X' = a, h = V2, 't/J(a, T') = T'. 

(ii) On T = -To, 't/J is known from its definition, with 't/J(a, -To) = -To. 

The key point is this: if, in (3.6), we consider VI and h as known 
and replace .e by 8x ' 't/J, we obtain a linear equation on 't/J. Taking into 
account the above boundary conditions, we see that we have to deal with 
a linear Goursat problem. 

4. Since the values of 't/J are compatibles and smooth on the closed 
segments {X' = a, -To:::; T :::; Te} and {T' = -To, a :::; X' :::; b}, there 
exists a smooth solution -¢ extending 't/J in the closed rectangle 

R = {(X',T'), a:::; X':::; b, -To:::; T:::; Te}. 

5. The domain 
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is contained in it We claim that 

aTt'lj;(x', T') '" 0, (X', T') E t,h. 

Actually, in the interior of D2 , we have 

aTV2{X','IjJ)8r,'IjJ = aT,h. 

Since aTV2 is bounded by (I), if aT,;P = 0 at some point (Xi,Ti), we 
have aT' h{X', Ti) = 0 for all X'. Hence (3.6) becomes an homogeneous 
ODE on aT,;P along the line T' = Ti, and our assumption leads to 

aT' 'IjJ{a, Ti) = 0, which is impossible. 

6. We deduce from (5) that there are extensions V2, k of V2, k (sat
isfying (3.1)) to a new domain containing the polygon AGC" B' BA and 
the path C G" B' B in its interior. 

We choose now ¢ satisfying 

Here (h{T) is an extension of <p{b, T) to an interval [-To, c] for which 

aT<Pl = AI. 
This construction defines ¢ on the rectangle 

[Cll b] x [-To, c] 

for c small enough, which completes the proof. 

We can roughly summarize the proof by saying that the problem is 
turned into a linear problem by taking the unknown functions w as new 

independant variables; this is the so called "hodograph method" (see 
for instance [CFr]). 

4. General systems with small data 

We consider here a N x N system for which we have performed the 
normalization explained in (2), that is, the j-axis in ~~ is the integral 
curve of r j (u) through the origin. 

Consider a solution u of such a system with initial value of the form 

(4.1) 

where UO(x, c) is a smooth function for x E~, 0 ~ c ~ co, supported in 
a ~ x ~ b (a, b independent of c). 
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Let r1 be the integral curve (Xj(x, t), t) of Lj = at + Aj(U)ax from 
(x,O), defined for t < Tc: (the lifespan of u); Rj is the strip limited by 

r~,r~,{t=O}. 
Setting 

as in the L1-lemma, we introduce the quantities 

(4.2) 

and 

(4.3) 

let) = max """ J IWj(x, s)ldx 
o<s<tL..,; 

- - j 

Set) = max max IWj(x,s)l. 
j,O~s~t (x,s)rf-Rj 

We expect let) to be G(e) and Set) to be G(e2 ), because the strip R j is 

the "natural domain" for Wj to live, at least at first approximation. 

We first prove the following striking result. 

Theorem 4.1. Let M > 0 be some fixed number and assume that the 

solution u is smooth for 0 :'S t < T(e), with eT(e) :S M. Then there are 
constants 10 , So, Do, el > 0 such that, for 0 :'S t < T(e) and 0 < e :'S el 

(4.4) let) :'S loe, S(t):'S Soe2 , lul:'S Do· 

PROOF OF THEOREM 4.1. 

1. We will argue as follows ( a procedure called "induction on time"). 

Suppose that we have found constants 10 , So, Do such that 

(i) We have, for some T' :'S T(e) and e small enough, 

( 4.5) let) < loe, Set) < Soe2 , lui < Do 

for t < T'. 

(ii) We can prove that whenever (4.5) holds for some Til < T(e) and 

t < Til, it also holds for t = Til. 

Then (4.5) is true for 0 :'S t < T(e) (because it can never stop being 

true). 

2. Fix any T' (independent of c). We first prove that (i) holds for 

T' (for Do arbitrary and appropriate 10 , So). 
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Elementary results show that, for t ::; T', 

Since we have the identity 

we also have 

Thus (i) follows for c small enough and appropriate 10 , So. 

3. Choose moreover 10 such that 1(0) ::; lfc; 60 such that P.j->'il2: 
c > 0 for lui::; 60 , Then, for t > To = (b~a), the strips R;, are disjoints. 
In the following estimates, we always distinguish what happens before To 
from what happens after To. 

We use now the Ll-Iemma to estimate I: since there are no squares 
in the quadratic terms (rijj = 0), for s > To, we can estimate each 
integral 

j IWj(x, s)llwk(x, s)ldx 

by I (s) S (s). In fact, the strips Rj and Rk being disjoint, we take Wj out 
of the integral if x ¢ R j , and Wk out of the integral if x E R j . 

Thus we obtain for s ::; t < T" 

~ jlwi(x,s)ldx::; ~c+Cc2+CtI(t)S(t)::; 

::;Ioc[~+(Z +CMSo)c]. 

Taking c small enough, we get I(t) ::; ~c. 

4. Since u has compact support for fixed t, the result of (3) implies 

lui::; Cc; hence in particular lui ::; ~ for c small enough. 

5. To evaluate Wi(X, s), (x, s) ¢ Ri, S ::; t < T", we draw back the 
integral curve of Li through (x, s) and use (2.5). Remark that this curve 
never meets Ri . The initial value of Wi is 0 and the portion of integral 
for 0 ::; t ::; To is bounded by Cc2 • 

Consider the integral from To to s of a term "YijkWjWk: 
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(i) For the portion of curve not meeting Rj or Rk, the integral is bounded 
by C~ S(8)2::; CMS5e3. 

(ii) The portion f ij of curve contained in Rj (j -:f. i) is of finite length; 

since k -:f. j (because "'fijj = 0 for i -:f. j according to the P-lemma) 
the corresponding integral can be estimated by 

S(8) iii /Wj/. 

To estimate this last piece of integral, we use again (2.7); we get as 

in (3), 

C 1 .. /Wj/ ::; ; e + Ce2 + CM SoIoe2. 
~'J 

Collecting the terms, we obtain finally 

/Wi(X,8)/ ::; Ce2 + CM S5e3 + Soe3(Io + Ce + CM So Ioe). 

If So 2:: 2C, we obtain S(t) ::; ~e2 for e small enough, which completes 

the proof. 0 

Theorem 4.1 makes it possible to reduce lower and upper estimates 

of the lifespan 1'<; to corresponding estimates for solutions of ODE. The 

idea comes from (2.5): along an integral curve of Li in Ri, the main term 

of the sum in the right-hand side of (2.5) is "'fiii w;. 
We first state the following lemma. 

ODE Blowup lemma. Let W be a solution in [0, TJ of the ODE 

dw 2 
(4.6) dt = ao(t)w + al(t)w + a2(t) 

with aj continuous and ao 2:: O. Let 

(4.7) K = (loT /a2(t)/dt) exp loT /al(t)/dt. 

If w(O) > K, we have 

(4.8) loT ao(t)dt < (w(O) - K)-l exp loT /al(t)/dt. 
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PROOF OF THE LEMMA. 

a. Setting 

wet) = Wet) exp lot al(s)ds, 

we obtain the equation 

dW ( 2 ( dt =Ao t)W +A2 t), 

where 

Ao(t) = ao(t)exp lot al(s)ds, A2(t) = a2(t)exp -lot 
al(s)ds. 

Thus, if the lemma is true for al == 0, it is true in general since 

W(O) = w(O) > K ~ loT IA2(t)ldt 

and 

h. The solution WI of the model equation 

dWI 2 dt = ao(t)(WI - K) , WI(O) = w(O) 

can be computed explicitly and satisfies 

(WI(t) - K)-I - (w(O) - K)-I = -lot ao(s)ds. 

Thus if WI exists in [0, TJ, 

(4.9) 
T lo ao(t)dt < (w(O) - K)-I. 

c. With W2(t) = f~ la2(s)lds we have now 

d(WI-W2) 2 2 
dt = ao(t)(WI - K) -la 2(t)l:::; aO(t)(WI - W2) + a2(t) 

and (WI -W2)(0) = w(O). It follows that as long as WI exists, WI -W2 :::; w. 
Thus WI cannot blow up for t :::; T, hence exists on [0, T] and (4.9) gives 

then (4.8). <> 

We can now prove the following theorem. 
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Upper Bound Theorem 4.2. Assume tbat tbe j-eigenvalue Aj is gen
uinely nonlinear at 0, tbat is (witb tbe already performed normalization) 

Tben 

(4.10) 

PROOF OF THEOREM 4.2. 

a. Let B be strictly bigger than the right-hand side M j of (4.10), 
and assume cTe > B. We can then use Theorem 4.1 with cT(c) = B. 

Let Xo be such that 

is maximum at Xo and consider (2.5) as an ODE on Zj = 'f}Wj ('f} = 

sgn(-8j Aj(0))) on r~o. 
With the notations of the ODE Blowup Lemma, we have now 

ao = WYjjj(u), at = 2 L 'YjjiWi, a2 = 'f} L 'YjikWiWk· 

ii'j i,k"i'j 

b. From (4.4) we deduce that in fact 

lui ~Cc. 

Hence 

and 

On the other hand, by (2.6) and r jjj = 0, we have 

'Yjjj(O) = -8j Aj(0), 

hence ao(u) = 18j Aj(0)1 + G(c). 
Finally, by Theorem 4.1, 
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c. We apply the lemma on the interval [0, Bel]; from (b) we have 

K = G(e3 ); thus the lemma gives 

B -1 

e(l + G(e)) 10 10 ao(t)dt < MjI8j Aj(0)1 + G(e), 

yielding a contradiction for e small enough. 

Clearly, if all the eigenvalues of the system are genuinely nonlinear, 

Theorem 4.2 yields the upper bound 

(4.11) lim sup eTc ::; inf M j • 

Up to now, we have concentrated our attention on upper bounds for 

the lifespan, since our main interest is in blowup. 

By using, instead of the ODE Blowup Lemma, a similar ODE Exis

tence Lemma, one can prove that the upper bound obtained in the proof 

of Theorem 4.2 for the lifespan of Wj is asymptotically sharp. Once we 

have gained control of 18x ul, the blowup criterion from Chapter II gives 
a lower bound of the lifespan. 

Summing up, we have the following statement. 

Theorem 4.3. If all the eigenvalues of the system are genuinely nonlin
ear, the lifespan T€ of the solution u is asymptotically given by 

(4.12) limeTc = inf M j . 
J 

We finish this section with two remarks: 

(i) It is a consequence of Theorem 4.1 and 4.2 that the solution u itself 

remains bounded for t < Tc (in fact, lui::; Ce). For general systems of 

the form (1.1) and smooth compactly supported data (not necessarily 

small), it does not seem to be known whether the solution u remains 

bounded and only V' u becomes infinite. However, this seems to be a 

general belief. 

(ii) In the situation of Theorem 4.3, if the M j are distinct (a "generic" 

case), only IWjl (j such that M j = inf Mk) becomes infinite, at time 

Tc and in the strip Rj . This is very similar to the way a blowup 

solution along Aj blows up (compare in particular Theorem 5.1 of 

Chapter I with the estimates (4.4)). We will see in the next chapter 

that the solution is actually a "blowup solution" . 
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5. Rotationally invariant wave equations 

We consider now the equation 

(5.1)a 

where 

(5.2) c(O) = 1, c'(O) > 0 

and 

u(x,O) =cf(x), Otu(x,O) =cg(x). 

We assume that f and 9 are smooth radial functions (that is, smooth 

functions of IxI2 ), supported in Ixl ::; M. Because of the structure of (5.1), 

smooth solutions with radial data are also radial, that is, functions of t 

and Ix1 2 . 

The Laplace operator in polar coordinates (r = lxi, w = ~) is given 
by 

2 n - 1 -2 
Ll = Or + --Or - r Llw. 

r 

It is thus convenient to introduce the function v = ru (viewed as an odd 

function of r) which satisfies 

(5.3) 

and, with an obvious abuse of notation, 

(5.4) v(r,O) = cr f(r), Otv(r,O) = crg(r). 

Equation (5.3) can be reduced to a first order system by introducing 

orv and OtV as new unknowns. We will then follow the proof of Theorem 

4.2, step for step (L1-lemma, Theorem 4.1 and ODE Blowup Lemma), to 

obtain the following theorem. 

Theorem 5.1. Let TE: be the lifespan of the solution u of (5.1) with 

radial data c f, E g. Then 

(5.5) limsupEfnTE: ::; {maxc'(O)F"(p)} -1, 
p 

where the "free profile" F is defined by 

(5.6) F(p) = ~ (pf(p) - 1:00 CT9(CT)dCT). 
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Note that, because of the parity assumptions on f and g, F is of 
compact support and does not vanish identically unless f and g do. 

The proof of Theorem 5.1 is divided into three steps. 

Step 1. The LI-lemma 

We set 

so that we obtain by a straightforward computation 

ee' e' atu 
(5.7) LIWI = -WI (WI - W2) + -2-(3wI + W2), 

r r 

(5.8) 

These formula are the analogues of (2.5). Here of course, 

LI = at + ear. L2 = at - ear. 

To obtain the analogue of (2.8), we compute d(wi(dr ± edt)), and find 

e'au 
(5.9) d(wI(dr - edt)) = -t-(Wl + w2)dtdr, 

2r 
e'a u 

d(w2(dr + edt)) = - 2; (WI + w2)dtdr. 

Step 2. The estimates up to the blowup time 

Define as in 4. the strip R as being limited by r:M , rk, {r = a} 
and {t = a}, and introduce the quantities 

I(t) = max 1 IWI(r,8)ldr, 
O~s:St (r,s)ER 

S(t) = max 82 max IW2(r, 8)1, 
2M~8~t (r,s)ER 

U(t) = max 8 max latU(r,8)1. 
2M~s~t (r,s)ER 

Remark here that we are dealing with a very large existence time, a 
fact which forces us to take the decay of the various derivatives of u into 

account in the definitions of I, S, U. 
We will prove the following analogue of Theorem 4.1. 
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Theorem. Let Co > 0 be some fixed number and assume that the solu
tion u is smooth for 0 ::; t < T(e), with elnT(e) ::; Co. Then there are 

constants 10 , So, Uo, el > 0 such that, for 0::; t < T(e) and 0 < e ::; el 

(5.10) l(t)::; loe, S(t)::; Soe2 , U(t)::; Uoe. 

PROOF OF THE THEOREM. 

a. We proceed by induction on time. 
We have first to make sure that the characteristics in the strip R 

look for large time the same as they do for small time, that is 

(i) For (r, t) E rl, Ir - t - >'1 ::; C. 

(ii) For (r, t), (r', t') E r! n R, Ir + t - J.LI ::; C and It - t'l ::; C (with 
constants independent of J.L). 
By induction, (5.10) implies 

which gives 

eCUo Ic - 11 = IC(Otu) - 11::; -t-

Ir - t - >'1 = 11t (c - l)ds - >.1 ::; Ce + CUoel!.nt + 1>'1 ::; C + CUoCo. 

The first part, of (ii) is similar, and 

21t - t'l ::; I(t + r - J.L) - (t' + r' - J.L)I + It - rl + It' - r'l 
gives the second statement. 

h. For any fixed T' > 2M, there are constants 10 , So, Uo such 
that (5.10) is true for small e, because of (5.8). We assume moreover 

1(2M) ::; ~. 

c. To estimate let), we use the Ll-Iemma in R between {s = 2M} 
and {s = t}. By (5.9), we get 

r IWl(r,t)dr::; e21
0 + r Id2°tu (Wl +w2)ldrds. 

J(r,t)ER J2M'S.s9,(r,s)ER r 

The second term is bounded by 

i t ~ 1 ~~ eCUol(t) 2" + eCUoS(t) -3-' 
2M S 2M'S.s9,(r,s)ER rs 

hence by ~ for e small enough. 
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Finally, I(t) ~ 2<:[0 for e small enough. 

d. Noting that 

(5.11) 

we can estimate 8tu(r, t) by integrating along the arc of r~ issued from 
(r, t) between (r, t) and the point (r', t') where r~ leaves R (where the 
solution and its derivatives are zero). 

First we simplify (5.11) by introducing z = 8t uexp- t ~ds, 
remarking that 

I t C 

-;;. dt ~ C(l + eUo). 

e. We need now to estimate the integral of IWII on an arc of r~ in 
R. Using the LI-Iemma and the fact that, along such an arc, dr - cdt = 
-2cdt, a computation analogous to (c) gives 

1 I elo 2 3 IWl dt ~ 2"" + GUoloe + GUoSoe . 
r!nR 

From (d) we obtain finally 

,tlzl ~ Gelo + GUoloe2 + GUoSoe3 • 

If we choose Uo = v 10 , v big enough and then e small enough, we get 
finally U(t) ~ 2<:Yo. 

f. To estimate W2, we proceed as before with 8tu, using (5.8) instead 
of (5.11). 

We write (5.8) in the form L2W2 = aW2 + b, with 

a = c'(2C(W2 - wt} - 38tu) , b = -:!'-wI8t u. 
2r 2r 

We see that the integral of law21 is O(~), while 

I Iblds ~ e~2Uo IIWllds. 

Taking (d) into account, we get S(t) ~ 2<:~So if we choose u~~o big enough 
and then e small enough. 0 
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Step 3. ODE Blowup 

We view now (5.7) as an ODE along rl between {t = 2M} and 
{t = T}. With the notations of the ODE Blowup Lemma, we have 

a2(t) = 0(::), a1(t) = O(t~)' 
hence the number K is 0(c:3 ). Moreover, ao(t) = c'(O) ;tgf~J. 

For 0 ::; t ::; 2M, the solution v of (5.3), (5.4) can be approximated 

by the solution v of the equation (8;- 8;)v = 0, with v - v = 0(c:2). 
Since, by an elementary computation, 

v(r,t)=c:F(r-t), t>M, 

we get 

1 
w1(r,2M) = 2 (8;rv - c-1 8;tv)(r, 2M) = c:F"(r - 2M) + 0(c:2). 

If we choose the characteristic rl such that it meets the line {t = 
2M} at (ro, 2M) with 

F"(ro - 2M) = max F"(p) , 

we obtain from the lemma 

dnTe::; (c'(O) maxF"(p»-1(1 + O(c:», 

which finishes the proof of Theorem (5.1). 

Here again, as in Section 4, we have concentrated on the proof of an 
upper bound for the lifespan. We will show in the next chapter that we 

have in fact equality in (5.6). 
To conclude, let us emphasize once more that the essential ingre

dient of the proofs of Theorems 4.2 and 5.1 is the £I-lemma; for space 
dimension n 2 2, there is no analogue of the L1 estimates for "Vu, and 

the situation is still poorly understood. 

Notes 

Most of the material in this chapter is due to F. John [Jo2], [Jo4], 
[Jo6], though the presentation here follows closely L. Hormander [Ho2]. 

The generalities of Section 1, 2 and Section 4 come from [Jo2] and 
[Ho2], while Section 5 is taken from [Jo4] and [Ho2]. 
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The survey [Jo6] covers the content of Sections 1, 2, 4 and 5. 
In Section 3, Theorem 3.1 follows the presentation by A. Majda [Ma] 

of a theorem of S. Klainerman and himself, while Theorem 3.2 is due to 
the author [A19]. 



CHAPTER V 

Nonlinear Geometrical Optics 
and Applications 

Introd uction 

In the theory of linear PDE, the expression "geometrical optics" 

refers to the search of special high frequency solutions of a given PDE in 

the form 

u(x, v) = a(x, v) exp v¢(x), 

where v is the frequency (v -+ (0), a the amplitude (a formal power series 

in t) and ¢ the phase. 

Similar constructions have been used in many nonlinear problems; 

their common feature is that the solution has a certain given form called 

"ansatz", containing undetermined coefficients or functions and a small 

parameter. 

We restrict ourselves here to the study of the Cauchy problem with 

small initial data of compact support. The term "nonlinear geometrical 

optics" refers then to an approximation technique which seems to have 

its origin in perturbation theory for ordinary differential equations (see 

Arnold [Ar] for instance). For data of size e, this technique yields approx

imations valid on time intervals typically of size e-1 , involving the "slow 

time" T = etas an auxiliary variable. 

In the framework of one dimensional systems studied in Chapter IV, 

we obtain in Section 1 a good description ofthe solution for 0 ::; t ::; Ae- 1 , 

for any A and e satisfying 

A < lim eTc, 0 < e ::; eA. 

On the one hand, this description is more detailed than what can be 

deduced from the estimates of Theorem 4.1 of Chapter IV; on the other 
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hand, it is not uniformly valid up to the blowup time (in sharp contrast 
with Theorem 4.1), and in particular it does not allow by itself to prove 

actual blowup of the solution. 
The technique of nonlinear geometrical optics can be used also for 

several space variables; despite its above mentioned drawbacks, it seems 
to be the only (presently known) way of getting insight into what is 
actually happening, thus guiding the search for relevant estimates. 

The examples handled in the literature are the compressible Euler 
equations (only in the 2-dimensional axisymetric case, see Alinhac [AI5]) 
and quasilinear wave equations (see John [Jo5], Hormander [Hal], [Ho2], 

Alinhac [All], [AI2] , [AI3]). 
In this latter case, discussed in Section 2, the nonlinear geometrical 

optics expansions suggest the blowup behavior of the solution and make 
transparent the role played by the "null conditions" . 

Finally, we present in Section 3 some further results on the wave 
equation in dimension two, showing the existence of an "asymptotic life
span". 

1. Quasilinear systems in one space dimension 

We discuss again the case already considered in Chapter IV 

(1.1) 8t u + A(u)8x u = 0, u(x, 0) = uo(x) = C:Ub1) (x) + c:2Ub2) (x) + ... , 
where the slight change of notations is due to the fact that we will have to 
consider separately the components Vj of vectors v = (Vb • •. , V N) E ]RN. 

We take Uo E Coo supported in [a, b]. 
Here, we again assume the normalization of coordinates in the u

space achieving that the j-axis in an integral curve of rj(u) (see Chap
ter IV 2). It means, with ej the j-basis vector and A = (ajk), that 

ajk(tek) = 8jkAk(tek), 

which implies in particular 

(1.2) 

This will be essential to obtain the simple statements of Theorem 1.1 
below. 
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1.1. Formal analysis 

To solve (1.1), we expand A(u) = I:aAc"ua and look formally for 

u(x, t, c) = u(x, t) = I: cP u(p) (x, t). 
p:2:1 

With L = Ot + A(O)ox, we choose the u(p) satisfying the sequence of 

equations 

Lu(1) = 0, u(1) (x, 0) = u~l) (x), 

Lu(p) = f(p) , u(p) (x, 0) = u~)(x), 

where f(p) is a polynomial expression of the U)q) (q :::; p - 1), which can 

be easily computed from the expansion of A. 
To describe the supports and the structure of the terms U)p) , we 

introduce the following notations: 

- . f (' - (0) _ '-(0)) _ (AN-l(O) - A2(0)) c - In /\J+l /\J ,'Y - , 
l~j-:;N-l C 

(1.4) 

K~ = (Kp + IRaj) n {t:::; Tp}. 

The following theorem gives the form of the terms u(p). 

Theorem 1.1. For all p ~ 1 and 1 :::; j :::; N we have 

(1.5) 
U)P) (x, t) = I: tqV)~) (O"j(x, t)) + r)p) (x, t), O"j(x, t) = x - Aj(O)t, 

O~q~p-l 

where rJP) is a Coo function supported in Kt and U)p) is supported in 

Kp + IR+aj. 
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PROOF OF THEOREM 1.1. 

a. We have immediately 

uy) = vJ~)((Tj), vJ~) = (u61))j, ry) == 0, 

which is (1.5) for p = 1. 
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h. Assume the theorem already proved for q ~ p - 1 and consider 

now a monomial in jJp); there are two cases: 

(i) This monomial contains only terms uiq ) and their derivatives for the 
same k. 

(ii) This monomial contains at least two terms uiq), ui~') , k #- k'. 

c. We analyze case (i) first (called "resonant interaction"). 

The monomial must contain a coefficient 8kajk(0), s #- O. But this is 

zero, by (1.2), if k #- j. 

d. In case (ii) (called "non resonant"), the support of the monomial 

is contained in 

We show that 

(1.6) 

Let us denote by Ip the top segment of Kp 

Ip = {(x, t), t = Tp, a + A2(0)Tp ~ x ~ b + AN-l(O)Tp } 

and by tp its length. 

We see easily that (1.6) is true for p = 2. Now we also see that Skk' 

is contained in (Ip-l + lR+ Ctk) n (Ip-l + lR+ Ctk'); by the same reasoning 

as for p = 2, we get 

Skk' C K T , 

where T = Tp- 1 + Cp;l. Noting that tp- 1 = (b - a) + c-yTp_1 , we obtain 

T=Tp. 

e. Using the recurrence hypothesis and (c), (d), we see that jJp) is 

a sum of terms either 

(i) with compact support in Kp (for nonresonant interactions), 
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(ii) or with support in K p - 1 + ~+ O!j and of the form 

tqw(aj) + r, 

r being itself supported in Kt. To determine q, we observe that 

if the term is obtained as a product of .e terms of the same type 

corresponding to P = Pi! , ... ,Pie' we have 

Pi! + ... + Pie = p, qij:::; Pij - 1, 

hence, because .e 2: 2, 

q = % + ... + qie :::; P - .e :::; P - 2. 

f. When we integrate from 0 to t along Lj = at + Aj (O)ax a term sup

ported in Kp + ~+ O!j, we obtain a term supported in the same set; when 

we integrate a term supported in Kt, we obtain the sum of a function of 

aj supported in Kp + ~O!j and of a function supported in Kt. When we 

integrate tqw(aj), we obtain ~q:~ w(aj). This completes the proof. <> 

It turns out that the terms vJ~) (aj) playa special role in the approx

imation of u. 

Definition 1.1. The functions v J~) (a j ), j = 1, ... , N, are called the free 

profiles (of order (p)). 

Note that the free profiles are determined by the initial value Uo and 

can be recursively computed by calculating finite integrals. 

Remark finally that, for x 2: b + AN -1 (O)t, all the coefficients vJ~) 
(j :::; N - 1) in (1.4) are zero, thus Uj (j :::; N - 1) is formally zero. The 

same thing happens to the formal components Uj (j 2: 2) in the domain 

x :::; a + A2(O)t. Indeed, it is a well known fact that, next to a constant 

state, the solution U is a simple wave (see [CFr], [8m] or [Ho2]). Hence 

the components of U are actually, and not just formally, zero. 

1.2. Slow time and reduced equations 

a. Construction of the approximate solution 

If we collect the terms uJP) described in Theorem 1.1, we obtain 

(1.6) Uj(x, t) = c L cP-q-l(ct)qvJ~)(aj(x, t)) + Rj(x, t) 
O::;;q::;;p-l 
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where 

(1.7) R·(x t) - '" c:Pr(p)(x t) J , - ~ j ,. 

p?:l 

This suggests to introduce the slow time T = c:t as a new variable, and 

to consider Uj, neglecting R j , as a function Uj of a j and T (depending of 
course smoothly on c:). 

Two facts motivate this approach: 

(i) Burgers' equation 

OtU + (oX + u)oxu = 0, U(x, 0) = c:vo(x) 

has the exact solution 

U(x, t) = c:v(x - oXt,c:t), 

where v is the solution of 

O-rV + vOuv = 0, v(a, 0) = vo(a). 

Thus the appearance of T is not a big surprise. 

(ii) The asymptotic expansion (1.6) does not give us any more infor
mation when t has the order of magnitude of c:-1 . More precisely, 
suppose that we have recursively computed a finite number of terms 
uJP), p ::; s; this gives us at most the terms Tq, q ::; S - 1, in the 
Taylor expansion at T = 0 of Uj • This information is irrelevant for 
finite (not small) values of T. 

We argue as follows. Fix sEN and set 

u~ = '" c:P u\p). 
J ~ J 

l~p~s 

As soon as t 2: Ts , the terms rJP) in the expressions of uJP) vanish; as soon 

as the strips Ks +lRaj are disjoint (say, t > Cs), the various components 
uj of US have disjoint supports. Thus, to continue US for large time, we 
can try the ansatz 

(1.8) 

where moreover the Uj have disjoint supports. 
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Inserting in (1.1) and taking into account the normalization, we 

obtain 

(1.9) 

where 

(1.10) 

We call these equations "reduced equations". 

What we have gained is that the system (1.1) reduces to a collection 

of scalar equations, which are well understood. Note that the main term 

in 5.j (that is, the one corresponding to c = 0), is WjOjAj(O). 
To understand what are the correct initial values on {T = O} for 

(1.9), we observe the two following facts: 

(i) The formal solution Uj = c~cP-q-lTqVJ:q(CTj), considered as a func

tion of CT and T, satisfies (1.9). 

(ii) A solution of (1.9) is determined by its trace on T = O. 

The trace of Uj on T = 0 being 

U'(CT 0) - c'""' cp - 1 v(p) (CT) 
J , - ~ jO' 

p~l 

we should im~ose, in addition to (1.9), 

(1.11) Wj(CT,O) = LcP-lv;~)(CT). 
p~l 

We see that the free profiles only appear in this initial condition. In other 

words, the equations (1.9) contain in their structure the mechanism by 

which the terms generated in u;p) by resonant interactions are produced. 

The approximate solution is then constructed by gluing together the 

short time approximation US and the long time approximation given by 

(1.8): 

(i) We fix s as before and set 

uj = L cpu;p). 
l::;p::;s 

Then we solve (1.9) and (1.11) where the sum in the right hand side 

is limited to 1 ::; p ::; s, and we denote the corresponding solutions 

by wj. 
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(ii) With X E COO(lR), X(1]) = 1 for 1] ::; 0 and X(1]) = 0 for 1] 2: 1, we set 

(1.12) uj (x, t) = X(t - Cs)uj(x, t) + (1- X(t - Cs))ewj(aj(x, t), T). 

The function US is our approximate solution. 

b. lifespan of the approximate solution 

Proposition 1.2. Assume that all the eigenvalues of the system are 

genuinely nonlinear (that is, OJ Aj (0) =I 0). Then the approximate solution 
US is defined for 0 ::; t < 'i':, with 

(1.13) 

PROOF OF PROPOSITION 1.2. For each equation (1.9), the results from 

Chapter IV (1. a) show that the solution Wj has a lifespan of inverse 

Moreover, 

Wj(a,O)= ~ eP-lvJ~)(a) 
l::;p::;s 

and 

VJ~) = (u61»)j. 

Hence we obtain (1.13), since T = ct. 

Remark that in the linearly degenerate case (that is, rj(u)\7Aj(U) == 
0), we have simply ).j == o. 

1.3. Existence, approximation and blowup 

We will state here without details some results which can be 

obtained, starting from the above construction of the approximate so

lution US (see [A19]). 

We distinguish here two steps: 

(i) An "existence and approximation" step, where information about 

the true solution for large time can be obtained from the knowledge 

of the approximate solution. In this step however, we still stay away 

from the actual blowup region. 
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(ii) A "representation" step, where we solve the blowup system (in the 

sense of Chapter I) in a strip {71 :; e t :; 72} containing the actual 

blowup time. 

The facts of interest concerning the lifespan and the mechanism of 

the blowup of u are then obtained in a standard fashion as in Chapter 1. 

a. Existence and approximation 

Though a lower bound 

1'10 ~ Ce-I, C> 0 

is easily obtained for any system, Proposition 1.2 and the structure of US 

make it possible to show 

(1.14) 

where the M j are defined in (1.13). 

Moreover, we obtain for any A < inf M J and 0 < e :; eA a qualitative 

description of u. 

The strategy of the proof is as follows: 

(i) We first note that 

(ii) We then have to check that 

8t uS + A(uS )8x uS = js 

is indeed small. This is clear when t :; Cs, where js = O(es+1), 

and when t ~ Cs + 1, where js = O. In the transition period Cs :; 
t :; Cs + 1, it is sufficient to verify that uj is close to eW}, as a 

consequence of (1.11). 

(iii) Finally, setting u = US + it, we must show that it exists and is small. 

Since it satisfies a system close to the linearized system on us, it is 
not possible to keep control of this system when approaching too 

close the lifespan r: of us. However, for any A < inf M j and e small 

enough, no blowup of Wj occurs in (1.9), and one obtains existence 
for 0 :; t :; Acl, thus proving (1.14). This argument gives also the 
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smallness of u, in the form 

8n U = O(c:s - NO ) x,t , 

for some No fixed. 
Again, the large time existence of u and its smallness are obtained 

here by induction on time (as in the proof of Theorem 4.1 of Chapter IV). 
It is important to remark that these two aspects are connected, the exis
tence proof becoming easy precisely because of the smallness of U. 

Note also that this argument is independent of (and much rougher 
than) the estimates of Theorem 4.1. This is why it can be used also in 
multidimensional situation (see section 2). 

h. Representation and Blowup 

For simplicity, we explain this step only for N = 3. 
Let r~ and r~ be the two-characteristics of the system issued from 

the points (a,O) and (b,O). As already mentioned in 1.1, the solution 
u is a simple wave right of r~ and left of r~; taking into account the 
normalization of the system, this just means U1 = U2 = 0 right of r~ and 
U2 = U3 = 0 left of r~. Hence the system "to the right" or "to the left" 
reduces in fact tp a scalar equation, for which blowup mechanisms are 
well understood. We are interested in the case of blowup "in the middle" , 
hence we assume 

For convenience, we also take ..\2(0) = O. 
Using the slow time variable 7 = c:t, the system becomes 

(1.15) c:8.,-u + A(u)8x u = 0, u(x, 7) = U(X, 7c:- 1 ). 

The blowup system (for ..\2) of this system is 

c:8TcP = ..\2(V), t.e2(v)8Tv = 0, 

(1.16) 

We fix 
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and denote by cr(E), (3(E) the intersection points of r~ and r~ with the 

line {E t = TO}. 
The representation of the solution u is described in the following 

theorem. 

Theorem 1.2. Let pEN, P 2: 1. 

(a) For E small enough, there exists a solution (v, ¢) of the blowup system 

(1.16) in the rectangle 

R = {(X, T), cr::::: X::::: (3, TO::::: T::::: TI}, 

of the form 

w being a smooth function of (X, T, E) E R x [0, cO]. 

(b) Define the blowup time T(c) by 

T(c) = max {T' TO ::::: T ::::: T1, (X, T) ERn {O ::::: T < T} 

=? 8x ¢(X, T) =I- O} . 
Let ii be the solution of (1.15) defined for T < T(c) by 

ii(¢(X, T), T) = v(X, T), 

and U(x, t) = ii(x, €i). Then, for TO ::::: €i < T(c) and between r~ and r~, 

U=u. 

The point of this approach is that the determination of the lifespan 

follows from a glance at the zeroes of 8x ¢, defined in a "big" rectangle. 

In particular, in nondegenerate cases, the lifespan Te: = c-1T(c) can be 

obtained by perturbation of the case c = 0, using the implicit function 

theorem. 

Assume more precisely that the minimum of the function 

82'\2(0)(u61))~ defining M2 is unique and nondegenerate (that is, the 

second order derivative is nonzero). Then the function T(c) is smooth 

and coincides to any order in E with the lifespan formally computed 

from the theory of nonlinear geometrical optics developed in Sections 

1.1/1.2. Moreover, the solution u is, near its then unique blowup point, an 

"exterior cusp solution" in the sense of Chapter 1. An important feature 
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of this strategy "approximation/representation" is that it makes sense 

also in multidimensional situations, as we shall see next. 

2. Quasilinear wave equations 

We will now develop the same ideas as in Section 1 for wave equations 

in multidimensional situations. 

We consider, for (t = xo,x) E ]Rn+1 (n = 2,3), the quasilinear wave 

equation 

(2.1) L gij(''VU)O;jU = 0, u(x,O) = f(x,c), Otu(x,O) = g(x,c), 
O:S,i,j:S,n 

where 

'\1u = (oou, 'V xu), gij = gji, goo == 1, 

i ~ 1::::::;. giO(O) = 0, i,j ~ 1 ::::::;. gij(O) = -Dij. 

As usual, we suppose f, 9 smooth, supported in Ixl ::; M and satisfying 

f(x, c) = c f(l) (x) + c2 f(2)(X) + ... , g(x, c) = cg(1)(x) + c2 g(2)(x) + .... 

The function U being small, the equation is thus a perturbation of 

the wave equation, and we set 

We restrict our attention to n ::; 3, since for n ~ 4, Klainerman has shown 

the existence of a global smooth solution of (2.1). 

2.1. Formal analysis 

We will look for U in the form 

U = LCPuCP ), 
p2:1 

where the functions u(p) satisfy the equations 

(2.2)1 

(2.2)p 

(of - Llx)u(l) = 0, 

(of - Llx)uCp ) = Q(p) , p ~ 2, 

Q(p) being a polynomial expression of the uCq) (q ::; p - 1). In particular, 

(2.3) 
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Our aim is to describe, as in Theorem 1.1, the structure of all the u(p). 

This can be done completely in a domain 

Ixl ~ t+M -c, 
for any fixed C. Here, we will discuss only u(1) and u(2). The following 

classical result describes U(l). 

Lemma 2.1. Tbe solution v of tbe wave equation witb smootb initial 

data f, g supported in Ixl ::; M can be written, for Ixl ~ 2M, in the form 

(2.4) u(x, t) = r-!(n-l) F(r - t, w, r-1). 

Here r = lxi, x = rw and F is a smootb function satisfying 

Moreover, 

(2.6) 

Fo(p, w) = F(p, w, 0) = ~ (27r)-!(n-l) x:::!(n-l) *[R(s, w, g)-BsR(s, w, J)]. 

>. 

Here tbe star denotes convolution in s, x~ = r(~+l)' x~ = Ixl>'l x <o and 

R(s,w,f) = lw=s f(x)dS(x) 

is tbe Radon transform of f. 

All we need to know here is 

(2.7) U(l)(X, t) rv r-!(n-l) Fo(r - t,w), r -t +00, r - t ~ M - C, 

the free profile Fo corresponding to the initial data f(1), g(l) according 

to lemma 2.1. 
The following lemma gives a partial description of U(2). 

Lemma 2.2. Define, witb Wo = -1, 

(2.8) g(w) = 

O:S,i,j,k:S,n 

and assume 

(ND) g(w) ~ o. 
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Then for Ixl2: t + M - C and n = 2, 

(2.9) U(2) (x, t) = g~w) (8pFo)2(r - t,w) + O(r-~). 
Forn = 3, 

(2.10) 

SKETCH OF THE PROOF OF LEMMA 2.2. 

a. From the asymptotic properties of u(l) described in Lemma 2.1, 

we obtain 

Note that in the domain we consider, 

h. For n = 2, a straightforward computation gives 

(8; - A){ g~) (~) ~ (8pFo)2 (r - t,w)} = Q(2)(X, t) + O(r-2), 

because any function of the form 

r-~H(r - t,w) 

is an approximate solution of the wave equation. 

c. For n = 3, we have similarly 

(8; - A){ g~~) int(8pFo)2 (r - t,w)} = Q(2) (x, t) + O(r-3 inr). 

d. The proof can be completed by showing that the differences 
between u(2) and the main terms displayed in (b), (c) decay at least as 

free solutions do. <> 

2.2. Slow time and reduced equation 

The rough idea of the structure of the terms u (p) given in the Lem

mas 2.1 and 2.2 is sufficient to guess the slow time of the problem and 

compute the reduced equations. 
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a. Case n = 3 

In this case, the strong Huygens' principle holds, that is, free solu

tions with initial data supported in Ixl :::; M vanish for Ixl :::; t - M. Thus 

we do not have to worry about the estimates of Lemma 2.1 and 2.2, valid 

only for Ixl ~ t + M - C. In particular, Fo is supported in Ipl :::; M. 
The approximation 

u(x,t) =cr-1[Fo(r-t,w) +c£ntg~) (8pFo)2(r-t,w)+ ... ] 

suggests the slow time T = c £ n t and the ansatz 

(2.11) u(x, t) = cr-1w(r - t,w, T). 

Inserting (2.11) into (2.1) gives 

2 

(2.12) 'L,gij(\lu)8;ju = ~t { - 28~TW + g(w)(8pw)(8~w) + ... }, 

where the dots stand for some smaller quadratic expression of second 

order derivatives of w. 
Thus our approximate solution is 

(2.13) u(x, t) = c [x(ct)u(1) (x, t) + (1- x(ct))r-1w(r - t,W,T)], 

where 

X E CCXl(IR), s:::; 1 =? X(s) = 1, s ~ 2 =? X(s) = 0 

and w is the solution of 

(2.14) 8w - g(w)(8w)2=O ( ) D( ) T 4 p , w p, w, 0 = ro p, W . 

In (2.14), w is just a parameter, so that the results of Chapter IV, 1 show 

that w, hence u exist for 

(2.15) 

h. Case n = 2 

The approximation 
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suggests the slow time T = cd and the ansatz 

(2.16) 
1 

u(x, t) = cr- Z w(r - t, w, T). 

Lemma 2.3. Inserting (2.16) into (2.1) gives 

2 

(2.17) 'L,gij(\7U) O;jU = ~ { - O;TW + g(w)(Opw) (o;w) + c2 R(w)}, 
(rt) 2 

where R( w) is a quadratic expression, with smooth coefficients bounded 

for 0 < TO :::; T :::; T1, of derivatives O~,W,TW (Ial :::; 2). 

In this case, the strong Huygens' principle does not hold, but free 

solutions are still smaller far inside the light cone than they are in the do

main Ixl ~ t+M -C (because of (2.5)). Thus we take for our approximate 

solution 

(2.18) 

it(x, t) = c [X(ct)U(l) (x, t) + (1 - X(ct) )x(3c(t - r ))r-~ w(r - t, w, T)] , 
where the cutoff X is as above and w is the solution of 

(2.19) 

As in (a), we see that it exists for 

(2.20) 

2.3. Existence and approximation, null conditions, 
blowup 

As in Section 1.3, but now for the wave equation, we will indicate 

some consequences of the above constructions. 

a. Existence and approximation 

With exactly the same strategy as indicated in 1.3, one can prove 

(2.21 ) lim inf c £ n 'flO ~ T, 

where T is given by (2.15) (in space dimension two, 

(2.22) 

where T is given by (2.20)). 
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Here of course, to control the rest it = u - iL, one has to use 
energy inequalities instead of the pointwise estimates available in one 

space dimension. The main difference lies in the fact that the solution 
decays as t ~ +00 (a feature responsible for the large existence time); 
to recover these decay properties from energy inequalities, one has to use 
the technique of "Klainerman fields" (see [KI2]). 

h. Null conditions 

If g(w) == 0, we say that the null condition is satisfied. In this case, 
the main terms of u(2) in (2.9), (2.10) vanish, and the reduced equations 
(2.14), (2.19) become linear. This suggests that the lifespan should be 
much bigger under these circumstances. This situation is analogous to 
the situation of a first order system with linearly degenerate eigenvalues 
(see 1.2). 

In dimension three, Klainerman and Christodoulou have proved global 
existence when the null condition is satisfied. In dimension two, the situ
ation is more complicated: 

(i) If all the gt vanish, Hoshiga has proved 

liminf e2 fnTe ~ (, 

where the' number ( can be explicitly computed from the second 
order derivatives of gij and the free profile Po (defined in (2.6)). 
This result is similar to (2.21), (2.22), with a slow time 

(, = e2 fnt. 

We will come back to this in Section 3. 

(ii) If moreover ( = 00 (which corresponds to a second null condition), 
global existence holds. 

The general case g(w) == ° does not seem to have been settled yet. 
Note that in all cases, including when global existence holds, the approx
imate solution provides useful information. 

c. Blowup 

In the special case of rotationally invariant wave equations handled 
in Chapter IV, we obtained (Theorem 5.1, (5.5)) the upper bound 
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lim sup cfnTe ::; 1', (1')-1 = maxc'(O)F"(p). 

In this case, 9 = 2c'(O), hence this upper bound agrees with the one 
suggested by (2.15) (and similarly in dimension two). 

Moreover, the blowup mechanism suggested by (2.13), (2.14) is 

IV2ul -+ +00. 

This agrees with what we have learned of first order systems in Chap
ter IV j in this case, only the gradient of the solution is expected to blowup. 
If we reduced the scalar equation on u to a first order system on U, V 2u 
would correspond to VU. 

When using the strategy explained in 1.3., one runs into the following 
difficulty: we do not know how to solve the blowup equation for a general 
class of initial data. Thus, in sharp contrast with the one dimensional 
case, it is still an open problem to find a relevant upper bound to Te and, 
a fortiori, to describe the blowup mechanism. 

In the next section, we will sketch some asymptotic approach to 
this problem, where the blowup equation is only asymptotically (and not 
exactly) solved. 

3. Further'results on the wave equation 

For the case of one space dimension handled in Section 1. (Theo
rem 1.1), we were able to compute explicitly all the terms of a formal 
asymptotic solution. For the quasilinear wave equations of Section 2, we 
computed only approximations of the first two terms in a zone {Ixl 2: 
t + M - C}. In particular, no other free profile than Fo (defined in (2.6)) 
was introduced. 

We want to sketch here how the program of Section 1.3 (formal 
analysis, slow time and reduced equations, approximation for large time 

and representation of the solution as a blowup solution) can be carried 
out, and how it makes it possible to reduce the problem of blowup for 
(2.1) to a local blowup problem (3.4). We discuss a model case of 
this problem in Section 3.3, and return finally to our original problem in 
Section 3.4, where our blowup results of asymptotic nature are stated. 

For simplicity, we restrict our attention to the case n = 2. 
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3.1. Formal analysis near the boundary 
of the light cone 

We use again the notations of 2.1. It turns out to be difficult to 

describe the functions u(p) inside the light cone {Ixl = t}, especially in 

the case n = 2 where the strong Huygens's principle does not hold. We 

skip this difficulty and complete the partial information of Lemma 2.2. 

Proposition 3.1. For all C > 0, N, N' EN, there exist functions 

L~p)(p,w,z), R~~~,(p,w,z), p=r-t, z=r- 1 

such that the term u(p) can be written 

u(p)(x, t) = r-~ { L (£nt)q L~p) (r - t, w, z)+ 
0:S2q:Sp-l 

(3.1) + L t~(£nt)q'R~~~,(r-t,w,z)}+r(P). 
q::::1,q+2q':Sp-l 

Here, for Ixl 2:: t + M - C, t 2:: C, 

(i) rep) = O(r-N ), 

(ii) (8;- .6.)r-~ L<t) = O(r-N'), 

(iii) For q = 2k (k 2:: 1), the term R~~6(p, w, z) does not contain the power 
zk. 

For instance, 

u(1) (x, t) = r-~ Lb1) (r - t, w, z) + r(1), 

which is just (2.4); also 

u(2)(x t) - r-~ {L(2)(r - t w z) + t~ R(2)(r - t w z)} + r(2) , - 0 " 1,0' , , 

which completes (2.9). 

Just as in the one dimensional case (Definition 1.1), we define the 

function 

L(p)(r - t w z) 
o " 

as the free profile of order p. 
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3.2. Slow time and reduced equations 

When we collect the terms u (p), we find formally 

u(x, t) = cr-! {~cP-1-2q (q L~P>(p,w, z)+~cP-1-q-2ql T! (ql R~~~, }+ .... 
Recall that 

We see the presence of two slow times 

T=ct!, (=c2int, 

and this suggests the ansatz 

(3.2) u(x, t) = cr-! F(r - t, w, Z, T, (). 

As before, the equation obtained by inserting (3.2) into (2.1) has to be 
supplemented with some boundary conditions on F analogous to (2.19). 

It turns out that F is determined by its values 

a;qa1F(p,w,0,0,0), q= 1,2, .... 

The choice ensuring the matching of the formal asymptotics with the 
ansatz is 

F(p, w, 0, 0, 0) = ~c(p) L~) (p,w, 0), 

and zero for the derivatives with q 2:: 1. 

Remark that the presence of the second slow time ( is coherent with 

the results mentioned in section 2.3. b. 
The main consequence of the existence of F, depending smoothly on 

c, representing u as in (3.2) is the following: choose 

° < TO < T2 < f < T1 

where f is defined in (2.20) with the property (2.22). After some transition 

period, for T 2:: TO, U can be represented for Ixl 2:: t + M - C in the forin 

(3.3) u(x, t) = cr-!w(r - t,w, T). 

Here w denotes the old F considered now as a function of p, wand T, 

depending smoothly on c and c2 inc. 
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This is a consequence of the identities 

We are back now to the situation of Lemma 2.3, with the difference that 

we cannot neglect the term R(w) in (2.17) anymore. We have to solve 

the following local blowup problem: 

Find, for T 2:: TO (and up to the blowup time), a solution w of 

(3.4) 

such that w agrees in some strip TO :::; T :::; T2 with the solution of (3.4) 
obtained from F. 

This is a purely local problem (in the slow time variable T). 

3.3. A local blowup problem 

We consider now (3.4): this is a second order equation in T, and we 

expect its solution w to vanish for p 2:: M (this corresponds to the zone 

Ixl 2:: t + M where the solution u vanishes). 

We skip the difficulty that w has to verify two trace conditions on 

{T = TO} while (3.4) is of first order in T for E = O. 
The term R(w) in (3.4) corresponding to the actual wave equation 

(2.1) is rather complicated; but what really creates a difficulty in solving 

(3.4) are the w-derivatives. Thus we will concentrate now on the following 

simplified model problem: given vo(p,w), vanishing for p 2:: M and 

rapidly decaying for p --+ -00, find V(p,W,T), also vanishing for p 2:: M, 

satisfying 

(3.5) aTv+vapv+Ea~J~v(s'W'T)dS=O, v(p,w,O)=vo(p,w). 

In particular, we want to obtain an asymptotic expansion of the lifespan 

flO of v. 
We believe that this problem contains all the essential difficulties of 

(3.4). 

a. Let us first insist on the following point. It would seem natural, 

to solve (3.5), to try the ansatz 

v = v(O) + EV(l) + ... , 
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where the v(j) satisfy the equations 

o-rv(O) + v(O) opv(O) = 0, 

O-rV(l) + v(O)OpV(l) + v(l)Opv(O) = -0; J~ v(O)ds, 

and so on, with the corresponding terms of Vo for initial data. If T denotes 
the lifespan of v(O) (given by the formula (1.3) of Chapter IV), T is also 
the lifespan of all the v(p)j moreover, the successive terms do not blow 
up uniformly for T = T as some negative power of T - T, which makes 
it impossible to introduce an appropriate slow time as before. Thus this 
method yields only a poor lower bound for the lifespan. 

b. A better result is obtained by computing the blowup equation 
corresponding to the formal change 

p=</J(X,w,T), w=w, T=T, </J(X,w,O)=X 

with 

V(p,W,T) = V(X,w,T). 

This is exactly what we have done in Chapter I, B 2, formula (2.10) and 
(2.11) (with a instead of c and y instead of w). Formally inserting 

</J = </J(O) + c</J(l) + ... , V = V(O) + cV(1) + ... 

into (2.11), we obtain a system of linear equations 

OT</J(O) - V(O) = 0, oiT V(O) = 0, 
Or</J(p) - V(p) = E(p) , oiT V(p) = F(p) , 

where E(p) and F(p) are differential expressions involving only </J(q) , V(q) 

for 0 ::; q ::; p - 1. 
The important point is that, just as we have done in 1.3b, we can 

solve these equations globally (that is, in the strip TO ::; T ::; Tl including 
the approximate blowup time T) with appropriate boundary conditions. 

It remains then only to look for the set 

{(X, w, T), ox</J(X, w, T) = O}, 

recalling that the lifespan is the minimum of T on this set. 
Since the first term </J(O) , V(O) (corresponding to the solution of Bur

gers' equation) can be explicitly computed, the implicit function theorem 
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will allow us to look for the zeroes of ox¢; close to the zeroes of ox¢(o) 
and to obtain an approximation of the lifespan to any order in e. 

When we can solve exactly (2.11), we obtain an exact representation 

of the solution u, thus proving blowup (and, in fact, geometric blowup). 

This is the case in particular if the initial value Vo is analytic in w. 

3.4. Asymptotic lifespan for the two dimensional 
wave equation 

In Sections 3.2 and 3.3, we have explained a strategy to prove blowup 

for the quasilinear wave equation based on an exact representation of the 

solution by means of a (coordinate) blowup. This strategy is the same as 

the one used in 1.3 for the one dimensional case. 

Unfortunately, it is not known how to solve exactly the blowup sys

tem corresponding to (3.4) in general, thus no proof of actual blowup 

has yet been obtained. However, some results of asymptotic nature are 

available, corresponding to asymptotic solutions of this blowup system; 

these results display the "blowup behavior" of the solution. 

Theorem 3.4. Assume that the function -g(w)o2Fo(p,w) has a unique 

negative minimpm at (Po, wo), with positive definite Hessian. Then there 

exists a function i': with the two following properties: 

(ii) There exists C > 0 such that, for (C e) - 2 < t < i': - eN and 

0< e::::: eN, 

Moreover, the function i': is of the form 

where fa is a C= function of its arguments with fa(O, 0) = l' (1' is defined 

in (2.20)). 
We have in particular 
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The second constant is 

Al = -T2g(wo)8;L~2)(pO'wo,0), 

where the second free profile L~2) is defined in Theorem 3.1. 

We call the function r% the "asymptotic lifespan". When t ap

proaches this value, the second order derivatives of u become very large, 

as expected. 

Whether this is a prelude to actual blowup or just the onset 

of some chaotic regime is an open problem. 

Notes 

The material for Section 1.1 and 1.2 of Section 1 is partially taken 

from Majda and Rosales [MaRo] and Hormander [Ho2]. Section 1.3 is 

caken from the author [Al9]. 

Section 2 is due to Christodoulou [Ch], Klainerman [Kll] [Kl2], John 

(J05] (for the case n = 3) and Hormander [Ho2], and follows the presen

cation by Hormander again. 

The results of Section 3 are taken from the author's work [All], [Al2], 

[Al3]. For results in the same direction in space dimension three, see 

John (J05]. 
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