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Abstract

We prove a quadrilinear integral estimate in space-time for solutions of the
homogeneous wave equation on R1+2. This estimate is a generalization of a
previously known bilinear L2 estimate, and it arises naturally in the study of
the local regularity properties of a hyperbolic model equation connected with
wave maps from Minkowski space R1+2 into a sphere. The scale invariant data
space for this equation is L2(R2), and we prove local well-posedness for data
in Hs(R2) for all s > 1/4. In space dimension three and higher, the same
equation has previously been studied by Klainerman and Machedon. Using a
recently proved L1

t (L
∞
x ) bilinear estimate for solutions of the homogeneous wave

equation, we obtain a simpler proof of their result, and we also extend it to the
full system from which the model equation was derived.

The main new idea introduced by Klainerman and Machedon in their work
on the aforementioned model equation was to estimate a Picard iterate using
information not just from the preceding iterate, but from two previous iterates.
This procedure leads to integrals of quadrilinear expressions involving functions
in certain “hyperbolic” Sobolev spaces which are adapted to the wave opera-
tor. Klainerman and Machedon estimated these expressions by reducing them
to trilinear and bilinear L2 estimates in space-time for solutions of the homo-
geneous wave equation. Here we show that this reduction is impossible in the
two-dimensional case, so the problem is of a genuinely quadrilinear nature.

A general framework for proving local well-posedness for nonlinear wave
equations based on estimates in space-time Sobolev norms is developed, refining
and unifying earlier results of this type.
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Introduction

On a general level, this dissertation deals with the problem of local existence
and uniqueness for a system of nonlinear wave equations of the form

�u = F (u, ∂u) (t, x) ∈ R1+n

u
∣∣
t=0

= f ∈ Hs, ∂tu
∣∣
t=0

= g ∈ Hs−1,

where � = −∂2
t +∆ is the standard d’Alembertian, ∂u is the space-time gradient

of u, and F is a smooth (possibly vector-valued) function with F (0) = 0. Given
F , we want to determine the lower bound of the range of Sobolev exponents s for
the data space such that the Cauchy problem is locally well-posed. Associated
to F there is a real number sc, the critical exponent, such that the homogeneous
data space Ḣsc×Ḣsc−1 is invariant under the natural scaling law of the equation.
One can then show by a scaling argument that for s < sc there is no local well-
posedness of the above system.

Take the case where F is quadratic in ∂u, i.e., F = Γ(u)Q(∂u, ∂u), where
Q is some quadratic form on R1+n and Γ is a smooth function. For such F it
turns out that, in low space dimensions, one cannot expect local well-posedness
for all s > sc unless Q has a null structure, which roughly means that it exhibits
cancellations on the light cone in Fourier space.

A trend which has emerged in recent years is to study the above Cauchy
problem via an iteration argument in certain weighted space-time Sobolev norms
which are intimately connected with the wave operator �, and the manner in
which estimates on F (u, ∂u) in such norms imply local existence for the above
system, at least for small-norm data, is well-known. In this dissertation we carry
this program further, proving some quite general results which guarantee strong
local well-posedness of the above system for arbitrarily large data, subject to
some simple mapping properties of the nonlinearity F . By strong local well-
posedness we mean local existence, uniqueness, persistence of higher regularity
and stability with respect to perturbations of the initial data.

This is done in chapter four, theorems 14 and 15. In that chapter we also
show that theorem 14 can be brought to bear upon some well-known local exis-
tence results, thus obtaining new proofs of the classical local existence theorem
for hyperbolic equations and the sharp local existence theorem of Ponce and
Sideris. We also apply our theorem to the wave map equation in local coor-
dinates in space dimension two and higher, thereby improving the small-norm

ix
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local existence results proved in [13] and [18] to strong local well-posedness, and
also disposing of the assumption of real-analyticity of the Christoffel symbols of
the target manifold, which was made in those papers. The latter improvement
relies on the stability of our space-time norms under nonlinear maps, a fact
proved in chapter three, theorem 11.

In the fifth and last chapter, we apply the general theory developed in chapter
four to the following system in two space dimensions:

�uI = aI
JKQ(uJ , uK) (t, x) ∈ R1+2

u
∣∣
t=0

= f ∈ Hs, D−1∂tu
∣∣
t=0

= g ∈ Hs,

where D =
√
−∆, the aI

JK ’s are constants and Q is the bilinear operator given
by

Q(u, v) =

n∑

i=1

∂i(R0Riu · v − u · R0Riv),

with R0 = D−1∂t and Ri = D−1∂i. This system arises as a hyperbolic model
problem for a coordinate-free formulation of the wave map equation in the case
where the target manifold is a Lie group endowed with a bi-invariant metric;
see chapter five for details and some references. The critical exponent for this
problem is sc = (n− 2)/2.

In space dimensions n ≥ 3, Klainerman and Machedon [14] proved local
existence for s > sc for this model problem. The new idea introduced in that
paper is that in order to estimate the k-th Picard iterate for s close to sc,
they use the information not only from the previous iterate, but from the two
previous iterates. This procedure leads to integrals of quadrilinear expressions
involving functions in certain “hyperbolic” Sobolev spaces which are adapted
to the wave operator. Klainerman and Machedon estimated these integrals by
reducing them to trilinear and bilinear L2 estimates in space-time for solutions of
the homogeneous wave equation. Here we show that this reduction is impossible
in the two-dimensional case when s is close to the critical exponent sc = 0, so
one is stuck with a quadrilinear expression. The 2D problem, which has not
been studied before, is therefore much harder, and we do not yet know how to
get well-posedness below s = 1/4.

The idea of using two previous iterates still works in 2D if s > 1/4, and we
prove well-posedness in this range. The proof of the latter result relies on a
bilinear L2 estimate for solutions of the homogeneous wave equation proved in
[18].

Although we do not know how to get the optimal result in 2D, we do prove
the boundedness of the quadrilinear integral in the important special case where
all four functions correspond to solutions of the homogeneous wave equation.
This estimate, which can be said to be the main result of the dissertation, is
described below.

In chapter five we also obtain a simplified proof of the 3D result of Klain-
erman and Machedon [14]. The fact which makes life easier in dimension three
and higher is the availability of bilinear L1

t (L
∞
x ) estimates. In dimension two
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no such estimate is true. Moreover, we extend the 3D result to the full system
of equations from which the above model problem was derived.

The theme of the second chapter is space-time estimates of multilinear ex-
pressions involving solutions of the homogeneous wave equation, in terms of
homogeneous Sobolev norms of the Cauchy data. The new result we prove here
is the estimate

∣∣∣∣
∫

R1+2

D−aD−(u1u2) · u3u4 dt dx

∣∣∣∣ . ‖f1‖Ḣ2−a ‖f2‖L2 ‖f3‖L2 ‖f4‖L2 ,

where 3/4 < a < 1, the uj are solutions of the homogeneous wave equation on
R1+2 with Cauchy data uj

∣∣
t=0

= fj , ∂tuj

∣∣
t=0

= 0, and D− is the multiplier

with Fourier symbol1
∣∣|τ | − |ξ|

∣∣. The important point about this inequality
is the asymmetry: all the regularity is concentrated on one of the functions.
This inequality is essentially what one needs to conclude that the second non-
trivial Picard iterate of the 2D hyperbolic model problem mentioned above is
in C(R, Hs) for any s > 0. By the trivial Picard iterate we understand the
solution of the homogeneous wave equation with the given data.

The above estimate generalizes the inequality
∥∥∥D1/2

− (u1u2)
∥∥∥

L2(R1+2)
. ‖f1‖Ḣ1 ‖f2‖L2 ,

which was proved in [18], but it cannot itself be proved by a reduction to bilinear
L2 estimates via the Cauchy-Schwarz inequality, since the inequality

∥∥∥D−1D
1/2
− (u1u2)

∥∥∥
L2(R1+2)

. ‖f1‖L2 ‖f2‖L2

fails to hold.
We also prove some variations of previously known bilinear estimates which

are needed in subsequent chapters.
In what follows, we briefly describe the contents of the remaining chapters

of the thesis.
In the first chapter, we state the standard existence and uniqueness theorem

for the linear wave equation on R1+n with Cauchy data at time t = 0 belonging
to the space Hs(Rn)×Hs−1(Rn), and we present a proof based on the calculus
for Hilbert space-valued functions, the relevant facts of which we briefly review.
In particular, we recall the definition of the integral of a Hilbert space-valued
function, which is also used to some extent in chapter three.

Chapter three deals with Sobolev spaces adapted to the wave operator, and
how these spaces relate to solutions of the linear wave equation. We define Hs,θ

to be the completion of the Schwartz space S(R1+n) with respect to the norm

‖u‖s,θ =
∥∥ΛsΛθ

−u
∥∥

L2 ,

where Λ and Λ− are smooth, inhomogeneous versions of the multipliers D and
D−, respectively. For θ > 1/2, this space embeds in C(R, Hs).

1τ and ξ are the Fourier variables corresponding to t and x, respectively.
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Spaces of this type first appeared in [22] in the study of propagation of
singularities for hyperbolic equations, and for the wave equation they were first
used in [10]. Similar spaces for the KdV equation were used in [1] and [7].

We characterize the elements of Hs,θ, for θ > 1/2, in terms of Hs-valued
integrals on the real line, and from this we deduce the simple but useful principle
that a multilinear Lq

t (L
r
x) estimate involving solutions of the homogeneous wave

equation with Hs initial data implies a corresponding estimate for elements of
Hs,θ.

It is well-known that Hs,θ is an algebra when s > n/2 and θ > 1/2. Here we
extend this result, proving that this space is stable under the mapping u 7→ f(u)
for any smooth f leaving the origin fixed. The proof is inspired by an idea from
[22].

Next, we define the space X s,θ = {u : u ∈ Hs,θ, ∂tu ∈ Hs−1,θ}, with the
obvious norm. This is the basic space in which we obtain solutions to nonlinear
wave equations, and it differs somewhat from similar spaces used in earlier works
on well-posedness for nonlinear wave equations; see the remark on p. 51. The
remainder of the chapter is devoted to an investigation of the relation between
this space and solutions of the linear wave equation.

Consider the Cauchy problem for the linear wave equation:

�u = F (t, x) ∈ [0, T ]× Rn

u
∣∣
t=0

= f ∈ Hs, ∂tu
∣∣
t=0

= g ∈ Hs−1.

By the linear theory expounded in chapter one, this problem admits a unique
solution u ∈ C([0, T ], Hs) ∩ C([0, T ], Hs−1). For 0 < T < 1 and θ > 1/2, we
prove the existence of an extension uT of u to all of R1+n such that

‖uT ‖s,θ + ‖∂tuT ‖s−1,θ . ‖f‖Hs + ‖g‖Hs−1 + T ε/2 ‖F‖s−1,θ+ε−1

for some ε > 0 independent of T .
This estimate is the analog of the energy inequality in the setting of the Hs,θ

spaces, and it refines an earlier result in [13] where the time T was fixed, say
T = 1. It has of course been known that letting T tend to 0 should produce
some decay on the right hand side of the above inequality (see [19, Remark
1.8]), but a proof of this fact has not appeared before. It should be noted that
the proof depends on our new definition of the basic space-time norms, cf. the
remark on p. 51.

We also give sufficient conditions for a semi-norm ‖·‖, defined on some sub-
space of S′(R1+n) containing S(R1+n), to satisfy the estimate

‖uT‖ . ‖f‖Hs + ‖g‖Hs−1 + T ε/2
(
‖F‖s−1,θ+ε−1 +

∥∥Λ−1Λ−1+ε
− F

∥∥
)
,

with uT as above; see theorem 16, p. 80.



Chapter 1

The Linear Wave Equation

In this chapter we recall the basic local existence properties of the linear wave
equation. Since our point of view is that of L2 theory, it is natural to use the
calculus of Hilbert space-valued functions. For easy reference we review the
pertinent facts, including the Hilbert space-valued integral, which will be used
on numerous occasions in this dissertation. For us, the relevant Hilbert space
is, unsurprisingly, the standard L2 Sobolev space Hs.

We consider the Cauchy problem for the linear wave equation:

�u = F (t, x) ∈ R1+n(1.1a)

u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g,(1.1b)

where � = −∂2
t + ∆ and ∆ is the Laplacian in the space variable x. We will

also use frequently the operator D =
√
−∆.

1.1 Existence and Uniqueness

For data whose regularity is measured in L2 Sobolev spaces, we have the fol-
lowing basic existence and uniqueness statement.

Proposition 1. Assuming f ∈ Hs, g ∈ Hs−1 and F ∈ L1
loc(R, H

s−1), there is
a unique solution u of (1.1) such that

u ∈ C(R, Hs) ∩ C1(R, Hs−1).(1.2)

Moreover, the solution is given by the formula

u(t) = cos(tD) · f +D−1 sin(tD) · g −
∫ t

0

D−1 sin
(
(t− t′)D

)
· F (t′) dt′,(1.3)

and it satisfies the energy inequality:

(1.4) ‖u(t)‖Hs + ‖∂tu(t)‖Hs−1

. ‖f‖Hs + (1 + t) ‖g‖Hs−1 + (1 + t)

∫ t

0

‖F (t′)‖Hs−1 dt
′

1



2 The Linear Wave Equation

for all t ≥ 0.

Remarks. (i) Formula (1.3) is derived, formally, by applying the Fourier trans-
form in the space variable x, thereby converting the PDE problem (1.1)
to an ODE problem in time t:

−∂2
t û(t, ξ)− |ξ|2 û(t, ξ) = F̂ (t, ξ)

û(0, ξ) = f̂(ξ), ∂tû(0, ξ) = ĝ(ξ).

By standard linear ODE theory and Duhamel’s principle, we get

û(t, ξ) = cos(t |ξ|)f̂(ξ) + |ξ|−1
sin(t |ξ|)ĝ(ξ)

−
∫ t

0

|ξ|−1 sin
(
(t− t′) |ξ|

)
F̂ (t′, ξ) dt′.

Applying the inverse Fourier transform then gives (1.3). This formal ar-
gument can be made into a rigorous one without much difficulty. In fact,
this is how we prove uniqueness.

(ii) When we say that u solves (1.1a), we mean in the sense of distributions
on R1+n. However, any u ∈ C(R, Hs) is an element of D′(R1+n) by means
of the bilinear pairing

〈u, φ 〉 =
∫ ∞

−∞

〈u(t), φ(t) 〉 dt for φ ∈ C∞
c (R1+n).

Indeed, if (φj) is a sequence of smooth functions on R1+n which are all
supported in a cube [−a, a]1+n, and if ∂αφj → 0 uniformly for every
multi-index α, then

|〈u, φj 〉| ≤
∫ ∞

−∞

|〈u(t), φj(t) 〉| dt

≤
∫ ∞

−∞

‖u(t)‖Hs ‖φj(t)‖H−s dt

≤
(

sup
|t|≤a

‖φj(t)‖HN

)∫ a

−a

‖u(t)‖Hs dt

for some positive integer N , and we have

‖φj(t)‖HN .
∑

|α|≤N

‖∂α
xφj(t)‖L2 −→ 0

uniformly in t as j → ∞. A simple modification of this argument shows
that if u ∈ L∞(R, Hs), then u ∈ S′(R1+n) with the above pairing.

(iii) If u has the regularity (1.2), then the distribution derivative ∂tu agrees
with the strong Hs−1 derivative. To prove this, let v be the strong Hs−1

derivative of u, so that
∥∥∥∥

1

h

(
u(t+ h)− u(t)

)
− v
∥∥∥∥

Hs−1

−→ 0 as h −→ 0.



1.1 Existence and Uniqueness 3

Given a test function φ, we must show that 〈 v, φ 〉 = −〈u, ∂tφ 〉, i.e.,

∫ ∞

−∞

〈 v(t), φ(t) 〉 dt = −
∫ ∞

−∞

〈u(t), ∂tφ(t) 〉 dt.

Define A(t) = 〈u(t), φ(t) 〉. We claim that A ∈ C1(R) and that A′(t) =
〈 v(t), φ(t) 〉 + 〈u(t), ∂tφ(t) 〉. Integrating this in t gives the relation we
want. The claim is easily proved. We have

|A(t+ h)−A(t)|
≤ |〈 u(t+ h)− u(t), φ(t + h) 〉|+ |〈 u(t), φ(t+ h)− φ(t) 〉|
≤ ‖u(t+ h)− u(t)‖Hs ‖φ(t+ h)‖H−s

+ ‖u(t)‖Hs ‖φ(t+ h)− φ(t)‖H−s ,

and using the Hs continuity of u and the fact that φ is C∞
c , we see that

the limit of this as h → 0 equals 0. In fact, the mapping t 7→ φ(t) is
in C∞(R, Hσ) for all σ ∈ R. Clearly, it suffices to show that it is in
C1(R, HN ) for all positive integers N . But since φ and all its derivatives
are uniformly continuous and 1

h

(
∂αφ(t+h)−∂αφ(t)

)
converges uniformly

to ∂t∂
αφ(t) for every α, this is immediate. Proving the rest of the claim

is now an easy exercise, and we leave this to the interested reader.

(iv) The conclusion of the previous remark still holds under the weaker as-
sumption that u is strongly Hs−1 differentiable for almost every t, with
derivative in L1

loc(R, H
s−1). The same proof works, except that now A is

a.e. differentiable, and A′ is in L1
loc(R). In fact, at every t for which the

strong Hs−1 derivative v(t) exists, the proof goes through to show that
A′(t) = 〈 v(t), φ(t) 〉 + 〈u(t), ∂tφ(t) 〉.

(v) The regularity statement (1.2) is equivalent to

(u, ∂tu) ∈ C(R, Hs)× C(R, Hs−1),(1.5)

where ∂tu is taken in the sense of D′(R1+n). That (1.2) implies (1.5) is
the content of remark (iii), and the converse follows from the fact that
if u ∈ C(R, Hσ) and the distribution derivative ∂tu is in C(R, Hσ), then
this derivative is in fact a strong Hσ derivative, whence u ∈ C1(R, Hσ).
This fact is proved in proposition 2 below.

Proposition 2. Assume u ∈ C(R, Hσ), σ ∈ R.

(a) If the distribution derivative ∂tu ∈ L1
loc(R, H

σ), then ∂tu(t) is the strong
Hσ derivative of u for a.e. t.

(b) If we strengthen the hypothesis in (a) to ∂tu ∈ C(R, Hσ), then the same
conclusion holds for every t.

The proof requires the following lemma.



4 The Linear Wave Equation

Lemma 1. (a) If u ∈ D′(R) and the distribution derivative u′ vanishes, then
u is a constant.

(b) If u ∈ C(R, Hσ) and the distribution derivative ∂tu vanishes, then u(t) =
u(0) for every t.

Proof. To prove (a), fix φ ∈ C∞
c (R) such that

∫
φ = 1. Then if u is indeed a

constant, we should have u = 〈u, φ 〉, i.e.,

〈u− 〈u, φ 〉 , ψ 〉 = 0 for all ψ ∈ C∞
c .

To prove this, it would be enough to show that the left hand side equals
〈u, θ′ 〉 for some θ ∈ C∞

c , since by assumption this vanishes. But we have
〈u− 〈u, φ 〉 , ψ 〉 = 〈u, ψ 〉 − 〈u, φ 〉

∫
ψ =

〈
u, ψ −

(∫
ψ
)
φ
〉
, and if we set θ(t) =∫ t

−∞ ψ −
(∫
ψ
) ∫ t

−∞ φ, then it is easy to see that θ ∈ C∞
c and θ′ = ψ −

(∫
ψ
)
φ.

This concludes the proof of part (a).
To prove (b), we fix a test function φ ∈ C∞

c (Rn). We want to show that
〈u(t), φ 〉 is independent of t. Call this quantity U(t). Then U ∈ C(R), hence
in D′(R), and by part (a) it suffices to show that the distribution derivative U ′

vanishes. But for any ψ ∈ C∞
c (R),

〈U ′, ψ 〉 = −〈U,ψ′ 〉 =
∫ ∞

−∞

〈u(t), φ 〉ψ′(t) dt =

∫ ∞

−∞

〈u(t), ψ′(t)φ 〉 dt

= −〈u, ∂tθ 〉 = 〈 ∂tu, θ 〉 = 0,

where θ(t, x) = ψ(t)φ(x).

Proof of proposition 2. If we can show that

u(t) = u(0) +

∫ t

0

∂tu(t
′) dt′ for all t,(1.6)

then the conclusion follows from the Hilbert space version of the fundamental
theorem of calculus, which is proved below. Denote by v(t) the quantity on the
right hand side of (1.6). We want to use lemma 1 to conclude that u(t) = v(t) for
every t. By the fundamental theorem of calculus, v ∈ C(R, Hσ) and the strong
Hσ derivative v′(t) exists for a.e. t and equals ∂tu(t). Therefore, by remark
(iv), the distribution derivatives ∂tu and ∂tv are equal, so lemma 1 guarantees
that u(t)− v(t) = 0 for every t.

We now turn to the proof of proposition 1. First we prove that u defined by
the formula (1.3) is a solution of (1.1) with regularity (1.2). Consider first
u(t) = D−1 sin(tD) · g. We claim that u ∈ ⋂∞

j=0 C
j(R, Hs−j) and that

∂tu(t) = cos(tD) · g,
∂2

t u(t) = −D sin(tD) · g,
∂3

t u(t) = −D2 cos(tD) · g
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and so on. In other words, the ordinary chain rule applies. Assuming this, we
have −∂2

t u = D2u = −∆u, so u is a solution of (1.1) with f = 0.
The claim follows immediately from a simple observation:

Lemma 2. Assume that φ is a C∞ function on R such that φ and φ′ are
bounded, and consider the multiplier Djφ(tD) acting on functions on Rn:

Djφ(tD) · f = F−1
(
|ξ|j φ(t |ξ|)f̂(ξ)

)

whenever this is well-defined. Here j ≥ −1 is an integer. If j = −1 we assume
in addition that φ(0) = 0.

With these assumptions, Djφ(tD) is a bounded mapping from Hs to Hs−j

for any s ∈ R. Moreover, if f ∈ Hs, then

Djφ(tD) · f ∈ C(R, Hs−j) ∩ C1(R, Hs−j−1),

and the chain rule applies, i.e.,

∂t

(
Djφ(tD) · f

)
= Dj+1φ′(tD) · f.

Proof. Let us do the case j = −1, since it is more difficult. We have

∥∥D−1φ(tD) · f
∥∥2

Hs+1 =

∫ (
1 + |ξ|2

)s+1∣∣|ξ|−1
φ(t |ξ|)f̂(ξ)

∣∣2 dξ

≤ 2t2 ‖φ′‖2L∞

∫

|ξ|<1

(
1 + |ξ|2

)s∣∣f̂(ξ)
∣∣2 dξ

+ 4 ‖φ‖2L∞

∫

|ξ|≥1

(
1 + |ξ|2

)s∣∣f̂(ξ)
∣∣2 dξ,

where we used the mean value theorem to estimate |φ(r)| /r ≤ ‖φ′‖L∞ for r > 0.
This proves boundedness of the operator.

Set u(t) = D−1φ(tD) · f . To prove continuity, we use again the mean value
theorem on the low frequency part, obtaining

‖u(t+ h)− u(t)‖2Hs+1

=

∫ (
1 + |ξ|2

)s+1 |ξ|−2 ∣∣φ
(
(t+ h) |ξ|

)
− φ

(
t |ξ|
)∣∣2 ∣∣f̂(ξ)

∣∣2 dξ

≤ 2h2 ‖φ′‖2L∞

∫

|ξ|<1

(
1 + |ξ|2

)s∣∣f̂(ξ)
∣∣2 dξ

+ 4

∫

|ξ|≥1

(
1 + |ξ|2

)s ∣∣φ
(
(t+ h) |ξ|

)
− φ

(
t |ξ|
)∣∣2 ∣∣f̂(ξ)

∣∣2 dξ.

By the dominated convergence theorem, the last integral vanishes in the limit
h→ 0. Finally, to prove differentiability, we write

∥∥∥∥
1

h

(
u(t+ h)− u(t)

)
− φ′(tD) · f

∥∥∥∥
2

Hs

=

∫ (
1 + |ξ|2

)s
∣∣∣∣
φ
(
(t+ h) |ξ|

)
− φ

(
t |ξ|
)

h |ξ| − φ′(t |ξ|)
∣∣∣∣
2∣∣f̂(ξ)

∣∣2 dξ.

By the dominated convergence theorem, this converges to 0 as h→ 0.
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The term cos(tD) · f in (1.3) is treated in the same way, so what remains is
the inhomogeneous part of the solution, namely

u(t) = −
∫ t

0

D−1 sin
(
(t− t′)D

)
· F (t′) dt′.

Note that this is a Hilbert space-valued integral. Since elements of Hs for
s < 0 are in general not functions, it may not be possible to evaluate this
integral pointwise. We interrupt the proof of proposition 1.1 in order to recall
the relevant facts from the theory of integration of functions with values in a
separable Hilbert space. For the conclusion of the proof, see section 1.4.

1.2 Hilbert space integrals

Let (X,M, µ) be a measure space and H a separable Hilbert space. We say
that a map f : X → H is measurable if it is (M,BH)-measurable, where BH is
the Borel σ-algebra of H .

Proposition 3. A map f : X → H is measurable iff φ◦f is (M,BR)-measurable
for all φ ∈ C(H,R).

Proof. Assume that φ ◦ f is (M,BR)-measurable for all φ ∈ C(H,R). Fix a
ball U = {y ∈ H : ‖y − y0‖ < R}, and set φ(y) = ‖y − y0‖ for y ∈ H . Then φ
is continuous and U = φ−1([0, R)), whence f−1(U) = (φ ◦ f)−1([0, R)) ∈ M.
Since the open balls in H generate BH , this proves that f is measurable. The
converse is trivial.

If f : X → H is measurable, then x 7→ ‖f(x)‖ is (M,BR)-measurable, since y 7→
‖y‖ is continuous, and we define ‖f‖Lp =

(∫
‖f(x)‖p dµ(x)

)1/p
for 1 ≤ p < ∞

and ‖f‖L∞ = ess supx∈X ‖f(x)‖. Then we let Lp = Lp(X,H) be the vector
space of measurable maps f : X → H with ‖f‖Lp < ∞. If we identify maps
which are equal a.e., then ‖·‖Lp is a norm on Lp, and Lp is a Banach space.
(The standard proof works.)

By a simple function we mean a function f : X → H of the form f =∑n
1 yjχEj , where yj ∈ H , Ej ∈ M, µ(Ej) < ∞ and χE denotes the character-

istic function of a set E. It is obvious how to define
∫
f(x) dµ(x) when f is a

simple function. The next lemma allows us to pass to the limit and define the
integral of any f ∈ L1.

Proposition 4. If f ∈ L1, there is a sequence (fj) of simple functions such
that ‖fj − f‖L1 → 0.

Proof. Fix a dense sequence (yn) in H . We may assume yn 6= 0 for all n.
For ε > 0 set Bε

n = {y ∈ H : ‖y − yn‖ < ε ‖yn‖}. It is readily verified that

∪∞n=1B
ε
n = H \ {0} for 0 < ε < 1. Now set Anj = B

1/j
n \ ⋃n−1

m=1B
1/j
m and

Enj = f−1(Anj). Then for all j we have {x : f(x) 6= 0} =
⋃∞

n=1Enj , and the
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union is disjoint. Define fj =
∑N(j)

n=1 ynχEnj , where N(j) is a positive integer
to be determined. We claim that

‖fj(x)− f(x)‖ ≤ 2

j
‖f(x)‖ for x ∈ supp(fj), j ≥ 2..(1.7)

This would give

∫
‖fj(x)− f(x)‖ dµ(x) ≤ 2

j
‖f‖L1 +

∫

S
n>N(j) Enj

‖f(x)‖ dµ(x),

and since f ∈ L1, the last integral can be made as small as we like by choosing
N(j) sufficiently large.

To prove (1.7), note that if x ∈ Enj with 1 ≤ n ≤ N(j), then fj(x) = yn and

f(x) ∈ B1/j
n , whence ‖fj(x) − f(x)‖ < 1/j ‖yn‖. But by the triangle inequality,

this implies ‖yn‖ ≤ 2 ‖f(x)‖ if j ≥ 2.

Thus, the simple functions form a dense subspace of the complete space L1, so it
follows immediately that there is a unique bounded linear operator

∫
: L1 → H

such that
∫
yχE = µ(E)y for y ∈ H and E ∈M with µ(E) <∞, and we write∫

f =
∫
f(x) dµ(x) for f ∈ L1. This operator is usually called the Bochner

integral.

Theorem 1. The Bochner integral has the following properties:

(a)
∥∥∫ f

∥∥ ≤ ‖f‖L1 for all f ∈ L1.

(b) If H = C = R2 with the standard norm, then the Bochner integral coin-
cides with the standard integral.

(c) (The dominated convergence theorem) Assume that (fn) is a sequence in
L1 converging a.e. to f , and that there is a g ∈ L1(X,R) such that
‖fn(x)‖ ≤ g(x) for a.e. x. Then f ∈ L1 and

∫
fn →

∫
f .

(d) If H ′ is separable Hilbert space, T is a bounded linear operator from H to
H ′ and f ∈ L1(X,H), then Tf ∈ L1(X,H ′), and

∫
Tf = T

∫
f .

Proof. Properties (a),(b) and (d) are obvious for simple functions, and the gen-
eral statements follow by simple limiting arguments. To prove (c), first note
that by redefining fn and f on a set of measure zero, we may assume that
fn(x) → f(x) for every x. This changes nothing on the level of L1, since we
identify elements of L1 which are equal a.e. By proposition 3, f is measurable.
Indeed, if φ ∈ C(H,R), then φ◦fn(x)→ φ◦f(x) for every x, so φ◦f is (M,BR)-
measurable. It now follows from the scalar version of the dominated convergence
theorem that

∫
‖fn − f‖ → 0. By part (a), this implies

∫
fn →

∫
f .

This concludes our discussion of the Bochner integral.
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1.3 More Hilbert space calculus

In the remainder of this chapter, the measure space will be R equipped with
Lebesgue measure dt. We let L1

loc(R, H) be the space of measurable functions
f : R→ H such that

∫
K
‖f(t)‖ dt <∞ for every compact subset K of R.

The Fundamental Theorem of Calculus. Let f ∈ L1
loc(R, H), where H is

a separable Hilbert space.

(a) If F : R→ H is defined by

F (t) =

∫ t

0

f(s) ds,

then F ∈ C(R, H) and F ′(t) = f(t) for a.e. t. Moreover, if f is continu-
ous, then F ∈ C1(R, H) and F ′ = f .

(b) Conversely, if F ∈ C(R, H) has derivative f(t) for a.e. t, then

F (t)− F (0) =

∫ t

0

f(s) ds

for all t.

Proof. We first show that part (b) follows from part (a). Indeed, if we set

G(t) = F (0) +
∫ t

0 f(s) ds, then G ∈ C(R, H) and G′(t) = f(t) for a.e. t, by
part (a). Therefore, F −G is a continuous map from R to H whose derivative
vanishes a.e., whence

t 7−→ φ(t) = ‖F (t)−G(t)‖2 = 〈F (t)−G(t), F (t) −G(t) 〉

is a continuous function on R whose derivative vanishes a.e. By the scalar
version of the theorem, φ is therefore a constant, and this constant must be 0,
since φ(0) = 0.

We now prove part (a). Continuity of F follows from the dominated conver-
gence theorem. To prove differentiability, note that

∥∥∥∥
1

h

(
F (t+ h)− F (t)

)
− f(t)

∥∥∥∥

=

∥∥∥∥∥
1

h

∫ t+h

t

(
f(s)− f(t)

)
ds

∥∥∥∥∥ ≤
1

h

∫ t+h

t

‖f(s)− f(t)‖ ds

for every h 6= 0. Thus, it suffices to show that for a.e. t,

lim
h→0

1

h

∫ t+h

t

‖f(s)− f(t)‖ ds = 0.(1.8)

If f is continuous, a direct application of the scalar version of the fundamental
theorem gives (1.8) for every t. In general this will not work, since the variable
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t appears not only in the limits of integration, but in the integrand as well. To
avoid this problem, we fix a dense sequence (yn) in H . By the scalar version
of the theorem, for each n there is a set En ⊆ R of measure zero such that for
every t ∈ R \ En,

lim
h→0

1

h

∫ t+h

t

‖f(s)− yn‖ ds = ‖f(t)− yn‖ .

Set E =
⋃∞

1 En. Then E has measure zero, and for every t ∈ R \ E and every
n we have

lim sup
h→0

1

h

∫ t+h

t

‖f(s)− f(t)‖ ds ≤ 2 ‖f(t)− yn‖ .

Since the points yn form a dense set in H , this proves (1.8).

Proposition 5. (Differentiation under the integral sign) Let H and H ′ be sepa-
rable Hilbert spaces such that H ⊆ H ′ and the inclusion map is bounded. Assume
that f : R2 → H has the following properties:

(a) f(s, ·) ∈ C(R, H) ∩C1(R, H ′) for all s.

(b) f(·, t) is measurable for all t.

(c) For every compact interval [a, b] ⊆ R, there are g, k ∈ L1
loc(R) such that

‖f(s, t)‖H ≤ g(s), ‖∂tf(s, t)‖H′ ≤ k(s)(1.9)

for all t ∈ [a, b] and all s ∈ R.

Then the map u : R→ H defined by

u(t) =

∫ t

0

f(s, t) ds

is in C(R, H), and

u′(t) = f(t, t) +

∫ t

0

∂tf(s, t) ds for a.e. t.(1.10)

Moreover, if t 7→ f(t, t) is a continuous map from R to H ′, then (1.10) holds
for every t.

Proof. It suffices to prove this for t ∈ [−N,N ], with N an arbitrary positive
integer, and then we may assume that (1.9) holds for t ∈ [−N − 1, N + 1].
The continuity of u follows easily from the dominated convergence theorem. To
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prove differentiability a.e., we write

1

h

(
u(t+ h)− u(t)

)
− f(t, t)−

∫ t

0

∂tf(s, t) ds

=

∫ t+h

0

(
f(s, t+ h)− f(s, t)

h
− ∂tf(s, t)

)
ds+

∫ t+h

t

∂tf(s, t) ds

+
1

h

∫ t+h

t

(
f(s, t)− f(t, t)

)
ds

= I1 + I2 + I3.

We have to show that ‖Ij‖H′ → 0 as h→ 0 for j = 1, 2, 3.
Since the integrand of I1 converges pointwise to 0 in H ′ as h→ 0, the domi-

nated convergence theorem guarantees that I1 → 0, provided that the integrand
is bounded uniformly in h by a non-negative locally integrable function. But by
the fundamental theorem of calculus,

f(s, t+ h)− f(s, t)

h
− ∂tf(s, t) =

1

h

∫ t+h

t

(
∂tf(s, t′)− ∂tf(s, t)

)
dt′,

and the H ′ norm of this is bounded by 1
h

∫ t+h

t 2k(s) dt′ = 2k(s). This proves
that limh→0 ‖I1‖H′ = 0 for every t.

The dominated convergence theorem also shows that limh→0 ‖I2‖H′ = 0 for
every t, since (1.9) gives a uniform bound on the integrand.

Finally, to prove that limh→0 ‖I3‖H′ = 0 for a.e. t, we fix a dense sequence
(tn) in R, and write

‖I3‖H′ ≤ 1

h

∫ t+h

t

‖f(s, t)− f(s, tn)‖H′ ds

+

∥∥∥∥∥
1

h

∫ t+h

t

f(s, tn) ds− f(t, tn)

∥∥∥∥∥
H′

+ ‖f(t, tn)− f(t, t)‖H′

= J1 + J2 + J3.

By the fundamental theorem of calculus, for each n there is a set En of measure
zero such that limh→0 J2 = 0 for t ∈ R \ En. Let E =

⋃∞
n=1En. Since f(s, t)−

f(s, tn) =
∫ t

tn
∂tf(s, t′) dt′, we have J1 ≤ 1

h

∫ t+h

t |t− tn|k(s) ds, and by the

fundamental theorem, limh→0
1
h

∫ t+h

t k(s) ds = k(t) for t ∈ R \ F , where F has
measure zero. We conclude that

lim sup
h→0

‖I3‖H′ ≤ |t− tn| k(t) + ‖f(t, tn)− f(t, t)‖H′

for t ∈ R\ (E∪F ) and all n, and since the tn are dense in R and f is continuous
in its second argument, this shows that limh→0 ‖I3‖H′ = 0 a.e.

If t 7→ f(t, t) is in C(R, H ′), then the function defined by the right hand
side of (1.10)—call it v(t)—is in C(R, H ′). Since v = u′ a.e., part (b) of the

fundamental theorem implies that u(t) = u(0) +
∫ t

0
v(s) ds, and then part (a)

tells us that u′(t) = v(t) for every t.
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1.4 Conclusion of proof of proposition 1

Recall that we are considering the term u(t) = −
∫ t

0
D−1 sin

(
(t−t′)D

)
·F (t′) dt′.

Lemma 2 and its proof show that the integrand satisfies the hypotheses of the
last proposition, with H = Hs and H ′ = Hs−1. Therefore, u has the regularity
(1.2), and

u′(t) = −
∫ t

0

cos
(
(t− t′)D

)
· F (t′) dt′

for all t. By the same argument, u′ is a.e. differentiable, and

u′′(t) = −F (t)−
∫ t

0

−D sin
(
(t− t′)D

)
· F (t′) dt′

= −F (t)−∆

∫ t

0

D−1 sin
(
(t− t′)D

)
· F (t′) dt′

for a.e. t. Here we used Theorem 1, part (d), and the fact that ∆ is a bounded
linear map from Hs to Hs−2. By remarks (iii) and (iv), the distribution deriva-
tives ∂tu and ∂2

t u agree with u′ and u′′, respectively, and it follows that (1.1)
is satisfied with f = g = 0. This completes the proof of the existence part of
proposition 1. The energy inequality (1.4) follows easily from the formula (1.3),
since the proof of lemma 2 shows that the operator norm of Djφ(tD) is bounded
by 2(1 + |t|)max

(
‖φ‖L∞ , ‖φ′‖L∞

)
if j = −1, and by ‖φ‖L∞ if j ≥ 0.

To prove uniqueness, it suffices, by linearity, to prove that if u is a solution
of (1.1) with f, g and F all identically zero, and if u satisfies the regularity
assumption (1.2), then u vanishes. With these assumptions, ∂2

t u = ∆u, and
since

∆u ∈ C(R, Hs−2) ∩ C1(R, Hs−3),

it follows from proposition 2 that

∂tu ∈ C(R, Hs−1) ∩ C1(R, Hs−2).

In fact, by taking time derivatives of the equation and applying proposition 2
repeatedly, one finds that u ∈ ⋂∞

j=1 C
j(R, Hs−j). Applying the Fourier trans-

form in the space variable x, it now follows that t 7→ û(t)(ξ) satisfies the ODE
initial value problem in remark (i) for every ξ ∈ Rn, with f, g and F vanishing.

We conclude that û(t)(ξ) = 0 for all (t, ξ) ∈ R1+n, so u vanishes.





Chapter 2

Space-Time Estimates for
the Wave Equation

The principal tool for proving existence theorems for nonlinear wave equations
is multilinear space-time estimates for solutions of the homogeneous wave equa-
tion. The main new result proved in this chapter is a sharp quadrilinear integral
estimate in two space dimensions. This estimate, which we prove in section 2.3,
is in some sense a generalization of the bilinear L2 estimate (2.10) proved in
[18], but the estimate we prove is genuinely quadrilinear; it cannot be proved
by a reduction to bilinear estimates.

In this chapter we also prove some variations of previously known bilinear
estimates, which will be needed in subsequent chapters. This is done in section
2.2. First, however, we recall the linear estimates.

2.1 The linear estimates

In space dimension n ≥ 2, the solution of the Cauchy problem

�u = 0 (t, x) ∈ R1+n(2.1a)

u
∣∣
t=0

= f ∈ S(Rn), ∂tu
∣∣
t=0

= 0(2.1b)

satisfies the mixed norm estimate

‖u‖Lq
t (Lr

x) . ‖f‖Ḣs(2.2)

iff

s =
n

2
− n

r
− 1

q
,

2

min (1, γ(r))
≤ q ≤ ∞, and 2 ≤ r <∞,(2.3)

where γ(r) = (n− 1)
(

1
2 − 1

r

)
and

‖u‖Lq
t (Lr

x) =

(∫

R

‖u(t, ·)‖rLq(Rn) dt

)1/r

13
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For the proof, and further references, see [4], [5].

Remarks. (i) The assumption that f is in the Schwartz class can be removed
by the following density argument. Assume (2.2) to be true for data in
the Schwartz class. Let f ∈ Ḣs, and let u be the unique solution of (2.1)
such that

u ∈ C(R; Ḣs) ∩ C1(R; Ḣs−1).

Then we want to show that the distribution u is a function in Lq
t (L

r
x)

satisfying (2.2). First recall that S(Rn) is dense in Ḣσ(Rn) for all σ > −n
2 .

For by definition, the Fourier transform F maps Ḣσ isometrically onto
L2(|ξ|2σ

dξ), and the latter space contains S as a dense subset precisely
when σ > −n

2 . But s > 0, so there is a sequence (fj) in S such that

fj → f in Ḣs. Let uj solve (2.1) with f replaced by fj . By assumption, uj

satisfies (2.2), so (uj) is a Cauchy sequence in the complete space Lq
t (L

r
x),

and hence converges in this space to some function ũ which satisfies (2.2)
with f on the right hand side. It therefore remains to show that u and ũ
are one and the same distribution. But uj → ũ in the sense of distributions
on R1+n, so it suffices to show that the same is true for u. For every test
function φ ∈ C∞

c (R1+n) we have

∫

R

〈uj(t)− u(t), φ(t)〉 dt

≤
∫

R

‖uj(t)− u(t)‖Ḣs ‖φ(t)‖Ḣ−s dt ≤ ‖fj − f‖Ḣs

∫

R

‖φ(t)‖Ḣ−s dt,

and since s < n
2 , the last integral is bounded.

(ii) The assumption ∂tu
∣∣
t=0

= 0 is made simply for ease of notation, and
implies no loss of generality, since all the estimates we state in this chapter
for solutions of the wave equation hold, more generally, for the half wave
operators f 7→ e±itDf . The unique solution

u ∈ C(R; Ḣs) ∩C1(R; Ḣs−1)

of (2.1a) with initial conditions

u
∣∣
t=0

= f ∈ Ḣs, ∂tu
∣∣
t=0

= g ∈ Ḣs−1,

is given by

u =
1

2

(
eitDf + e−itDf

)
+

1

2i

(
eitDD−1g − e−itDD−1g

)
.

Hence, if
∥∥e±itDf

∥∥
Lq

t (Lr
x)

. ‖f‖Ḣs , then ‖u‖Lq
t (Lr

x) . ‖f‖Ḣs + ‖g‖Ḣs−1 .
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2.2 Bilinear estimates

Since q, r ≥ 2, we can interpret (2.2) as a bilinear estimate. That is, if u is the
solution of (2.1) and v satisfies

�v = 0 (t, x) ∈ R1+n(2.4a)

v
∣∣
t=0

= g ∈ S(Rn), ∂tv
∣∣
t=0

= 0,(2.4b)

then by Hölder’s inequality and (2.2),

‖uv‖
L

q/2
t (L

r/2
x )

. ‖f‖Ḣs ‖g‖Ḣs ,(2.5)

or equivalently,
∥∥D−su ·D−sv

∥∥
L

q/2
t (L

r/2
x )

. ‖f‖L2 ‖g‖L2 .

Once the estimates are written like this, it is natural to ask for which a > 0 we
have ∥∥∥D−a

(
D−s+a/2 · uD−s+a/2v

)∥∥∥
L

q/2
t (L

r/2
x )

. ‖f‖L2 ‖g‖L2 .

The first such result, for the case q = r = 4, was obtained by Klainerman and
Machedon [15].

Theorem 2. (Klainerman-Machedon) If n ≥ 3, then

∥∥D−a
+ (uv)

∥∥
L2 . ‖f‖Ḣ(n−1)/4−a/2 ‖g‖Ḣ(n−1)/4−a/2 for 0 ≤ a < n− 2

2
,(2.6)

where Dγ
+ is the multiplier with symbol (|τ | + |ξ|)γ .

Recently, Klainerman and Tataru [19] proved:

Theorem 3. (Klainerman-Tataru) If n ≥ 2, (2.3) holds and

(2/q, γ(r)) 6= (1, 1), where γ(r) = (n− 1)

(
1

2
− 1

r

)
,

then
∥∥D−a

+ (uv)
∥∥

L
q/2
t (L

r/2
x )

. ‖f‖Ḣs−a/2 ‖g‖Ḣs−a/2(2.7)

for 0 ≤ a < 1− 2
r .

It should be remarked that the estimate (2.7) is optimal on the line γ = 2/q
in the (1/q, 1/r)-plane, in the sense that the estimate fails if a > 1 − 2/r. If
γ > 2/q, on the other hand, one can obtain a better result by using the Sobolev
inequality. We will not need this, and hence ignore it.

Even more generally, one can ask what are the possible estimates of the form
∥∥∥Dα

+D
β
−(uv)

∥∥∥
L

q/2
t (L

r/2
x )

. ‖f‖Ḣs1 ‖g‖Ḣs2 ,(2.8)

where Dγ
− is the multiplier whose symbol is

∣∣|τ | − |ξ|
∣∣γ . Estimates of this type

come up naturally in connection with bilinear null forms, as we shall see in
chapters four and five. Again, the first result of this type was proved in [15].
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Theorem 4. (Klainerman-Machedon) In dimension n = 2,
∥∥∥D−a

+ D
1/4
− (uv)

∥∥∥
L2

. ‖f‖Ḣ3/8−a/2 ‖g‖Ḣ3/8−a/2(2.9)

for 0 ≤ a < 1
4 .

Subsequently, Klainerman and Selberg [18] proved:

Theorem 5. (Klainerman-Selberg) In any dimension n ≥ 2,
∥∥∥D1/2

− (uv)
∥∥∥

L2
. ‖f‖Ḣn/2 ‖g‖L2 .(2.10)

Very recently, Klainerman and Foschi [9] have completely settled the ques-
tion of which are the possible estimates of type (2.8) for (q, r) = (4, 4) and
(q, r) = (∞, 4). For other exponents q and r, this question remains open. We
refer to [8] for more details.

The bilinear estimates that will be used in this dissertation are (2.6), (2.7),
(2.9) and (2.10). For our applications, however, it is essential to replace the
space-time differentiation operator D+ in (2.6), (2.7) and (2.9) by the operator
D, which acts only in the space variables, see theorem 6 below. The rest of this
section is devoted to proving that the modified estimates are true.

We write u = u+ + u−, where u± = e±itDf/2. Similarly, v = v+ + v−.
It suffices to prove the estimates with uv replaced by u+v+ and u+v−. Since
|τ | ≤ |ξ| on the support of û+v−(τ, ξ), the operators D+ and D are essentially
the same when applied to u+v−, so in this case there is nothing to prove. Hence,
it suffices to prove the estimates for u+v+. In fact, for (2.7), it will not be
necessary to make this decomposition of uv, since the proof reduces everything
to linear estimates, and in a linear estimate like (2.2), u+ and u− are completely
equivalent, by simply negating of the sign of t.

We will prove the following.

Theorem 6. (a) If n ≥ 3 and 0 ≤ a < (n− 1)/2, then
∥∥D−a(u+v+)

∥∥
L2 . ‖f‖Ḣ(n−1)/4−a/2 ‖g‖Ḣ(n−1)/4−a/2 .(2.11)

(b) If n = 2 and 0 ≤ a < 1/2, then
∥∥∥D−aD

1/4
− (u+v+)

∥∥∥
L2

. ‖f‖Ḣ3/8−a/2 ‖g‖Ḣ3/8−a/2 .(2.12)

(c) If n ≥ 2, 0 ≤ a < 1− 2/r, (2.3) holds and (2/q, γ) 6= (1, 1), then
∥∥D−a(uv)

∥∥
L

q/2
t (L

r/2
x )

. ‖f‖Ḣs−a/2 ‖g‖Ḣs−a/2 .(2.13)

Notice that in the first two of the above inequalities, the upper bounds for
a are larger than in (2.6) and (2.9). This reflects the fact that the estimates for
u+v+ are less delicate than the ones for u+v−.

The proof of (2.7) given in [19] can be modified in a simple way to give
(2.13). Instead of doing a Littlewood-Paley decomposition in both time and
space, we just decompose space. We include the details, partly for the sake
of completeness, but also because the dyadic method employed can be used to
prove (2.11) and (2.12).
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2.2.1 Review of the dyadic method

We fix a function β ∈ C∞
c (Rn) with the properties

(i) β takes values in [0, 1]

(ii) β is supported in the spherical shell C = {ξ : 1/2 ≤ |ξ| ≤ 2}
(iii)

∑
j∈Z

β(ξ/2j) = 1 for all ξ 6= 0.

Then for any F ∈ S′ we define

∆jF = F−1

(
β

(
ξ

2j

)
F̂ (ξ)

)
= Φj ∗ F,

where Φj = 2jn
(
F−1β

)
(2j·). The sequence (∆jF ), which we call the dyadic

decomposition of F , has the following properties:

(i) F(∆jF ) is supported in 2jC
(ii) If F ∈ Lp, 1 ≤ p ≤ ∞, then ‖∆jF‖Lp ≤

∥∥F−1β
∥∥

L1 ‖F‖Lp .

(iii) If F̂ ∈ L1, then F =
∑

j∈Z
∆jF pointwise on Rn.

(iv) If F ∈ Ḣσ, for any σ ∈ R, then F =
∑

j∈Z
∆jF in the sense of Ḣσ.

(v) The norms ‖·‖Ḣσ and
(∑

j∈Z
22jσ ‖∆j(·)‖2L2

)1/2

are equivalent.

The proofs of the last two properties rely, of course, on Plancherel’s theorem.
However, the utility of the dyadic decomposition is not limited to norms based
on L2. The next lemma is the tool we need to relate the dyadic decomposition
to Lp norms for general p.

Lemma 3. Assume 0 < r1 < r2, and let

C̃ = {ξ : r1 ≤ |ξ| ≤ r2} .

If F ∈ Lp, 1 ≤ p ≤ ∞, and F̂ is supported in λC̃ for some λ > 0, then for any
θ ∈ R,

C−1λθ ‖F‖Lp ≤
∥∥DθF

∥∥
Lp ≤ Cλθ ‖F‖Lp ,

where C is a constant depending only on θ, p, n and C̃.
Proof. Pick a function φ ∈ C∞

c

(
{ξ : r1/2 ≤ |ξ| ≤ 2r2}

)
such that φ(ξ) = 1 for

all ξ ∈ C̃. Then

|ξ|θ F̂ = λθ
∣∣λ−1ξ

∣∣θ φ(λ−1ξ)F̂

in the sense of tempered distributions, so that

DθF = λθ+n
(
Dθψ

)
(λ ·) ∗ F,

where ψ = F−1φ. Hence it follows from Young’s inequality that
∥∥DθF

∥∥
Lp ≤ Cλθ

∥∥Dθψ
∥∥

L1 ‖F‖Lp .

This proves the second inequality, and the proof of the first is similar.
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Definition 1. Write Rn as an almost disjoint union of cubes,

Rn =
⋃

µ∈Zn

(µ+Q), Q = [−1/2, 1/2]n,

and fix a function ψ ∈ C∞
c such that

0 ≤ ψ ≤ 1, ψ
∣∣
Q

= 1, suppψ ⊆ Q∗,

where Q∗ = [−1, 1]n is the double of Q. For any µ ∈ Zn set

φµ(ξ) =
ψ(ξ − µ)∑

ν∈Zn ψ(ξ − ν) ,

so that
suppφµ ⊆ µ+Q∗,

∑

µ∈Zn

φµ(ξ) ≡ 1.

Now define the operator Ωµ : S′ → S′ by

Ω̂µF (ξ) = φµ(ξ)F̂ (ξ).

Proposition 6. Let T be a bilinear operator given by

T̂ (f, g)(ξ) =

∫

Rn

κ(ξ − η, η)f̂(ξ − η)ĝ(η) dη,

where κ is homogeneous of degree γ and

∫
|ξ|−a ∣∣κ(ξ − η, η)f̂(ξ − η)ĝ(η)

∣∣ dξ dη <∞(2.14)

for all 0 ≤ a < A and f, g ∈ S. Fix ρ = ±1, and define

u(t) = eitDf, v(t) = eρitDg for f, g ∈ S.

Let 1 ≤ q, r ≤ ∞, set s = γ
2 + n

2 − n
2r − 1

2q and assume that

‖T (u, v)‖Lq
t (Lr

x) . ‖f‖Ḣs ‖g‖Ḣs(2.15)

and

‖∆0T (Ωµu,Ωνv)‖Lq
t (Lr

x)

. |µ|s−A/2 |ν|s−A/2

( ∑

|α|≤C

‖Ωµ+αf‖L2

)( ∑

|β|≤C

‖Ων+βg‖L2

)
(2.16)

for all f, g ∈ S and all µ, ν ∈ Zn such that

|µ+ ν| ≤ 2(1 +
√
n) and |µ| , |ν| ≥ 8(1 +

√
n).
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Then
∥∥D−aT (u, v)

∥∥
Lq

t (Lr
x)

. ‖f‖Ḣs−a/2 ‖g‖Ḣs−a/2(2.17)

for all f, g ∈ S and 0 ≤ a < A. Moreover, if (q, r) 6= (∞,∞) and

T : Ḣs−a/2 × Ḣs−a/2 −→ Ḣ2s−n/2−γ−a for 0 ≤ a < A,(2.18)

then (2.17) holds for all f, g ∈ Ḣs−a/2, 0 ≤ a < A.

Remark. The condition (2.16) may look complicated, but what it says is essen-

tially the following: If f̂ and ĝ are supported in diametrically opposite cubes
of side length 1 and at distance R from the origin, then T (u, v) satisfies the
estimate

‖T (u, v)‖Lq
t (Lr

x) . R−A ‖f‖Ḣs ‖g‖Ḣs .

Proof of proposition 6. Note that the condition 2s = γ + n − n/r − 1/q comes
from scaling. We write

f =
∑

j∈Z

∆jf, g =
∑

k∈Z

∆kg,

and set uj = eitD∆jf and vk = eρitD∆kg, so that

u =
∑

j∈Z

uj , v =
∑

k∈Z

vk.(2.19)

We will assume that a > 0, since the case a = 0 is just (2.15). Since (2.14)
holds, it follows from the dominated convergence theorem that

D−aT (u, v) =
∑

j,k∈Z

D−aT (uj, vk)

pointwise on R1+n. Hence, by Minkowski’s integral inequality,

∥∥D−aT (u, v)
∥∥

Lq
t (Lr

x)
≤
∑

j,k∈Z

∥∥D−aT (uj, vk)
∥∥

Lq
t (Lr

x)
.

It is natural to consider separately the terms for which |j − k| ≤ 2 and those for
which |j − k| > 2. We call these terms diagonal and off-diagonal, respectively.

The off-diagonal case

Let us assume j − k > 2, since the case k− j > 2 is treated in exactly the same
way. It is easily seen that

supp ̂T (uj, vk) ⊆ 2j C̃,

where
C̃ = {ξ : 1/4 ≤ |ξ| ≤ 4} .
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Hence, by lemma 3 and (2.15),
∥∥D−aT (uj, vk)

∥∥
Lq

t (Lr
x)

. 2−aj ‖T (uj, vk)‖Lq
t (Lr

x)

. 2−aj ‖∆jf‖Ḣs ‖∆kg‖Ḣs

. 2−a(j−k)/2 ‖∆jf‖Ḣs−a/2 ‖∆kg‖Ḣs−a/2 .

Summing and applying the Cauchy-Schwarz inequality, we get
∑

j−k>2

∥∥D−aT (uj, vk)
∥∥

Lq
t (Lr

x)

.
∑

l>2

2−al/2
∑

j∈Z

‖∆jf‖Ḣs−a/2 ‖∆j−lg‖Ḣs−a/2

. ‖f‖Ḣs−a/2 ‖g‖Ḣs−a/2 .

This concludes the proof in the off-diagonal case.

The diagonal case

This case is more delicate, and requires a refined decomposition in frequency
space. We start by noting that

D−aT (uj, vk) =
∑

l≤max(j,k)+2

∆lD
−aT (uj, vk)

pointwise on R1+n. Since D−a and ∆l commute, it follows from Minkowski’s
integral inequality and lemma 3 that

∑

|j−k|≤2

∥∥D−aT (uj, vk)
∥∥

Lq
t (Lr

x)

≤
∑

|j−k|≤2

∑

l≤max(j,k)+2

∥∥D−a∆lT (uj, vk)
∥∥

Lq
t (Lr

x)

.
∑

|j−k|≤2

∑

l≤max(j,k)+2

2−al ‖∆lT (uj, vk)‖Lq
t (Lr

x) .

Now if we could prove that

‖∆lT (uj, vk)‖Lq
t (Lr

x) . 2−A(j−l) ‖∆jf‖Ḣs ‖∆kg‖Ḣs ,(2.20)

then it would follow that
∑

|j−k|≤2

∑

l≤max(j,k)+2

2−al ‖∆lT (uj, vk)‖Lq
t (Lr

x)

.
∑

|j−k|≤2

∑

l≤j+4

2−(A−a)(j−l) ‖∆jf‖Ḣs−a/2 ‖∆kg‖Ḣs−a/2

=
∑

i≥−4

2−(A−a)i
∑

|m|≤2

∑

j∈Z

‖∆jf‖Ḣs−a/2 ‖∆j+mg‖Ḣs−a/2

. ‖f‖Ḣs−a/2 ‖g‖Ḣs−a/2
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for 0 ≤ a < A, and this would complete the proof of the diagonal case.
By scaling, it suffices to prove (2.20) for l = 0. Indeed, setting λ = 2l, it is

easily checked that

∆lT
(
uj(t), vk(t)

)
(x) = λγ+2n∆0T

(
eiλtD∆j−lF, e

ρiλtD∆k−lG
)
(λx),

where F̂ (ξ) = f̂(λξ) and Ĝ(η) = ĝ(λη). Assuming that (2.20) holds for l = 0,
we therefore get

‖∆lT (uj, vk)‖Lq
t (Lr

x)

= λγ+2n−n/r−1/q
∥∥∆0T

(
eitD∆j−lF, e

ρitD∆k−lG
)
(x)
∥∥

Lq
t (Lr

x)

. λγ+2n−n/r−1/q2−A(j−l) ‖∆j−lF‖Ḣs ‖∆k−lG‖Ḣs

= λγ+2n−n/r−1/q−n−2s2−A(j−l) ‖∆jf‖Ḣs ‖∆kg‖Ḣs

= 2−A(j−l) ‖∆jf‖Ḣs ‖∆kg‖Ḣs ,

since 2s = γ + n− n/r − 1/q.
It only remains to prove (2.20) for l = 0. If 2j < 27(1 +

√
n), we can simply

estimate
‖∆0T (uj, vk)‖Lq

t (Lr
x) . ‖T (uj, vk)‖Lq

t (Lr
x)

and apply (2.15).
Henceforth we assume 2j ≥ 27(1 +

√
n). If uj(t) is at frequency ξ and vk(t)

at frequency η, then ∆0T
(
uj(t), vk(t)

)
is at frequency ξ + η = O(1). Thus ξ

and η will only interact if they are in opposite cubes of side length O(1). It
therefore makes sense to decompose ξ-space and η-space into unit cubes.

We write
∆0T (uj, vk) =

∑

µ,ν∈Zn

∆0T (Ωµuj,Ωνvk),

and conclude that

‖∆0T (uj, vk)‖Lq
t (Lr

x) .
∑

µ,ν∈Zn

‖∆0T (Ωµuj ,Ωνvk)‖Lq
t (Lr

x) .(2.21)

But since

ξ ∈ µ+Q∗, η ∈ ν +Q∗, ξ + η = O(1) =⇒ µ+ ν = O(1),

the sum can be restricted to the set of µ, ν such that |µ+ ν| ≤ C for some C
depending only on n. In fact, C = 2(1+

√
n) will suffice. Since we are assuming

2j ≥ 27(1 +
√
n) and |j − k| ≤ 2, it is easily checked that

|µ|, |ν| ≥ 23(1 +
√
n),

and that

µ /∈ 2jC̃ =⇒ Ωµ∆jf = 0, ν /∈ 2kC̃ =⇒ Ων∆kg = 0.(2.22)
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Hence, by (2.21), (2.16) and the Cauchy-Schwarz inequality,

‖∆0T (uj, vk)‖Lq
t (Lr

x) . 2−Aj
∑

|β|≤C

∑

α

‖Ωα∆jf‖Ḣs ‖Ω−α+β∆kg‖Ḣs

. 2−Aj ‖∆jf‖Ḣs ‖∆kg‖Ḣs ,

where α, β ∈ Zn and C depends only on n.
Assume

T : Ḣs−a/2 × Ḣs−a/2 −→ Ḣ2s−n/2−γ−a

for 0 ≤ a < A. Then since

2s− n/2− γ − a = n/2− n/r − 1/q − a,

and since Dθ is bounded from Ḣσ to Ḣσ−θ iff σ − θ < n
2 , it follows that

D−aT : Ḣs−a/2 × Ḣs−a/2 −→ Ḣn/2−n/r−1/q

for 0 ≤ a < A. Pick two sequences (fj) and (gj) in S which approximate f and

g in Ḣs−a/2, and let uj = eitDfj and vj = eρitDgj. Then
(
D−aT (uj, vj)

)
is a

Cauchy sequence in L
q/2
t (L

r/2
x ) and therefore converges in this space to some

function F . To show that F = D−aT (u, v) in D′(R1+n), it then suffices to show
that D−aT (uj, vj)→ D−aT (u, v) in D′(R1+n). But using the boundedness and
bilinearity of D−aT , we get
∫

R

〈D−aT (uj, vj)−D−aT (u, v), φ(t)〉 dt

≤
∫

R

∥∥D−aT (uj, vj)−D−aT (u, v)
∥∥

Ḣn/2−n/r−1/q ‖φ(t)‖Ḣn/r+1/q−n/2 dt

≤
∫

R

‖uj(t)− u(t)‖Ḣs−a/2 ‖v(t)‖Ḣs−a/2 ‖φ(t)‖Ḣn/r+1/q−n/2 dt

+ ‖uj(t)‖Ḣs−a/2

∫

R

‖vj(t)− v(t)‖Ḣs−a/2 ‖φ(t)‖Ḣn/r+1/q−n/2 dt

≤ ‖fj − f‖Ḣs−a/2 ‖g‖Ḣs−a/2

∫

R

‖φ(t)‖Ḣn/r+1/q−n/2 dt

+ ‖fj‖Ḣs−a/2 ‖gj − g‖Ḣs−a/2

∫

R

‖φ(t)‖Ḣn/r+1/q−n/2 dt,

and since we assume n/r+ 1/q− n/2 > −n/2, the last integral is bounded.

2.2.2 Proof of (2.13)

By proposition 6 and (2.5), it suffices to prove that

‖Ωµu · Ωνv‖Lq/2
t (L

r/2
x )

.
(
|µ| |ν|

)s+1/r−1/2
( ∑

|α|≤C

‖Ωµ+αf‖L2

)( ∑

|β|≤C

‖Ων+βg‖L2

)
(2.23)
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for some constant C. We use the following variation of the linear space-time
estimate (2.2), proved in [19]:

∥∥e±itDΩµf
∥∥

Lq
t (Lr

x)
≤ Cq,r,n |µ|s+1/r−1/2 ‖f‖L2 for µ 6= 0.(2.24)

Since
ΩµΩν = 0 if |µ− ν| > C,

where C depends only on n, the estimate (2.24) implies that

∥∥e±itDΩµf
∥∥

Lq
t (Lr

x)
=

∥∥∥∥e±itDΩµ

( ∑

|α|≤C

Ωµ+αf

)∥∥∥∥
Lq

t (Lr
x)

≤
∑

|α|≤C

∥∥e±itDΩµΩµ+αf
∥∥

Lq
t (Lr

x)

. |µ|s+1/r−1/2
∑

|α|≤C

‖Ωµ+αf‖L2 .

Hence, (2.23) follows after an application of Hölder’s inequality.
Note that (2.18) follows from the fact that if

0 ≤ σ, θ <
n

2
and σ + θ > 0,

then the multiplication operator

m : S × S → S, m(f, g) = fg

extends to a bounded operator

m̃ : Ḣσ × Ḣθ → Ḣσ+θ−n/2.

2.2.3 Proof of (2.11)

In this case A = (n−1)/2 and with notation as in proposition 6, 2s = (n−1)/2,
so it suffices to prove that

∥∥Ωµe
itDf ·Ωνe

itDg
∥∥

L2 . ‖Ωµf‖L2 ‖Ωνg‖L2

for all µ, ν ∈ Zn such that

|µ+ ν| ≤ 2(1 +
√
n) and |µ|, |ν| ≥ 8(1 +

√
n).

The space-time Fourier transform of Ωµe
itDf ·Ωνe

itDg evaluated at (τ, ξ) is

2π

∫
δ
(
τ − |η| − |ξ − η|

)
φµ(ξ − η)f̂(ξ − η)φν(η)ĝ(η) dη,

so by Plancherel’s theorem and the Cauchy-Schwarz inequality, it is enough to
show that

sup
τ,ξ

∫
χµ+Q∗(ξ − η)χν+Q∗(η)δ

(
τ − |η| − |ξ − η|

)
dη <∞.
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But the conditions on µ and ν imply that if ξ − η ∈ µ + Q∗ and η ∈ ν + Q∗,
then

|ξ − η| ∼ |η| ∼ |µ| ∼ |ν| and |ξ − η|+ |η| ≥ 2 |ξ| .
Consequently, the ellipsoid

E =
{
η : τ = |ξ − η|+ |η|

}

approximates a sphere of radius ∼ τ , and
∫
χµ+Q∗(ξ − η)χν+Q∗(η)δ

(
τ − |η| − |ξ − η|

)
dη

=

∫

E

χµ+Q∗(ξ − η)χν+Q∗(η)

(
|ξ − η| |η|
τ2 − |ξ|2

) 1
2

dA(η)

∼
∫

E

χµ+Q∗(ξ − η)χν+Q∗(η) dA(η),

where dA is surface measure on E. For the calculation required to go from the
Dirac delta to surface measure, we refer to section 2.2.5 below.

The last integral is the surface area of the intersection of a unit cube with a
convex surface, and is therefore uniformly bounded.

2.2.4 Proof of (2.12)

In this case, the symbol of T is

κ(ξ, η) =
(
|ξ|+ |η| − |ξ + η|

)1/4
,

so with notation as in proposition 6, we have γ = 1/4, and hence 2s = 3/4.
Since A = 1/2, we conclude that s−A/2 = 1/8. We must therefore prove

∥∥T (Ωµe
itDf,Ωνe

itDg)
∥∥

L2 . |µ|1/8 |ν|1/8 ‖Ωµf‖L2 ‖Ωνg‖L2

for all µ, ν ∈ Zn such that

|µ+ ν| ≤ 2(1 +
√
n) and |µ|, |ν| ≥ 8(1 +

√
n).

It suffices to show that
∫
κ2(ξ − η, η)χµ+Q∗(ξ − η)χν+Q∗(η)δ

(
τ − |η| − |ξ − η|

)
dη . |µ|1/4 |ν|1/4

uniformly in τ , ξ. But
∫
κ2(ξ − η, η)χµ+Q∗(ξ − η)χν+Q∗(η)δ

(
τ − |η| − |ξ − η|

)
dη

=

∫

E

χµ+Q∗(ξ − η)χν+Q∗(η)

( |ξ − η| |η|
τ + |ξ|

) 1
2

dA(η)

∼ |µ|1/4 |ν|1/4
∫

E

χµ+Q∗(ξ − η)χν+Q∗(η) dA(η),
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and the last integral is uniformly bounded.

Since κ(ξ, η) ≤ 2 |ξ|1/8 |η|1/8
, it follows that

T : Ḣ3/8−a/2 × Ḣ3/8−a/2 −→ Ḣ−1/2−a

for 0 ≤ a < 1/2.

2.2.5 Further remarks

Let us show that

∫
f(η)δ

(
φ(η)

)
dη =

∫

τ=|ξ−η|∓|η|

f(η)
|ξ − η|1/2 |η|1/2

∣∣∣τ2 − |ξ|2
∣∣∣
1/2

dA(η),

where dA is surface measure on the hypersurface {η ∈ Rn : τ = |ξ − η| ∓ |η|}.
We have

∫
f(η)δ

(
τ ± |η| − |ξ − η|

)
dη =

∫

τ=|ξ−η|∓|η|

f(η)
dA(η)

|∇η(τ − |ξ − η| ± |η|)| .

Moreover,

∇η(τ − |ξ − η| ± |η|) =
ξ − η
|ξ − η| ±

η

|η| ,

and a straightforward calculation yields

∣∣∣∣
ξ − η
|ξ − η| +

η

|η|

∣∣∣∣
2

=
|ξ|2 −

∣∣|ξ − η| − |η|
∣∣2

|ξ − η| |η| ,

∣∣∣∣
ξ − η
|ξ − η| −

η

|η|

∣∣∣∣
2

=
(|ξ − η|+ |η|)2 − |ξ|2

|ξ − η| |η| .

From the proof of proposition 6, it is clear that we can replace the assump-
tion (2.15) by certain dyadic estimates. First, we need the off-diagonal dyadic
estimate

‖T (uj, vk)‖Lq
t (Lr

x) . ‖∆jf‖Ḣs ‖∆kg‖Ḣs for |j − k| > 2.

If q = r = 2, this estimate follows if we can show that

∫
κ2(ξ − η, η)
|ξ − η|2s |η|2sχ2jC(ξ − η)χ2kC(η)δ

(
τ ± |η| − |ξ − η|

)
dη

is uniformly bounded for all τ , ξ and all j, k ∈ Z satisfying the off-diagonal
condition |j − k| > 2. But this condition implies that the above integral is
bounded by

∫

|ξ−η|+|η|≤C|ξ|

κ2(ξ − η, η)
|ξ − η|2s |η|2s δ

(
τ ± |η| − |ξ − η|

)
dη.(2.25)
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Second, we need the low frequency diagonal estimate

‖∆0T (uj, vk)‖Lq
t (Lr

x) . ‖∆jf‖Ḣs ‖∆kg‖Ḣs for j, k ≤ C,

where C depends on n. But in this case we also have |ξ − η| + |η| ≤ C |ξ|, so
again the estimate can be reduced to bounding (2.25).

For all the operators T that we are interested in, the integral (2.25) is easy
to bound by explicit calculation, even when we choose the + sign in the delta
function, which of course corresponds to the estimate for u+v−. See [18], [9].
We are simplifying somewhat here, since |ξ − η| and |η| are not always taken to
the same power, cf. (2.10).

Thus, the off-diagonal estimate is in principle the easy part, and the inter-
esting part is the diagonal estimate (2.16). In this case we need to bound

χC(ξ)

∫
κ2(ξ − η, η)χµ+Q∗(ξ − η)χν+Q∗(η)δ

(
τ ± |η| − |ξ − η|

)
dη

= χC(ξ)

∫

τ=|ξ−η|∓|η|

κ2(ξ − η, η)χµ+Q∗(ξ − η)χν+Q∗(η)
|ξ − η|1/2 |η|1/2

∣∣τ2 − |ξ|2
∣∣1/2

dA(η)

in terms of powers of |µ|, |ν| for all µ, ν ∈ Zn such that

|µ+ ν| ≤ 2(1 +
√
n) and |µ|, |ν| ≥ 8(1 +

√
n).

Let us denote by I = I(τ, ξ) the above integral. If we are looking at u+v+, then

χµ+Q∗(ξ − η)χν+Q∗(η)
|ξ − η|1/2 |η|1/2

∣∣τ2 − |ξ|2
∣∣1/2

∼ χµ+Q∗(ξ − η)χν+Q∗(η),

and as we have seen, the estimate is then easy. In the case u+v−, on the other
hand,

χC(ξ)χµ+Q∗(ξ − η)χν+Q∗(η)
|ξ − η|1/2 |η|1/2

∣∣τ2 − |ξ|2
∣∣1/2

∼ χC(ξ)χµ+Q∗ (ξ − η)χν+Q∗(η)
|µ|1/2 |ν|1/2

(|ξ| − |τ |)1/2
,

and the factor (|ξ| − |τ |)−1 is not bounded, so unless there is some cancellation
from the symbol κ, we cannot bound the integral. In this case one must use a
further dyadic decomposition w.r.t. the angle between ξ − η and η. See [23].
For the estimate (2.12), however, we have sufficient cancellation from κ, so the
proof is in principle the same for u+v− as the one we gave for u+v+. The only

difference is that for u+v− we must take A = 1/4, since then I ≤ |µ|1/2 |ν|1/2
,

as opposed to I ≤ |µ|1/4 |ν|1/4 for u+v+.
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2.3 A quadrilinear estimate

In this section we aim to prove the following.

Theorem 7. Let uj, 1 ≤ j ≤ 4, be solutions of �uj = 0 on R1+2, with Cauchy
data uj

∣∣
t=0

= fj, ∂tuj

∣∣
t=0

= 0. Then the estimate
∣∣∣∣
∫

R1+2

D−aD−(u1u2) · u3u4 dt dx

∣∣∣∣ . ‖f1‖Ḣ2−a ‖f2‖L2 ‖f3‖L2 ‖f4‖L2(2.26)

holds for 3/4 < a < 1.

The key point is that all the regularity is concentrated on u1. This makes the
proof much harder than in the case where the regularity is evenly distributed
among the four functions. This asymmetry makes it impossible to prove the
inequality by a reduction to bilinear L2 estimates.

To use the full force of the cancellations coming from the operator D−, we
must combine the next lemma with a special change of variables which was first
used by Klainerman and Machedon in [15]. The following lemma is a sharper
version of similar results proved in [15] and [18].

Lemma 4. If η1 and η2 are two points on the ellipse |ξ − η| + |η| = τ in R2,
where τ > |ξ|, ξ ∈ R2, then

|η1 − η2| −
∣∣|η1| − |η2|

∣∣ . (τ − |ξ|)1/2 min
{
|η1|1/2

, |η2|1/2}
.(2.27)

Moreover, if |η1| ≥ 2 |η2|, then

|η1 − η2| −
∣∣|η1| − |η2|

∣∣ . τ − |ξ| .(2.28)

Proof. We first show that it suffices to prove

|η1| |η2| − η1 · η2 . (τ − |ξ|)max
{
|η1| , |η2|

}
.(2.29)

This estimate would imply

|η1 − η2| −
∣∣|η1| − |η2|

∣∣ . |η1| |η2| − η1 · η2|η1 − η2|

.
(τ − |ξ|)max

{
|η1| , |η2|

}

|η1 − η2|
.

(2.30)

If |η1| ≥ 2 |η2| or |η2| ≥ 2 |η1|, then |η1 − η2| ∼ max
{
|η1| , |η2|

}
, so (2.28) holds.

Next, assume |η1| ∼ |η2|. Then if |η1 − η2| ≤ (τ − |ξ|)1/2 |η1|1/2, (2.27) is

obviously satisfied, so we may assume |η1 − η2| ≥ (τ − |ξ|)1/2 |η1|1/2
, which

combined with (2.30) implies (2.27).
It suffices to prove (2.29) for ξ = (1, 0), τ > 1. Set rj = |ηj |, ωj = ηj/ |ηj |

and yj = ξ · ωj for j = 1, 2. A simple calculation reveals that rj = τ2−1
2(τ−yj)

,

whence

r1r2(1− ω1 · ω2) = (τ2 − 1)max{r1, r2}
1− y1y2 ± (1 − y2

1)
1/2(1− y2

2)
1/2

2
(
τ −min{y1, y2}

) .
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Clearly,
1− y1y2 + (1− y2

1)
1/2(1− y2

2)
1/2 . τ −min{y1, y2},

and this completes the proof.

The first step in proving (2.26) is to observe that we may assume f̂j(ξ) ≥ 0 for
1 ≤ j ≤ 4. Indeed, if u = eitDf and v = e±itDg, then

ûv(τ, ξ) =

∫
δ
(
τ ± |η| − |ξ − η|

)
f̂(ξ − η)ĝ(η) dη,

and δ
(
τ ± |η| − |ξ − η|

)
dη is a positive measure on the hypersurface given by

± |η|+ |ξ − η| = τ . With this assumption, the integral in (2.26) is non-negative,
so we can forget about the absolute value from now on.

Notation. If T is a bilinear operator with Fourier symbol κ, i.e.,

T̂ (u, v)(τ, ξ) =

∫
κ(τ − λ, ξ − η, λ, η)û(τ − λ, ξ − η)v̂(λ, η) dτ dξ dλ dη,

and if A is a subset of R2+2n, we let TA be the operator whose symbol is κχA.

Define A =
{
(τ, ξ, λ, η) : |η| /2 ≤ |ξ| ≤ 2 |η|

}
, and write

u3u4 = (u3u4)A + (u3u4)Ac .

The first term on the right is the diagonal part, the second term the off-diagonal
part. We first show that the estimate for the off-diagonal part can be reduced
directly to bilinear estimates. By Plancherel’s theorem and Hölder’s inequality,

∫

R1+2

D−aD−(u1u2) · (u3u4)Ac dt dx

=

∫

R1+2

D
3/2−a
− (u1u2) ·D−aD

a−1/2
− (u3u4)Ac dt dx

≤
∥∥∥D3/2−a

− (u1u2)
∥∥∥

L2

∥∥∥Da−1/2
− (D−a/2u3D

−a/2u4)Ac

∥∥∥
L2
.

Using the fact that
∣∣∣
∣∣|ξ − η| ± |η|

∣∣− |ξ|
∣∣∣ ≤ 2 min{|ξ − η| , |η|},

we get
∥∥∥D3/2−a

− (u1u2)
∥∥∥

L2
.
∥∥∥D1/2

− (D1−au1 · u2)
∥∥∥

L2
,

∥∥∥Da−1/2
− (D−a/2u3D

−a/2u4)Ac

∥∥∥
L2

.
∥∥∥D1/4

− (D−3/8u3 ·D−3/8u4)
∥∥∥

L2
.

Now apply theorems 4 and 5.
Proving the estimate for the diagonal part is much harder, and we cannot

use Cauchy-Schwarz as above to reduce the estimate to bilinear estimates, since
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there is no L2 estimate for D−aD
a−1/2
− (u3u4)A. Instead, we use the method

of dyadic decomposition. Since this was considered in detail in the previous
section, we can afford to be a bit less careful this time around. Thus, in the
sum (u3u4)A =

∑
|j−k|≤2(∆ju3∆ku4)A we only consider the terms where j = k.

Furthermore, we have

∆ju3∆ju4 =
∑

l≤j+2

∆l(∆ju3∆ju4).

Note that if |l − j| ≤ C, then

D−a∆l(∆ju3∆ju4)

is comparable to
∆l(D

−a/2∆ju3D
−a/2∆ju4),

so we can use the same proof as in the off-diagonal case. We may therefore
assume l ≪ j.

Next, we write u1u2 =
∑

p,q ∆pu1∆qu2. Since the regularity is concentrated
on u1, the worst possible case is clearly p ≤ q. Again we simplify and assume
p = q in the diagonal case, whereas p ≪ q in the off-diagonal case. Thus, we
want to prove

(2.31)
∑

j

∑

l≪j

∑

p

∫

R1+2

D−aD−(∆pu1∆pu2) ·∆l(∆ju3∆ju4) dt dx

. ‖f1‖Ḣ2−a ‖f2‖L2 ‖f3‖L2 ‖f4‖L2

and

(2.32)
∑

j

∑

l≪j

∑

q

∑

p≪q

∫

R1+2

D−aD−(∆pu1∆qu2) ·∆l(∆ju3∆ju4) dt dx

. ‖f1‖Ḣ2−a ‖f2‖L2 ‖f3‖L2 ‖f4‖L2 .

Observe that in (2.32) we must have |q − l| ≤ C. We therefore assume q = l in
(2.32). It should now be obvious that (2.31) and (2.32) follow from the dyadic
estimates

(2.33)

∫

R1+2

D−(∆pu1∆pu2) ·∆l(∆ju3∆ju4) dt dx

. 2l2p ‖∆pf1‖L2 ‖∆pf2‖L2 ‖∆jf3‖L2 ‖∆jf4‖L2 ,

where we assume l≪ j, l ≤ p+ 3, and

(2.34)

∫

R1+2

D−(∆pu1∆lu2) ·∆l(∆ju3∆ju4) dt dx

. 23l/425p/4 ‖∆pf1‖L2 ‖∆lf2‖L2 ‖∆jf3‖L2 ‖∆jf4‖L2 ,



30 Space-Time Estimates for the Wave Equation

where p≪ l≪ j. By scaling, we may assume l = 0

To avoid cumbersome notation, we suppress the indices and assume f1 =
f2 = f3 = f4 = f , and we set u = (u+ + u−)/2, where u± = e±itDf . This does
not restrict the generality of our proof, as the reader can easily convince himself.
In other words, the indices can be put back in without any modifications to the
proof.

Observe that u+u+ and u+u− have almost disjoint supports in Fourier space.
The first product we will say is of type ++, the second of type +−. Thus in
(2.33) and (2.34) the products are either both of type ++ or both of type +−.
There are no interactions between products of different types. Before we start
the proofs, we remark that the estimate (2.34) only makes sense for products of
type +−, since in the ++ case, simple geometric considerations show that we
would necessarily have |p− j| ≤ C, contradicting the assumption p≪ j.

2.3.1 Proof of (2.33) for products of type ++

In this case we must necessarily have |p− j| ≤ C, so we may as well assume
p = j. By a further decomposition in unit cubes, we see that it suffices to prove

∫

R1+2

D−(Ωµu+ ·Ω−µu+) · (Ωνu+ · Ω−νu+) dt dx

. |µ| ‖Ωµf‖L2 ‖Ω−µf‖L2 ‖Ωνf‖L2 ‖Ω−νf‖L2 ,

where |µ| ∼ |ν| ≫ 1. Applying Cauchy-Schwarz, this reduces to proving

∥∥∥D1/2
− (Ωµu+ ·Ω−µu+)

∥∥∥
L2

. |µ|1/2 ‖Ωµf‖L2 ‖Ω−µf‖L2

for all µ ∈ Z2, |µ| ≫ 1. By the usual Cauchy-Schwarz argument, this can be
reduced to proving that

(τ − |ξ|)
∫
χµ+Q∗(η)χµ+Q∗(ξ − η)δ

(
τ − |η| − |ξ − η|

)
dη . |µ| .

But this is easy; see section 2.2.5.

2.3.2 Proof of (2.33) for products of type +−
Decomposing in unit cubes, we conclude that it suffices to prove

(2.35)

∫

R1+2

D−(Ωµu+ ·Ωνu−) · (Ωκu+ ·Ω−κu−) dt dx

. |µ| ‖Ωµf‖L2 ‖Ωνf‖L2 ‖Ωκf‖L2 ‖Ω−κf‖L2 ,

where |κ| ≫ 1 and either |µ|, |ν| ≤ C or |µ| ≫ 1 and ν = −µ. If the first
alternative holds, there is no orthogonality, but summing is not a problem,
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since there is only a fixed, finite number of terms. Denote by I the integral in
(2.35). A calculation shows that I equals

∫ (
|ξ| −

∣∣|η1| − |ξ − η1|
∣∣) δ
(
|ξ − η2| − |η2| − |ξ − η1|+ |η1|

)

× φµf̂(ξ − η1)φν f̂(η1)φκf̂(−η2)φ−κf̂(η2 − ξ) dη1 dη2 dξ.

Performing the linear change of variables (see [15], [18])

(ξ, η1, η2) −→ (ξ − η1 − η2,−η2,−η1),(2.36)

we find that I equals

∫ (
|ξ − η1 − η2| −

∣∣|η2| − |ξ − η1|
∣∣)

× δ
(
τ − |η1| − |ξ − η1|

)
δ
(
τ − |η2| − |ξ − η2|

)

× φµf̂(ξ − η1)φν f̂(−η2)φκf̂(η1)φ−κf̂(η2 − ξ) dη1 dη2 dξ.

By lemma 4,

|ξ − η1 − η2| −
∣∣|η2| − |ξ − η1|

∣∣ . (τ − |ξ|)1/2 |µ|1/2
,

so applying Cauchy-Schwarz first w.r.t. η1, η2 and then w.r.t. τ , ξ, we find that
I is bounded by

|µ|1/2
I1/2
µ,κ I

1/2
−ν,κ ‖Ωµf‖L2 ‖Ωνf‖L2 ‖Ωκf‖L2 ‖Ω−κf‖L2 ,

where

Iµ,λ = sup
τ,ξ

(τ − |ξ|)1/2

∫
χµ+Q∗(ξ − η)χλ+Q∗(η)δ

(
τ − |η| − |ξ − η|

)
dη

= sup
τ,ξ

∫

τ=|ξ−η|+|η|

χµ+Q∗(ξ − η)χλ+Q∗(η)
|ξ − η|1/2 |η|1/2

(τ + |ξ|)1/2
dA(η).

Clearly, Iµ,λ . min
{
|µ|1/2

, |λ|1/2}
, and this finishes the proof.

2.3.3 Proof of (2.34) for products of type +−
In this case we only decompose the second product in unit cubes. Thus, we
must show

(2.37)

∫

R1+2

D−(∆pu+∆0u−) · (Ωµu+Ω−µu−) dt dx

. 25p/4 ‖∆pf‖L2 ‖∆0f‖L2 ‖Ωµf‖L2 ‖Ω−µf‖L2
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for p≪ 0 and |µ| ≫ 1. The integral I in (2.37) equals

∫ (
|ξ| −

∣∣|η1| − |ξ − η1|
∣∣) δ
(
|ξ − η2| − |η2| − |ξ − η1|+ |η1|

)

× β(η1/2
p)f̂(η1)βf̂(ξ − η1)φµf̂(−η2)φ−µf̂(η2 − ξ) dη1 dη2 dξ.

Performing the linear change of variables (2.36), we find that I equals

∫ (
|ξ − η1 − η2| −

∣∣|η2| − |ξ − η1|
∣∣)

× δ
(
τ − |η1| − |ξ − η1|

)
δ
(
τ − |η2| − |ξ − η2|

)

× β(−η2/2p)f̂(−η2)βf̂(ξ − η1)φµf̂(η1)φ−µf̂(η2 − ξ) dη1 dη2 dξ.

By lemma 4,

|ξ − η1 − η2| −
∣∣|η2| − |ξ − η1|

∣∣ . (τ − |ξ|)1/22p/2

and proceeding as in the previous section, we find that I is bounded by

2p/2J1/2
p,µ J

1/2
0,µ ‖∆pf‖L2 ‖∆0f‖L2 ‖Ωµf‖L2 ‖Ω−µf‖L2 ,

where

Jk,µ = sup
τ,ξ

(τ − |ξ|)1/2

∫
χ2kC(ξ − η)χµ+Q∗(η)δ

(
τ − |η| − |ξ − η|

)
dη

= sup
τ,ξ

∫

τ=|ξ−η|+|η|

χ2kC(ξ − η)χµ+Q∗(η)
|ξ − η|1/2 |η|1/2

(τ + |ξ|)1/2
dA(η).

Assuming 2k ≪ |µ|, it is clear that Jk,µ . 23k/2. This finishes the proof of
theorem 7.



Chapter 3

Hyperbolic Sobolev Spaces

In this chapter we define the basic spaces in which we will obtain solutions of
nonlinear wave equations. These spaces arise from L2 Sobolev norms in space-
time, with weights adapted to the wave operator. We prove the basic principle
that a multilinear space-time estimate involving solutions of the homogeneous
wave equation implies a corresponding estimate for elements of the Sobolev
spaces referred to above, although these spaces themselves do not contain any
non-trivial solution of the homogeneous wave equation. Applying this principle
to the estimates from chapter two, we derive a number of useful estimates. We
then discuss the algebra property of these spaces, extending this to general
nonlinear functions. The remainder of the chapter is devoted to proving a
suitable version of the energy inequality for these spaces, a basic ingredient in
the well-posedness theorems of chapter four.

3.1 The space Hs,θ

For s, θ ∈ R, we let Hs,θ be the space of all u ∈ S′(R1+n) for which û is a
tempered function such that

(τ, ξ) 7−→ 〈ξ〉s wθ
−(τ, ξ)û(τ, ξ)(3.1)

is in L2(R1+n), where 〈ξ〉 = 1 + |ξ| and w−(τ, ξ) = 1 +
∣∣|τ | − |ξ|

∣∣. We denote
the L2 norm of this function by ‖u‖s,θ. Then ‖·‖s,θ is a norm on Hs,θ. An
alternative definition is

Hs,θ =
{
u ∈ S′ : ΛsΛθ

−u ∈ L2
}

(3.2)

33
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with norm ‖u‖′s,θ =
∥∥ΛsΛθ

−u
∥∥

L2 , where Λs and Λθ
− are continuous linear maps

of S′ to itself, defined by

Λ̂su = (1 + |ξ|2)s/2û

Λ̂θ
−u =


1 +

(
τ2 − |ξ|2

)2

1 + τ2 + |ξ|2




θ/2

û.

In fact, since Λ−s = (Λs)
−1

and Λ−θ
− =

(
Λθ
−

)−1
, these maps are isomorphisms.

Since there are constants C1, C2 > 0 such that

C1 〈ξ〉 ≤ (1 + |ξ|2)1/2 ≤ C2 〈ξ〉(3.3a)

C1w−(τ, ξ) ≤


1 +

(
τ2 − |ξ|2

)2

1 + τ2 + |ξ|2




1/2

≤ C2w−(τ, ξ),(3.3b)

the two definitions are equivalent, as are the norms ‖·‖s,θ and ‖·‖′s,θ. We will
use both these norms, depending on whether we are working in physical or
frequency space, but since they are equivalent, it should cause no confusion to
denote both of them by ‖·‖s,θ.

Since S is dense in L2 and ΛsΛθ
− maps S onto itself, the definition (3.2)

shows immediately that S is dense in Hs,θ.
For later use we also define

Λ̂s
+u =

(
1 + τ2 + |ξ|2

)s/2

û.

Like Λs and Λθ
−, this map is an isomorphism of both S and S′.

3.2 An integral representation

Given u ∈ Hs,θ, there is a unique decomposition

u = u+ + u−

such that û+ is supported in [0,∞) × Rn and û− in (−∞, 0]× Rn. Obviously,

u± ∈ Hs,θ, and ‖u‖2s,θ = ‖u+‖2s,θ + ‖u−‖2s,θ.

When θ > 1/2, we have the following useful characterization of Hs,θ.

Proposition 7. If θ > 1/2, then:

(a) Hs,θ ⊆ Cb(R, H
s), in the sense that any tempered distribution u ∈ Hs,θ

has a unique representative t 7→ u(t) in Cb(R, H
s). Moreover,

‖u(t)‖Hs ≤ C ‖u‖s,θ for all t ∈ R,(3.4)

where C depends only on θ.
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(b) u ∈ Hs,θ iff there exist f+, f− ∈ L2(R, Hs) such that

f̂+(ρ)(ξ) = 0 for |ξ| < −ρ,
f̂−(ρ)(ξ) = 0 for |ξ| < ρ

and

u±(t) =
1

2π

∫ ∞

−∞

eit(ρ±D)f±(ρ)

(1 + |ρ|)θ
dρ.

Moreover, ‖u±‖s,θ = ‖f±‖L2(R,Hs).

Proof. We start by proving that a tempered distribution can have at most one
representative in Cb(R, H

s). First note that by remark (ii) on p. 2, any element
of Cb(R, H

s) is a tempered distribution. Now assume that u, v ∈ Cb(R, H
s) are

equal in the sense of distributions. We have to show that u(t) = v(t) for all t.
Fix φ ∈ S(Rn) and define f : R→ C by

f(t) = 〈u(t)− v(t), φ 〉 for t ∈ R.

Then f is continuous, and for every ψ ∈ S(R),

∫
f(t)ψ(t) dt =

∫
〈u(t)− v(t), ψ(t)φ 〉 dt = 〈u− v, ζ 〉 = 0,

where ζ ∈ S(R1+n) is given by ζ(t, x) = ψ(t)φ(x). Hence, f(t) = 0 for all t.
The existence statement of part (a) follows from part (b), which also implies,

using theorem 1(a) and the Cauchy-Schwarz inequality, that

‖u(t)‖Hs ≤
∫ ‖f+(ρ)‖Hs

(1 + |ρ|)θ
dρ+

∫ ‖f−(ρ)‖Hs

(1 + |ρ|)θ
dρ

≤ C
(
‖f+‖L2(R,Hs) + ‖f−‖L2(R,Hs)

)

≤ C ‖u‖s,θ ,

where the last constant equals 4
(∫

(1 + |ρ|)−2θ dρ
)1/2

.
We now proceed to prove part (b). Under the isometry

u←→ F = F(ΛsΛθ
−u), Hs,θ ←→ L2,

u+ and u− correspond to F+ = χ[0,∞)×RnF and F− = χ(−∞,0]×RnF .
We define another isometry

F± ←→ f±, L2(R1+n)←→ L2(R, Hs),

where

(1 + |ξ|)s f̂+(ρ)(ξ) = F+(ρ+ |ξ| , ξ)
(1 + |ξ|)s f̂−(ρ)(ξ) = F−(ρ− |ξ| , ξ).

(3.5)
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It is a straightforward exercise in measure theory to prove that, after redefining
f± on a set of measure zero if necessary, f± is in L2(R, Hs) iff F± is in L2(R1+n).
We omit the details. Thus, u ∈ Hs,θ iff f+, f− ∈ L2(R, Hs), and we set

v+(t) =
1

2π

∫
eit(ρ+D)f+(ρ)

(1 + |ρ|)θ
dρ, v−(t) =

1

2π

∫
eit(ρ−D)f−(ρ)

(1 + |ρ|)θ
dρ

for t ∈ R. By the dominated convergence theorem, v+, v− ∈ C(R, Hs), and
since the Hs norm of v±(t) is bounded uniformly in t, v+ and v− are tempered
distributions. We will prove that u+ = v+ in the sense of distributions. The
proof that u− = v− is similar, and will be omitted.

Since the bilinear pairing 〈 ·, · 〉 : Hs × H−s → C is continuous, it follows
from theorem 1(d) and Fubini’s theorem that

〈 v+, φ 〉 =

∫
〈 v+(t), φ(t) 〉 dt

=

∫∫ 〈
eit(ρ+D)f+(ρ)

2π(1 + |ρ|)θ
, φ(t)

〉
dρ dt

=

∫∫∫
eit(ρ+|ξ|)f̂+(ρ)(ξ)

2π(1 + |ρ|)θ
F−1

(
φ(t)

)
(ξ) dξ dρ dt

=

∫∫∫
1

2π
eit(ρ+|ξ|)û+(ρ+ |ξ| , ξ)F−1

(
φ(t)

)
(ξ) dξ dρ dt

=

∫∫
û+(τ, ξ)

1

2π

∫
eitτF−1

(
φ(t)

)
(ξ) dt dτ dξ

=

∫∫
û+(τ, ξ)F−1

(
φ
)
(τ, ξ) dτ dξ

= 〈u+, φ 〉

for every φ ∈ S(R1+n). This concludes the proof.

3.3 Space-time estimates

In this section we prove a highly useful corollary to proposition 7, namely the
fact that a multilinear space-time estimate involving solutions of the linear wave
equation with data in Hs in many cases implies a corresponding estimate for
elements of Hs,θ with θ > 1/2. We then apply this result to the estimates
of chapter 2, thereby immediately deriving a number of important inequalities
which are collected in theorems 8 and 9. Other estimates are then deduced
from these, and we also include a well-known bilinear estimate based on the
Cauchy-Schwarz inequality, see proposition 10 below.

Proposition 8. Assume that T : Hs1(Rn) × · · · × Hsk(Rn) −→ Hσ(Rn) is
k-linear, and let θ > 1/2.
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(a) If

∥∥T (eλ1itDf1, . . . , e
λkitDfk)

∥∥
Lq

t (Lr
x)
≤ C ‖f1‖Hs1 · · · ‖fk‖Hsk ,(3.6)

where λ is a fixed k-tuple in {−1, 1}k, then

‖T (u1, . . . , uk)‖Lq
t (Lr

x) ≤ C ‖u1‖s1,θ · · · ‖uk‖sk,θ(3.7)

for all (u1, . . . , uk) ∈ Hs1,θ × · · · ×Hsk,θ such that

supp ûj ⊆
{

[0,∞)× Rn if λj = 1,

(−∞, 0]× Rn if λj = −1.
(3.8)

(b) If (3.6) holds for all λ ∈ {−1, 1}k, then (3.7) holds for all

(u1, . . . , uk) ∈ Hs1,θ × · · · ×Hsk,θ.

Proof. By proposition 7(b) and the condition (3.8), which is equivalent to

uj =

{
uj+ if λj = 1,

uj− if λj = −1,

there exists fj ∈ L2(R, Hsj ) such that

uj =

∫ ∞

−∞

eitρeλjitDfj(ρ)

(1 + |ρ|)θ
dρ for 1 ≤ j ≤ k,

and we have ‖uj‖sj ,θ = ‖fj‖L2(R,Hsj ).

Theorem 1(d) yields

T (u1, . . . , uk)

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

eit(ρ1+···+ρk)T
(
eλ1itDf1(ρ1), . . . , e

λkitDfk(ρk)
)

(1 + |ρ1|)θ · · · (1 + |ρk|)θ
dρ1 · · ·dρk,

and it follows from Minkowski’s integral inequality, (3.6) and the Cauchy-
Schwarz inequality that

‖T (u1, . . . , uk)‖Lq
t (Lr

x)

≤
∫ ∞

−∞

· · ·
∫ ∞

−∞

C ‖f1(ρ1)‖Hs1 · · · ‖fk(ρk)‖Hsk

(1 + |ρ1|)θ · · · (1 + |ρk|)θ
dρ1 · · · dρk

≤ C ‖f1‖L2(R,Hs1) · · · ‖fk‖L2(R,Hsk ) .

This concludes the proof of part (a), and to prove part (b) we simply write
uj = uj+ + uj−, use the multilinearity of T , and apply part (a).
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Applying this proposition to the space-time estimates (2.2), (2.13), (2.11) and
(2.6), we obtain the following result.

Theorem 8. Assume θ > 1/2.

(a) If

s =
n

2
− n

r
− 1

q
,

2

min (1, γ(r))
≤ q ≤ ∞ and 2 ≤ r <∞,(3.9)

where γ(r) = (n− 1)
(

1
2 − 1

r

)
, then

‖u‖Lq
t (Lr

x) ≤ C ‖u‖s,θ .(3.10)

(b) If (3.9) holds, (2/q, γ) 6= (1, 1) and 0 ≤ a < 1− 2/r, then
∥∥D−a(uv)

∥∥
L

q/2
t (L

r/2
x )
≤ C ‖u‖s−a/2,θ ‖v‖s−a/2,θ .(3.11)

(c) If n ≥ 3 and 0 ≤ a < (n− 1)/2, then
∥∥D−a(u+v+)

∥∥
L2 . ‖u+‖(n−1)/4−a/2,θ ‖v+‖(n−1)/4−a/2,θ .(3.12)

(d) If n ≥ 3 and 0 ≤ a < (n− 2)/2, then
∥∥D−a(u+v−)

∥∥
L2 . ‖u+‖(n−1)/4−a/2,θ ‖v−‖(n−1)/4−a/2,θ .(3.13)

Note that (3.10) corresponds to the embedding

Hs,θ ⊆ Lq
t (L

r
x),

which is the analog in the spaces Hs,θ of the Sobolev embedding

Hs(Rn) ⊆ Lr(Rn) for s =
n

2
− n

r
, 2 ≤ r <∞.

The analog of the embedding

Hs(Rn) ⊆ L∞(Rn) for s >
n

2
(3.14)

is

Hs,θ(R1+n) ⊆ L∞(R1+n) for s >
n

2
, θ >

1

2
.(3.15)

The latter is easily proved by direct estimation or by combining (3.14) with
proposition 7(a).

Definition 2. We let Sγ
± be the symmetric bilinear operator given by

̂Sγ
±(f, g)(ξ) =

∫ ∣∣∣
∣∣|ξ − η| ± |η|

∣∣− |ξ|
∣∣∣
γ

f̂(ξ − η)ĝ(η) dη.(3.16)
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Theorem 9. Assume θ > 1/2.

(a) If n = 2 and 0 ≤ a < 1/2, then

∥∥∥D−aS
1/4
+ (u+, v+)

∥∥∥
L2

. ‖u+‖3/8−a/2,θ ‖v+‖3/8−a/2,θ .(3.17)

(b) If n = 2 and 0 ≤ a < 1/4, then

∥∥∥D−aS
1/4
− (u+, v−)

∥∥∥
L2

. ‖u+‖3/8−a/2,θ ‖v−‖3/8−a/2,θ .(3.18)

(c) For any n ≥ 2,
∥∥∥S1/2

+ (u+, v+)
∥∥∥

L2
≤ C ‖u+‖0,θ ‖v+‖n/2,θ ,(3.19a)

∥∥∥S1/2
− (u+, v−)

∥∥∥
L2
≤ C ‖u+‖0,θ ‖v−‖n/2,θ .(3.19b)

Proof. Observe that

Dγ
−(eitDf · e±itDg) = Sγ

±(eitDf, e±itDg).

Since
∣∣∣
∣∣|ξ − η| ± |η|

∣∣− |ξ|
∣∣∣ ≤ 2 min{|ξ − η| , |η|},(3.20)

it follows that

S
1/4
± : H3/8−a/2(Rn)×H3/8−a/2(Rn) −→ H−1/2−a(Rn)

for 0 ≤ a < 1/2, and

S
1/2
± : L2(Rn)×Hn/2(Rn) −→ H−1/2(Rn).

Therefore, applying proposition 8 to (2.12), (2.9) and (2.10), the theorem fol-
lows.

Next, we define two bilinear operators which are ubiquitous in what follows.
These operators are intimately connected with the bilinear operator (u, v) 7→
Λ−(uv), and basically correspond to the case where u and v concentrate on
the light cone, i.e., they are solutions of the homogeneous wave equation. Cf.
lemma 5 below.

Definition 3. Let Rγ be the symmetric bilinear operator given by

Rγ(u, v) = Sγ
+(u+, v+) + Sγ

+(u−, v−) + Sγ
−(u+, v−) + Sγ

−(u−, v+).(3.21)

Thus,

R̂γ(u, v)(τ, ξ) =

∫
rγ(τ − λ, ξ − η, λ, η)û(τ − λ, ξ − η)v̂(λ, η) dλ dη,
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where

r(τ, ξ, λ, η) =

{
|ξ|+ |η| − |ξ + η| if τλ ≥ 0,

|ξ + η| −
∣∣|ξ| − |η|

∣∣ if τλ < 0.
(3.22)

Furthermore, let Rγ
0 be the symmetric bilinear operator given by

R̂γ
0 (u, v)(τ, ξ) =

∫
rγ
0 (τ − λ, ξ − η, λ, η)û(τ − λ, ξ − η)v̂(λ, η) dλ dη,

where r0(τ, ξ, λ, η) =
(
rχE

)
(τ, ξ, λ, η) and χE is the characteristic function of

the set

E =
{
(τ, ξ, λ, η) : w−(τ, ξ) + w−(λ, η) ≤ r(τ, ξ, λ, η)

}
.(3.23)

An important feature of the norm ‖u‖s,θ is that it only depends on the
absolute value of û. To avoid having to pass to frequency space every time we
want to prove an estimate in this norm, we introduce some special notation.

Notation. We write
⌊u⌋ = F−1 |û| ,

and
u � v iff |û| ≤ v̂ a.e., u - v iff |û| ≤ C v̂ a.e.

Lemma 5. For any γ > 0, we have

Λγ(uv) � 3γ
(
Λγ ⌊u⌋ · ⌊v⌋+ ⌊u⌋ · Λγ ⌊v⌋

)
,(3.24)

Λγ
+(uv) � 3γ

(
Λγ

+ ⌊u⌋ · ⌊v⌋+ ⌊u⌋ · Λγ
+ ⌊v⌋

)
(3.25)

and

Λγ
−(uv) � Cγ

{
Λγ
− ⌊u⌋ · ⌊v⌋+ ⌊u⌋ · Λγ

− ⌊v⌋+Rγ
0 (⌊u⌋ , ⌊v⌋)

}
,(3.26)

where Rγ
0 is as in definition 3.

Proof. The inequality

(1 + |ξ|2)γ/2 ≤ 3γ
{
(1 + |ξ − η|2)γ/2 + (1 + |η|2)γ/2

}

implies (3.24) and (3.25), whereas (3.26) follows from the inequality

w−(τ, ξ) ≤ w−(τ − λ, ξ − η) + w−(λ, η) + r(τ − λ, ξ − η, λ, η),(3.27)

where r is given by (3.22).

Based on theorem 9, part (c), we derive the basic estimates satisfied by the
operators R and R0.

Proposition 9. The operators Rγ and Rγ
0 satisfy the following estimates.



3.3 Space-time estimates 41

(a) If δ1, δ2 ≥ 0 and δ = δ1 + δ2, then

Rγ(u, v) � 2δRγ−δ(Λδ1 ⌊u⌋ ,Λδ2 ⌊v⌋) for 0 < δ < γ,(3.28)

Rγ
0 (u, v) � Rγ+δ

0 (Λ−δ1
− ⌊u⌋ ,Λ−δ2

− ⌊v⌋) for 0 < γ.(3.29)

(b) Assume γ ≥ 1/2. If

s1, s2 ≥ 0, s1 + s2 ≥
n

2
+ γ − 1

2
and θ >

1

2
,(3.30)

then

‖Rγ(u, v)‖L2 ≤ C ‖u‖s1,θ ‖v‖s2,θ ,(3.31)

where C depends on γ, θ and n.

(c) Assume 0 < γ < 1/2. If

s1, s2 ≥ 0, s1 + s2 ≥
n

2
, θ1, θ2 > γ and θ1 + θ2 > γ +

1

2
,(3.32)

then

‖Rγ
0 (u, v)‖L2 ≤ C ‖u‖s1,θ1

‖v‖s2,θ2
,(3.33)

where C depends on γ, θ1, θ2 and n.

Proof. It suffices to prove these inequalities for all u and v such that û, v̂ ≥ 0.
The inequality (3.28) follows immediately from (3.20), whereas (3.29) follows

from the fact that the Fourier symbol of Rγ
0 is restricted to the set (3.23).

Assume that γ ≥ 1/2 and (3.30) holds. Pick 0 ≤ ε1 ≤ s1 and 0 ≤ ε2 ≤ s2
such that γ−1/2 = ε1 + ε2. Since s1− ε1 + s2− ε2 ≥ n/2, it follows from (3.21)
and (3.19) that

∥∥∥R1/2(u, v)
∥∥∥

L2
≤ C ‖u‖s1−ε1,θ ‖v‖s2−ε2,θ .

By (3.28),
Rγ(u, v) � 2γ−1/2R1/2(Λε1u,Λε2v),

and we conclude that (3.31) holds.
Now assume that 0 < γ < 1/2 and (3.32) holds. Pick ε1, ε2 ≥ 0 such that

θ1 + ε1 > 1/2, θ2 + ε2 > 1/2 and ε1 + ε2 = 1/2− γ.

By (3.29),

Rγ
0 (u, v) � R1/2

0 (Λ−ε1
− u,Λ−ε2

− v) � R1/2(Λ−ε1
− u,Λ−ε2

− v),

so (3.33) also follows from (3.21) and (3.19).
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Proposition 10. Let sj , θj ≥ 0 for 1 ≤ j ≤ 3. If

s1 + s2 + s3 >
n

2
and θ1 + θ2 + θ3 >

1

2
,

then
‖uv‖−s1,−θ1

≤ C ‖u‖s2,θ2
‖v‖s3,θ3

,

where C depends on s1 + s2 + s3, θ1 + θ2 + θ3 and n. In fact, we can allow
s1 + s2 + s3 = n/2, provided sj 6= n/2 for 1 ≤ j ≤ 3. Similarly, we may take
θ1 + θ2 + θ3 = 1/2, provided θj 6= 1/2 for 1 ≤ j ≤ 3.

Proof. By duality, the proposition is equivalent with the inequality

I . ‖F‖L2 ‖G‖L2 ‖H‖L2 ,

where

I =

∫
F (τ − λ, ξ − η)G(λ, η)H(τ, ξ)

〈ξ〉s1 〈ξ − η〉s2 〈η〉s3 wθ1
− (τ, ξ)wθ2

− (τ − λ, ξ − η)wθ3
− (λ, η)

dτ dλ dξ dη.

Applying the following lemma twice to the integral I, first in dimension d = 1
and then in dimension d = n, gives the desired inequality.

Lemma 6. (a) If ε > 0, then

∫

Rd×Rd

f(x)g(y)h(x + y)

〈x〉d/2+ε
dx dy ≤ C ‖f‖L2 ‖g‖L2 ‖h‖L2 ,

where C2 =
∫
〈x〉−d−2ε dx.

(b) If 0 < δ < d/2, then

∫

Rd×Rd

f(x)g(y)h(x + y)

|x|δ |y|d/2−δ
dx dy ≤ C ‖f‖L2 ‖g‖L2 ‖h‖L2 ,

where C depends on δ and d/2− δ.

Proof. To prove (a), simply apply the Cauchy-Schwarz inequality twice, first
w.r.t. dx and then dy. For (b), it suffices to prove

∫

|x|≤|y|

f(x)g(y)h(x+ y)

|x|δ |y|d−δ
dx dy ≤ C ‖f‖L2 ‖g‖L2 ‖h‖L2 .

Since
∫
|x|≤|y| |x|

−2δ
dx . |y|2(d−δ)

, we can apply Cauchy-Schwarz as indicated

above.

Next we prove a bilinear estimate which will be required later, but is of little
interest in itself.
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Proposition 11. Assume n ≥ 2, s > n/2. If

1/2 < θ < s− (n− 1)/2, ε < s− (n− 1)/2− θ and 1/4 ≤ δ ≤ 1/2,

then

H1−ε,θ ×Hs−1,−δ −→ H0,−δ.(3.34)

Proof. By duality, this is equivalent to

H1−ε,θ ×H0,δ −→ H1−s,δ,

so it suffices to prove the latter. By the usual reduction, it is enough to show

∥∥Λ1−sRδ
0(u, v)

∥∥
L2 . ‖u‖1−ε,θ ‖v‖0,δ .(3.35)

Define

A =
{
(τ, ξ, λ, η) : 〈ξ + η〉 < w−(λ, η)

}
,

B =
{
(τ, ξ, λ, η) : 〈ξ + η〉 ≥ w−(λ, η)

}
.

Since
Rδ

0,A(u, v) - Λ−δ(Λδu · Λδ
−v),

it follows from proposition 10 that (3.35) holds with Rδ
0 replaced by Rδ

0,A. For
n ≥ 3, we have

∥∥Λ1−sRδ
0,B(u, v)

∥∥
L2 .

∥∥Λ1−s+θ−δ(Λδu · Λδ−θ
− v)

∥∥
L2 .

Now we can apply (3.12) and (3.13), except in the off-diagonal case, where we
use the estimate

‖uv‖L2 . ‖u‖(n−1)/2+γ,θ ‖v‖0,θ ,(3.36)

which holds for n ≥ 3 and γ > 0. By proposition 8, this estimate is a conse-
quence of the inequality

∥∥eitDf · e±itDg
∥∥

L2 . ‖f‖H(n−1)/2+γ ‖v‖L2 .

In fact, if n ≥ 4, then we can take γ = 0; see [9].
If n = 2, then assuming—as we may—that s ≤ 1 + θ − δ, we get

∥∥Λ1−sRδ
0,B(u, v)

∥∥
L2 .

∥∥Rδ
0(u,Λ

1−s
− v)

∥∥
L2

.
∥∥R1+θ−s(u,Λ−θ+δ

− v)
∥∥

L2

.
∥∥∥R1/4(Λ1+θ−s−1/4u,Λ−θ+δ

− v)
∥∥∥

L2
,

so in the diagonal case we can apply (3.17) and (3.18). The off diagonal case
reduces to ∥∥∥R1/4(Λδ−1/4u,Λ1−sv)

∥∥∥
L2
,
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and we apply
∥∥∥R1/4(u, v)

∥∥∥
L2

. ‖u‖3/4−γ,θ ‖v‖γ,θ ,(3.37)

valid for n = 2 and γ > 0. By proposition 8, this follows from
∥∥∥D1/4

− (eitDf · e±itDg)
∥∥∥

L2
. ‖f‖Ḣ3/4−γ ‖v‖Ḣγ ,

which is just an asymmetric version of (2.9).

3.4 The algebra property

A crucial property of the space Hs,θ is the algebra property. Recall that Hs(Rn)
is an algebra when s > n/2. This fact has the following analog in the setting of
the space Hs,θ.

Theorem 10. If

n ≥ 2, s > n/2 and 1/2 < θ ≤ 1/2 + s− n/2,(3.38)

then Hs,θ is an algebra, i.e.,

‖uv‖s,θ ≤ C ‖u‖s,θ ‖v‖s,θ(3.39)

for all u, v ∈ Hs,θ.

This was proved in [18], although the case n ≥ 3 was implicitly contained in
[13].

Two remarks should be made at this point: First, in [18] the product in-
equality (3.39) was proved in the norm

∥∥Λs
+Λθ

−u
∥∥

L2 . An inspection of the proof
given in [18] shows that it works equally well, with some trivial modifications,
for the norm ‖u‖s,θ =

∥∥ΛsΛθ
−u
∥∥

L2 . Second, the proof actually gives a stronger
inequality: if (3.38) holds and ε = θ − 1/2, then

‖uv‖s,θ ≤ C
(
‖u‖s,θ ‖v‖n/2+ε,θ + ‖u‖n/2+ε,θ ‖v‖s,θ

)
,(3.40)

where C depends on s, θ and the space dimension n.
A further analogy between Hs and Hs,θ is that when these spaces are al-

gebras, they are preserved not only under multiplication, but by any smooth
nonlinear map leaving the origin fixed.

Theorem 11. Assume that F ∈ C∞(Rd) and F (0) = 0. For any pair (s, θ)
satisfying (3.38) and the additional condition θ ≤ 1, there exists a continuous
function f = fs,θ : R+ → R+ such that

‖F (u)‖s,θ ≤ f
(
‖u‖n/2+ε,θ

)
‖u‖s,θ

for all real-valued u ∈ ∏d
1 H

s,θ, where ε = θ − 1/2.
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The proof is inspired by an argument in [22], and relies on the next two
results, the first of which is a generalization of the algebra inequality.

Proposition 12. Assume that (3.38) holds and that 0 ≤ σ ≤ s, 0 ≤ δ ≤ θ. Let
a be a real-valued function in Hs,θ, and set A = ΛσΛδ

−MiaΛ−σΛ−δ
− , where Mia

is multiplication by ia. Then:

(a) A is bounded from L2 to L2. In fact,

‖uv‖σ,δ ≤ C ‖u‖s,θ ‖v‖σ,δ ,(3.41)

where C depends on s, θ and n.

(b) (Smoothing) If we impose the additional restriction θ ≤ 1, and set ε =
1
2 (θ − 1/2), then

∣∣〈 (A+A∗)u, u 〉
∣∣ ≤ CEγ,σ,δ(u) ‖u‖L2 for all γ ∈ [σ, s],(3.42)

where

Eγ,σ,0(u) = ‖a‖γ,θ ‖u‖n/2+ε−γ,0 + ‖a‖n/2+2ε,θ ‖u‖−ε,0 ,

Eγ,0,δ(u) = ‖a‖n/2+2ε,θ ‖u‖0,−ε ,

Eγ,σ,δ(u) = ‖a‖γ,θ

(
‖u‖n/2+ε−γ,0 + ‖u‖n/2+2ε−γ,−ε

)

+ ‖a‖n/2+2ε,θ

(
‖u‖−ε,0 + ‖u‖0,−ε

)
,

and the constant C depends only on s, θ and n.

Lemma 7. Let A be a bounded linear operator on a Hilbert space H. If

〈 (A+A∗)x, x 〉 ≤ 2F (x) ‖x‖ for all x ∈ H,

where F ∈ C(H,R+), then any solution x ∈ C1(R+, H) of the ODE

x′(t) = Ax(t) + x0, x(0) = 0(3.43)

satisfies

‖x(t)‖ ≤
∫ t

0

F
(
x(s)

)
ds+ ‖x0‖ t(3.44)

for all t ≥ 0.

3.4.1 Proof of theorem 11

We split the proof into two steps.
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Step 1 We show that it suffices to prove the special case

∥∥eiu·ξ − 1
∥∥

s,θ
≤ |ξ| ‖u‖s,θ P (|ξ| ‖u‖n/2+2ε,θ),(3.45)

where P (x) =
∑N

j=0 cjx
j and ε = 1

2 (θ − 1/2).
Assuming (3.45) holds, we can use Fourier inversion and the condition F (0) =

0 to write

F (u) = (φF )(u) =
1

(2π)d

∫

Rd

(eiu·ξ − 1)φ̂F (ξ) dξ

for any φ ∈ C∞
c (Rd) which equals 1 on B(0, ‖u‖L∞). Define R = 1+ ‖u‖L∞ , fix

φ ∈ C∞
c

(
B(0, 2)

)
such that φ = 1 on B(0, 1), and set φR = φ(·/R). Then

‖F (u)‖s,θ ≤
∫

Rd

∥∥eiu·ξ − 1
∥∥

s,θ

∣∣φ̂RF (ξ)
∣∣ dξ

≤
N∑

j=0

cj ‖u‖jn/2+2ε,θ ‖u‖s,θ

∫

B(0,2R)

|ξ|j+1 ∣∣φ̂RF (ξ)
∣∣ dξ

≤ C ‖u‖s,θ





N∑

j=0

cj ‖u‖jn/2+2ε,θ





{
(2R)d max

|α|≤N+1
‖∂α(φRF )‖L1

}
.

Since

‖∂α(φRF )‖L1 ≤
∑

β+γ=α

α!

β!γ!

∥∥∂βφR · ∂γF
∥∥

L1

≤ C
∑

β+γ=α

Rd−|β|
∥∥∂βφ

∥∥
L1

{
sup

B(0,2R)

|∂γF |
}

and R . 1 + ‖u‖n/2+2ε,θ, the theorem follows.

Step 2 We prove (3.45). Since Hs,θ is an algebra and

eiu·ξ − 1 =

d∏

j=1

eiujξj − 1 =
∑

J

∏

j∈J

(eiujξj − 1),

where the sum is over all nonempty subsets J of {1, . . . , d}, we may assume
d = 1. We therefore want to prove the existence of a polynomial P such that

∥∥eita − 1
∥∥

s,θ
≤ t ‖a‖s,θ P (t ‖a‖n/2+2ε,θ)(3.46)

for all t ≥ 0 and all real-valued a ∈ Hs,θ, a = a(x0, . . . , xn).
Let N1, N2 and N3 be the smallest positive integers such that

ε1
def
=
n/2 + 2ε

N1
≤ ε, ε2

def
=

s− n/2− 2ε

N2
≤ ε and ε3

def
=

θ

N3
≤ ε.
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For 0 ≤ j ≤ N1 +N2 and 0 ≤ k ≤ N3 we define wj,k(t) = Tj,k(eita − 1), where

Tj,k =

{
Λjε1Λkε3

− if j ≤ N1,

Λn/2+2ε+(j−N1)ε2Λkε3
− if j > N1.

We also set w−1,k = wj,−1 = 0. Since Hs,θ is an algebra,
∥∥eita − 1

∥∥
s,θ
≤ etC‖a‖s,θ − 1 for t ≥ 0,

so wj,k(t) ∈ L2. In fact, wj,k belongs to C1(R+, L
2) and solves the ODE

w′
j,k(t) = Aj,kwj,k + Tj,k(ia), wj,k(0) = 0,

where Aj,k = Tj,kMiaT
−1
j,k . Thus, by proposition 12 and lemma 7,

‖wj,k(t)‖L2 ≤ C ‖a‖n/2+2ε,θ

∫ t

0

(
1 + ‖wj−1,k(t′)‖L2 + ‖wj,k−1(t

′)‖L2

)
dt′

(3.47)

if j ≤ N1, whereas

‖wj,k(t)‖L2 ≤ C ‖a‖n/2+2ε,θ

∫ t

0

(
‖wj−1,k(t′)‖L2 + ‖wj,k−1(t

′)‖L2

)
dt′

+ C ‖a‖s,θ

∫ t

0

(
1 + ‖wN1,k(t′)‖L2

)
dt′

(3.48)

if j > N1. In both these formulas, t ≥ 0 and the constant C depends on s, θ
and n.

By a nested induction argument on j and k, (3.47) implies

‖wj,k(t)‖L2 ≤ Pj,k(t ‖a‖n/2+2ε,θ) for j ≤ N1,(3.49)

where Pj,k is a polynomial of degree j + k+ 1 with coefficients depending on s,
θ and n. Inserting (3.49) in (3.48) yields

‖wj,k(t)‖L2 ≤ C ‖a‖n/2+2ε,θ

∫ t

0

(
‖wj−1,k(t′)‖L2 + ‖wj,k−1(t

′)‖L2

)
dt′

+ Ct ‖a‖s,θ Pk(t ‖a‖n/2+2ε,θ)

(3.50)

for j > N1, where Pk has degree N1 + k + 1. By the same induction scheme as
before, but now starting at j = N1 + 1, (3.50) and (3.49) imply (3.46), and we
are done.

3.4.2 Proof of proposition 12

We may assume û, v̂ ≥ 0. By (3.24) and (3.26),

‖uv‖σ,δ . ‖Λσu · v‖0,δ + ‖u · Λσv‖0,δ

.
∥∥ΛσΛδ

−u · v
∥∥

L2 +
∥∥Λσu · Λδ

−v
∥∥

L2 +
∥∥Λδ

−u · Λσv
∥∥

L2

+
∥∥u · ΛσΛδ

−v
∥∥

L2 +
∥∥Rδ

0(Λ
σu, v)

∥∥
L2 +

∥∥Rδ
0(u,Λ

σv)
∥∥

L2 .
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The first four terms on the right hand side of the last inequality are easily
estimated by proposition 10, so it remains to estimate the last two terms, which
only occur if δ > 0. By (3.29),

Rδ
0(Λ

σu, v) � 2θRθ(Λσu,Λδ−θ
− v), Rδ

0(u,Λ
σv) � 2θRθ(u,Λδ−θ

− Λσv),

and now we can apply (3.31).
We now prove (3.42). Since a is real-valued, A∗ = Λ−σΛ−δ

− M−iaΛσΛδ
−.

Therefore,

F
{
(A+A∗)u

}
(τ, ξ) =

∫
Kσ,δ(τ, ξ, λ, η)i â(τ − λ, ξ − η)û(λ, η) dλ dη,

where

Kσ,δ(τ, ξ, λ, η) =
〈ξ〉σ wδ

−(τ, ξ)

〈η〉σ wδ
−(λ, η)

− 〈η〉
σ wδ

−(λ, η)

〈ξ〉σ wδ
−(τ, ξ)

.

Since we are assuming û ≥ 0, it follows that
∣∣〈 (A+A∗)u, u 〉

∣∣ =
∣∣〈F

{
(A+A∗)u

}
,Fu

〉∣∣

≤
∫
|Kσ,δ| (τ, ξ, λ, η) |â| (τ − λ, ξ − η)û(τ, ξ)û(λ, η) dτ dξ dλ dη.

We call this integral I. If E is a subset of R2+2n, we denote by IE the restriction
of I to E.

Case 1 Assume 0 < σ ≤ γ ≤ s and δ = 0. Set

Ω1 =
{
(τ, ξ, λ, η) : 2 〈ξ〉 < 〈η〉

}
,

Ω2 =
{
(τ, ξ, λ, η) : 2 〈η〉 < 〈ξ〉

}
,

Ω3 =

{
(τ, ξ, λ, η) :

1

2
〈η〉 ≤ 〈ξ〉 ≤ 2 〈η〉

}
.

(3.51)

By symmetry, it suffices to estimate IΩ2 and IΩ3 . Since

|Kσ,0| ≤
〈ξ〉σ
〈η〉σ ≤

〈ξ〉γ
〈η〉γ ≤ 2γ 〈ξ − η〉γ

〈η〉γ on Ω2,(3.52)

we have, by proposition 10,

IΩ2 ≤ 2s
∥∥Λγ ⌊a⌋ · Λ−γu

∥∥
L2 ‖u‖L2 ≤ C ‖a‖γ,θ ‖u‖n/2+ε−γ,0 ‖u‖L2 .

It is readily verified that if 0 < x
2 ≤ y ≤ 2x and r > 0, then

∣∣∣∣
xr

yr
− yr

xr

∣∣∣∣ ≤ Cr |xr − yr|
xr

≤ Cr |x− y|
x

.(3.53)

Hence,

|Kσ,0| ≤ Cs 〈ξ − η〉
〈ξ〉 on Ω3,

so proposition 10 yields

IΩ3 ≤ Cs
∥∥Λ ⌊a⌋ · Λ−1u

∥∥
L2 ‖u‖L2 ≤ C ‖a‖n/2+2ε,θ ‖u‖−ε,0 ‖u‖L2 .
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Case 2 Assume σ = 0 and 0 < δ ≤ θ. Set

Γ1 =
{
(τ, ξ, λ, η) : 2w−(τ, ξ) < w−(λ, η)

}
,

Γ2 =
{
(τ, ξ, λ, η) : 2w−(λ, η) < w−(τ, ξ)

}
,

Γ3 =
{
(τ, ξ, λ, η) : w−(λ, η) ≤ w−(τ, ξ) ≤ 2w−(λ, η)

}
,

Γ4 =
{
(τ, ξ, λ, η) : w−(τ, ξ) ≤ w−(λ, η) ≤ 2w−(τ, ξ)

}
.

It suffices to estimate IΓ2 and IΓ3 . By (3.27),

w−(τ, ξ) ≤ 2w−(τ − λ, ξ − η) + 2r(τ − λ, ξ − η, λ, η) on Γ2,

whence

|K0,δ| ≤
wθ

−(τ, ξ)

wθ
−(λ, η)

.
wθ

−(τ − λ, ξ − η)
wθ

−(λ, η)
+
rθ(τ − λ, ξ − η, λ, η)

wθ
−(λ, η)

on Γ2.

(3.54)

Therefore, by proposition 10 and proposition 9, we have

IΓ2 .
∥∥Λθ

− ⌊a⌋ · Λ−θ
− u

∥∥
L2 ‖u‖L2 +

∥∥Rθ(⌊a⌋ ,Λ−θ
− u)

∥∥
L2 ‖u‖L2

. ‖a‖n/2+2ε,θ ‖u‖0,−ε ‖u‖L2 .

By (3.53) and (3.27),

|K0,δ| = |K0,δ|1−θ |K0,δ|θ ≤ 2δ(1−θ)Cδθ |w−(τ, ξ)− w−(λ, η)|θ
wθ

−(λ, η)

.
wθ

−(τ − λ, ξ − η)
wθ

−(λ, η)
+
rθ(τ − λ, ξ − η, λ, η)

wθ
−(λ, η)

on Γ3.

Now proceed as for IΓ2 .

Case 3 Assume 0 < σ ≤ γ ≤ s and 0 < δ ≤ θ. It suffices to estimate IΩ2 and
IΩ3 . We write IΩ2 = IΩ2∩Γ2 + IΩ2∩(Γ1∪Γ3∪Γ4). Since

Kσ,δ = Kσ,0
wδ

−(τ, ξ)

wδ
−(λ, η)

+
〈η〉σ
〈ξ〉σK0,δ = Kσ,0

wδ
−(λ, η)

wδ
−(τ, ξ)

+
〈ξ〉σ
〈η〉σK0,δ,

it is clear that

|Kσ,δ| ≤ 2θ |Kσ,0|+ 2s |K0,δ| on Ω2 ∩ (Γ1 ∪ Γ3 ∪ Γ4) and Ω3,

so our previous estimates apply. By (3.52) and (3.54),

|Kσ,δ| ≤ Cs 〈ξ − η〉γ
〈η〉γ

(
wθ

−(τ − λ, ξ − η)
wθ

−(λ, η)
+
rθ(τ − λ, ξ − η, λ, η)

wθ
−(λ, η)

)



50 Hyperbolic Sobolev Spaces

on Ω2 ∩ Γ2, so proposition 10 and proposition 9 yield

IΩ2∩Γ2 .
∥∥ΛγΛθ

−a · Λ−γΛ−θ
− u

∥∥
L2 ‖u‖L2 +

∥∥Rθ(Λγ ⌊a⌋ ,Λ−γΛ−θ
− u)

∥∥
L2 ‖u‖L2

. ‖a‖γ,θ ‖u‖n/2+2ε−γ,−ε ‖u‖L2.

This concludes the proof of the lemma.

3.4.3 Proof of lemma 7

By (3.43), we have

d

dt

(
‖x‖2

)
= 〈x′, x 〉+ 〈x, x′ 〉
= 〈Ax, x 〉 + 〈x0, x 〉+ 〈x,Ax 〉+ 〈 x, x0 〉
= 〈 (A+A∗)x, x 〉+ 2ℜ 〈x0, x 〉
≤ 2F (x) ‖x‖+ 2 ‖x0‖ ‖x‖ ,

whence

d ‖x‖
dt
≤ F (x) + ‖x0‖(3.55)

for all t ≥ 0 such that x(t) 6= 0.
Fix t ≥ 0. If x(t) = 0, (3.44) is trivially satisfied, so we assume x(t) 6= 0.

Now set a = sup{s ∈ [0, t] : x(s) = 0}. Since x(0) = 0, we have a < t. Moreover,
x(a) = 0 and x(s) 6= 0 for a < s ≤ t. Integrating (3.55) from a to t, we obtain
(3.44).

3.5 The space X s,θ

Henceforth it will be assumed that 1/2 < θ < 1. We define

X s,θ =
{
u : u ∈ Hs,θ and ∂tu ∈ Hs−1,θ

}
,

and we equip this space with the norm

|u|s,θ = ‖u‖s,θ + ‖∂tu‖s−1,θ .

An equivalent definition is

X s,θ =
{
u ∈ S′ : Λs−1Λ+Λθ

−u ∈ L2
}
,

and the corresponding norm
∥∥Λs−1Λ+Λθ

−u
∥∥

L2 is equivalent with |u|s,θ. Thus(
X s,θ, |·|s,θ

)
is a Hilbert space containing the Schwartz class S as a dense sub-

space.
By propositions 7(a) and 2(b), we may identify X s,θ with a subspace of the

Banach space

Cb(R, H
s) ∩ C1

b (R, Hs−1)(3.56)
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with norm
u 7−→ sup

t∈R

(
‖u(t)‖Hs + ‖∂tu(t)‖Hs−1

)
.

Remark. The space X s,θ is the basic space in which we will obtain solutions to
nonlinear wave equations like the wave maps equation. The remark we want to
make here concerns the relation of X s,θ to the slightly different space

Xs,θ =
{
u ∈ S′ : Λs

+Λθ
−u ∈ L2

}
,

with norm
∥∥Λs

+Λθ
−u
∥∥

L2 . This space was used by Klainerman-Machedon [13, 14,
16, 17], Klainerman-Selberg [18] and Klainerman-Tataru [19] to prove existence
for various nonlinear wave equations. It is clear that if s ≥ 1, then Xs,θ embeds
in X s,θ, with equality iff s = 1.

The space Xs,θ has two major deficiencies, however. First, it embeds in the
space (3.56) iff s+ θ > 3/2. In all the papers just mentioned, except [14], this
condition is satisfied. In [14], however, s is arbitrarily close to (n − 2)/2 and θ
arbitrarily close to 1/2, so that in space dimension n = 3, which is the lowest
dimension considered in that paper, this condition may not be satisfied. In
fact, the problem considered in [14] is a model equation derived from a certain
formulation of the wave maps equation which is one of our main objects of study
in this thesis.

Second, the time scaling argument used in section 3.6.5, which allows us to
prove a genuine well-posedness result, does not work for Xs,θ, unless s is close
to 1. The failure of this argument means that, using contraction maps, one can
only prove existence of solutions under the assumption that the norms of the
data are small, and one cannot prove uniqueness in the space X s,θ.

3.6 The linear wave equation and X s,θ

Here we discuss how the space X s,θ relates to solutions of the linear wave equa-
tion. The culmination of this discussion will be the following theorem.

Theorem 12. Consider the Cauchy problem (1.1) for the linear wave equation.
Assume that F ∈ Hs−1,θ+ε−1, where

1

2
< θ < 1, 0 ≤ ε ≤ 1− θ.

Then for any 0 < T < 1 there exists u = uT ∈ X s,θ with the properties:

(a) On the time interval [0, T ], u agrees with the unique solution of (1.1) in
the class C

(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−1

)
;

(b) (“Energy inequality”) u satisfies the estimate

|u|s,θ ≤ C
(
‖f‖Hs + ‖g‖Hs−1 + T ε/2 ‖F‖s−1,θ+ε−1

)
,

where C only depends on θ.
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The proof can be found in section 3.6.5, where we restate the theorem in a
more precise form, giving an explicit formula for u. The problem is of course
to find a suitable extension to R1+n of the solution of (1.1) on [0, T ] × Rn.
Certainly, we cannot let u be the global solution of (1.1), since this solution
fails to be in X s,θ; see the discussion below. The natural thing to try is to cut
the solution off smoothly outside the time interval [0, T ]. Things are not quite
that simple, however: one has to split the solution into different parts, some of
which should be cut off and some of which should not. We start by splitting
the solution of (1.1) into its homogeneous and inhomogeneous parts.

3.6.1 The homogeneous solution

We denote by u0 the homogeneous part of the solution of (1.1)—that is, u0 solves
(1.1) with F = 0. Since the Fourier transform of u0 is not a tempered function—
it is supported on the light cone, which has measure zero—we conclude that u0

is not an element of X s,θ. In fact, u0 is given by

u0(t) = cos(tD) · f +D−1 sin(tD) · g

=
1

2

(
eitD + e−itD

)
f +

1

2i

(
eitD − e−itD

)
D−1g,

(3.57)

whence

û0(t)(ξ) =
1

2

(
eit|ξ| + e−it|ξ|

)
f̂(ξ) +

1

2i

(
eit|ξ| − e−it|ξ|

)
|ξ|−1

ĝ(ξ),

and since the Fourier transform of

t 7−→ eita, R −→ C

is the measure 2πδ(τ − a) dτ , we conclude that the Fourier transform of u0 is
the measure

û0 = π
{
δ(τ − |ξ|) + δ(τ + |ξ|)

}
f̂(ξ) dτ dξ

+
π

i

{
δ(τ − |ξ|)− δ(τ + |ξ|)

}
|ξ|−1

ĝ(ξ) dτ dξ,
(3.58)

which is supported on the light cone
{
(τ, ξ) ∈ R1+n : |τ | = |ξ|

}
.

Locally in time, however, u0 does belong to X s,θ. That is, if χ ∈ C∞
c (R),

then χ(t)u0 ∈ X s,θ. The reason is that the function

t 7−→ χ(t)eita, R −→ C

has Fourier transform χ̂(τ −a), so that when u0 is replaced by χ(t)u0, the Dirac
delta in (3.58) is in effect replaced by the Schwartz function χ̂.

We have the following estimate for χ(t)u0.

Proposition 13. If θ > 1/2 and χ ∈ C∞
c (R), the homogeneous solution u0 of

(1.1) satisfies
|χ(t)u0|s,θ ≤ C

(
‖f‖Hs + ‖g‖Hs−1

)
,
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where C only depends on χ and θ. More precisely,

C ≃ ‖χ‖Hθ + ‖tχ‖Hθ + ‖χ′‖Hθ + ‖tχ′‖Hθ .

The proof follows readily from the next proposition. Notice that in order
to estimate the X s,θ-norm of χu0, we must estimate not only ‖χu‖s,θ, but
‖∂t (χu)‖s,θ as well. By Leibniz’ formula,

∂t (χu) = χ′u+ χ∂tu.

Both these terms can of course be estimated using the next proposition—after
all, ∂tu is a solution of (1.1) with Cauchy data (g,∆f) at t = 0.

Proposition 14. If s ∈ R, θ > 1/2, χ ∈ C∞
c (R) and (f, g) ∈ Hs ×Hs−1, then

∥∥χ(t)e±itDf
∥∥

s,θ
≤ ‖χ‖Hθ ‖f‖Hs ,(3.59)

‖χ(t) cos(tD) · f‖s,θ ≤ ‖χ‖Hθ ‖f‖Hs(3.60)

and

∥∥χ(t)D−1 sin(tD) · g
∥∥

s,θ
.
(
‖χ‖Hθ + ‖tχ‖Hθ

)
‖g‖Hs−1 .(3.61)

If |ρ| ≤ 1 and supp ĝ ⊆ {ξ : |ξ| ≤ c}, then

∥∥χ(t)eiρtDg
∥∥

σ,θ
.
(
cθ ‖χ‖L2 + ‖χ‖Hθ

)
‖g‖Hσ for all σ ∈ R.(3.62)

Proof. The Fourier transform of χ(t)e±itDf is χ̂(τ ∓ |ξ|)f̂(ξ), and

∫
(1 + |ξ|)2s

(
1 +

∣∣|τ | − |ξ|
∣∣)2θ ∣∣χ̂(τ ∓ |ξ|)f̂(ξ)

∣∣2 dτ dξ

≤
∫ (

1 +
∣∣τ ∓ |ξ|

∣∣)2θ ∣∣χ̂(τ ∓ |ξ|)
∣∣2(1 + |ξ|)2s

∣∣f̂(ξ)
∣∣2 dτ dξ

= ‖χ‖2Hθ ‖f‖2Hs .

This proves (3.59), which in turn implies (3.60).
The proof of (3.62) is similar. We simply note that the Fourier transform of

χ(t)eiρtDg equals χ̂(τ − ρ |ξ|)ĝ(ξ), and that

∣∣|τ | − |ξ|
∣∣ ≤

∣∣τ − ρ |ξ|
∣∣+ (1− |ρ|) |ξ| ≤

∣∣τ − ρ |ξ|
∣∣+ c

for ξ ∈ supp ĝ and |ρ| ≤ 1.
To prove (3.61), we split g = g1 + g2, where ĝ1 is supported in the region

|ξ| < 1 and ĝ2 is supported in |ξ| ≥ 1. Since

D−1 sin(tD) = t

∫ 1

0

eit(2ρ−1)D dρ,
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we have

χ(t)D−1 sin(tD) · g1 =

∫ 1

0

tχ(t)eit(2ρ−1)Dg1 dρ.

By (3.62),

∥∥∥tχ(t)eit(2ρ−1)Dg1

∥∥∥
s,θ

. ‖tχ‖Hθ ‖g1‖Hs−1 for 0 ≤ ρ ≤ 1,

and by the dominated convergence theorem the map

ρ 7−→ tχ(t)eit(2ρ−1)Dg1

belongs to C([0, 1], Hs,θ). Therefore, by theorem 1(a),

∥∥χ(t)D−1 sin(tD) · g1
∥∥

s,θ
≤
∫ 1

0

∥∥∥tχ(t)eit(2ρ−1)Dg1

∥∥∥
s,θ

dρ . ‖tχ‖Hθ ‖g1‖Hs−1 .

This proves (3.61) with g replaced by its low frequency part g1.
Since

∥∥D−1g2
∥∥

Hs ≤ 2 ‖g‖Hs−1 , the estimate (3.61) with g replaced by g2
follows immediately from (3.59).

3.6.2 The inhomogeneous solution

Now consider the inhomogeneous equation �u = F with vanishing Cauchy data
at t = 0. Notice that � is a bounded linear operator from X s,θ to Hs−1,θ−1.
Thus, it seems natural to assume F ∈ Hs−1,θ−1. Assume also that u ∈ S′
satisfies �u = F .

We first observe that u does not, in general, belong to X s,θ. For if it does,
then û is a tempered function, and it follows from (1.1a) that

û(τ, ξ) =
F̂ (τ, ξ)

τ2 − |ξ|2
.(3.63)

But if, say, F̂ is nonzero and continuous at some point on the light cone, the
function given by (3.63) is evidently not tempered, and we have a contradiction.

Nevertheless, if F̂ is supported in the complement of the neighborhood

N =
{

(τ, ξ) ∈ R1+n :
∣∣|τ | − |ξ|

∣∣ < 1
}

(3.64)

of the light cone, then clearly u ∈ X s,θ and

|u|s,θ ≤ C ‖F‖s−1,θ−1 .

This suggests writing

F = φ(Λ−)F +
(
1− φ(Λ−)

)
F = F1 + F2,(3.65)
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where

φ ∈ C∞
c (R), φ = 1 on [−2C2, 2C2], suppφ ⊆ (−4C2, 4C2)(3.66)

and the constant C2 is as in (3.3). It is easily checked that

supp F̂1 ⊆
4C2

C1
N and supp F̂2 ⊆ R1+n \ N ,(3.67)

where C1 is the other constant in (3.3).
Note that since

F1 ∈ Hs−1,0 ⊆ L1
loc(R, H

s−1),

we may use Duhamel’s formula and define

u1(t) = −
∫ t

0

D−1 sin
(
(t− t′)D

)
· F1(t

′) dt′.(3.68)

We will prove the following estimate for χ(t)u1.

Proposition 15. Assume 1/2 < θ < 1 and χ ∈ C∞
c (R). If F1 ∈ Hs−1,0 and

2 +
∣∣|τ | − |ξ|

∣∣ ≤ c for (τ, ξ) ∈ supp F̂1,

then
|χu1|s,θ ≤ C ‖F1‖s−1,0 ,

where u1 is given by (3.68) and

C ≃ c1/2
(
‖χ‖Ḣθ−1 + ‖tχ‖Hθ + ‖tχ′‖Ḣθ−1 +

∥∥t2χ′
∥∥

Hθ

)

+

∞∑

j=1

(
cj+1/2

∥∥tj+1χ
∥∥

Hθ

j!
+
cj+1/2+θ

∥∥tj+1χ
∥∥

L2

j!

+
cj−1/2

∥∥tj+1χ′
∥∥

Hθ

j!
+
cj−1/2+θ

∥∥tj+1χ′
∥∥

L2

j!
+
cj−1/2

∥∥tjχ
∥∥

Hθ

j!

)
.

The proof, which is presented in section 3.6.4 below, relies on the following
characterization of u1.

Proposition 16. Assume that F1 ∈ Hs−1,0 and

2 +
∣∣|τ | − |ξ|

∣∣ ≤ c for (τ, ξ) ∈ supp F̂1,(3.69)

and let u1 be defined by (3.68). Then there exist f±
j ∈ Hs, gj ∈ C([0, 1], Hs−1)

for j ≥ 1 such that

supp f̂±
j ⊆ {ξ : |ξ| ≥ c},

supp ĝj(ρ) ⊆ {ξ : |ξ| < c},
∥∥f±

j

∥∥
Hs

, sup
0≤ρ≤1

‖gj(ρ)‖Hs−1 . cj−1/2 ‖F1‖s−1,0
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and

u1(t) =

∞∑

j=1

tj+1

j!

∫ 1

0

eit(2ρ−1)Dgj(ρ) dρ

+

∞∑

j=1

tj

j!

(
eitDf+

j + e−itDf−
j

)
+R+(t) +R−(t).

Here,

R̂+(t)(ξ) = −χ(c,∞)(|ξ|)
4π |ξ|

∫ 0

−∞

eitτ − eit|ξ|

|τ |+ |ξ| F̂1(τ, ξ) dτ,

R̂−(t)(ξ) = −χ(c,∞)(|ξ|)
4π |ξ|

∫ ∞

0

eitτ − e−it|ξ|

|τ |+ |ξ| F̂1(τ, ξ) dτ

and χ(c,∞) is the characteristic function of the interval (c,∞).

Moreover, there exist h±j ∈ Hs−1 for j ≥ 1 such that

∥∥h±j
∥∥

Hs−1
. cj−1/2 ‖F1‖s−1,0

and

∂tu1(t) =

∞∑

j=1

tj

j!

(
eitDh+

j + e−itDh−j
)
− iDR+(t) + iDR−(t),

with R± as above.

The proof can be found in section 3.6.3 below.
In contrast with F1, the distribution F2 does not, in general, belong to

L1
loc(R, H

s−1). To see this, consider functions of the form f(t)g(x). Pick f so

that f̂ ∈ C∞
c \{0}, and choose g ∈ Hs+θ−2 \Hs−1 with ĝ supported so far away

from the origin that |ξ| ≥ 2 |τ | for all ξ ∈ supp ĝ and τ ∈ supp f̂ . Evidently,
f(t)g(x) belongs to Hs−1,θ−1 but not to L1

loc(R, H
s−1).

Thus, we cannot plug F2 into Duhamel’s formula. Instead we use the fact
that on the support of F̂2, the symbol of the wave operator is smooth and
bounded away from zero. In fact, �−1

(
1−φ(Λ−)

)
is a bounded linear operator

from Hs−1,θ−1 to X s,θ, where �−1 is the multiplier with symbol
(
τ2 − |ξ|2

)−1
,

so we define

u2 = �−1F2.(3.70)

Proposition 17. Assume that F2 ∈ Hs−1,θ−1 and supp F̂2 ⊆ R1+n \ N , and
let u2 be defined as in (3.70). Then

|u2|s,θ . ‖F2‖s−1,θ−1 .

Moreover, u2 solves �u2 = F2 with vanishing Cauchy data at t = 0.
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Proof. The only statement requiring a proof is the one about the data at t = 0.
First, since X s,θ embeds in Cb(R, H

s) ∩C1
b (R, Hs−1), the evaluation map

F 7−→
(
u2

∣∣
t=0

, ∂tu2

∣∣
t=0

)
, Hs−1,θ−1 −→ Hs ×Hs−1

is bounded. Second, this map is the zero map on the dense subset S of
Hs−1,θ−1. For if F ∈ S, then F2 ∈ S ⊆ L1

loc(R, H
s−1), so we can define

u′2(t) = −
∫ t

0 D
−1 sin

(
(t− t′)D

)
·F2(t

′) dt′. Then u′2 has vanishing data at t = 0.
Moreover, �u′2 = F2, so u2 and u′2 have identical Fourier transforms, whence
u2 = u′2.

3.6.3 Proof of proposition 16

Both u1 and ∂tu1 are linear combinations of v±(t) =
∫ t

0 e
±i(t−t′)DF1(t

′) dt′. For
a.e. ξ,

v̂±(t)(ξ) =

∫ t

0

e±i(t−t′)|ξ|F̂1(t′)(ξ) dt
′

=

∫ t

0

e±i(t−t′)|ξ| 1

2π

∫
eit′τ F̂1(τ, ξ) dτ dt

′

=
e±it|ξ|

2π

∫ (∫ t

0

eit′(τ∓|ξ|) dt′
)
F̂1(τ, ξ) dτ

=
e±it|ξ|

2π

∫
eit(τ∓|ξ|) − 1

i(τ ∓ |ξ|) F̂1(τ, ξ) dτ.

(3.71)

Since

eit(τ∓|ξ|) − 1

i(τ ∓ |ξ|) =

∞∑

j=1

tj

j!
ij−1(τ ∓ |ξ|)j−1,

it follows that

v̂±(t)(ξ) =
e±it|ξ|

2π

∫ ∞∑

j=1

tj

j!
ij−1(τ ∓ |ξ|)j−1F̂1(τ, ξ) dτ

=
e±it|ξ|

2π

∞∑

j=1

tj

j!

∫
ij−1(τ ∓ |ξ|)j−1F̂1(τ, ξ) dτ

(3.72)

for a.e. ξ.

We write F1 = F1,1 + F1,2, where F̂1,1(τ, ξ) and F̂1,2(τ, ξ) are supported in
the regions |ξ| < c and |ξ| ≥ c, respectively. Let u1,j be defined as in (3.68), but
with F1 replaced by F1,j for j = 1, 2.
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Formula for u1,1

By (3.72), we have

û1,1(t)(ξ)

=
1

4π

∞∑

j=1

tj

j!

∫
ij |ξ|−1

(
eit|ξ|(τ − |ξ|)j−1 − e−it|ξ|(τ + |ξ|)j−1

)
F̂1,1(τ, ξ) dτ

=
1

4π

∞∑

j=1

tj

j!

∫
ij |ξ|−1 (

α(|ξ|)− α(− |ξ|)
)
F̂1,1(τ, ξ) dτ

=
1

2π

∞∑

j=1

tj

j!

∫ ∫ 1

0

ijα′
(
(2ρ− 1) |ξ|

)
F̂1,1(τ, ξ) dρ dτ

=
1

2π

∞∑

j=1

tj

j!

∫ 1

0

∫
ijα′

(
(2ρ− 1) |ξ|

)
F̂1,1(τ, ξ) dτ dρ,

where α(r) = eitr(τ − r)j−1. Since

α′(r) = iteitr(τ − r)j−1 − eitr(j − 1)(τ − r)j−2,

where the second term only occurs for j ≥ 2, we get

u1,1(t) =
1

2π

∞∑

j=1

tj

j!

∫ 1

0

ij+1teit(2ρ−1)Dkj(ρ) dρ

− 1

2π

∞∑

j=2

tj

j!

∫ 1

0

ij(j − 1)eit(2ρ−1)Dkj−1(ρ) dρ

=
1

2π

∞∑

j=1

tj+1

j!

∫ 1

0

ij+1
(
1− j

j + 1

)
eit(2ρ−1)Dkj(ρ) dρ,

where kj ∈ C(R, L2) is given by k̂j(ρ)(ξ) =
∫ (
τ − (2ρ − 1) |ξ|

)j−1
F̂1,1(τ, ξ) dτ .

Setting gj = (2π)−1ij+1
(
1− j/(j + 1)

)
kj , we have

u1,1(t) =
∞∑

j=1

tj+1

j!

∫ 1

0

eit(2ρ−1)Dgj(ρ) dρ.(3.73)

Since
∣∣τ − (2ρ− 1) |ξ|

∣∣ ≤ |τ | + |ξ| ≤
∣∣|τ | − |ξ|

∣∣ + 2 |ξ| ≤
∣∣|τ | − |ξ|

∣∣ + 2c ≤ 3c for

ρ ∈ [0, 1] and ξ ∈ supp ĝj(ρ), it follows by the Cauchy-Schwarz inequality and
(3.69) that ‖gj(ρ)‖Hs−1 . cj−1/2 ‖F1‖s−1,0 for ρ ∈ [0, 1].
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Formula for u1,2

Combining (3.71) and (3.72), we see that

û1,2(t)(ξ) =
eit|ξ|

4π |ξ|

∞∑

j=1

tj

j!

∫ ∞

0

ij(|τ | − |ξ|)j−1F̂1,2(τ, ξ) dτ

− e−it|ξ|

4π |ξ|

∞∑

j=1

tj

j!

∫ 0

−∞

ij(|ξ| − |τ |)j−1F̂1,2(τ, ξ) dτ

− 1

4π |ξ|

∫ 0

−∞

eitτ − eit|ξ|

|τ |+ |ξ| F̂1,2(τ, ξ) dτ

− 1

4π |ξ|

∫ ∞

0

eitτ − e−it|ξ|

|τ |+ |ξ| F̂1,2(τ, ξ) dτ

for a.e. ξ. Hence,

u1,2(t) =

∞∑

j=1

tj

j!

(
eitDf+

j + e−itDf−
j

)
+R+(t) +R−(t),

where

f̂+
j (ξ) = (4π |ξ|)−1

∫ ∞

0

ij(|τ | − |ξ|)j−1F̂1,2(τ, ξ) dτ,

f̂−
j (ξ) = −(4π |ξ|)−1

∫ 0

−∞

ij(|ξ| − |τ |)j−1F̂1,2(τ, ξ) dτ,

R̂+(t)(ξ) = − 1

4π |ξ|

∫ 0

−∞

eitτ − eit|ξ|

|τ |+ |ξ| F̂1,2(τ, ξ) dτ

and

R̂−(t)(ξ) = − 1

4π |ξ|

∫ ∞

0

eitτ − e−it|ξ|

|τ |+ |ξ| F̂1,2(τ, ξ) dτ.

Formula for ∂tu1

Since ∂tu1(t) = −
∫ t

0 cos
(
(t−t′)D

)
·F1(t

′) dt′, the stated formula for ∂tu1 follows
by a straightforward modification of the derivation of the formula for u1,2. Since
the factor D−1 is not present, there is no need to consider separately low and
high frequencies in this case.

3.6.4 Proof of proposition 15

We must prove that the expressions ‖χu1‖s,θ, ‖χ′u1‖s−1,θ and ‖χ∂tu1‖s−1,θ

are all bounded by C ‖F1‖s−1,0, with C as in the statement of the proposition.
Since χ is just an arbitrary C∞

c function at this point, we will in fact estimate
‖χu1‖s−1,θ rather than ‖χ′u1‖s−1,θ.
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For the purpose of estimating χu1 it will be useful to split u1(t) into high and
low frequency parts. Thus, as in the previous section we write F1 = F1,1 +F1,2,

where F̂1,1(τ, ξ) and F̂1,2(τ, ξ) are supported in the regions |ξ| < c and |ξ| ≥ c,
respectively. Let u1,j be defined as in (3.68), but with F1 replaced by F1,j for
j = 1, 2.

Estimates for ‖χu1,1‖s,θ and ‖χu1,1‖s−1,θ

By proposition 16,

u1,1(t) =

∞∑

j=1

tj+1

j!

∫ 1

0

eit(2ρ−1)Dgj(ρ) dρ.

Thus, by (3.62),
‖χu1,1‖s,θ ≤ C1 ‖F1‖s−1,0 ,

where

C1 ≃
∞∑

j=1

cj+1/2
∥∥tj+1χ

∥∥
Hθ

j!
+

∞∑

j=1

cj+1/2+θ
∥∥tj+1χ

∥∥
L2

j!
.

Similarly,
‖χu1,1‖s−1,θ ≤ C2 ‖F1‖s−1,0 ,

where

C2 ≃
∞∑

j=1

cj−1/2
∥∥tj+1χ

∥∥
Hθ

j!
+

∞∑

j=1

cj−1/2+θ
∥∥tj+1χ

∥∥
L2

j!
.

Estimate for ‖χu1,2‖s,θ

By proposition 16,

u1,2(t) =

∞∑

j=1

tj

j!

(
eitDf+

j + e−itDf−
j

)
+R+(t) + R−(t).

Since
∥∥f±

j

∥∥
Hs
≤ cj−1/2 ‖F1‖s−1,0, it follows from (3.59) that

∥∥∥∥∥∥
χ

∞∑

j=1

tj

j!

(
eitDf+

j + e−itDf−
j

)
∥∥∥∥∥∥

s,θ

≤




∞∑

j=1

cj−1/2
∥∥tjχ

∥∥
Hθ

j!


 ‖F1‖s−1,0 .

Next, since

χ̂R+(τ, ξ) = − 1

4π |ξ|

∫ 0

−∞

χ̂(τ − λ)− χ̂(τ − |ξ|)
|λ|+ |ξ| F̂1,2(λ, ξ) dλ,(3.74)

it follows from Minkowski’s inequality that

‖χR+‖s,θ .

∫ ∥∥∥A(λ, ξ)(1 + |ξ|)s−1F̂1,2(λ, ξ)
∥∥∥

L2
ξ

dλ
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where

A =

∥∥∥∥
(
1 +

∣∣|τ | − |ξ|
∣∣)θ χ̂(τ − λ)− χ̂(τ − |ξ|)

|λ|+ |ξ|

∥∥∥∥
L2

τ

.

We claim that A . ‖χ‖Ḣθ−1 + ‖tχ‖Hθ for (λ, ξ) ∈ supp F̂1,2. This would give

‖χR+‖s,θ .
(
‖χ‖Ḣθ−1 + ‖tχ‖Hθ

) ∫ ∥∥∥(1 + |ξ|)s−1F̂1,2(λ, ξ)
∥∥∥

L2
ξ

dλ

. c1/2
(
‖χ‖Ḣθ−1 + ‖tχ‖Hθ

)
‖F1‖s−1,0 ,

where we used the Cauchy-Schwarz inequality and (3.69) to obtain the last
inequality.

It remains to prove the claim. We have

A .

∥∥∥∥
χ̂(τ − λ)− χ̂(τ − |ξ|)

|λ|+ |ξ|

∥∥∥∥
L2

τ

+

∥∥∥∥
∣∣|τ | − |ξ|

∣∣θ χ̂(τ − λ)− χ̂(τ − |ξ|)
|λ|+ |ξ|

∥∥∥∥
L2

τ (I)

+

∥∥∥∥
∣∣|τ | − |ξ|

∣∣θ χ̂(τ − λ) − χ̂(τ − |ξ|)
|λ|+ |ξ|

∥∥∥∥
L2

τ(R\I)

= A1 +A2 +A3,

where
I = I(λ, ξ) =

{
τ ∈ R :

∣∣τ − |ξ|
∣∣ < 2(|λ|+ |ξ|)

}
.

Since

χ̂(τ − λ)− χ̂(τ − |ξ|)
|λ|+ |ξ| =

∫ 1

0

χ̂′
(
τ − |ξ|+ ρ(|λ|+ |ξ|)

)
dρ,(3.75)

an application of Minkowski’s inequality yields

A1 ≤
∫ 1

0

‖tχ‖L2 dρ = ‖tχ‖L2.

Using (3.75) again, as well as the fact that
∣∣|τ | − |ξ|

∣∣ ≤
∣∣τ − |ξ|

∣∣ ≤ 2
∣∣τ − |ξ|+ ρ(|λ|+ |ξ|)

∣∣

for τ ∈ R \ I, we get A3 . ‖tχ‖Hθ . Finally, since |τ − λ| . |λ| + |ξ| for τ ∈ I,
and since θ < 1, we have

A2 .
∥∥(|λ|+ |ξ|)θ−1

(
χ̂(τ − λ) − χ̂(τ − |ξ|)

)∥∥
L2

τ (I)

.
∥∥(τ − λ)θ−1χ̂(τ − λ)

∥∥
L2

τ(I)
+
∥∥(τ − |ξ|)θ−1χ̂(τ − |ξ|)

∥∥
L2

τ(I)

= 2 ‖χ‖Ḣθ−1 .

This proves the claim.
By a similar argument,

‖χR−‖s,θ . c1/2
(
‖χ‖Ḣθ−1 + ‖tχ‖Hθ

)
‖F1‖s−1,0 .
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Estimate for ‖χu1,2‖s−1,θ

For this estimate we do not use proposition 16. Instead, we use (3.71) to write

û1,2(t)(ξ) =
1

4π |ξ|

∫ {
eitτ − eit|ξ|

τ − |ξ| − eitτ − e−it|ξ|

τ + |ξ|

}
F̂1,2(τ, ξ) dτ,

which gives

χ̂u1,2(τ, ξ)

=
1

4π |ξ|

∫ {
χ̂(τ − λ) − χ̂(τ − |ξ|)

λ− |ξ| − χ̂(τ − λ)− χ̂(τ + |ξ|)
λ+ |ξ|

}
F̂1,2(λ, ξ) dλ

= − 1

4π |ξ|

∫ ∫ 1

0

{
χ̂′(τ − a)− χ̂′(τ − b)

}
F̂1,2(λ, ξ) dρ dλ,

where a = |ξ|+ ρ(λ+ |ξ|) and b = − |ξ|+ ρ(λ+ |ξ|). We distinguish two cases.

Case 1 Assume |τ | < 8 |ξ|. Then for (λ, ξ) ∈ supp F̂1,2,
∣∣|τ | − |ξ|

∣∣, |τ − a| , |τ − b| . |ξ| ,

and since θ < 1, we obtain

(1 + |ξ|)s−1
(
1 +

∣∣|τ | − |ξ|
∣∣)θ ∣∣χ̂u1,2(τ, ξ)

∣∣

.

∫ ∫ 1

0

{∣∣χ̂′(τ − a)
∣∣

|τ − a|1−θ
+

∣∣χ̂′(τ − b)
∣∣

|τ − b|1−θ

}
(1 + |ξ|)s−1

∣∣F̂1,2(λ, ξ)
∣∣ dρ dλ.

Case 2 Assume |τ | ≥ 8 |ξ|. In this case we write

χ̂u1,2(τ, ξ)

=
1

2π

∫ ∫ 1

0

∫ 1

0

χ̂′′
(
τ − b+ σ(b − a)

)
(1− ρ)F̂1,2(λ, ξ) dσ dρ dλ

and use the fact that
∣∣τ − b+ σ(b − a)

∣∣ ≥ |τ | − |b| − |b− a| ≥ |τ | − 6 |ξ| &
∣∣|τ | − |ξ|

∣∣

to get

(1 + |ξ|)s−1
(
1 +

∣∣|τ | − |ξ|
∣∣)θ ∣∣χ̂u1,2(τ, ξ)

∣∣

.

∫ ∫ 1

0

∫ 1

0

(1 + |τ − α|)θ
∣∣χ̂′′(τ − α)

∣∣(1 + |ξ|)s−1
∣∣F̂1,2(λ, ξ)

∣∣ dσ dρ dλ,

where α = b+ σ(a− b).
In both cases we conclude, by Minkowski’s inequality, that

‖χu1,2‖s−1,θ . c1/2
(
‖tχ‖Ḣθ−1 +

∥∥t2χ
∥∥

Hθ

)
‖F1‖s−1,0 .
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Estimate for ‖χ∂tu1‖s−1,θ

A straightforward modification of the argument used to estimate ‖χu1,2‖s,θ
shows that

‖χ∂tu1‖s−1,θ . c1/2
(
‖χ‖Ḣθ−1 + ‖tχ‖Hθ

)
‖F1‖s−1,0 .

3.6.5 Proof of theorem 12

Let us restate the theorem in a more precise form.

Theorem 13. Assume s ∈ R, θ ∈ (1/2, 1), ε ∈ (0, 1− θ], F ∈ Hs−1,θ+ε−1 and

χ ∈ C∞
c (R), χ = 1 on [−1, 1], suppχ ⊆ (−2, 2).(3.76)

Let 0 < T < 1 and define

u(t) = χ(t)u0 + χ(t/T )u1 + u2,

where

u0 = cos(tD) · f +D−1 sin(tD) · g,

u1 =

∫ t

0

D−1 sin
(
(t− t′)D

)
· F1(t

′) dt′,

u2 = �−1F2,

F = F1 + F2 = φ(T 1/2Λ−)F +
(
1− φ(T 1/2Λ−)

)
F

and φ satisfies (3.66). Then

|u|s,θ ≤ C
(
‖f‖Hs + ‖g‖Hs−1 + T ε/2 ‖F‖s−1,θ+ε−1

)
,

where C only depends on χ and θ. Moreover, u is the unique solution of (1.1)
on [0, T ]× Rn such that u ∈ C

(
[0, T ], Hs

)
∩ C1

(
[0, T ], Hs−1

)
.

Proof. By proposition 13,

|χ(t)u0|s,θ ≤ C
(
‖f‖Hs + ‖g‖Hs−1

)
,

where C only depends on χ and θ.
Define χT (t) = χ(t/T ) for t ∈ R. With C1 and C2 as in (3.3), and φ

satisfying (3.66), it is easily checked that

∣∣|τ | − |ξ|
∣∣ ≤ 4C2

C1T 1/2
for (τ, ξ) ∈ supp F̂1,(3.77)

whence (3.69) holds with c = 2 + 4C2C
−1
1 T−1/2. Thus,

‖F1‖s−1,0 ≤ c1−θ ‖F‖s−1,θ−1 ,
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and it follows from proposition 15 that

|χu1|s,θ . CT ‖F‖s−1,θ−1 ,

where

CT ≃ c3/2−θ
(
‖χT ‖Ḣθ−1 + ‖tχT ‖Hθ + ‖t(χT )′‖Ḣθ−1 +

∥∥t2(χT )′
∥∥

Hθ

)

+

∞∑

j=1

(
cj+3/2−θ

∥∥tj+1χT

∥∥
Hθ

j!
+
cj+3/2

∥∥tj+1χT

∥∥
L2

j!

+
cj+1/2−θ

∥∥tj+1(χT )′
∥∥

Hθ

j!
+
cj+1/2

∥∥tj+1(χT )′
∥∥

L2

j!

+
cj+1/2−θ

∥∥tjχT

∥∥
Hθ

j!

)
.

Since
‖χT ‖Hθ ≤ CT 1/2−θ ‖χ‖Hθ for 0 < T ≤ 1,

and
‖χT ‖Ḣθ−1 = T 3/2−θ ‖χ‖Ḣθ−1 for θ > 1/2,

we get

CT . (cT )3/2−θ
(
‖χ‖Ḣθ−1 + ‖tχ‖Hθ + ‖tχ′‖Ḣθ−1 +

∥∥t2χ′
∥∥

Hθ

)

+

∞∑

j=1

(
(cT )j+3/2−θ

∥∥tj+1χ
∥∥

Hθ

j!
+

(cT )j+3/2
∥∥tj+1χ

∥∥
L2

j!

+
(cT )j+1/2−θ

∥∥tj+1χ′
∥∥

Hθ

j!
+

(cT )j+1/2
∥∥tj+1χ′

∥∥
L2

j!

+
(cT )j+1/2−θ

∥∥tjχ
∥∥

Hθ

j!

)
.

Thus, since c . T−1/2 and θ < 1, we conclude that CT ≤ CχT
1/4, where

Cχ ≃ ‖χ‖Ḣθ−1 + ‖tχ′‖Ḣθ−1

+

∞∑

j=1

1

j!

(∥∥tj+1χ
∥∥

Hθ +
∥∥tj+1χ′

∥∥
Hθ +

∥∥tjχ
∥∥

Hθ

)
.

Next, since it is readily verified that

∣∣|τ | − |ξ|
∣∣ > 1

T 1/2
for (τ, ξ) ∈ supp F̂2,(3.78)

we have
u2 - T ε/2Λ−1

+ Λε−1
− F,

whence |u2|s,θ . T ε/2 ‖F‖s−1,θ+ε−1.
Clearly, u solves (1.1) on the time interval [0, T ], and uniqueness follows

from the proof of proposition 1, which works equally well with R replaced by
[0, T ].
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3.7 The restriction space X s,θ
T

If T > 0, we define the equivalence relation ∼T on X s,θ by

u ∼T v ⇐⇒ u(t) = v(t) for t ∈ [0, T ],

and we set X s,θ
T = X s,θ/ ∼T and

|u|s,θ,T = inf
{
|ũ|s,θ : ũ ∈ X s,θ, ũ ∼T u

}
.

A trivial but useful observation is that for a given u ∈ X s,θ, we have |u|s,θ,T =
infeu∈ET (u) |ũ|s,θ, where

ET (u) =
{
ũ ∈ X s,θ : ũ ∼T u, |ũ|s,θ ≤ |u|s,θ

}
.(3.79)

By proposition 7(a),

‖u(t)‖Hs ≤ C |u|s,θ,T for t ∈ [0, T ],

which implies that |·|s,θ,T is a norm on X s,θ
T . Moreover, since X s,θ is complete,

so is X s,θ
T . We call X s,θ

T the restriction space of X s,θ to time T . By proposition
7(a), the restriction space embeds in Cb

(
[0, T ], Hs

)
∩ C1

b

(
[0, T ], Hs−1

)
.





Chapter 4

Two Well-Posedness
Theorems

Our purpose in this chapter is to provide a general framework for proving strong
local well-posedness for nonlinear systems of wave equations of the form

�u = F (u, ∂u) (t, x) ∈ R1+n(4.1a)

u
∣∣
t=0

= f ∈ Hs, ∂tu
∣∣
t=0

= g ∈ Hs−1,(4.1b)

where ∂u is the space-time gradient of u and F is a smooth function satisfying
F (0) = 0.

In section 4.1 we prove, using theorem 13, that well-posedness holds for data
in Hs ×Hs−1 under the assumption that

u 7−→ F (u, ∂u), X s,θ −→ Hs−1,θ+ε−1

is bounded for some choice of θ > 1/2 and ε > 0. We then apply this theorem
to recover three well-known well-posedness results: the classical local existence
theorem, a sharp local existence theorem of Ponce and Sideris, and the wave
maps equation in local coordinates.

In section 4.2 we motivate the need for a more general version of this result,
and we state an appropriate generalization.

4.1 First well-posedness theorem

Assume that for given

s ∈ R, θ ∈ (1/2, 1) and ε ∈ (0, 1− θ),(4.2)

we have

‖F (u, ∂u)‖σ−1,θ+ε−1 ≤ Aσ(|u|s,θ) |u|σ,θ for all σ ≥ s(4.3)

67
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and

‖F (u, ∂u)− F (v, ∂v)‖s−1,θ+ε−1 ≤ As(|u|s,θ + |v|s,θ) |u− v|s,θ(4.4)

for all u, v ∈ X s,θ, where Aσ : R+ → R+ is increasing and locally Lipschitz
for every σ ≥ s. Under these assumptions, (4.1) is locally well-posed, in the
following precise sense.

Theorem 14. If (4.2), (4.3) and (4.4) hold, there exists u ∈ X s,θ which solves
(4.1) on [0, T ]× Rn, where T = T (‖f‖Hs + ‖g‖Hs−1) > 0 depends continuously
on ‖f‖Hs + ‖g‖Hs−1 .

The solution is unique in the class X s,θ, in the sense that if u, v ∈ X s,θ are
solutions of (4.1) on [0, T ]× Rn for some T > 0, then

u(t) = v(t) for t ∈ [0, T ].

Moreover, the solution map

(f, g) 7−→ u, Hs ×Hs−1 −→ X s,θ

is locally Lipschitz, and if the data have the additional regularity

f ∈ Hσ, g ∈ Hσ−1, where σ > s,

then
u ∈ C

(
[0, T ], Hσ

)
∩ C1

(
[0, T ], Hσ−1

)

for any T > 0 such that u solves (4.1) on [0, T ]×Rn. In particular, if f, g ∈ S,
then u is C∞ on [0, T ]× Rn.

Proof. The proof splits naturally into several steps.

Step 1: Existence Let χ be as in (3.76), and define

Φu = χ(t)
(
cos(tD) · f +D−1 sin(tD) · g

)

− χ(t/T )

∫ t

0

D−1 sin
(
(t− t′)D

)
·
(
φ(T 1/2Λ−)F (u, ∂u)

)
(t′) dt′

+ �−1
(
1− φ(T 1/2Λ−)

)
F (u, ∂u),

(4.5)

for u ∈ X s,θ. Then by theorem 13,

�Φu = F (u, ∂u) on [0, T ]× Rn

Φu
∣∣
t=0

= f, ∂tΦu
∣∣
t=0

= g,

so any fixed point of Φ is a solution of (4.1) on [0, T ] × Rn. Furthermore,
combining theorem 13 with (4.3) and (4.4), we have

|Φu|s,θ ≤ C
(
‖f‖Hs + ‖g‖Hs−1 + T ε/2As(|u|s,θ) |u|s,θ

)
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and

|Φu− Φv|s,θ ≤ CT ε/2As(|u|s,θ + |v|s,θ) |u− v|s,θ .(4.6)

Therefore, if we let T = Ts(‖f‖Hs + ‖g‖Hs−1), where

Tσ(r) = min
{
1,
(
2CAσ(4Cr)

)−2/ε
}

for r ≥ 0,(4.7)

then it follows that Φ is a contraction of the closed ball in X s,θ centered at 0
and with radius 2C(‖f‖Hs + ‖g‖Hs−1). Let us denote this ball by X . Since X
is a complete metric space, Φ has a unique fixed point u in X .

Step 2: Uniqueness Assume that u, v ∈ X s,θ are solutions of (4.1) on [0, T ]×
Rn for some T > 0. By a continuity argument, we see that it is enough to show
(4.26) for arbitrarily small T > 0. This amounts to showing that u = v in the

restriction space X s,θ
T . To this end, assume that ũ ∼T u and ṽ ∼T v. Then by

theorem (13), u ∼T Φũ and v ∼T Φṽ, and it follows from (4.6) that

|u− v|s,θ,T ≤ |Φũ− Φṽ|s,θ ≤ CT ε/2As

(
|ũ|s,θ + |ṽ|s,θ

)
|ũ− ṽ|s,θ .(4.8)

Recall that

|u− v|s,θ,T = inf
{
|w̃|s,θ : w ∈ ET (u − v)

}
,(4.9)

where ET (u − v) is defined in (3.79). Given w̃ ∈ ET (u − v), set ũ = u and
ṽ = ũ− w̃. Then |ṽ|s,θ ≤ |u|s,θ + |u− v|s,θ, and since As is increasing, it follows
from (4.8) that

|u− v|s,θ,T ≤ CT ε/2As(2 |u|s,θ + |u− v|s,θ) |w̃|s,θ .

Taking the infimum over w̃ ∈ ET (u− v) and using (4.9), we get

|u− v|s,θ,T ≤ CT ε/2As(2 |u|s,θ + |u− v|s,θ) |u− v|s,θ,T .

Hence, if we choose T > 0 so small that

CT ε/2As(2 |u|s,θ + |u− v|s,θ) ≤
1

2
,

then we must have |u− v|s,θ,T = 0.

Step 3: Lipschitz continuity Here we prove that the dependence of the
fixed point u on the data (f, g) is locally Lipschitz continuous. Let v be the
fixed point corresponding to another set of data (f∗, g∗). We want to show that
there exists a neighborhood U of (f, g) in Hs ×Hs−1 such that

|u− v|s,θ . ‖f − f∗‖Hs + ‖g − g∗‖Hs−1 for (f∗, g∗) ∈ U.
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Setting T = Ts(‖f‖Hs + ‖g‖Hs−1) and T∗ = Ts(‖f∗‖Hs + ‖g∗‖Hs−1), where Ts

is defined by (4.7), we have

u− v = χ(t)
(
cos(tD) · (f − f∗) +D−1 sin(tD) · (g − g∗)

)

− χ(t/T∗)

∫ t

0

D−1 sin
(
(t− t′)D

)

×
(
φ(T

1/2
∗ Λ−){F (u, ∂u)− F (v, ∂v)}

)
(t′) dt′

+ �−1
(
1− φ(T

1/2
∗ Λ−)

)
{F (u, ∂u)− F (v, ∂v)}

+ α(T∗)− α(T )− β(T∗) + β(T ),

where

α(T ) = χ(t/T )

∫ t

0

D−1 sin
(
(t− t′)D

)
·
(
φ(T 1/2Λ−)F (u, ∂u)

)
(t′) dt′

and
β(T ) = �−1

(
1− φ(T 1/2Λ−)

)
F (u, ∂u).

We claim that α and β are locally Lipschitz . Granting this, it follows from
theorem 13 and (4.4) that

(4.10) |u− v|s,θ ≤ C
(
‖f − f∗‖Hs + ‖g − g∗‖Hs−1

+ T
ε/2
∗ A(|u|s,θ + |v|s,θ) |u− v|s,θ

)
+ C′ |T − T∗|

for (f∗, g∗) sufficiently close to (f, g). Since

|u|s,θ ≤ 2C(‖f‖Hs + ‖g‖Hs−1) and |v|s,θ ≤ 2C(‖f∗‖Hs + ‖g∗‖Hs−1),

and since CT ε/2As

(
4C(‖f‖Hs + ‖g‖Hs−1)

)
≤ 1/2, it follows by the continuity

of As and T∗ that
CT

ε/2
∗ As(|u|s,θ + |v|s,θ) ≤ 3/4

for all (f∗, g∗) in some neighborhood U of (f, g). Hence, by (4.10),

|u− v|s,θ . 4C
(
‖f − f∗‖Hs + ‖g − g∗‖Hs−1

)
+ 4C′ |T − T∗|

for (f∗, g∗) ∈ U . It remains to prove that by making U even smaller if necessary,
we have

|T − T∗| . ‖f − f∗‖Hs + ‖g − g∗‖Hs−1 .

This follows from the easily established fact that the function defined by (4.7)
is locally Lipschitz.

We now prove that α and β are locally Lipschitz. We have

α(T )− α(T∗) = {χ(t/T )− χ(t/T∗)}

×
∫ t

0

D−1 sin
(
(t− t′)D

)
·
(
φ(T 1/2Λ−)F (u, ∂u)

)
(t′) dt′

+ χ(t/T∗)

∫ t

0

D−1 sin
(
(t− t′)D

)

×
(
{φ(T 1/2Λ−)− φ(T

1/2
∗ Λ−)}F (u, ∂u)

)
(t′) dt′,
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and since

χ(t/T )− χ(t/T∗) = (T∗ − T )

∫ 1

0

χ′

(
t

T∗ + ρ(T − T∗)

)
t

(
T∗ + ρ(T − T∗)

)2 dρ

and

(4.11) φ(T 1/2Λ−)− φ(T
1/2
∗ Λ−)

= (T 1/2 − T 1/2
∗ )

∫ 1

0

φ′
(
{T 1/2

∗ + ρ(T 1/2 − T 1/2
∗ )}Λ−

)
Λ− dρ,

it follows from proposition 15 that

|α(T )− α(T∗)|s,θ ≤ |T − T∗|C ‖F (u, ∂u)‖s−1,θ−1

for all T∗ sufficiently close to T , where C depends on χ, φ and T .
Furthermore,

β(T∗)− β(T ) = �−1{φ(T 1/2Λ−)− φ(T
1/2
∗ Λ−)}F (u, ∂u),

and using (4.11), we get

|β(T )− β(T∗)|s,θ ≤ |T − T∗|C ‖F (u, ∂u)‖s−1,θ−1

for T∗ close to T , with C again depending on χ, φ and T .

Step 4: Higher regularity If the data have the additional regularity (f, g) ∈
Hσ ×Hσ−1 for some σ > s, then by theorem 13 and (4.3),

|Φu|σ,θ ≤ C
(
‖f‖Hσ + ‖g‖Hσ−1 + T ε/2Aσ(|u|s,θ) |u|σ,θ

)
.

Hence, if T = min
{
Ts(‖f‖Hs + ‖g‖Hs−1), Tσ(‖f‖Hs + ‖g‖Hs−1)

}
, then Φ is

a contraction of the ball X defined above, and Φ(Xσ) ⊆ Xσ, where

Xσ = X ∩
{
u : |u|σ,θ ≤ 2C

(
‖f‖Hσ + ‖g‖Hσ−1

)}
.

Since Xσ is a closed subset of X , it follows that the fixed point of Φ must belong
to Xσ.

Now let u ∈ X s,θ be a solution of (4.1) on [0, T ] × Rn, where T > 0. By
what we just showed, and using the translation invariance of the equation, it
follows that for every t∗ ∈ [0, T ] such that

(
u(t∗), ∂tu(t∗)

)
∈ Hσ ×Hσ−1,

there exists u∗ ∈ X σ,θ which solves

�u∗ = F (u∗, ∂u∗) on (t∗ − δ∗, t∗ + δ∗)× Rn

u∗(t∗) = u(t∗), ∂tu∗(t∗) = ∂tu(t∗),
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where

δ∗ = min
{
Ts(‖u(t∗)‖Hs + ‖∂tu(t∗)‖Hs−1), Tσ(‖u(t∗)‖Hs + ‖∂tu(t∗)‖Hs−1)

}
.

Since ‖u(t)‖Hs + ‖∂tu(t)‖Hs−1 ≤ Cθ |u|s,θ for all t, we conclude that δ∗ is
bounded away from 0, and we set δ = inft∗ δ∗.

By the uniqueness statement proved above, we have

u∗(t) = u(t) for t ∈ [0, T ] ∩ (t∗ − δ, t∗ + δ).

Starting with t∗ = 0 and then moving in steps of length δ/2, say, we conclude
that (4.27) holds.

Remark. We make a general observation concerning (4.3) and (4.4) when the
nonlinearity is multilinear, that is, F (u, ∂u) = T (u, . . . , u), where T is a k-linear
operator given by

F
{
T (u1, . . . , uk)

}
(τ, ξ) =

∫
κ(τ1, ξ1, . . . , τk, ξk)û1(τ1, ξ1) · · · ûk(τk, ξk) dµ,

where τ1 = τ −∑k
2 τj , ξ1 = ξ −∑k

2 ξj and dµ = dτ dξ dτ2 dξ2 · · · dτk dξk. We
claim that (4.3) and (4.4) follow if we can show that

‖⌊T ⌋ (u1, . . . , uk)‖s−1,θ+ε−1 . |u1|s,θ · · · |uk|s,θ(4.12)

for all u1, . . . , uk ∈ X s,θ such that ûj ≥ 0, 1 ≤ j ≤ k, where ⌊T ⌋ denotes the
operator with symbol |κ|. First, since the norms on Hs,θ and X s,θ only depend
on the absolute value of the Fourier transform, and since

T (u1, . . . , uk) � ⌊T ⌋ (⌊u1⌋ , . . . , ⌊uk⌋),

it follows from (4.12) that

‖T (u1, . . . , uk)‖s−1,θ+ε−1 . |u1|s,θ · · · |uk|s,θ for all u1, . . . , uk ∈ X s,θ.

Therefore, (4.3) holds for σ = s, and (4.4) follows by multilinearity. To prove
(4.3) for σ > s, we simply note that (cf. (3.24))

ΛγT (u1, · · · , uk) - ⌊T ⌋ (Λγu1, u2, . . . , uk) + · · ·+ ⌊T ⌋ (u1, . . . , uk−1,Λ
γuk)

for γ ≥ 0, assuming ûj ≥ 0, 1 ≤ j ≤ k. These facts will be used throughout the
remainder of the dissertation, without further mention.

Let us look at some examples of equations to which theorem 14 can be applied.

4.1.1 The classical local existence theorem

Here we want to show that the classical local existence theorem for nonlinear
hyperbolic equations, which states that (4.1) is well posed for s > 1 + n/2, can
be proved using theorem 14.
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Assume s > 1 + n/2, 1/2 < θ < min(1, s − 1/2 − n/2), 0 < ε < 1 − θ and
n ≥ 2. Let F be any smooth function satisfying F (0) = 0. In this example we
only consider real-valued u ∈ X s,θ. By theorem 11, for any σ ≥ s there exists
a continuous function Aσ : R+ → R+, which we may assume is increasing and
locally Lipschitz, such that

‖F (u, ∂u)‖σ−1,θ ≤ Aσ(‖u, ∂u‖s−1,θ) ‖u, ∂u‖σ−1,θ for all σ ≥ s,

and this implies that (4.3) holds. Similarly, since

F (u, ∂u)− F (v, ∂v)

=

∫ 1

0

{
dF
(
v + ρ(u− v), ∂v + ρ(∂u− ∂v)

)
− dF (0)

}
· (u− v, ∂u− ∂v) dρ

+ dF (0) · (u− v, ∂u− ∂v),

it follows from theorem 11 and the algebra property of Hs−1,θ that (4.4) also
holds.

4.1.2 Sharp local existence

Here we reprove, using theorem 14, a sharp local well-posedness theorem of
Ponce and Sideris for nonlinearities of the form

F (u, ∂u) = Γ(u)(∂u)α,(4.13)

where Γ ∈ C∞ and α = (α0, . . . , αn) is a multi-index. We assume that n = 3
and |α| = α0 + · · ·+ αn ≥ 2.

By the classical local existence theorem, (4.1) with F given by (4.13) is well
posed for s > 5/2. We will show, using an asymmetric bilinear version of the
L4 Strichartz inequality in space dimension 3, that this can be improved to

s > max

{
2,

5k − 7

2k − 2

}
,

where k = |α|. This result was proved by Ponce and Sideris [21], and is sharp.
Lindblad [20] proved that (4.1) is not well posed for s = 2 when k = 2, and the
number (5k − 7)/(2k − 2) is the critical exponent associated to (4.1) with F =
(∂u)α, so the problem is certainly not locally well posed for s < (5k−7)/(2k−2).

In fact, if u is a solution of (4.1), then

uλ(t, x) = λβu(λt, λx), where β =
2− k
k − 1

,

solves the same equation with data

uλ

∣∣
t=0

= λβf(λ·), ∂tuλ

∣∣
t=0

= λ1+βg(λ·).

Since
∥∥λβf(λ·)

∥∥
Ḣs = λβ+s−3/2 ‖f‖Ḣs ,

∥∥λ1+βg(λ·)
∥∥

Ḣs−1 = λβ+s−3/2 ‖g‖Ḣs−1 ,
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we see that the Ḣs × Ḣs−1 norm of the data is invariant under this scaling
iff s = 3/2 − β = (5k − 7)/(2k − 2), and the Hs × Hs−1 norm of the scaled
data remains bounded as λ→∞ if s ≤ (5k − 7)/(2k − 2). On the other hand,
if the lifespan of u is T < ∞, then uλ has lifespan T/λ, which approaches 0
as λ → ∞. If we take α = (k, 0, . . . , 0), i.e., F = (∂tu)

k, then we can find
smooth and compactly supported data such that (4.1a) blows up in finite time,
by using the fact that the ODE y′ = yk blows up at time 1/(k − 1) for k ≥ 2.
Since the data are compactly supported, we can even produce a sequence (fλ)
of data supported in mutually disjoint balls, and add these up to produce data
for which there is no local existence in a strip [0, ε]× Rn.

Assume s > 2, 1/2 < θ < 1, 0 < ε < 1− θ and θ + ε ≤ 3/4. We must prove
(4.3) and (4.4). We first prove the special case Γ = 1, and then at the end e
show how to reduce the general case to this.

We start by proving the result in the case k = 2. By the above remark, it
suffices to prove

‖Λ+u · Λ+v‖s−1,0 . |u|s,θ |v|s,θ .

By (3.24), this reduces to proving
∥∥Λs−1Λ+u · Λ+v

∥∥
L2 . |u|s,θ |v|s,θ ,

but this follows immediately from the estimate

‖uv‖L2(R1+3) . ‖u‖1+γ,θ ‖v‖0,θ ,(4.14)

which holds for any γ > 0. This estimate is just a non-sharp, asymmetric
bilinear version of the classical Strichartz estimate ‖u‖L4(R1+3) . ‖u‖1/2,θ.

Now assume k ≥ 3. We assume that

s >
5k − 7

2k − 2
, 0 < 4ε < min

{
1, s− 5k − 7

2k − 2

}
,

and we set θ = 1/2 + ε. It suffices to prove
∥∥Λs−1Λ+u1 · Λ+u2 · · ·Λ+uk

∥∥
0,θ+ε−1

. |u1|s,θ · · · |uk|s,θ ,

which would follow from

‖u1u2 · · ·uk‖0,θ+ε−1 . ‖u1‖0,θ ‖u2‖s−1,θ · · · ‖uk‖s−1,θ .(4.15)

Set F1(τ, ξ) = wθ
−(τ, ξ)û1(τ, ξ) and

Fj(τ, ξ) = 〈ξ〉s−1
wθ

−(τ, ξ)ûj(τ, ξ) for 2 ≥ j ≤ k.

Then by the self-duality of L2, (4.15) holds iff

∫
G(τ, ξ)F1(τ1, ξ1)F2(τ2, ξ2) · · ·Fk(τk, ξk)

w1−θ−ε
− (τ, ξ)wθ

−(τ1, ξ1) 〈ξ2〉s−1
wθ

−(τ2, ξ2) · · · 〈ξk〉s−1
wθ

−(τk, ξk)
dµ

≤ C ‖F1‖L2 · · · ‖Fk‖L2 for all G ≥ 0 with ‖G‖L2 ≤ 1,
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where τ1 = τ −∑k
2 τj , ξ1 = ξ −∑k

2 ξj and dµ = dτ dξ dτ2 dξ2 · · · dτk dξk. Let us
name this integral I.

By symmetry we may assume that I is restricted to the region

〈ξ2〉 ≥ 〈ξ3〉 ≥ · · · ≥ 〈ξk〉 .(4.16)

We then write I = I1 + I2, where I1 and I2 are obtained by further restricting
the domain of integration to the regions

w−(τ, ξ) ≥ 〈ξ2〉 and w−(τ, ξ) < 〈ξ2〉 ,

respectively.

Since

s− 1 > 4ε+
3k − 5

2k − 2
= 1 + 4ε+

k − 3

2k − 2
(4.17)

and 1− θ − ε = 1/2− 2ε, we have

s− 1 +
1− θ − ε
k − 2

+
s− 1− (1 + ε)

k − 2

> 1 + 4ε+
k − 3

2k − 2
+

1

k − 2

(
1

2
− 2ε

)
+

1

k − 2

(
k − 3

2k − 2
+ 2ε

)

= 1 + 4ε+
k − 3

2k − 2
+

1

k − 1
=

3

2
+ 4ε.

Thus, on the domain of integration of I1,

w1−θ−ε
− (τ, ξ) 〈ξ2〉s−1 · · · 〈ξk〉s−1 ≥ 〈ξ2〉1+ε 〈ξ3〉3/2+ε · · · 〈ξk〉3/2+ε

,

so if we define v1, . . . , vk by

v̂1 =
F1

wθ
−

, v̂2 =
F2

〈·〉1+ε
wθ

−

and v̂j =
Fj

〈·〉3/2+ε
wθ

−

for 3 ≤ j ≤ k,

it follows from Hölder’s inequality, the Strichartz inequality (4.14) and the em-
bedding H3/2+ε,θ ⊆ L∞(R1+3) that

I1 ≤ ‖G‖L2 ‖v1v2 · · · vk‖L2

≤ ‖v1v2‖L2 ‖v3‖L∞ · · · ‖vk‖L∞

≤ C ‖v1‖0,θ ‖v2‖1+ε,θ ‖v3‖3/2+ε,θ · · · ‖vk‖3/2+ε,θ

= C ‖F1‖L2 · · · ‖Fk‖L2 .

By (4.17), s−1−3ε > 1+ ε+(k−3)/(2k−2), so it follows from (4.16) that

〈ξ2〉s−1−3ε 〈ξ3〉s−1 ≥ 〈ξ2〉1+ε 〈ξ3〉1+ε (〈ξ4〉 · · · 〈ξk〉
)1/(k−1)

.
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Since s− 1 + 1/(k − 1) > 3/2 + ε, it follows that on the domain of integration
of I2,

w
1/2−2ε
− (τ, ξ) 〈ξ2〉s−1 · · · 〈ξk〉s−1 ≥ w1/2+ε

− 〈ξ2〉1+ε 〈ξ3〉1+ε 〈ξ4〉3/2+ε · · · 〈ξk〉3/2+ε
.

Therefore, defining v0, . . . , vk by

F−1v0 =
G

wθ
−

, v̂1 =
F1

wθ
−

, v̂j =
Fj

〈·〉1+εwθ
−

for j = 2, 3

and

v̂j =
Fj

〈·〉3/2+εwθ
−

for 4 ≤ j ≤ k,

we get

I2 ≤
∫
F−1v0 · F(v1 · · · vk) dτ dξ

=

∫
v0v1 · · · vk dt dx

≤ ‖v0v2‖L2 ‖v1v3‖L2 ‖v4‖L∞ · · · ‖vk‖L∞

≤ C ‖v0‖0,θ ‖v2‖1+ε,θ ‖v1‖0,θ ‖v3‖1+ε,θ ‖v4‖3/2+ε,θ · · · ‖vk‖3/2+ε,θ

= C ‖G‖L2 ‖F1‖L2 · · · ‖Fk‖L2 .

This concludes the proof in the special case Γ = 1. We now show how to reduce
the general case to this.

First note that

‖Γ(u)(∂u)α‖σ−1,θ+ε−1 . ‖Γ0(u)(∂u)
α‖σ−1,θ+ε−1 + |Γ(0)| ‖(∂u)α‖σ−1,θ+ε−1 ,

where Γ0(u) = Γ(u)− Γ(0). By (3.24),

(4.18) ‖Γ0(u)(∂u)
α‖σ−1,θ+ε−1

.
∥∥Λσ−1Γ0(u) · (∂u)α

∥∥
0,θ+ε−1

+
∥∥Γ0(u) · Λσ−1(∂u)α

∥∥
0,θ+ε−1

.

By part (a) of proposition 12,

Hs−ε,θ ×H0,1−θ−ε −→ H0,1−θ−ε,

and by duality this implies

Hs−ε,θ ×H0,θ+ε−1 −→ H0,θ+ε−1.(4.19)

Applying this estimate to the second term on the right side of (4.18) and esti-
mating the first term via proposition 11, we get

‖Γ0(u)(∂u)
α‖σ−1,θ+ε−1

≤ ‖Γ0(u)‖σ,θ ‖(∂u)α‖s−1,θ+ε−1 + ‖Γ0(u)‖s,θ ‖(∂u)α‖σ−1,θ+ε−1

. g(‖u‖s,θ) ‖u‖σ,θ ‖(∂u)α‖s−1,θ+ε−1 + g(‖u‖s,θ) ‖(∂u)α‖σ−1,θ+ε−1 ,
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where we used theorem 11 to obtain the last inequality.
Since

Γ(u)− Γ(v) =

∫ 1

0

{
dΓ
(
v + ρ(u− v)

)
− dΓ(0)

}
· (u− v) dρ

+ dΓ(0) · (u− v),

we have

‖Γ(u)− Γ(v)‖s,θ .
{
h(‖u‖s,θ + ‖v‖s,θ) + |dΓ(0)|

}
‖u− v‖s,θ ,

and it follows that

‖Γ(u)(∂u)α − Γ(v)(∂v)α‖s−1,θ+ε−1

. g(‖v‖s,θ) ‖(∂u)α − (∂v)α‖s−1,θ+ε−1

+
{
h(‖u‖s,θ + ‖v‖s,θ) + |dΓ(0)|

}
‖u− v‖s,θ ‖(∂u)α‖s−1,θ+ε−1 ,

where h is continuous.

4.1.3 The wave map equation

In local coordinates on the target manifold N , the equation for a wave map u
from Minkowski space R1+n to N reads

�uI + ΓI
JK(u)Q0(u

J , uK) = 0,(4.20a)

where the ΓI
JK ’s are the Christoffel symbols on N , and Q0 is the null form

Q0(u, v) = ∂µu · ∂µv = −∂tu∂tv +
∑n

i=1 ∂iu∂iv. We impose initial conditions

u
∣∣
t=0

= f ∈ Hs, ∂tu
∣∣
t=0

= g ∈ Hs−1.(4.20b)

Note that u is now a vector in Rd, where d is the dimension of the target manifold
N . To simplify the notation, we drop the indices and treat the equation as a
scalar equation.

By the result of Ponce and Sideris, (4.20) is well posed for s > 2 in dimen-
sion n = 3. Using the cancellation properties of the null form Q0, Klainerman
and Machedon [10] improved this to s = 2, and then in [13] they proved local
existence for data with small Hs × Hs−1-norm for s > 3/2. Klainerman and
Selberg [18] extended this result to all dimensions n ≥ 2, proving local existence
for small data when s > n/2. Here we will prove that (4.3) and (4.4) are sat-
isfied, thereby improving the results in [13], [18] to strong local well-posedness.
Moreover, by applying theorem 11, we dispose of the assumption of analyticity
of the Christoffel symbols which was made in [13] and [18].

Note that n/2 is the scaling limit for this equation. What happens in the
exact limiting case s = n/2 is still open. One expects that data (f, g) ∈ Ḣn/2×
Ḣn/2−1 with small norm should give global existence, at least in space dimension
two. A recent result in this direction can be found in Tataru [23].
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We assume n ≥ 2, s > n/2 and pick θ and ε satisfying

1/2 < θ < 1, 0 < ε < 1− θ and
n− 1

2
+ θ + ε < s.

By the analysis in the previous section, we may assume Γ = 1. Note that

Q̂0(u, v)(τ, ξ) ≃
∫
q0(τ − λ, ξ − η, λ, η)û(τ − λ, ξ − η)v̂(λ, η) dλdη,

where q0(τ, ξ, λ, η) = τλ − ξ · η. Since Γ = 1, we may assume û, v̂ ≥ 0. From
the identity

τλ− ξ · η =
1

2

{
(τ + λ)2 − |ξ + η|2 − τ2 + |ξ|2 − λ2 + |η|2

}

and the trivial estimate |q0(τ, ξ, λ, η)| ≤ 2(|τ |+ |ξ|)(|λ|+ |η|), we conclude that

Q0(u, v) - Λγ
+Λγ

−(Λ1−γ
+ u · Λ1−γ

+ v) + Λ+Λγ
−u · Λ1−γ

+ v + Λ1−γ
+ u · Λ+Λγ

−v

= Aγ +Bγ + Cγ

for all 0 ≤ γ ≤ 1. The factors Λγ
− give cancellations on the null cone in frequency

space, and this is why we can obtain more favorable estimates for Q0(u, v) than
for a generic product ∂µu∂νv, for which there is no such cancellation.

By symmetry, it suffices to estimate the terms A1−ε and B1−ε. Using (3.24),
(3.25) and (3.26), we get

Λs−1Λθ+ε−1
− A1−ε - Λθ

−Λs−1Λ+u · Λε
+v + Λθ

−Λs−1Λε
+u · Λ+v

+ Λs−1Λ+u · Λθ
−Λε

+v + Λs−1Λε
+u · Λθ

−Λ+v

+Rθ(Λs−1Λ+u,Λ
ε
+v) +Rθ(Λs−1Λε

+u,Λ+v)

+ symmetric terms,

and we can apply propositions 10 and 9. By (3.24), (4.19) and (3.34),

‖B1−ε‖s−1,θ+ε−1 .
∥∥Λs−1Λ+Λ1−ε

− u · Λε
+v
∥∥

0,θ+ε−1

+
∥∥Λ+Λ1−ε

− u · Λs−1Λε
+v
∥∥

0,θ+ε−1

.
∥∥Λs−1Λ+Λ1−ε

− u
∥∥

0,θ+ε−1

∥∥Λε
+v
∥∥

s−ε,θ

+
∥∥Λ+Λ1−ε

− u
∥∥

s−1,θ+ε−1

∥∥Λs−1Λε
+v
∥∥

1−ε,θ
.

We conclude that ‖Q0(u, v)‖s−1,θ+ε−1 . |u|s,θ |v|s,θ.

4.2 Second well-posedness theorem

Consider (4.1) as a system with nonlinear terms

F I = QI
JK(uJ , uK), 1 ≤ I ≤ N,
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where each QI
JK is a linear combination of the null forms

Qij(u, v) = ∂iu∂jv − ∂ju∂iv.

The scaling exponent for this problem is n/2, and Klainerman and Mache-
don [16] have proved local existence for s > n/2 in dimensions n ≥ 3, under the
assumption that the Hs ×Hs−1-norm of the data is small. However, the esti-
mates (4.3) and (4.4) fail to hold for s close to n/2; see [13]. The same problem
arises when we try to apply theorem 14 to hyperbolic model problems derived
from the Maxwell-Klein-Gordon equations, the Yang-Mills equations and a cer-
tain coordinate-free formulation of the wave maps equation. Thus, among all
the nonlinear field equations that interest us, it is only the wave maps equation
in its local formulation which is amenable to analysis by the methods of the
previous section.

The failure of (4.3) and (4.4) means that the solution operator Φ, defined
in (4.5), is not a contraction map of X s,θ. Note that proving existence by the
contraction mapping principle amounts to showing that the sequence of Picard
iterates (uj) is Cauchy. The iterates are given by

u−1 = 0, uj = Φuj−1 for j ≥ 0.

The first step is to show that the sequence is bounded, and to do this we
have to be able to control the norm of uj in terms of the norms of the previous
iterates:

|uj|s,θ ≤ G
(
|uj−1|s,θ , . . . , |u0|s,θ

)
.

If (4.3) holds, this means that we can control the norm of uj+1 in terms of
just the norm of uj . It should not be surprising if this is the exception rather
than the rule. It is convenient to introduce the following terminology. We will
say that the iteration argument for the Cauchy problem (4.1) can be closed in
k steps if the X s,θ-norm of the j-th iterate can be controlled in terms of the
norms of the preceding k iterates, where k is independent of j. Of course, k will
in general depend on the size of s, and it may be infinite. The smallest such k
we will refer to as the iteration depth.

Even if the iteration argument cannot be closed in one step, it is often pos-
sible to cast the iteration in the form of a contraction argument. This requires
that one can find a suitable subspace of X s,θ in which Φ is a contraction. For
the above system, which we will refer to as the Qij-system, Klainerman and
Machedon [16] managed, by a rather ingenious construction, to do just this.
For this problem the iteration depth becomes unbounded as s approaches the
scaling exponent n/2, but Klainerman and Machedon were able to construct a
single subspace which works for the entire range s > n/2.

We now state the second well-posedness theorem, which is sufficiently general
to handle the Qij-problem. In the next chapter, this theorem will be applied to
a model problem for wave maps.

Given s, θ and ε satisfying (4.2), assume that ‖·‖ is a semi-norm on some
subspace of S′ containing S, and define

X =
{
u : ‖u‖X <∞

}
, Y =

{
F : ‖F‖Y <∞

}
,(4.21)
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where

‖u‖X = |u|s,θ + ‖u‖ , ‖F‖Y = ‖F‖s−1,θ+ε−1 +
∥∥Λ−1Λ−1+ε

− F
∥∥ .(4.22)

We assume that (X, ‖·‖X) is a complete space.
Assume that (cf. theorem 16 below)

‖u‖ ≤ C
(
‖f‖Hs + ‖g‖Hs−1 + T ε/2 ‖F‖Y

)
(4.23)

for all F ∈ Y and 0 < T < 1, with u as in theorem 13. Combined with the
estimate in theorem 13, (4.23) gives

‖u‖X ≤ C
(
‖f‖Hs + ‖g‖Hs−1 + T ε/2 ‖F‖Y

)
.

Assume, moreover, that
∥∥Λσ−sF (u, ∂u)

∥∥
Y
≤ Aσ(‖u‖X)

∥∥Λσ−su
∥∥

X
for all σ ≥ s(4.24)

and

‖F (u, ∂u)− F (v, ∂v)‖Y ≤ As(‖u‖X + ‖v‖X) ‖u− v‖X(4.25)

for all u, v ∈ X , where Aσ : R+ → R+ is increasing and locally Lipschitz for
every σ ≥ s.
Theorem 15. If (4.2),(4.23), (4.24) and (4.25) hold, there exists u ∈ X which
solves (4.1) on [0, T ] × Rn, where T = T (‖f‖Hs + ‖g‖Hs−1) > 0 depends con-
tinuously on ‖f‖Hs + ‖g‖Hs−1 .

The solution is unique in the class X, in the sense that if u, v ∈ X are
solutions of (4.1) on [0, T ]× Rn for some T > 0, then

u(t) = v(t) for t ∈ [0, T ].(4.26)

Moreover, the solution map

(f, g) 7−→ u, Hs ×Hs−1 −→ X

is locally Lipschitz, and if the data have the additional regularity

f ∈ Hσ, g ∈ Hσ−1, where σ > s,

then

u ∈ C
(
[0, T ], Hσ

)
∩ C1

(
[0, T ], Hσ−1

)
(4.27)

for any T > 0 such that u solves (4.1) on [0, T ]×Rn. In particular, if f, g ∈ S,
then u is C∞ on [0, T ]× Rn.

The proof is a straightforward modification of the proof of theorem 14, and
is therefore omitted.

The next result gives a sufficient condition for (4.23) to hold, and will prove
quite useful later on.
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Theorem 16. Assume that the semi-norm ‖·‖ has the properties:

(a) u � v implies ‖u‖ ≤ ‖v‖;

(b) There exists 1 < γ ≤ θ/2+ ε/2+5/4 such that for any v ∈ X s,θ satisfying
u � v,

‖u‖ .
∥∥〈ξ〉swγ

−(τ, ξ)v̂(τ, ξ)
∥∥

L2
ξ(L∞

τ )
.(4.28)

Then (4.23) holds.

The proof, which can be found in section 4.2.1, requires the following lemma.
We define Dγ : S′(R) → S′(R) to be the operator with Fourier symbol

(
1 +

|τ |2
)γ/2

.

Lemma 8. If χ ∈ C∞
c (R) and (f, g) ∈ Hs ×Hs−1, then

∥∥χ(t)e±itDf
∥∥ ≤

∥∥D̂γχ
∥∥

L∞
‖f‖Hs ,(4.29)

‖χ(t) cos(tD) · f‖ ≤
∥∥D̂γχ

∥∥
L∞
‖f‖Hs(4.30)

and

∥∥χ(t)D−1 sin(tD) · g
∥∥ .

(∥∥D̂γχ
∥∥

L∞
+
∥∥D̂γ(tχ)

∥∥
L∞

)
‖g‖Hs−1 .(4.31)

Moreover, if |ρ| ≤ 1 and supp ĝ ⊆ {ξ : |ξ| ≤ c}, then

∥∥χ(t)eiρtDg
∥∥ . c

(
cγ ‖χ̂‖L∞ +

∥∥D̂γχ
∥∥

L∞

)
‖g‖Hs−1(4.32)

Proof. Since the Fourier transform of χ(t)e±itDf is χ̂(τ ∓ |ξ|)f̂(ξ), it follows
from (4.28) that

∥∥χ(t)e±itDf
∥∥ .

∥∥∥D̂γχ(τ ∓ |ξ|) 〈ξ〉s f̂(ξ)
∥∥∥

L2
ξ(L∞

τ )
=
∥∥D̂γχ

∥∥
L∞
‖f‖Hs .

This proves (4.29), which in turn implies (4.30).
The proof of (4.32) is similar. We simply note that the Fourier transform of

χ(t)eiρtDg equals χ̂(τ − ρ |ξ|)ĝ(ξ), and that

∣∣|τ | − |ξ|
∣∣ ≤

∣∣τ − ρ |ξ|
∣∣+ (1− |ρ|) |ξ| ≤

∣∣τ − ρ |ξ|
∣∣+ c

for ξ ∈ supp ĝ and |ρ| ≤ 1.
To prove (4.31), we split g = g1 + g2, where ĝ1 is supported in the region

|ξ| < 1 and ĝ2 is supported in |ξ| ≥ 1. Since

D−1 sin(tD) = t

∫ 1

0

eit(2ρ−1)D dρ,
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we have

χ(t)D−1 sin(tD) · g1 =

∫ 1

0

tχ(t)eit(2ρ−1)Dg1 dρ.

By (4.32),
∥∥∥tχ(t)eit(2ρ−1)Dg1

∥∥∥ .
∥∥D̂γ(tχ)

∥∥
L∞
‖g1‖Hs−1 for 0 ≤ ρ ≤ 1,

and it follows that
∥∥χ(t)D−1 sin(tD) · g1

∥∥ ≤
∥∥D̂γ(tχ)

∥∥
L∞
‖g1‖Hs−1 .

This proves (4.31) with g replaced by its low frequency part g1.
Since

∥∥D−1g2
∥∥

Hs ≤ 2 ‖g‖Hs−1 , the estimate (4.31) with g replaced by g2
follows immediately from (4.29).

4.2.1 Proof of theorem 16

We must prove that

‖χ(t)u0 + χ(t/T )u1 + u2‖ ≤ C
(
‖f‖Hs + ‖g‖Hs−1 + T ε/2 ‖F‖Y

)
(4.33)

for all F ∈ Y and 0 < T < 1, where

u0 = cos(tD) · f +D−1 sin(tD) · g,

u1 =

∫ t

0

D−1 sin
(
(t− t′)D

)
· F1(t

′) dt′,

u2 = �−1F2

and

F = F1 + F2 = φ(T 1/2Λ−)F +
(
1− φ(T 1/2Λ−)

)
F.

Lemma 8 yields

‖χ(t)u0‖ .
(∥∥D̂γχ

∥∥
L∞

+
∥∥D̂γ(tχ)

∥∥
L∞

) (
‖f‖Hs + ‖g‖Hs−1

)
.(4.34)

By (3.78), u2 - T ε/2Λ−1
+ Λ−1+ε

− F , whence

‖u2‖ ≤ T ε/2
∥∥Λ−1

+ Λ−1+ε
− F

∥∥ .(4.35)

It remains to estimate ‖χ(t/T )u1‖. By proposition 16,

u1(t) =

∞∑

j=1

tj+1

j!

∫ 1

0

eit(2ρ−1)Dgj(ρ) dρ

+

∞∑

j=1

tj

j!

(
eitDf+

j + e−itDf−
j

)
+R+(t) +R−(t)

= Σ1 + Σ2 +R+(t) +R−(t),
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where

‖gj(ρ)‖Hs−1 ,
∥∥f±

j

∥∥
Hs

. T θ/2−j/2−1/4 ‖F‖s−1,θ−1(4.36)

and

supp ĝj(ρ) ⊆
{
ξ : |ξ| . T−1/2

}
.(4.37)

Using lemma 8, (4.36), (4.37) and the fact that

∥∥FDγ
{
tjχ(t/T )

}∥∥
L∞
≤ T 1−γ+j

∥∥D̂γ(tjχ)
∥∥

L∞
(4.38)

for j ≥ 0 and 0 < T < 1, we get

‖χ(t/T ) (Σ1 + Σ2)‖ ≤ CT θ/2+5/4−γ ‖F‖s−1,θ−1 ,(4.39)

where

C .

∞∑

j=1

∥∥D̂γ(tjχ)
∥∥

L∞

j!
.

To get the required decay, we must therefore have 2γ ≤ θ+ε+5/2. In particular,
γ ≤ 2, and since χ is supported in (−2, 2), we have

∥∥D̂γ(tjχ)
∥∥

L∞
≤
∥∥Dγ(tjχ)

∥∥
L1 . j22j

{
‖χ‖L∞ + ‖χ′‖L∞ + ‖χ′′‖L∞

}
,

whence C . ‖χ‖L∞ + ‖χ′‖L∞ + ‖χ′′‖L∞ .
Finally, notice that (3.75) implies

wγ
−(τ, ξ)

∣∣χ̂(τ − λ)− χ̂(τ − |ξ|)
∣∣

|λ|+ |ξ| .
∥∥D̂γ−1χ

∥∥
L∞

+
∥∥D̂γ(tχ)

∥∥
L∞

,(4.40)

so by (3.74), (3.77) and the Cauchy-Schwarz inequality,

〈ξ〉s wγ
−(τ, ξ)

∣∣∣χ̂(t)R+(τ, ξ)
∣∣∣

. T
θ
2−

3
4

(∥∥D̂γ−1χ
∥∥

L∞
+
∥∥D̂γ(tχ)

∥∥
L∞

)(∫ ∣∣∣〈ξ〉s−1 (wθ−1
− F̂

)
(λ, ξ)

∣∣∣
2

dλ

) 1
2

.

The same estimate holds for R−. Hence, (4.28) yields

‖χ(t)R±‖ .
(∥∥D̂γ−1χ

∥∥
L∞

+
∥∥D̂γ(tχ)

∥∥
L∞

)
T θ/2−3/4 ‖F‖s−1,θ−1 .

Using (4.38), we conclude that

‖χ(t/T )R±‖ .
(∥∥D̂γ−1χ

∥∥
L∞

+
∥∥D̂γ(tχ)

∥∥
L∞

)
T θ/2+5/4−γ ‖F‖s−1,θ−1 .(4.41)

The estimates (4.34), (4.35), (4.39) and (4.41) collectively prove (4.33).





Chapter 5

A Coordinate-Free
Formulation of Wave Maps

In this chapter we study the local existence properties of the system

∂µAµ = 0(5.1a)

∂µAν − ∂νAµ = [Aν , Aµ],(5.1b)

where Aµ is a Lie algebra-valued 1-form on the Minkowski space (R1+n, g) with
metric gµν equal to the diagonal matrix with entries −1, 1, . . . , 1. We use stan-
dard coordinates x0, . . . , xn and set t = x0. The summation convention is in
effect, and Roman indices run from 1 to n, Greek indices from 0 to n.

We assume that Aµ is matrix-valued, and [·, ·] the matrix commutator. The
initial condition is

Aµ

∣∣
t=0

= aµ ∈ Hs(Rn),(5.2)

where we must require that the compatibility condition

∂iaj − ∂jai = [aj , ai](5.3)

is satisfied.
Following Klainerman and Machedon [14], we define

Āi = Ai +R0RiA0,(5.4)

where Rµ = D−1∂µ. Then it follows from (5.1),(5.2) that the 1-form A0dx
0 +

Āidx
i satisfies the system

�A0 = ∂i[A0, Āi −R0RiA0](5.5a)

∂iĀi = 0(5.5b)

∂iĀj − ∂jĀi = [Āj −R0RjA0, Āi −R0RiA0](5.5c)

85
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with Cauchy data

A0

∣∣
t=0

= a0 ∈ Hs(Rn), ∂tA0

∣∣
t=0

= ∂iai ∈ Hs−1(Rn).(5.6)

Note that Āi satisfies an elliptic Hodge system in the space variables, and hence
no initial values are specified for Āi. For this system the critical Sobolev expo-
nent for the data is sc = (n− 2)/2.

Our main interest is the hyperbolic model problem obtained by setting Āi

identically zero in the above system. In dimensions n ≥ 3, this model prob-
lem was studied by Klainerman and Machedon [14]. Here we analyze the two-
dimensional case, which has not been tackled before. We prove that the model
problem is well posed for s > 1/4 in the two-dimensional case, and we write
down some conjectures which would give well-posedness for s > 0.

We then extend the 3D result of Klainerman and Machedon to the full system
(5.5). As one would expect, the estimates for the “elliptic” variable Āi are less
delicate than those for A0.

5.1 The connection with wave maps

Let G be a Lie group with a bi-invariant metric h, and let u be a wave map
from (R1+n, g) into (G, h), i.e., u is a critical point of the Lagrangian L[u] =∫

R1+n〈du, du〉.
Following the notation in Christodoulou and Tahvildar-Zadeh [2], we let

{ΩI} be an orthonormal basis of the Lie algebra of G, and {ωI} the dual basis
of left invariant 1-forms on G. Now define 1-forms ψI on R1+n by

ψI
µ = ωI

a(u)∂µu
a,(5.7)

and set

Aµ = ψI
µΩI .(5.8)

A computation (see [2, Section 3.1]) shows that the forms ψI satisfy a Hodge
system, and when we express this system in terms of the Lie algebra-valued
form A, we get

∂µAµ = [Aµ, Aµ], ∂µAν − ∂νAµ = [Aν , Aµ].

Since [Aµ, Aµ] = 0, we obtain the system (5.1). This system is equivalent to the
Euler-Lagrange equation for wave maps, which in local coordinates on G is the
equation (4.20), in the sense that a given map u : (R1+n, g)→ (G, h) is a wave
map iff (5.1) holds.

The formulation (5.1) has the inherent advantage over (4.20) that it is global
as opposed to local, and this fact was used by Christodoulou and Tahvildar-
Zadeh in [2], where they establish the global regularity of spherically symmetric
wave maps for smooth data of any size. A related system was also used by Freire,
Müller and Struwe [3] to prove weak convergence of wave maps for n = 2, and
by Helein [6] to prove regularity of weakly harmonic maps.
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5.2 Hyperbolic model problem

Consider the Cauchy problem for the system

�uI = aI
JKQ(uJ , uK) (t, x) ∈ R1+n(5.9a)

u
∣∣
t=0

= f ∈ Hs, ∂tu
∣∣
t=0

= g ∈ Hs−1,(5.9b)

where the aI
JK ’s are constants, Q is the bilinear operator given by

Q(u, v) =

n∑

i=1

∂i(R0Riu · v − u · R0Riv)(5.10)

and R0 = D−1∂t, Ri = D−1∂i. Notice that the Fourier symbol of Q is

q(τ, ξ, λ, η) = (ξ + η) ·
(
τξ

|ξ|2
− λη

|η|2

)
.

The new result proved in this section is the following.

Theorem 17. In dimension n = 2, the system (5.9) is locally well-posed for
s > 1/4.

Klainerman and Machedon [14] proved local existence for (5.9) when s >
sc = (n− 2)/2 in dimensions n ≥ 3. The new idea introduced in their proof is
to use information from two previous Picard iterates to estimate the subsequent
iterate. Applying this idea to the 2D problem we obtain the s > 1/4 result.
In contrast with the higher dimensional case, however, we can show that it is
not possible to go all the way to the scaling limit sc using two iterates. In fact,
we prove that if s < 1/8 one must use information from at least three previous
iterates. This gives some indication of the difficulty of the problem in 2D. We
then dicuss a strategy for proving well-posedness in 2D for all s > 0, subject
to some conjectures. This is where the quadrilinear estimate proved in chapter
two comes into the picture.

As a by-product of our approach to the two-dimensional problem, we also
obtain a considerably simplified proof of the result of Klainerman and Machedon
[14]. In dimensions n ≥ 3 we have the L1

t (L
∞
x ) product estimate proved in [19],

and this fact makes life much simpler than in the two-dimensional case, where
no such estimate holds.

5.2.1 Outline of proof

The plan is to prove well-posedness for s > 1/4 in 2D and for s > sc in higher
dimensions by applying theorem 15 with a suitably defined seminorm ‖·‖ which
satisfies the properties:

(I) ‖Q(u, u)‖s−1,θ+ε−1 . (|u|s,θ + ‖u‖)2 for all s > sc and n ≥ 2;

(II)
∥∥Λ−1Λ−1+ε

− Q(u, u)
∥∥ . |u|2s,θ for s > 1/4 if n = 2 (resp. s > sc if n ≥ 3).
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The norm ‖·‖ depends on s, θ and ε, and the above properties hold for sufficiently
small ε > 0 and θ > 1/2, depending on s.

It is obvious that (I) and (II) imply

‖Q(u, u)‖s−1,θ+ε−1 +
∥∥Λ−1Λ−1+ε

− Q(u, u)
∥∥ .

(
|u|s,θ + ‖u‖

)2

for s > 1/4 if n = 2 (resp. s > sc if n ≥ 3). By theorem 15, this implies
well-posedness.

In section 5.2.8 we prove that in dimension two, property (II) fails to hold
for s < 1/8. This means that to prove well-posedness for s < 1/8, we must use
at least three iterates.

We remark that if s > sc + 1/2, n ≥ 2, then the estimate in property (I)
holds without the semi-norm ‖·‖ on the right hand side. This fact follows easily
from Hölder’s inequality and Sobolev embeddings; we omit the proof. It should
be noted, however, that in two dimensions, even this last result requires the
null structure of the bilinear operator Q, in contrast with the case of higher
dimensions.

5.2.2 Strategy for proving well-posedness below 1/4

Consider the two-dimensional case. The idea is to define a sequence of semi-
norms ‖·‖j , j ≥ 1, where the norm corresponding to j = 1 coincides with the
norm appearing in the previous section, and satisfying

(II)
∥∥Λ−1Λ−1+ε

− Q(u, u)
∥∥

j−1
. |u|2s,θ for all s > 1

2j , j ≥ 2.

Since this property generalizes property (II) of the previous section, in the case
n = 2, we denote them by the same Roman numeral.

Now assume we could prove that

(Cj)
∥∥Λ−1Λ−1+ε

− Q(u, u)
∥∥

j−1
. (|u|s,θ + ‖u‖j)2 for all s > sc

holds for 2 ≤ j ≤ k, and that we are given

s >
1

2(k + 1)
.

Having chosen appropriate θ > 1/2 and ε > 0 depending on s and k, we set

‖u‖ = ‖u‖1 + · · ·+ ‖u‖k .

The plan is to apply theorem 15 with this semi-norm. But it is immediate from
properties (I), (II) and (Cj) that

‖Q(u, u)‖s−1,θ+ε−1 +
∥∥Λ−1Λ−1+ε

− Q(u, u)
∥∥ .

(
|u|s,θ + ‖u‖

)2
,

and this gives well-posedness for s > 1
2(k+1) .
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5.2.3 Three lemmas

Definition 4. Let Tj, j ≥ 2, be the sequence of operators given by

T2(u, v) = uv,

Tj+1(u1, . . . , uj+1) = u1Λ
−1Tj(u2, . . . , uj+1).

The first lemma is crucial to the proof of property (II).

Lemma 9. In space dimension n = 2,
∥∥Λ−σTj+1(u1, . . . , uj, v)

∥∥
L2 . ‖u1‖s1,θ · · · ‖uj−1‖sj−1,θ ‖uj‖0,θ ‖v‖L2 ,(5.11)

where σ and the s’s are strictly positive, σ + s1 + · · · + sj−1 > 1, θ > 1/2 and
j ≥ 2.

Proof. By duality, (5.11) is equivalent to

‖Tj+1(uj , . . . , u1, w)‖L2 . ‖u1‖s1,θ · · · ‖uj−1‖sj−1,θ ‖uj‖0,θ ‖w‖σ,0 .(5.12)

We will prove (5.12) by induction. To prove the case j = 2, we note that
proposition 10 yields

∥∥u2Λ
−1(u1w)

∥∥
L2 . ‖u2‖0,θ ‖Λε(u1w)‖L2

for any ε > 0, and since s1 + σ > 1, (3.24) and proposition 10 give

‖Λε(u1w)‖L2 . ‖u1‖s1,θ ‖w‖σ,0

for ε sufficiently small.
Now assume (5.12) holds for some j ≥ 2. We must show that it holds for

j + 1. Set ω = Λ−1(u1w). By (5.12),

‖Tj+1(uj+1. . . . , u2, ω)‖L2 . ‖uj+1‖0,θ ‖uj‖sj ,θ · · · ‖u2‖s2,θ ‖ω‖γ,0 ,

where 1− s2 − · · · − sj < γ < min{1, s1 + σ}. Thus, it suffices to show

‖ω‖γ,0 . ‖u1‖s1,θ ‖w‖σ,0 .

But this follows from proposition 10.

To verify property (b) of theorem 16, we need the next two lemmas. We denote
by B the space

F−1
{
L2

ξ(L
1
τ )
}

with norm ‖u‖B = ‖û(τ, ξ)‖L2
ξ(L1

τ). Notice that ‖u‖B . ‖u‖0,θ for θ > 1/2.

Lemma 10. In any dimension n ≥ 2,
∥∥∥Λ−n/2−ε(uv)

∥∥∥
B

. ‖u‖B ‖v‖B

for all ε > 0.
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Proof. This reduces to the fact that

‖fg‖H−n/2−ε . ‖f‖L2 ‖g‖L2

for any ε > 0, where f and g are functions on Rn.

Lemma 11. In space dimension n = 2,

∥∥Λ−1Tj+2(u1, . . . , uj , v1, v2)
∥∥
B

. ‖Λεu1‖B · · · ‖Λεuj‖B ‖v1‖B ‖v2‖B(5.13)

for all ε > 0 and j ≥ 1.

Proof. The proof is by induction. The case j = 1 follows from the estimate

∥∥Λ−1
(
f · Λ−1(gh)

)∥∥
L2 . ‖f‖Hε ‖g‖L2 ‖h‖L2 ,(5.14)

where f , g and h are functions on R2. By duality, (5.14) is equivalent to

∥∥f · Λ−1(gh)
∥∥

L2 . ‖f‖L2 ‖g‖Hε ‖h‖H1 .

To prove the latter, we use lemma 6 to obtain

∥∥f · Λ−1(gh)
∥∥

L2 . ‖f‖L2 ‖gh‖Hε/2 . ‖f‖L2 ‖g‖Hε ‖h‖H1 .

Now assume (5.13) holds for some j ≥ 1. If we can show that

∥∥Λ−1(uv)
∥∥
B

. ‖Λεu‖B ‖v‖B ,(5.15)

then clearly it follows that (5.13) holds also for j + 1. But (5.15) is yet another
trivial consequence of lemma 6. We omit the details.

5.2.4 Definition of the semi-norms

Let (mj), j ≥ 1, be the sequence defined by

m1 = 1, mj+1 = mj + j,

and set
Ej = Λ2θ+mjε−1Λjε

− .

Since θ will be close to 1/2 and ε close to 0, the latter operator should be thought
of as a small perturbation of the identity. Using (3.24) and the estimate

Λε
−(uv) - ΛεΛε

−u · Λε
−v,(5.16)

which is a consequence of (3.26) and (3.20), we find that

Ej(uv) - Ej+1Λ
−ε
− u ·Ejv,(5.17)

where it is assumed that u and v have non-negative Fourier transforms.
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Now define

‖u‖1 = sup

∣∣∣∣
∫

R1+n

Λ2θ+ε−2Λ−u · vw dt dx
∣∣∣∣ ,

where the supremum is taken over all v, w ∈ H0,θ with unit norms. In the case
of space dimension n = 2 we also define, for j ≥ 2,

‖u‖j = sup

∣∣∣∣
∫

R1+2

Λ−1Λ1−ε
− Eju · Tj+1(Ej−1w1, . . . , E1wj−1, wj , wj+1) dt dx

∣∣∣∣ ,

where the supremum is taken over all

w1, . . . , wj−1 ∈ Hs,θ, wj , wj+1 ∈ H0,θ

with unit norms.

Clearly, ‖u‖j ≤ ‖v‖j whenever u � v, so we may assume that all functions
have non-negative Fourier transform. Assuming

s ≥ sc + 2θ + 2ε− 1,

it follows from lemma 10 that

u � v =⇒ ‖u‖1 .
∥∥F(ΛsΛ−v)(τ, ξ)

∥∥
L2

ξ(L∞

τ )
.

Similarly, in the two-dimensional case, if s > 0 and j ≥ 2 are given, choose
θ > 1/2 and ε > 0 so that

s ≥ 2θ +mjε− 1

and

Ek

(
Hs,θ

)
⊆ H0,1/2+ε for k = 1, . . . , j − 1.

It then follows from lemma 11 that

u � v =⇒ ‖u‖j .
∥∥F(ΛsΛ

1+(j−1)ε
− v)(τ, ξ)

∥∥
L2

ξ(L∞

τ )
.

Thus, the hypotheses of theorem 16 are satisfied.

Moreover, since in general

‖û‖L2
ξ(L∞

τ ) ≤ ‖u‖L1
t (L2

x) ,

we conclude that

u � v =⇒ ‖u‖j .
∥∥EjΛ

1−ε
− v

∥∥
L1

t (L2
x)

(5.18)

for j ≥ 1, n = 2.
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5.2.5 Proof of property (I)

Let us denote by uL the low-frequency part of u, i.e., uL = ψ(Λ)u, where
ψ ∈ C∞

c ([−2, 2]) and ψ = 1 on [−1, 1]. Let Dt be the multiplier with symbol
|τ |. We emphasize that in this section we consider all dimensions n ≥ 2.

By [14, Lemmas 2.3 and 2.4],

Q(u, v) - D(D−1DtuL · v) +D(Λ−1Λ−u · v)
+DRE(Λ−1u, v) + symmetric terms,

(5.19)

where E =
{
(τ, ξ, λ, η) : 〈ξ〉 ≤ 〈η〉

}
and R is the operator defined by (3.21). For

an explanation of the notation RE we refer to p. 28.
Using (3.24), we thus obtain

‖Q(u, v)‖s−1,θ+ε−1 . I1 + I2 + I3 + I4 + symmetric terms,

where

I1 =
∥∥D−1DtuL · Λsv

∥∥
L2 ,

I2 =
∥∥Λθ+ε−1

− (Λs−1Λ−u · v)Ec

∥∥
L2 ,

I3 =
∥∥Λθ+ε−1

− (Λ−1Λ−u · Λsv)
∥∥

L2 ,

I4 =
∥∥Λθ+ε−1

− R(Λ−1u,Λsv)
∥∥

L2 .

(5.20)

Notation. If B is a subset of R2+2n, we denote by Ij,B the expression obtained
by replacing the multiplication operator in Ij by the restricted multiplication
operator (u, v) 7→ (uv)B, defined on p. 28.

Setting

B =
{
(τ, ξ, λ, η) : w−(τ + λ, ξ + η) ≥ 〈ξ〉

}
,(5.21)

we write Ij ≤ Ij,B + Ij,Bc for j = 2, 3 and 4.

Estimates for I2,B and I3,B Since

I2,B ≤
∥∥Λs+ε−2Λ+Λθ

−u · v
∥∥

L2 , I3,B ≤
∥∥Λε−2Λ+Λθ

−u · Λsv
∥∥

L2

it follows from proposition 10 that Ij,B . |u|s,θ ‖v‖s,θ for j = 2, 3, provided

s > sc + ε =
n− 2

2
+ ε.

Estimate for I4,B By proposition 9,

I4,B .
∥∥∥R1/2(Λθ+ε−3/2u,Λsv)

∥∥∥
L2

. ‖u‖s,θ ‖v‖s,θ .



5.2 Hyperbolic model problem 93

Estimate for I2,Bc Notice that

I2,Bc ≤
∥∥∥Λ−1/2−ε

− (ΛsΛ−u · Λθ+2ε−3/2v)
∥∥∥

L2
.

We claim that the right side is bounded by ‖u‖s,θ ‖v‖s,θ. This would follow
from

H0,−1/2 ×Hs−θ−2ε+3/2,θ −→ H0,−1/2−ε,

which by duality is equivalent to

H0,1/2+ε ×Hs−θ−2ε+3/2,θ −→ H0,1/2.

The latter follows from part (a) of proposition 12.

Estimate for I4,Bc Since (see [14, Corollary 1])

Rγ(u, v) - Λγ
−(uv) + Λγ

−u · v + u · Λγ
−v,(5.22)

we get

I4,Bc . I3 +
∥∥∥R1/2(Λθ+2ε−3/2u,Λsv)

∥∥∥
L2

+
∥∥∥Λ−1/2−ε

− (Λθ+2ε−3/2u · ΛsΛ−v)
∥∥∥

L2
,

and we just showed that the second and third terms are both bounded by
‖u‖s,θ ‖v‖s,θ.

Estimate for I3,Bc It turns out that the estimate I3,Bc . |u|s,θ |v|s,θ fails for
s < sc + 1/2. Define

‖u‖ = sup
v 6=0

I3,Bc

‖v‖s,θ

.

Then the estimate I3,Bc ≤ ‖u‖ ‖v‖s,θ holds by definition, and since

I3,Bc ≤
∥∥Λ−θ

− (Λ2θ−ε−2Λ−u · Λsv)
∥∥

L2 ,

a duality argument shows that ‖·‖ ≤ ‖·‖1.

Estimate for I1 By Hölder’s inequality,

I1 ≤
∥∥D−1∂tuL

∥∥
L2

t (L∞

x )
‖Λsv‖L∞

t (L2
x) .

∥∥D−1∂tuL

∥∥
L2

t (L∞

x )
‖v‖s,θ .

If n ≥ 3, Sobolev embedding gives

∥∥D−1∂tuL

∥∥
L2

t (L∞

x )
. ‖∂tu‖s−1,θ ,

but this is no longer true in dimension two. However, we can certainly get

∥∥D−1∂tuL

∥∥
L2

t (L∞

x )
.
∥∥∥D−1/2∂tu

∥∥∥
s−1/2,θ

.
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We therefore redefine the space X s,θ, setting

|u|s,θ = ‖u‖s,θ +
∥∥∥D−1/2∂tu

∥∥∥
s−1/2,θ

.

Theorem 13 still holds, but the main estimate obviously changes to

|u|s,θ . ‖f‖Hs +
∥∥∥D−1/2g

∥∥∥
Hs−1/2

+ T ε/2
∥∥∥D−1/2F

∥∥∥
s−1/2,θ+ε−1

.

Thus, we have to require that D−1/2g ∈ Hs−1/2. This is not a limitation,
however, since in the original problem one actually has D−1g ∈ Hs; cf. (5.6).
Moreover, since every term in (5.19) is of the form DT (u, v), it is clear that

∥∥∥D−1/2Q(u, v)
∥∥∥

s−1/2,θ+ε−1
. I1 + I2 + I3 + I4 + symmetric terms,

with the Ij defined exactly as before.

5.2.6 Proof of property (II) when n = 2

In this section we assume n = 2, j ≥ 2 and s > 1
2j . By (5.19),

∥∥Λ−1Λ−1+ε
− Q(u, v)

∥∥
j−1

. J1 + J2 + J3 + symmetric terms,

where

J1 =
∥∥Λ−1+ε

− (D−1DtuL · v)
∥∥

j−1
,

J2 =
∥∥Λ−1+ε

− (Λ−1Λ−u · v)
∥∥

j−1
,

J3 =
∥∥Λ−1+ε

− R(Λ−1u, v)
∥∥

j−1
.

Estimate for J1 By (5.17) and (5.18),

J1 .
∥∥D−1DtΛ

(j−1)ε
− uL ·Ej−1v

∥∥
L1

t (L2
x)
.

Thus, applying Hölder’s inequality and Sobolev embedding,

J1 .
∥∥D−1DtΛ

(j−1)ε
− uL

∥∥
L2

t (L∞

x )
‖Ej−1v‖L2 . |u|s,θ ‖v‖s,θ

for appropriate ε and θ.

Estimate for J2 Applying (5.17), we see that

J2 . sup

∣∣∣∣
∫

R1+2

Λ−1Λ1−ε
− Eju · Ej−1v · Λ−1Aj−1 dt dx

∣∣∣∣ ,

where
Aj−1 = Tj(Ej−2w1, . . . , E1wj−2, wj−1, wj)
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and the supremum is taken over all

w1, . . . , wj−2 ∈ Hs,θ, wj−1, wj ∈ H0,θ

with unit norms.
For appropriate ε and θ,

Λ1−ε
− Eju � Λs− 1

2j Λ
1/2
+ Λθ

−u � Λ1/2− 1
2j Λs−1Λ+Λθ

−u,

whence

J2 . sup

∣∣∣∣
∫

R1+2

Λs−1Λ+Λθ
−u · Λ−1/2− 1

2j (Ej−1v · Λ−1Aj−1) dt dx

∣∣∣∣ .

By lemma 9,

Λ−1/2− 1
2j (Ej−1v · Λ−1Aj−1) ∈ L2,

and the Cauchy-Schwarz inequality yields J2 . |u|s,θ ‖v‖s,θ.

Estimate for J3 With notation as above,

J3 . sup

∣∣∣∣
∫

R1+2

R(Λ−1Λ−ε
− Eju,Ej−1v) · Λ−1Aj−1 dt dx

∣∣∣∣ .

By proposition 9,

J3 . sup

∣∣∣∣
∫

R1+2

Λ1/j−1/2R1/2(Λ−1/2Λ−ε
− Eju,Ej−1v) · Λ−1/2−1/jAj−1 dt dx

∣∣∣∣

and
Λ1/j−1/2+εR1/2(Λ−1/2Λ−ε

− Eju,Ej−1v) ∈ L2.

Moreover, lemma 9 (or proposition 10 if j = 2) implies that

Λ−ε−1/2−1/jAj−1 ∈ L2,

and we conclude that J3 . ‖u‖s,θ ‖u‖s,θ.

5.2.7 Proof of property (II) when n ≥ 3

In this section we assume n ≥ 3 and s > sc. For technical reasons we will use a
slight modification of the norm ‖·‖. Define

‖u‖ = sup
v 6=0

I3
‖v‖s,θ

.

By duality,

‖u‖ = sup

∣∣∣∣
∫

Λ−1Λ−u · v · Λθ+ε−1
− w dt dx

∣∣∣∣ ,(5.23)
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where the supremum is over all v ∈ H0,θ and w ∈ L2 with unit norms.
By Plancherel’s theorem, Hölder’s inequality and the Hausdorff-Young in-

equality,

Λθ+ε−1
− : Lq

t (L
2
x) −→ L2(R1+n) for (3/2− θ − ε)−1 < q ≤ 2.(5.24)

This implies

I3 .
∥∥Λ−1Λ−u · Λsv

∥∥
Lq

t (L2
x)
≤
∥∥Λ−1+εΛ−u

∥∥
Lq

t (Lr
x)
‖Λsv‖L∞

t (L2
x) ,

where

2− 2θ − ε ≤ 1

q
<

3

2
− θ − ε and

n

ε
< r <∞.(5.25)

We conclude that

‖u‖ .
∥∥Λ−1+εΛ−u

∥∥
Lq

t (Lr
x)
.(5.26)

For later use, notice that the lower bound on 1/q implies

2s+ 1− 3ε ≥ n− n/r − 1/q.(5.27)

We now turn to the estimate for
∥∥Λ−1Λ−1+ε

− Q(u, v)
∥∥. In fact, this estimate

requires no null structure, and we simply use the obvious fact that

Q(u, v) - D(D−1∂tuL · v) +D(u ·D−1∂tvL) +D(Λ−1Λ+u · Λ−1Λ+v).

The low frequency terms are trivial to estimate, and we ignore them. In view
of (5.26), we are thus left with the expression

∥∥Λ−1+ε(UV )
∥∥

Lq
t (Lr

x)
,

where U = Λ−1+εΛ+Λε
−u and V = Λ−1+εΛ+Λε

−v. By (5.27) and (3.11), this
expression is bounded by

‖U‖s−ε,θ−ε ‖V ‖s−ε,θ−ε ≤ |u|s,θ |v|s,θ .

5.2.8 A counterexample

In this section we prove that in dimension two, property (II) on p. 87 fails to
hold for s < 1/8. In fact, we can produce bounded sequences (uj) and (vj) in
X s,θ such that

∥∥Λ−1Λ−1
− Q(uj, vj)

∥∥ blows up as j → ∞. Moreover, the Fourier
supports of these functions will be such that |uj |s,θ ∼ ‖uj‖s,θ, |vj |s,θ ∼ ‖vj‖s,θ
and

FQ(uj, vj) ∼ FΛ(Λ−1Λ−uj · vj),

so in effect we are proving that the estimate J2 . ‖u‖s,θ ‖v‖s,θ fails.
A basic fact is that a product of two solutions of the wave equation with

bounded L2 data can concentrate in a null hyperplane in frequency space. The
precise version of this statement that we use here is as follows:
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Lemma 12. Given a large positive parameter L, there exist w1, w2 ∈ H0,θ such
that ‖w1‖0,θ = ‖w2‖0,θ = 1 and

ŵ1w2(τ, ξ) ∼ 1

for all (τ, ξ) satisfying

|τ − ξ1| ≤ 1, L/2 ≤ |ξ| ≤ 2L.(5.28)

Proof. Let ŵ1 and ŵ2 be the characteristic functions of the regions

∣∣τ + |ξ|
∣∣ ≤ 30, −4L2 ≤ ξ1 ≤ −L2/4, |ξ′| ≤ 3L,

and ∣∣λ− |η|
∣∣ ≤ 1, L2/2 ≤ η1 ≤ 2L2, |η′| ≤ L

respectively, where ξ′ denotes (ξ2, . . . , ξn) for any ξ ∈ Rn. Let A be the set
determined by (5.28). We claim that if (λ, η) ∈ supp ŵ2 and (τ, ξ) ∈ A, then
(τ − λ, ξ − η) ∈ supp ŵ1 for sufficiently large L. Clearly this would imply that

ŵ1w2(τ, ξ) = |supp ŵ2| for (τ, ξ) ∈ A,

and since |supp ŵ2| ∼ Ln+1 ∼ ‖w1‖0,θ ‖w2‖0,θ, we only have to normalize w1

and w2 to have unit norms. The claim is easily checked. If (λ, η) ∈ supp ŵ2 and
(τ, ξ) ∈ A, then clearly

L2/4 ≤ η1 − ξ1 ≤ 4L2, |ξ′ − η′| ≤ 3L

for L sufficiently large. We have

∣∣τ − λ+ |ξ − η|
∣∣ ≤ |τ − ξ1|+

∣∣λ− |η|
∣∣+ |η| − η1 + |ξ − η| − (ξ1 − η1),

and since

|η| − η1 =
|η′|2
|η|+ η1

≤ 1

and, similarly, |ξ − η| − (ξ1− η1) ≤ 18, it follows that
∣∣τ −λ+ |ξ − η|

∣∣ ≤ 21.

Given any sufficiently large parameter L, we will construct functions u and v
such that |u|s,θ = |v|s,θ = 1 and

∫

R1+2

Λ2θ−2Q(u, v) · Λ−1(w1w2) dt dx & Lθ−2s−1/4,

where w1 and w2 are as above, except that in (5.28) we replace L by 100L. If
s ≤ 1/8, the right hand side of the above inequality → ∞ as L → ∞, and this
establishes the counterexample.

Let A be the set of all (τ, ξ) such that

|τ − ξ1| ≤ 1, 9L ≤ ξ1 ≤ 10L, 99L ≤ ξ2 ≤ 100L.
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By the choice of w1, w2,

∫

R1+2

Λ2θ−2Q(u, v) · Λ−1(w1w2) dt dx & L2θ−3

∫

A

Q̂(u, v)(τ, ξ) dτ dξ.

If we can find u, v such that |u|s,θ = |v|s,θ = 1 and

Q̂(u, v)(τ, ξ) ∼ L3/4−2s−θ for (τ, ξ) ∈ A,(5.29)

it follows that

L2θ−3

∫

A

Q̂(u, v)(τ, ξ) dτ dξ & Lθ−2s−1/4−2 |A| ∼ Lθ−2s−1/4,

which is what we want.
We now construct the functions u and v. Let û and v̂ be the characteristic

functions of the regions

|τ − ξ1| ≤ 3, 8L ≤ ξ1 ≤ 10L, 98L ≤ ξ2 ≤ 100L,

and ∣∣λ− |η|
∣∣ ≤ 1,

999

1000
L ≤ η1 ≤ L, 0 ≤ η2 ≤

√
L

respectively. If (τ, ξ) ∈ A and (λ, η) ∈ supp v̂, then (τ − λ, ξ − η) ∈ supp û.
Indeed,

|τ − λ− (ξ1 − η1)| ≤ |τ − ξ1|+
∣∣λ− |η|

∣∣+ |η| − η1 ≤ 3,

and it is clear that

8L ≤ ξ1 − η1 ≤ 10L, 98L ≤ ξ2 − η2 ≤ 100L.

Now we have to estimate the symbol of Q. Assume (τ, ξ) ∈ supp û and (λ, η) ∈
supp v̂. Then

∣∣∣∣∣(ξ + η) ·
(
τξ

|ξ|2
− λη

|η|2

)∣∣∣∣∣ =
∣∣∣∣∣τ − λ

(
1 +

ξ1η1

|η|2

)
− λξ2η2
|η|2

+ τ
ξ · η
|ξ|2

∣∣∣∣∣

≥
∣∣∣∣∣τ − λ

(
1 +

ξ1η1

|η|2

)∣∣∣∣∣− λ
ξ2η2

|η|2
− τ |η||ξ|

= a− b− c.

We have

b ≤ 2L
100L

√
L

L2/4
≤ 800

√
L, c ≤ (3 + 10L)

2L

98L
≤ L

4
,

and

a ≥ λ− |τ − ξ1| − ξ1
∣∣∣∣∣1−

λη1

|η|2

∣∣∣∣∣ .
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For L sufficiently large,

998

1000
L ≤ λ ≤ 1001

1000
L,

999

1000
L ≤ |η| ≤ 1001

1000
L,

which implies ∣∣∣∣∣1−
λη1

|η|2

∣∣∣∣∣ ≤ 1/100.

We conclude that a ≥ L/2, whereas b+ c ≤ L/3 for L large enough. Hence,

Q̂(u, v)(τ, ξ) ∼ L |supp v̂| ∼ L5/2 for (τ, ξ) ∈ A,

and since |u|s,θ ∼ Ls+θ |supp û|1/2 ∼ Ls+θ+1 and |v|s,θ ∼ Ls |supp v̂|1/2 ∼
Ls+3/4, we can simply normalize u and v to have unit norms, and (5.29) is
proved.

Remark. The above counterexample does not show that the estimate

∥∥Λ−1Λ−1
− Q(u, v)

∥∥ . ‖u‖ ‖v‖s,θ

fails. With u, v, w1 and w2 as in the previous section, it is clear that

∫
Λ2θ−2Λ−u · w1w2 dt dx & L2θ+1,

which implies ‖u‖ ∼ L2θ+1, whereas |u|s,θ ∼ Ls+θ+1.

5.2.9 Remarks on the conjecture (Cj)

Proceeding as in section 5.2.6, we have to estimate J2 and J3.

Estimate for J2 We have

J2 . sup

∣∣∣∣
∫

R1+2

Λ−1Λ1−ε
− Eju ·Ej−1v · Λ−1Aj−1 dt dx

∣∣∣∣ ,

where

Aj−1 = Tj(Ej−2w1, . . . , E1wj−2, wj−1, wj)

and the supremum is taken over all

w1, . . . , wj−2 ∈ Hs,θ, wj−1, wj ∈ H0,θ

with unit norms. It is therefore clear from the definition of ‖·‖j that

J2 . ‖u‖j ‖v‖s,θ .
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Estimate for J3 Let us take j = 2. Then, essentially,

J3 . sup

∣∣∣∣
∫

R1+2

R(Λ−1u, v) · Λ−1(w1w2) dt dx

∣∣∣∣ ,

where u, v ∈ Hs,θ and w1, w2 ∈ H0,θ. Denote by I the integral on the right
hand side.

At first glance, one might think that the estimate

J3 . ‖u‖s,θ ‖v‖s,θ for all s > 0

follows from the quadrilinear estimate (2.26) via proposition 8. This is not so,
however, since the absolute value is outside the integral I. Thus we would need
the following generalization of (2.26): if 3/4 < a < 1 and uk, 1 ≤ k ≤ 4, are
solutions of �uk = 0 on R1+2, with Cauchy data uk

∣∣
t=0

= fk, ∂tuk

∣∣
t=0

= 0,
then
∣∣∣∣
∫

R1+2

eitρD−aD−(u1u2) · u3u4 dt dx

∣∣∣∣ ≤ C ‖f1‖Ḣ2−a ‖f2‖L2 ‖f3‖L2 ‖f4‖L2

with C independent of ρ. This estimate fails. However, if we restrict the region
of integration in Fourier space (after applying Plancherel) so that ρ is small
compared to the symbol of D−, then our proof can be adapted, and we do
indeed have the above estimate.

This means that if, in the integral I, all four functions are supported near
the light cone in Fourier space, relative to the size of the symbol of R, we do
have the estimate |I| . ‖u‖s,θ ‖v‖s,θ for all s > 0.

The bad case is when either u or v not concentrated on the cone, but the
remaining three functions are. The three functions which concentrate can be
treated as solutions of the homogeneous wave equation. Thus, if we apply
Cauchy-Schwarz, we get trilinear L2 expressions of the form

∥∥D−a
(
D−bu1D

−c(u2u3)
)∥∥

L2(R1+2)

where a+b+c= 3/2 and the uk are solutions of the homogeneous wave equation
with L2 initial data. Recall that the Strichartz estimate in 2D is L6, so this
makes sense. However, a simplified version of the counterexample in section
5.2.8 shows that no such estimate is true. The reason is that the product u2u3

can concentrate on a null hyperplane in Fourier space. Thus a reduction to
trilinear estimates is out of the question.

If u does not concentrate, we basically have

R(Λ−1u, v) ∼ Λ−1Λ−u · v,

so in this case J3 . J2, and there is no problem. The remaining case is when v
does not concentrate. Then we could have

R(Λ−1u, v) ∼ Λ−1u · Λ−v,
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and if v is at much higher frequency than u, we could be in trouble. However, if
we go back to the bilinear operator Q(u, v), which is what we actually have to
estimate, we see that this potentially bad configuration can only occur when v
concentrates near the cone and yet is supported far from the cone relative to the
other functions. It should be relatively straightforward to determine how bad
this can be, but the time limitation forces us to let this subject rest for now.

5.3 Preliminary analysis of (5.5)

Note that (5.5b), (5.5c) can be written

δĀ = 0(5.30a)

dĀ = F,(5.30b)

where Ā = Āidx
i, F = F (A0, Ā) = −[Āi−R0RiA0, Āj −R0RjA0]dx

i∧dxj and
δ is the codifferential operator. If Ā solves (5.30), the 2-form F must be closed,
whence PF = F , where P is the projection onto the space of closed 2-forms.
Note that P = −(−∆)−1dδ is a pseudodifferential operator of order zero.

We therefore replace (5.5) with the system

�A0 = ∂i[A0, Āi −R0RiA0](5.31a)

δĀ = 0(5.31b)

dĀ = PF (A0, Ā).(5.31c)

From now on we assume n = 3. Under the standard identification of 1-forms
and 2-forms on R3 with vector fields on R3, we have δĀ = div Ā, dĀ = curl Ā
and

PF = (−∆)−1 curl curlF.

Thus, P is simply the projection onto the space of divergence free vector fields,
and acts on a vector v = (v1, v2, v3) according to the rule

(Pv)i = vi +D−2∂i∂
jvj .

In particular, if Aµdx
µ solves (5.1), then Āi = (PA)i. Of course, our forms are

matrix-valued, so we must understand the vector operators as being applied at
each entry of the matrix.

The first step in solving any nonlinear problem is to solve the corresponding
linear problem. We must therefore find the solution operator S for the linearized
version of (5.31b), (5.31c). Given a vector field v on R3, it is easily checked that
the solution u = Sv of the system

div u = 0

curlu = Pv
is given by Sv = (−∆)−1 curl v. In terms of the Fourier transform,

Ŝv(ξ) =
i

|ξ|2
(ξ2v̂3 − ξ3v̂2, ξ3v̂1 − ξ1v̂3, ξ1v̂2 − ξ2v̂1).
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We must determine the space in which the iteration can be carried out.
First of all, notice that all the Aµ’s satisfy nonlinear wave equations with data
in Hs×Hs−1. Hence, we should have Aµ ∈ X s,θ. Moreover, since ∂tA0 = ∂iAi,
we should have D−1∂tA0 ∈ Hs,θ. By (5.4) we must then have Āi ∈ Hs,θ.

To further determine the natural regularity properties of A0 and Ā, we must
examine the structure of the nonlinearities. The following discussion is strictly
informal. The details will be supplied later. Let us start with the right hand
side of (5.31c). A typical entry of the matrix [Āj −R0RjA0, Āi−R0RiA0] is of
the form uv, with u, v ∈ Hs,θ. Hence, the entries of Āi are schematically of the
form D−1(uv), so the estimates (3.11), (3.12) and (3.13) show that Āi should
have the regularity

Āi ∈ Lq
t (L

∞
x ) ∩ L2

t (H
1
x) ∩Hs,θ,

where q is close to 1.
Thus, the entries of the matrix ∂i[A0, Āi−R0RiA0] are of the form D(uw)+

Q(u, v), where

u, v ∈ Hs,θ, w ∈ Lq
t (L

∞
x ) ∩ L2

t (H
1
x) ∩Hs,θ

and Q is the null form given by (5.10). As we saw in section 5.2, the natural
regularity assumption on A0 is

A0 ∈ X s,θ, Λ−1Λ−A0 ∈ Lq
t (L

∞
x ),(5.32)

where q again is close to 1.

5.4 Existence theorem

Before stating our result, we need a precise definition of the space in which the
contraction argument will take place. First, we must redefine X s,θ, setting

|u|s,θ = ‖u‖s,θ +
∥∥D−1∂tu

∥∥
s,θ
.

The results in section 5.2 remain valid for this redefined space, provided that
the initial condition (5.9b) is changed to

u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= Dg,

where both f and g are inHs. Comparing with (5.6), we see that this is precisely
the type of initial condition we have for A0.

We assume

1/2 < θ < 1, s > 2θ − 1/2.(5.33)

Denote by ‖·‖1 the norm defined in (5.23) with ε = 0, and set

X0 =
{
u : ‖u‖X0

<∞
}
, Y0 =

{
G : ‖G‖Y0

<∞
}
,
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where

‖u‖X0
= |u|s,θ + ‖u‖1 , ‖G‖Y0

= ‖G‖s−1,θ−1 +
∥∥Λ−1Λ−1

− G
∥∥

1
.

Define

‖u‖2 = inf
{∥∥v

∥∥
Lq

t (L∞

x )
: v ∈ Hs+1/2,0, u � v

}
,

where q satisfies (5.25) and (5.27) with r =∞ and ε = 0. Now set

X1 =
{
u : ‖u‖X1

<∞
}
, Y1 =

{
G : ‖G‖Y1

<∞
}
,

where

‖u‖X1
= ‖u‖s,θ + ‖u‖s+1/2,0 + ‖u‖2

and

‖G‖Y1
=
∥∥D−1G

∥∥
s,θ

+
∥∥D−1G

∥∥
s+1/2,0

+
∥∥D−1G

∥∥
2
.

Theorem 18. If n = 3, s > 1/2 and (5.33) is satisfied, there exists ε > 0 such
that for any matrix-valued data (a0, a1, a2, a3) ∈ Hs satisfying

3∑

0

‖aµ‖Hs ≤ ε,

there is a solution

(A0, Ā) ∈ X0 ×X3
1

of (5.31), (5.6) on [0, 1]× R3, and the solution map

(aµ) 7−→ (A0, Ā), B(0, ε) ⊆ Hs −→ X0 ×X3
1

is Lipschitz continuous.

5.5 Proofs of the bilinear estimates

In this section we aim to prove the estimates

∥∥∂i[A0, Āi −R0RiA0]
∥∥

Y0
. ‖A0‖X0

∥∥Ā
∥∥

X1
+ ‖A0‖2X0

(5.34)

and

∥∥[Āj −R0RjA0, Āi −R0RiA0]
∥∥

Y1
.
(
|A0|s,θ +

∥∥Ā
∥∥

s,θ

)2
.(5.35)

As usual, we may assume that all functions have non-negative Fourier trans-
forms.

We first prove (5.34). By bilinearity,

∂i[A0, Āi −R0RiA0] = ∂i[A0, Āi]− ∂i[A0, R0RiA0].
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The entries of the matrix ∂i[R0RiA0, A0] are of the form Q(u, v), where u and
v are entries of A0 and Q is the null form given by (5.10). In section 5.2 we
proved that

‖Q(u, v)‖Y0
. ‖u‖X0

‖v‖X0
.

Any entry of the matrix ∂i[A0, Āi] is - D(uv), where u is an entry of A0

and v is an entry of Āi. Thus, u ∈ X0 and v ∈ X1. By (3.24),

‖D(uv)‖s−1,θ−1 . ‖Λsu · v‖0,θ−1 +
∥∥∥u · Λs+1/2v

∥∥∥
−1/2,θ−1

= I1 + I2.

By (5.24) and the Hölder and Sobolev inequalities,

I1 . ‖Λsu · v‖Lq
t (L2

x) ≤ ‖Λsu‖L∞

t (L2
x) ‖v‖Lq

t (L∞

x ) ,

and since we could have replaced v by any w ∈ Hs+1/2,0 such that v � w, we
conclude that I1 . ‖u‖s,θ ‖v‖2.

With notation as on p. 92, we write I2 ≤ I2,B + I2,Bc , where B is defined in
(5.21). Since

I2,B ≤
∥∥∥Λθ−1u · Λs+1/2v

∥∥∥
−1/2,0

,

it follows from proposition 10 that I2,B . ‖u‖s,θ ‖v‖s+1/2,0.
Next, we have

I2,Bc ≤
∥∥∥Λ2θ−1u · Λs+1/2v

∥∥∥
−1/2,−θ

.

We now use the classical Strichartz inequality

H1/2,θ ×H1/2,θ −→ L2,(5.36)

which by duality is equivalent to

H1/2,θ × L2 −→ H−1/2,−θ.

Thus, I2,Bc . ‖u‖s,θ ‖v‖s+1/2,0.

Inequality (5.26) implies
∥∥Λ−1Λ−1

− D(uv)
∥∥

1
.
∥∥Λ−1(uv)

∥∥
Lq

t (L∞

x )
.

By (5.27), (3.11) and the Sobolev inequality,
∥∥Λ−1(uv)

∥∥
Lq

t (L∞

x )
. ‖u‖s,θ ‖v‖s,θ .(5.37)

This concludes the proof of (5.34).
Proving (5.35) reduces to proving

∥∥D−1(uv)
∥∥

s,θ
. ‖u‖s,θ ‖v‖s,θ ,(5.38)

∥∥D−1(uv)
∥∥

s+1/2,0
. ‖u‖s,θ ‖v‖s,θ ,(5.39)

∥∥D−1(uv)
∥∥

2
. ‖u‖s,θ ‖v‖s,θ .(5.40)
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First notice that (5.40) follows from (5.37).
By (3.24) and (3.26),

∥∥D−1(uv)
∥∥

s,θ
.
∥∥D−1(ΛsΛθ

−u · v)
∥∥

L2 +
∥∥D−1(Λsu · Λθ

−v)
∥∥

L2

+
∥∥D−1ΛsRθ(u, v)

∥∥
L2 + symmetric terms.

The first two terms on the right side of the inequality can be estimated directly
by applying proposition 10. For the third term we estimate
∥∥D−1ΛsRθ(u, v)

∥∥
L2 .

∥∥D−1Rθ(u, v)
∥∥

L2 +
∥∥Ds−1Rθ(u, v)

∥∥
L2

.
∥∥∥D−1(Λθ/2u · Λθ/2v)

∥∥∥
L2

+
∥∥∥Ds−1(Λθ/2u · Λθ/2v)

∥∥∥
L2
.

To bound the first term on the right side of the last inequality, we apply propo-
sition 10, while for the second term we apply (3.12) and (3.13).

To prove (5.39), we estimate

∥∥D−1(uv)
∥∥

s+1/2,0
.
∥∥D−1(uv)

∥∥
L2 +

∥∥∥Ds−1/2(uv)
∥∥∥

L2
.

For the first term we apply proposition 10, and for the second term we use (3.24)
and (5.36).

5.6 Proof of existence theorem

Here we prove theorem 18. Define

Φ = (Φ0,Φ1) : X0 ×X3
1 −→ X0 ×X3

1

by

Φ0(A0, Ā)

= χ(t)
(
cos(tD) · a0 +D−1 sin(tD) · ∂iai

)

− χ(t)

∫ t

0

D−1 sin
(
(t− t′)D

)
·
(
φ(Λ−)∂i[A0, Āi −R0RiA0]

)
(t′) dt′

+ �−1
(
1− φ(Λ−)

)
∂i[A0, Āi −R0RiA0]

and
Φ1(A0, Ā) = S

(
[Āj −R0RjA0, Āi −R0RiA0]

)
.

To save space, we write
∥∥(A0, Ā)

∥∥ = ‖A0‖X0
+
∥∥Ā
∥∥

X1
. By the estimates proved

in the previous section,

∥∥Φ(A0, Ā)
∥∥ ≤ C

(∑
‖aµ‖Hσ +

∥∥(A0, Ā)
∥∥∥∥(A0, Ā)

∥∥
)

(5.41)

and

(5.42)
∥∥Φ(A0, Ā)− Φ(B0, B̄)

∥∥
≤ C

(∥∥(A0, Ā)
∥∥+

∥∥(B0, B̄)
∥∥) ∥∥(A0 − B0, Ā− B̄)

∥∥ .
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Set E = C
∑ ‖aµ‖Hs . It is clear from (5.41) and (5.42) that if 8CE ≤ 1,

then Φ is a contraction of the closed ball N = B(0, 2E) in X0 ×X3
1 . Hence Φ

has a fixed point (A0, Ā) in N , and this fixed point is a solution of (5.31), (5.6)
on [0, 1]× R3.

Next, we prove that the dependence of the solution on the data is Lipschitz.
We denote by Φ(aµ) the solution operator corresponding to data (aµ). If (A0, Ā)
and (B0, B̄) are fixed points of Φ(aµ) and Φ(bµ) respectively, where

∑
‖aµ‖Hσ ,

∑
‖bµ‖Hσ ≤

1

8C
,

then

∥∥(A0, Ā)− (B0, B̄)
∥∥ ≤ C

∑
‖aµ − bµ‖Hs

+ C
(∥∥(A0, Ā)

∥∥+
∥∥(B0, B̄)

∥∥) ∥∥(A0 −B0, Ā− B̄)
∥∥ .

But C
(∥∥(A0, Ā)

∥∥+
∥∥(B0, B̄)

∥∥) ≤ 1/2, whence

∥∥(A0, Ā)− (B0, B̄)
∥∥ ≤ 2C

∑
‖aµ − bµ‖Hs .

This concludes the proof of theorem 18.
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