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ABSTRACT

We prove a quadrilinear integral estimate in space-time for solutions of the
homogeneous wave equation on R!*2. This estimate is a generalization of a
previously known bilinear L? estimate, and it arises naturally in the study of
the local regularity properties of a hyperbolic model equation connected with
wave maps from Minkowski space R'*2 into a sphere. The scale invariant data
space for this equation is L?(R?), and we prove local well-posedness for data
in H*(R?) for all s > 1/4. In space dimension three and higher, the same
equation has previously been studied by Klainerman and Machedon. Using a
recently proved L; (LS°) bilinear estimate for solutions of the homogeneous wave
equation, we obtain a simpler proof of their result, and we also extend it to the
full system from which the model equation was derived.

The main new idea introduced by Klainerman and Machedon in their work
on the aforementioned model equation was to estimate a Picard iterate using
information not just from the preceding iterate, but from two previous iterates.
This procedure leads to integrals of quadrilinear expressions involving functions
in certain “hyperbolic” Sobolev spaces which are adapted to the wave opera-
tor. Klainerman and Machedon estimated these expressions by reducing them
to trilinear and bilinear L? estimates in space-time for solutions of the homo-
geneous wave equation. Here we show that this reduction is impossible in the
two-dimensional case, so the problem is of a genuinely quadrilinear nature.

A general framework for proving local well-posedness for nonlinear wave
equations based on estimates in space-time Sobolev norms is developed, refining
and unifying earlier results of this type.






Contents

Introduction

1 The Linear Wave Equation

1.1 Existence and Uniqueness . . . . . .. ... ..
1.2 Hilbert space integrals . . . . . ... ... ...
1.3 More Hilbert space calculus . . . . .. ... ..
1.4 Conclusion of proof of proposition 1 . . . . ..

2 Space-Time Estimates for the Wave Equation

2.1 The linear estimates . . . . . ... .. .. ...
2.2 Bilinear estimates . . . . . .. ... ... ...
2.2.1 Review of the dyadic method . . . . . .
2.2.2 Proofof (2.13) . ... .... ... ...
2.2.3 Proofof (2.11) . ... ... ... ...
2.24 Proofof (2.12) ... ... .. ... ...
2.2.5 Further remarks . . ... ... .. ...
2.3 A quadrilinear estimate . . . .. .. ... ...

2.3.1 Proof of (2.33) for products of type ++
2.3.2  Proof of (2.33) for products of type +—
2.3.3 Proof of (2.34) for products of type +—

3 Hyperbolic Sobolev Spaces

3.1 Thespace H? . . . . .. .. ... ... ....
3.2 An integral representation . . . . . .. .. ...
3.3 Space-time estimates . . . . . .. ... .. ...
3.4 The algebra property . . . . . ... .. .. ...
3.4.1 Proof of theorem 11 . . . . . ... ...
3.4.2 Proof of proposition 12 . . . . .. ...
3.4.3 Proofoflemma?.............
3.5 Thespace X0 . . . ... ... ... ... ...
3.6 The linear wave equation and X*% . . . . . . .
3.6.1 The homogeneous solution . . . . . . ..
3.6.2 The inhomogeneous solution . . . . ..
3.6.3 Proof of proposition 16 . . . . .. ...

ix



vi

3.6.4 Proof of proposition 15
3.6.5 Proof of theorem 12
3.7 The restriction space X;’e

Two Well-Posedness Theorems
4.1 First well-posedness theorem
4.1.1

4.1.3 The wave map equation
4.2  Second well-posedness theorem
4.2.1 Proof of theorem 16

A Coordinate-Free Formulation of Wave Maps

5.1 The connection with wave maps. . . . . . .. ... ..
5.2 Hyperbolic model problem . . . . . . . ... ... ...

5.2.1 Outline of proof . . . . .. .. ... ... ...
5.2.2  Strategy for proving well-posedness below 1/4

523 Threelemmas. . . . . ... ... ... .....
5.2.4 Definition of the semi-norms . . .. ... ...

5.2.5  Proof of property (I)

5.2.6 Proof of property (IT) whenn=2 . ... ...
5.2.7 Proof of property (II) whenn >3 . . ... ..
5.2.8 A counterexample . . .. ... ... ... ...
5.2.9 Remarks on the conjecture (C;). . . . . . ...

5.3 Preliminary analysis of (5.5). . . . . . ... ... ...

5.4 Existence theorem
5.5 Proofs of the bilinear estimates

5.6 Proof of existence theorem . . . . . . . ... ... ...

The classical local existence theorem . . . . . .
4.1.2 Sharp local existence . . . . . . ... ... ...

CONTENTS



CONTENTS vii

Introduction



viii CONTENTS



Introduction

On a general level, this dissertation deals with the problem of local existence
and uniqueness for a system of nonlinear wave equations of the form

Ou = F(u, 0u) (t,x) € R*™
u‘t:o =feH? at“’t:o =ge H 1,

where [0 = —9?+ A is the standard d’Alembertian, Ju is the space-time gradient
of u, and F is a smooth (possibly vector-valued) function with £(0) = 0. Given
F', we want to determine the lower bound of the range of Sobolev exponents s for
the data space such that the Cauchy problem is locally well-posed. Associated
to F' there is a real number s., the critical exponent, such that the homogeneous
data space H#e x H%~1 is invariant under the natural scaling law of the equation.
One can then show by a scaling argument that for s < s. there is no local well-
posedness of the above system.

Take the case where F' is quadratic in du, i.e., F = I'(u)Q(du, du), where
Q is some quadratic form on R'*" and I is a smooth function. For such F it
turns out that, in low space dimensions, one cannot expect local well-posedness
for all s > s, unless @ has a null structure, which roughly means that it exhibits
cancellations on the light cone in Fourier space.

A trend which has emerged in recent years is to study the above Cauchy
problem via an iteration argument in certain weighted space-time Sobolev norms
which are intimately connected with the wave operator [J, and the manner in
which estimates on F(u,du) in such norms imply local existence for the above
system, at least for small-norm data, is well-known. In this dissertation we carry
this program further, proving some quite general results which guarantee strong
local well-posedness of the above system for arbitrarily large data, subject to
some simple mapping properties of the nonlinearity F. By strong local well-
posedness we mean local existence, uniqueness, persistence of higher regularity
and stability with respect to perturbations of the initial data.

This is done in chapter four, theorems 14 and 15. In that chapter we also
show that theorem 14 can be brought to bear upon some well-known local exis-
tence results, thus obtaining new proofs of the classical local existence theorem
for hyperbolic equations and the sharp local existence theorem of Ponce and
Sideris. We also apply our theorem to the wave map equation in local coor-
dinates in space dimension two and higher, thereby improving the small-norm
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local existence results proved in [13] and [18] to strong local well-posedness, and
also disposing of the assumption of real-analyticity of the Christoffel symbols of
the target manifold, which was made in those papers. The latter improvement
relies on the stability of our space-time norms under nonlinear maps, a fact
proved in chapter three, theorem 11.

In the fifth and last chapter, we apply the general theory developed in chapter
four to the following system in two space dimensions:

Ou! = al Q(u’, u’) (t,z) € RMT2
u|,_,=fe€H, D 'wu|,_,=gecH,

where D = /—A, the aﬂ s are constants and () is the bilinear operator given
by

n

Q(u,v) = Z Oi(RoRiu - v —u- RyR;v),

i=1

with Ry = D719, and R; = D~'0;. This system arises as a hyperbolic model
problem for a coordinate-free formulation of the wave map equation in the case
where the target manifold is a Lie group endowed with a bi-invariant metric;
see chapter five for details and some references. The critical exponent for this
problem is s, = (n — 2)/2.

In space dimensions n > 3, Klainerman and Machedon [14] proved local
existence for s > s, for this model problem. The new idea introduced in that
paper is that in order to estimate the k-th Picard iterate for s close to s,
they use the information not only from the previous iterate, but from the two
previous iterates. This procedure leads to integrals of quadrilinear expressions
involving functions in certain “hyperbolic” Sobolev spaces which are adapted
to the wave operator. Klainerman and Machedon estimated these integrals by
reducing them to trilinear and bilinear L? estimates in space-time for solutions of
the homogeneous wave equation. Here we show that this reduction is impossible
in the two-dimensional case when s is close to the critical exponent s. = 0, so
one is stuck with a quadrilinear expression. The 2D problem, which has not
been studied before, is therefore much harder, and we do not yet know how to
get well-posedness below s = 1/4.

The idea of using two previous iterates still works in 2D if s > 1/4, and we
prove well-posedness in this range. The proof of the latter result relies on a
bilinear L? estimate for solutions of the homogeneous wave equation proved in
[18].

Although we do not know how to get the optimal result in 2D, we do prove
the boundedness of the quadrilinear integral in the important special case where
all four functions correspond to solutions of the homogeneous wave equation.
This estimate, which can be said to be the main result of the dissertation, is
described below.

In chapter five we also obtain a simplified proof of the 3D result of Klain-
erman and Machedon [14]. The fact which makes life easier in dimension three
and higher is the availability of bilinear L} (L) estimates. In dimension two
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no such estimate is true. Moreover, we extend the 3D result to the full system
of equations from which the above model problem was derived.

The theme of the second chapter is space-time estimates of multilinear ex-
pressions involving solutions of the homogeneous wave equation, in terms of
homogeneous Sobolev norms of the Cauchy data. The new result we prove here
is the estimate

D™D _(uyuz) - ugug dt dz| S || fill oo [[f2ll 2 (1 f3ll 2 [ fall 2 s

R1+2

where 3/4 < a < 1, the u; are solutions of the homogeneous wave equation on
R'*2 with Cauchy data uﬂ"t:o = fj 8tuj‘t:0 = 0, and D_ is the multiplier
with Fourier symbol! “T| — € H The important point about this inequality
is the asymmetry: all the regularity is concentrated on one of the functions.
This inequality is essentially what one needs to conclude that the second non-
trivial Picard iterate of the 2D hyperbolic model problem mentioned above is
in C(R, H?) for any s > 0. By the trivial Picard iterate we understand the
solution of the homogeneous wave equation with the given data.
The above estimate generalizes the inequality

[P, ) S Wl 12

L2(R1+2

which was proved in [18], but it cannot itself be proved by a reduction to bilinear
L? estimates via the Cauchy-Schwarz inequality, since the inequality

D=1 DY2 (wyuz)| < allze e

L2(R1+2)

fails to hold.

We also prove some variations of previously known bilinear estimates which
are needed in subsequent chapters.

In what follows, we briefly describe the contents of the remaining chapters
of the thesis.

In the first chapter, we state the standard existence and uniqueness theorem
for the linear wave equation on R'*" with Cauchy data at time ¢ = 0 belonging
to the space H*(R™) x H*~1(R™), and we present a proof based on the calculus
for Hilbert space-valued functions, the relevant facts of which we briefly review.
In particular, we recall the definition of the integral of a Hilbert space-valued
function, which is also used to some extent in chapter three.

Chapter three deals with Sobolev spaces adapted to the wave operator, and
how these spaces relate to solutions of the linear wave equation. We define H*¢
to be the completion of the Schwartz space S(R'™") with respect to the norm

lullgo = [A*AZu]] 2.

where A and A_ are smooth, inhomogeneous versions of the multipliers D and
D_, respectively. For § > 1/2, this space embeds in C(R, H®).

1

7 and £ are the Fourier variables corresponding to ¢ and x, respectively.
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Spaces of this type first appeared in [22] in the study of propagation of
singularities for hyperbolic equations, and for the wave equation they were first
used in [10]. Similar spaces for the KdV equation were used in [1] and [7].

We characterize the elements of H*? for § > 1/2, in terms of H*-valued
integrals on the real line, and from this we deduce the simple but useful principle
that a multilinear L] (L") estimate involving solutions of the homogeneous wave
equation with H*® initial data implies a corresponding estimate for elements of
HsY,

It is well-known that H*? is an algebra when s > n/2 and 6 > 1/2. Here we
extend this result, proving that this space is stable under the mapping u — f(u)
for any smooth f leaving the origin fixed. The proof is inspired by an idea from
[22].

Next, we define the space X*? = {u : ue€ H*? O € H* 1P}, with the
obvious norm. This is the basic space in which we obtain solutions to nonlinear
wave equations, and it differs somewhat from similar spaces used in earlier works
on well-posedness for nonlinear wave equations; see the remark on p. 51. The
remainder of the chapter is devoted to an investigation of the relation between
this space and solutions of the linear wave equation.

Consider the Cauchy problem for the linear wave equation:

Ou=F (t,xz) € [0,T] x R"™
u|t:O =feH’ 8tu‘t:O =geH".

By the linear theory expounded in chapter one, this problem admits a unique
solution u € C([0,T], H*) N C([0,T], H*"1). For 0 < T < 1 and 6 > 1/2, we
prove the existence of an extension ur of u to all of R'*™ such that

lurlly g+ 10curly—y g S UFllgre + gl e + T2 IF N2 gyen

for some £ > 0 independent of T'.

This estimate is the analog of the energy inequality in the setting of the H*¢
spaces, and it refines an earlier result in [13] where the time T was fixed, say
T = 1. It has of course been known that letting 7" tend to 0 should produce
some decay on the right hand side of the above inequality (see [19, Remark
1.8]), but a proof of this fact has not appeared before. It should be noted that
the proof depends on our new definition of the basic space-time norms, cf. the
remark on p. 51.

We also give sufficient conditions for a semi-norm ||-||, defined on some sub-
space of &'(R1™) containing S(R'*™), to satisfy the estimate

lurll S 1 e + Igllgzos + T2 (1Pl g gy + [ATAZH2F] ),

with ur as above; see theorem 16, p. 80.



Chapter 1

The Linear Wave Equation

In this chapter we recall the basic local existence properties of the linear wave
equation. Since our point of view is that of L? theory, it is natural to use the
calculus of Hilbert space-valued functions. For easy reference we review the
pertinent facts, including the Hilbert space-valued integral, which will be used
on numerous occasions in this dissertation. For us, the relevant Hilbert space
is, unsurprisingly, the standard L? Sobolev space H*.

We consider the Cauchy problem for the linear wave equation:

(1.1a) Ou=F  (t,z) € R*"™
(1.1b) u‘t:O = (“)tu|t:0 =g,

where 0 = —9? + A and A is the Laplacian in the space variable z. We will
also use frequently the operator D = /—A.

1.1 Existence and Uniqueness

For data whose regularity is measured in L? Sobolev spaces, we have the fol-
lowing basic existence and uniqueness statement.

Proposition 1. Assuming f € H*,g € H*~! and F € L{ (R, H*™1), there is
a unique solution u of (1.1) such that

(1.2) ue C(R,H)NCHR, H*1).
Moreover, the solution is given by the formula
t
(1.3) u(t) =cos(tD) - f + D 'sin(tD) - g —/ D~ 'sin((t —¢')D) - F(t') dt’,
0
and it satisfies the energy inequality:

(1.4) a4 [10su(®)] -

t
S + @+ N9l ges + (1 +L‘)/O 1) o dt!



2 The Linear Wave Equation

for allt > 0.

Remarks. (i) Formula (1.3) is derived, formally, by applying the Fourier trans-
form in the space variable z, thereby converting the PDE problem (1.1)
to an ODE problem in time ¢:

—07a(t, &) — €17 a(t,€) = F(t,€)

By standard linear ODE theory and Duhamel’s principle, we get

A(t,€) = cos(t [E)F(E) + €] sin(t [E)g(E)
- / € sin((t — ¢) e B (e, €) d.

Applying the inverse Fourier transform then gives (1.3). This formal ar-
gument can be made into a rigorous one without much difficulty. In fact,
this is how we prove uniqueness.

(ii) When we say that u solves (1.1a), we mean in the sense of distributions
on R, However, any u € C(R, H*) is an element of D’(R'™) by means
of the bilinear pairing

<u,¢>:/_°°<u<t>,¢<t>>dt for ¢ Co(RM™).

Indeed, if (¢;) is a sequence of smooth functions on R'™ which are all
supported in a cube [—a,a]'™, and if 9%¢; — 0 uniformly for every
multi-index «, then

o)< [ l(u(®,os(0))] e

— 00

</ ) e Ny Ol

< <sup |¢j<t>|m) [ 1l a
[t]<a —a

for some positive integer N, and we have

65D S Y 105652 — 0

la|<N

uniformly in ¢ as j — oco. A simple modification of this argument shows
that if u € L°(R, H®), then u € S'(R'*") with the above pairing.

(iii) If w has the regularity (1.2), then the distribution derivative d;u agrees
with the strong H*~! derivative. To prove this, let v be the strong H*~!
derivative of u, so that

—0 as h—0.

Hl (u(t+h) —u(t)) —v .

h




1.1 Existence and Uniqueness 3

Given a test function ¢, we must show that (v,¢) = — (u,0t), i.e.,

/ (o), b)) di = / " (u(t), o(t)) dt.

— 00 — 0o

Define A(t) = (u(t),¢(t)). We claim that A € C*(R) and that A'(t) =
(v(t),d(t)) + (u(t),Op(t)). Integrating this in ¢ gives the relation we
want. The claim is easily proved. We have

[A(t + h) — A(1)]
< [u(t+h) —u(®), ot + 1)) + [(u(d), o(t + h) — 6(2) )]
< Hlult+h) = u@®)llge 1o + M) g
+ lu®llgs 1o +h) = @) g

and using the H® continuity of v and the fact that ¢ is C2°, we see that
the limit of this as h — 0 equals 0. In fact, the mapping ¢ — ¢(t) is
in C*(R,H?) for all 0 € R. Clearly, it suffices to show that it is in
CY(R, H"V) for all positive integers N. But since ¢ and all its derivatives
are uniformly continuous and + (8%¢(t +h) — 0“¢(t)) converges uniformly
to 0,0%¢(t) for every a, this is immediate. Proving the rest of the claim
is now an easy exercise, and we leave this to the interested reader.

(iv) The conclusion of the previous remark still holds under the weaker as-
sumption that u is strongly H*~! differentiable for almost every ¢, with
derivative in L] (R, H*~'). The same proof works, except that now A is

a.e. differentiable, and A’ is in L{ (R). In fact, at every ¢ for which the

loc
strong H*~! derivative v(t) exists, the proof goes through to show that

A'(t) = (v(t), (1)) + (ult), Brg(t) ).

(v) The regularity statement (1.2) is equivalent to
(1.5) (u,0pu) € C(R, H®) x C(R, H*™1),

where d,u is taken in the sense of D'(R!*"). That (1.2) implies (1.5) is
the content of remark (iii), and the converse follows from the fact that
if w € C(R, H?) and the distribution derivative dyu is in C(R, H?), then
this derivative is in fact a strong HY derivative, whence u € C*(R, H?).
This fact is proved in proposition 2 below.

Proposition 2. Assumeu € C(R,H?),0 € R.

(a) If the distribution derivative dyu € Ll (R, H?), then O;u(t) is the strong
H? deriwative of u for a.e. t.

(b) If we strengthen the hypothesis in (a) to Oyu € C(R, H?), then the same
conclusion holds for every t.

The proof requires the following lemma.



4 The Linear Wave Equation

Lemma 1. (a) Ifu € D'(R) and the distribution derivative u' vanishes, then
u s a constant.

(b) If u € C(R,H?) and the distribution derivative Oyu vanishes, then u(t) =
u(0) for every t.

Proof. To prove (a), fix ¢ € C2°(R) such that [ ¢ = 1. Then if u is indeed a
constant, we should have u = (u, ¢), i.e.,

(u—A(u,¢),¢¥)y=0 forally e C>.

To prove this, it would be enough to show that the left hand side equals
(u,0) for some 6 € C°, since by assumption this vanishes. But we have
<u_ <ua¢> 51/}> = <Uﬂ/’> - <u7¢>f¢ = <uaw_ (fdj) ¢>a and if we set e(t) =
fioow - (/) ffoo ¢, then it is easy to see that § € C° and ' = ¢ — ([ ) ¢.
This concludes the proof of part (a).

To prove (b), we fix a test function ¢ € C°(R™). We want to show that
(u(t),¢) is independent of ¢. Call this quantity U(¢). Then U € C(R), hence
in D'(R), and by part (a) it suffices to show that the distribution derivative U’
vanishes. But for any ¥ € C*(R),

(U 4) = —(U) = /OO (ult), 6) ' (t) dt /Oo Calt), o/ (0)6) dt

— 00 — 00

= — <u,8t6‘> = <8tu,6‘> = 0,
where 0(t, ) = ¥(t)o(z). O

Proof of proposition 2. If we can show that
t
(1.6) u(t) = u(0) —|—/ Ou(t')dt’  for all ¢,
0

then the conclusion follows from the Hilbert space version of the fundamental
theorem of calculus, which is proved below. Denote by v(t) the quantity on the
right hand side of (1.6). We want to use lemma 1 to conclude that u(t) = v(¢) for
every t. By the fundamental theorem of calculus, v € C(R, H?) and the strong
H? derivative v'(t) exists for a.e. ¢ and equals dyu(t). Therefore, by remark
(iv), the distribution derivatives d;u and dyv are equal, so lemma 1 guarantees
that u(t) — v(t) = 0 for every t. O

We now turn to the proof of proposition 1. First we prove that u defined by
the formula (1.3) is a solution of (1.1) with regularity (1.2). Consider first
u(t) = D~'sin(tD) - g. We claim that u € ()2 C/(R, H*~/) and that

Oru(t) = cos(tD) - g,

d?u(t) = —Dsin(tD) - g,

d2u(t) = —D?*cos(tD) - g
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and so on. In other words, the ordinary chain rule applies. Assuming this, we
have —0?u = D?*u = —Au, so u is a solution of (1.1) with f = 0.
The claim follows immediately from a simple observation:

Lemma 2. Assume that ¢ is a C° function on R such that ¢ and ¢' are
bounded, and consider the multiplier D7 ¢(tD) acting on functions on R™:
DIg(tD) - f = F* (I oltIgN (&)

whenever this is well-defined. Here j > —1 is an integer. If j = —1 we assume
in addition that ¢(0) =0

With these assumptions, DI¢(tD) is a bounded mapping from H® to H*~J
for any s € R. Moreover, if f € H®, then

Di¢(tD) - f € C(R,H* /) nCY(R,H*I71),
and the chain rule applies, i.e.,
3y (D7g(tD) - f) = D'*1¢/(tD) - f.

Proof. Let us do the case j = —1, since it is more difficult. We have
1D716D) - e = [ (14162161 oteleh Fee) ) ae
<2677 /5 1+ 1gP) | Ff de
<

Faloli~ [l IfieP de
[£]>1

where we used the mean value theorem to estimate |¢(r)| /r < ||¢'|| ;o for r > 0.
This proves boundedness of the operator.

Set u(t) = D~1¢(tD) - f. To prove continuity, we use again the mean value
theorem on the low frequency part, obtaining

et + ) = () 7
= [ 1) e o+ m e - o(elel) o) de

< o2 |2 / (1+1¢2)°| Fo)) de
[gl<1

wa [ i) el mlel) - oft i) i) de
[€1>1

By the dominated convergence theorem, the last integral vanishes in the limit
h — 0. Finally, to prove differentiability, we write
2

H%(u(f 1) —u(t) =g a0)-f|

:/(1+|§|2)s ¢(<t+h>}|f||§|—¢(t|5|)

By the dominated convergence theorem, this converges to 0 as h — 0. (|

¢'(t]€]) !f (©)|” de.
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The term cos(tD) - f in (1.3) is treated in the same way, so what remains is
the inhomogeneous part of the solution, namely

u(t) = — /OtD—1 sin((¢t —¢')D) - F(¢') dt'.

Note that this is a Hilbert space-valued integral. Since elements of H® for
s < 0 are in general not functions, it may not be possible to evaluate this
integral pointwise. We interrupt the proof of proposition 1.1 in order to recall
the relevant facts from the theory of integration of functions with values in a
separable Hilbert space. For the conclusion of the proof, see section 1.4.

1.2 Hilbert space integrals

Let (X, M, u) be a measure space and H a separable Hilbert space. We say
that a map f : X — H is measurable if it is (M, By)-measurable, where By is
the Borel o-algebra of H.

Proposition 3. A map f : X — H is measurable iff o f is (M, Br)-measurable
for all ¢ € C(H,R).

Proof. Assume that ¢ o f is (M, Br)-measurable for all ¢ € C(H,R). Fix a
ball U = {y € H : ||y — yol| < R}, and set ¢(y) = ||y — yol| for y € H. Then ¢
is continuous and U = ¢~1([0, R)), whence f~1(U) = (¢ o f)~1([0, R)) € M.
Since the open balls in H generate By, this proves that f is measurable. The
converse is trivial. O

If f : X — H is measurable, then z — || f(z)|| is (M, Bg)-measurable, since y —

|ly|| is continuous, and we define || f||,, = ([ [|f ()" du(z)) P for 1 < p < oo
and || fll e = ess sup,cx [|f(z)]|. Then we let LP = LP(X, H) be the vector
space of measurable maps f : X — H with ||f|,, < oco. If we identify maps
which are equal a.e., then ||-||;, is a norm on L?, and L? is a Banach space.
(The standard proof works.)

By a simple function we mean a function f : X — H of the form f =
>l yiXE,, where y; € H, E; € M, u(E;) < oo and xg denotes the character-
istic function of a set E. It is obvious how to define [ f(z)du(x) when f is a
simple function. The next lemma allows us to pass to the limit and define the
integral of any f € L.

Proposition 4. If f € L', there is a sequence (f;) of simple functions such
that || f5 = fllg. — 0.

Proof. Fix a dense sequence (y,) in H. We may assume y, # 0 for all n.

For ¢ > 0set BE = {ye€ H:|ly—ynl <ellynll}- It is readily verified that
U, B: = H\ {0} for 0 < ¢ < 1. Now set A,; = By \U:;_:ll B and

E.; = f7'(A,;). Then for all j we have {z: f(z) # 0} = U, Enj, and the

n=1
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union is disjoint. Define f; = Zf:’:ul) YnXE,;,» Where N(j) is a positive integer
to be determined. We claim that

(1.7) 1£5 (@) = fo)ll < % [f (@)l for x € supp(f;),j = 2.

This would give

JIs@ =@l du@ < 215l [ 1@ dute)

Un>N(j) En;

and since f € L1, the last integral can be made as small as we like by choosing
N (j) sufficiently large.

To prove (1.7), note that if x € E,,; with 1 <n < N(j), then f;(z) =y, and
f(z) € By/?, whence I fi(z) = f(2)|| < 1/7 ||lyn||. But by the triangle inequality,
this implies |y, || < 2/ f(2)| if j > 2. O

Thus, the simple functions form a dense subspace of the complete space L', so it
follows immediately that there is a unique bounded linear operator | : L'—-H
such that [yxg = p(E)y for y € H and E € M with u(E) < oo, and we write
[ f = [ f(x)du(z) for f € L'. This operator is usually called the Bochner
integral.

Theorem 1. The Bochner integral has the following properties:

(a) |[[ f]| < [I£ll2 for all f € L.

(b) If H = C = R? with the standard norm, then the Bochner integral coin-
cides with the standard integral.

(¢) (The dominated convergence theorem) Assume that (fy,) is a sequence in
L' converging a.e. to f, and that there is a g € L'(X,R) such that

| fn(2)|| < g(x) for a.e. z. Then f € L' and [ f, — [ f.

(d) If H' is separable Hilbert space, T is a bounded linear operator from H to
H' and f € LY (X, H), then Tf € L"(X,H'), and [Tf=T [ f.

Proof. Properties (a),(b) and (d) are obvious for simple functions, and the gen-
eral statements follow by simple limiting arguments. To prove (c), first note
that by redefining f, and f on a set of measure zero, we may assume that
fn(x) — f(x) for every z. This changes nothing on the level of L!, since we
identify elements of L! which are equal a.e. By proposition 3, f is measurable.
Indeed, if ¢ € C(H,R), then ¢o f,(x) — ¢o f(x) for every x, so ¢po f is (M, Bgr)-
measurable. It now follows from the scalar version of the dominated convergence
theorem that [ ||f, — f|| — 0. By part (a), this implies [ f, — [ f. O

This concludes our discussion of the Bochner integral.
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1.3 More Hilbert space calculus

In the remainder of this chapter, the measure space will be R equipped with

Lebesgue measure dt. We let LL (R, H) be the space of measurable functions

f:R — H such that [, ||f(t)|| dt < co for every compact subset K of R.

The Fundamental Theorem of Calculus. Let f € L{ (R, H), where H is
a separable Hilbert space.

(a) If F: R — H is defined by

F@:Aﬂﬁw

then F € C(R, H) and F'(t) = f(t) for a.e. t. Moreover, if f is continu-
ous, then F € C*(R,H) and F' = f.

(b) Conversely, if F € C(R, H) has deriative f(t) for a.e. t, then

F(t) - F(0) = /0 £(s)ds

for all t.

Proof. We first show that part (b) follows from part (a). Indeed, if we set
G(t) = F(0) + fgf(s) ds, then G € C(R,H) and G'(t) = f(t) for a.e. ¢, by
part (a). Therefore, ' — G is a continuous map from R to H whose derivative
vanishes a.e., whence

t— (t) = | F(t) = Gt)||* = (F(t) - G(t), F(t) = G(1))

is a continuous function on R whose derivative vanishes a.e. By the scalar
version of the theorem, ¢ is therefore a constant, and this constant must be 0,
since ¢(0) = 0.

We now prove part (a). Continuity of F' follows from the dominated conver-
gence theorem. To prove differentiability, note that

e - F) - g0

t+h
3 ARGCENORE

t+h
<3| ure-rwias

for every h # 0. Thus, it suffices to show that for a.e. t,

t+h
(18) i 2 [ 156 = 10 ds =0,

If f is continuous, a direct application of the scalar version of the fundamental
theorem gives (1.8) for every t. In general this will not work, since the variable
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t appears not only in the limits of integration, but in the integrand as well. To
avoid this problem, we fix a dense sequence (y,) in H. By the scalar version
of the theorem, for each n there is a set F,, C R of measure zero such that for
every t € R\ E,,

1 t+h
mﬁ/t 1£(5) = wall ds = [1£(t) — yall

Set E = J;° En. Then E has measure zero, and for every ¢t € R\ E and every
n we have

t+h
limsup%/t 1f(s) = F@I ds <2 £ () —ynll -

h—0

Since the points y,, form a dense set in H, this proves (1.8). [l

Proposition 5. (Differentiation under the integral sign) Let H and H' be sepa-
rable Hilbert spaces such that H C H' and the inclusion map is bounded. Assume
that f : R?2 — H has the following properties:
(a) f(s,-) € CR,H)NCYR, H') for all s.
(b) f(-,t) is measurable for all t.
(¢) For every compact interval [a,b] C R, there are g,k € L (R) such that
(1.9) 1f (s, e < 9(s),  NOf (s, )l < K(s)

for all t € [a,b] and all s € R.

Then the map u : R — H defined by

u(t)—/o f(s,t)ds

is in C(R, H), and

(1.10) u'(t) = f(t,t)+/0 Ouf(s,t)ds  for a.e. t.

Moreover, if t — f(t,t) is a continuous map from R to H', then (1.10) holds
for every t.

Proof. Tt suffices to prove this for ¢t € [—N, N], with N an arbitrary positive
integer, and then we may assume that (1.9) holds for t € [-N — 1, N + 1].
The continuity of u follows easily from the dominated convergence theorem. To
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prove differentiability a.e., we write

%(u(t—l— h) —u(t)) — f(t,1) —/0 Oif(s,t)ds

. h
_/t+ <f(s,t+hf)L—f(3at) —8tf(57t)> d5—|—/t+ Ouf(s,t)ds
; ¢

t+h
+%/t (f(s,t) = f(t, 1)) ds

=L +13+ Is.

We have to show that ||I;]|,, — 0as h — 0 for j =1,2,3.

Since the integrand of I; converges pointwise to 0 in H' as h — 0, the domi-
nated convergence theorem guarantees that I; — 0, provided that the integrand
is bounded uniformly in A by a non-negative locally integrable function. But by
the fundamental theorem of calculus,

B — t+h
f(s,t+ f)L f(s,t) _8tf(s,t):%/t (Ocf(s,t") — O f(s,t)) dt’,

and the H' norm of this is bounded by + ft+h s)dt’ = 2k(s). This proves
that limy, o ||11]| , = O for every t.

The dominated convergence theorem also shows that limj_.o || 12| 5, = 0 for
every t, since (1.9) gives a uniform bound on the integrand.

Finally, to prove that limj, ¢ ||/3]| 5, = 0 for a.e. ¢, we fix a dense sequence
(t,) in R, and write

1 t+h
Mol <5 [ 17(5.0) = Fs: )l ds

1 t+h

+||1E / Fsta)ds — F(t )]+ 1F(ttn) = £ )40
h t H'

=Ji+ Jo + Js.

By the fundamental theorem of calculus, for each n there is a set F,, of measure

zero such that limy_.gJo =0 for t € R\ E,. Let E =J,_, E,. Since f(s,t) —

f(s,tn) = f: Ouf(s,t')dt!, we have J; < 1 [, th |t — tn| k(s) ds, and by the

fundamental theorem, limy, ¢ 7 ft+h )ds = k(t) for t € R\ F, where F' has

measure zero. We conclude that

timsup [l < [¢ = tal K(O) + 1 £(0.80) = F(8. D)l

for t € R\ (EUF) and all n, and since the ¢,, are dense in R and f is continuous
in its second argument, this shows that limy_.o ||I3]|;, = 0 a.e.

If t — f(t,t) is in C(R, H'), then the function defined by the right hand
side of (1.10)—call it v(t)—is in C(R, H') Since v = v’ a.e., part (b) of the
fundamental theorem implies that u(t) = u(0) + fo s)ds, and then part (a)
tells us that u/(t) = v(t) for every t. O
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1.4 Conclusion of proof of proposition 1

Recall that we are considering the term u(t) = — fg D~ 'sin((t—t')D)-F(t') dt .
Lemma 2 and its proof show that the integrand satisfies the hypotheses of the
last proposition, with H = H* and H' = H*~!. Therefore, u has the regularity
(1.2), and

W) = — /0 cos((t — ¢)D) - F(¢') dt'

for all . By the same argument, u’ is a.e. differentiable, and
t
u’(t) = —F(t) —/ —Dsin((t —¢')D) - F(t') dt’
0
t
=—F(t) — A/ D~ 'sin((t —¢')D) - F(t') dt’
0

for a.e. t. Here we used Theorem 1, part (d), and the fact that A is a bounded
linear map from H* to H*~2. By remarks (iii) and (iv), the distribution deriva-
tives dyu and 9u agree with u’ and u”, respectively, and it follows that (1.1)
is satisfied with f = g = 0. This completes the proof of the existence part of
proposition 1. The energy inequality (1.4) follows easily from the formula (1.3),
since the proof of lemma 2 shows that the operator norm of D’¢(tD) is bounded
by 2(1+ [¢]) max([@] . /] <) if j = ~1, and by 6] i j > 0.

To prove uniqueness, it suffices, by linearity, to prove that if u is a solution
of (1.1) with f,¢g and F all identically zero, and if u satisfies the regularity
assumption (1.2), then u vanishes. With these assumptions, 9?u = Au, and
since

Au e C(R,H*"2) N CY (R, H*%),

it follows from proposition 2 that
ou € C(R, H*"Y)YnCH(R, H*™?).

In fact, by taking time derivatives of the equation and applying proposition 2
repeatedly, one finds that u € (;2, C7(R, H*~7). Applying the Fourier trans-

—

form in the space variable x, it now follows that ¢ — u(t)() satisfies the ODE
initial value problem in remark (i) for every £ € R™, with f, g and F vanishing.

We conclude that u(t)(§) = 0 for all (¢,&) € R'™™, so u vanishes.






Chapter 2

Space-Time Estimates for
the Wave Equation

The principal tool for proving existence theorems for nonlinear wave equations
is multilinear space-time estimates for solutions of the homogeneous wave equa-
tion. The main new result proved in this chapter is a sharp quadrilinear integral
estimate in two space dimensions. This estimate, which we prove in section 2.3,
is in some sense a generalization of the bilinear L? estimate (2.10) proved in
[18], but the estimate we prove is genuinely quadrilinear; it cannot be proved
by a reduction to bilinear estimates.

In this chapter we also prove some variations of previously known bilinear
estimates, which will be needed in subsequent chapters. This is done in section
2.2. First, however, we recall the linear estimates.

2.1 The linear estimates

In space dimension n > 2, the solution of the Cauchy problem

(2.1a) Ou=0  (t,z) e R
(2.1b) ul,_,=feSR"), du|,_,=0
satisfies the mixed norm estimate
(2.2) lall gy < 161
iff
n n 1 2
2.3 = —— == — < g< d 2<
(2:3) TR q’  min(1,7(r)) =4=00, an =T <00,

where v(r) = (n — 1) (3 — 1) and

1/r
lollagezy = ([ 0 1)

13
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For the proof, and further references, see [4], [5].

Remarks. (i) The assumption that f is in the Schwartz class can be removed

(i)

by the following density argument. Assume (2.2) to be true for data in
the Schwartz class. Let f € H®, and let u be the unique solution of (2.1)
such that

ue C(R; H*) N CY(R; H*™1).

Then we want to show that the distribution u is a function in L](L”)
satisfying (2.2). First recall that S(R™) is dense in H? (R") for all o > -5
For by definition, the Fourier transform F maps H isometrically onto
L2(|€]*° d¢), and the latter space contains S as a dense subset precisely

n

when o > —%. But s > 0, so there is a sequence (f;) in S such that
fi— fin H*. Let u; solve (2.1) with f replaced by f;. By assumption, u;
satisfies (2.2), so (u;) is a Cauchy sequence in the complete space L{(L%),
and hence converges in this space to some function ¥ which satisfies (2.2)
with f on the right hand side. It therefore remains to show that u and u
are one and the same distribution. But u; — @ in the sense of distributions
on R™™, 5o it suffices to show that the same is true for u. For every test
function ¢ € C2°(R'™) we have

Aww—wmwmw
SAMN%MMm

¢@Mﬂﬁﬂ%—ﬂm4W@M4%

and since s < 3, the last integral is bounded.

The assumption Btu‘ +—o = 0 is made simply for ease of notation, and
implies no loss of generality, since all the estimates we state in this chapter
for solutions of the wave equation hold, more generally, for the half wave
operators f — e**P f. The unique solution

ue CR; H) NCHR; H*™1)
of (2.1a) with initial conditions
u|t:0 =fems, 8tu‘t:O =geH,

is given by

(eith + 671-th) 4 % (eitDDflg _ e*itDDflg) .

u =

N =

Hence, if HeiithHLg(L;) S ||f||H7 then ||UHL§1(L;) N ||f||H + H9||Hsfl-
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2.2 Bilinear estimates

Since ¢, r > 2, we can interpret (2.2) as a bilinear estimate. That is, if u is the
solution of (2.1) and v satisfies

(2.4a) Ov=0 (t,z) € RM™

(2.4b) =geSR"), dw|,_,=0,

then by Hoélder’s inequality and (2.2),

v’t:O

(2.5) lwollparzprrey S AN gs 191l ers
or equivalently,
D" D=2l sz sy < 1l Nl

Once the estimates are written like this, it is natural to ask for which a > 0 we

have
HDfa (Dfera/Q . quera/Z,U)

Loy £l 2 lgll 2 -

The first such result, for the case ¢ = r = 4, was obtained by Klainerman and
Machedon [15].

Theorem 2. (Klainerman-Machedon) If n > 3, then

_ n—2
(2.6) HD+a(UU)HL2 S Wl go-vsa-are 19l gro-vsa-arz - for 0<a< 5

where D7 is the multiplier with symbol (|7| + |£])7.
Recently, Klainerman and Tataru [19] proved:

Theorem 3. (Klainerman-Tataru) If n > 2, (2.3) holds and

1 1
(2/q,7v(r)) # (1,1), where ~(r)=(n—-1) (5 _ ;) ,
then
27) D2 o) || par g2y S Fllgomars Nl oo
¢ (La'7)

for0§a<1—%.

It should be remarked that the estimate (2.7) is optimal on the line v = 2/¢
in the (1/q,1/r)-plane, in the sense that the estimate fails if a > 1 —2/r. If
7 > 2/q, on the other hand, one can obtain a better result by using the Sobolev
inequality. We will not need this, and hence ignore it.

Even more generally, one can ask what are the possible estimates of the form

(2.8) Hpipé(uu)‘

Lf/2(L;/2) S ||f||H31 ||g||H32 )

where D” is the multiplier whose symbol is “T| — 1€ }7. Estimates of this type
come up naturally in connection with bilinear null forms, as we shall see in
chapters four and five. Again, the first result of this type was proved in [15].
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Theorem 4. (Klainerman-Machedon) In dimension n = 2,

—an1/4
(2.9) | DD )|, S 1 s gl rsrs-ars

for0<a< i.
Subsequently, Klainerman and Selberg [18] proved:

Theorem 5. (Klainerman-Selberg) In any dimension n > 2,

(2.10) HDW(W)

Lo S I fllgrnre llgllpe -

Very recently, Klainerman and Foschi [9] have completely settled the ques-
tion of which are the possible estimates of type (2.8) for (¢,7) = (4,4) and
(q,r) = (00,4). For other exponents g and r, this question remains open. We
refer to [8] for more details.

The bilinear estimates that will be used in this dissertation are (2.6), (2.7),
(2.9) and (2.10). For our applications, however, it is essential to replace the
space-time differentiation operator Dy in (2.6), (2.7) and (2.9) by the operator
D, which acts only in the space variables, see theorem 6 below. The rest of this
section is devoted to proving that the modified estimates are true.

We write u = uy + u_, where ux = P f/2. Similarly, v = vy + v_.
It suffices to prove the estimates with uv replaced by uyvy and ujpv_. Since
|7| < |¢] on the support of uyv_(7,£), the operators D, and D are essentially
the same when applied to u4v_, so in this case there is nothing to prove. Hence,
it suffices to prove the estimates for ujivy. In fact, for (2.7), it will not be
necessary to make this decomposition of uw, since the proof reduces everything
to linear estimates, and in a linear estimate like (2.2), u4 and u_ are completely
equivalent, by simply negating of the sign of ¢.

We will prove the following.

Theorem 6. (a) Ifn>3 and 0 <a < (n—1)/2, then
(2.11) ||D_“(u+v+)||L2 Sl gro-v/a-are |91l -1 /a-as2 -
(b) If n=2and 0 < a < 1/2, then

(2.12) HD*“DY“(MM)’

2 S gars—arz gl grass—arz -

(c) Ifn>2,0<a<1-2/r, (2.3) holds and (2/q,7) # (1,1), then
@13) Do) s gy S I lgeesa gl e

Notice that in the first two of the above inequalities, the upper bounds for
a are larger than in (2.6) and (2.9). This reflects the fact that the estimates for
uyvy are less delicate than the ones for uv_.

The proof of (2.7) given in [19] can be modified in a simple way to give
(2.13). Instead of doing a Littlewood-Paley decomposition in both time and
space, we just decompose space. We include the details, partly for the sake
of completeness, but also because the dyadic method employed can be used to
prove (2.11) and (2.12).
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2.2.1 Review of the dyadic method
We fix a function 8 € C°(R") with the properties
(i) [ takes values in [0, 1]
(ii) O is supported in the spherical shell C = {£:1/2 < |¢| < 2}

(iii) Zjezﬁ(§/2j) =1 for all £ # 0.
Then for any F € &’ we define

AF=F (ﬁ (%) ﬁ(&)) =@« F,
where ®; = 29" (F~'3) (27:). The sequence (A;F), which we call the dyadic
decomposition of F, has the following properties:
(i) F(A,F) is supported in 27C
(ii) If F € LP, 1 < p < oo, then [|A;F |, < ||F7'B| . IFll L. -

)
(iii) If F € L', then F = 3", A;F pointwise on R™.
)

(iv) If F € HO, for any o € R, then F = > jez A F in the sense of He.

) 1/2
(v) The norms || 7, and (zjez 92j7 HAJ-(-)HQLZ) are equivalent.

The proofs of the last two properties rely, of course, on Plancherel’s theorem.
However, the utility of the dyadic decomposition is not limited to norms based
on L2. The next lemma is the tool we need to relate the dyadic decomposition
to L? norms for general p.

Lemma 3. Assume 0 < ry <719, and let
C={¢:r <|¢g| <r}.

IfFelP, 1<p<oo, and Fis supported in C for some \ > 0, then for any
0 € R,
CT N Fll < ||D°F|,, < CX|IF| L.,
where C' is a constant depending only on 0,p,n and C.
Proof. Pick a function ¢ € C2°({& : r1/2 < [£] < 2r3}) such that ¢(¢) =1 for
all ¢ € C. Then
~ _ 0 _ ~

€ F =M AT g(ATO F
in the sense of tempered distributions, so that

DF = )+ (D) () = F,
where ¢ = F~1¢. Hence it follows from Young’s inequality that

ID° P, < CAT D]l o IF s

This proves the second inequality, and the proof of the first is similar. O
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Definition 1. Write R™ as an almost disjoint union of cubes,

B = U u+Q, @=[-1/2,1/2"

HEZL™

and fix a function ¢ € CZ° such that
0<y <1, ¢[,=1 suppy CQ",
where Q* = [—1,1]™ is the double of Q. For any u € 7™ set

Y€ —p)

O S Tl

so that
suppd Cp+ Q% Y u(&) = 1.

HEL™

Now define the operator Q,, : S" — S’ by

O F(€) = ¢u(&)F(©).

Proposition 6. Let T be a bilinear operator given by

79O = [ wle =nmfic = njatn) dn.

where Kk is homogeneous of degree v and

2.14) J 167 et = )&~ mpgn| de n < oc
forall0<a< Aand f,g € S. Fiz p= =1, and define
u(t) = et f, v(t) = e Py for f.gesS.

Let1 < q,r < oo, set$:1+%—%—% and assume that

(2.15) 1T (w, )l Loy S NN grs gl s
and

”1&07T52#Uw52vv)”Lg(L;)

2.16 s s—
(2.16) <A ) A/Q(Z |9M+af|L2)(Z ||szy+ﬁg|L2)

le|<C |B|<C

forall f,g €S and all p,v € Z™ such that

lw+v[<21++v/n) and |u|,|v| = 8(1+Vn).
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Then

217 10,0 g sy S Wi gl

forall fig €S and 0 < a < A. Moreover, if (q,r) # (00,00) and
(2.18) T:H=%2 x g5=4/2 — g>7"/27770 for 0<a<A,
then (2.17) holds for all f,g € H*%/2,0 < a < A.

Remark. The condition (2.16) may look complicated, but what it says is essen-
tially the following: If f and g are supported in diametrically opposite cubes
of side length 1 and at distance R from the origin, then T'(u,v) satisfies the
estimate

1Tt )y S B S e

Proof of proposition 6. Note that the condition 2s = v+ n — n/r — 1/q comes

from scaling. We write
JEL kEZ

9ll g -

and set u; = e™PA; f and v = PP Ayg, so that

(2.19) u=Zuj, ’UZZ’Uk.

JEZ keZ

We will assume that a > 0, since the case a = 0 is just (2.15). Since (2.14)
holds, it follows from the dominated convergence theorem that

DT (u,v) = Z DT (uj,vg)
J,k€Z

pointwise on R'*". Hence, by Minkowski’s integral inequality,

HDiaT(uvv)HL;’(L;) S Z HDiaT(uj’vk)HL?(L;)'
J,kEZ

It is natural to consider separately the terms for which |j — k| < 2 and those for
which |j — k| > 2. We call these terms diagonal and off-diagonal, respectively.
The off-diagonal case

Let us assume j — k > 2, since the case k — j > 2 is treated in exactly the same
way. It is easily seen that

supp ka) - 2jC~,

where

C={e:1/4< €| <4}.



20 Space-Time Estimates for the Wave Equation

Hence, by lemma 3 and (2.15),
1D~ (g, ) ) S 27 1T g )3y
S 27N A5 fll g 1 Akl
S 272G f ) e 1AKG ] ooz -
Summing and applying the Cauchy-Schwarz inequality, we get
Z ||D_aT(uj’U’€)HL;?(L;)
j—k>2

SO 2N Al ez 185219l je-are
1>2 jez

S ||f||Hsfa/2 HQHHsfa/z .

This concludes the proof in the off-diagonal case.

The diagonal case

This case is more delicate, and requires a refined decomposition in frequency
space. We start by noting that
D™ (uj,vg) = Z A D™T (ug, vk)
I1<max(j,k)+2

pointwise on R'*”. Since D~% and A; commute, it follows from Minkowski’s
integral inequality and lemma 3 that

Z ||D7aT(uj’vk)||L?(L;)
l7—k[<2

< Z Z ||D7aAlT(ujvvk)HLg(L;)

li—k|<2 I<max(j,k)+2
—al
S Z Z 27 ||AIT(ujavk)HLg(L;) .
li—k|<2 I<max(j,k)+2
Now if we could prove that

(2.20) AT (g, o)l o gy S 2749 1A e 1Akl gre

Lr) ~
then it would follow that

Z Z 2_al ”AlT(ujvvk)HLg(L;)

li—k|<2 I<max(j,k)+2

S D > 2 NA fll e 1Ak e

li—kl<2 1<j+4

= Z g~ (A=) Z ZHAijHsfa/z 1A +mgll raaye

i>—4 |m|<2 jEZ

S HfHHsfa/z HQHHsfa/z
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for 0 < a < A, and this would complete the proof of the diagonal case.
By scaling, it suffices to prove (2.20) for [ = 0. Indeed, setting A = 2!, it is
easily checked that

A[T(’u]‘ (t), Uk (t)) (:C) — )\’Y+2nAOT (eiktDAj_lF, €pi>\tDAk_[G) ()\,T),

where F(€) = f(A) and G(n) = §(A\n). Assuming that (2.20) holds for [ = 0,
we therefore get

AT (g vr)ll g Lpy
N AT (0 A, F P 84 16) )y
S AR/ agm AU | A F | 1Ak-1Gl g
= XTI 2 AU A kgl
= 2740704 fll o 1Ak gy
since 2s =v+n—n/r—1/q.
It only remains to prove (2.20) for [ = 0. If 29 < 27(1 + \/n), we can simply

estimate
10T (g, 00 a1y 1T o)l

and apply (2.15).

Henceforth we assume 27 > 27(1 + /n). If u;(t) is at frequency & and vy (t)
at frequency n, then AT (u;(t), vk (t)) is at frequency & +n = O(1). Thus &
and n will only interact if they are in opposite cubes of side length O(1). It
therefore makes sense to decompose £-space and 7-space into unit cubes.

We write
AQT(Uj,Uk) = Z A()T(Quu]‘, Q,,’Uk),
pn,vEL™
and conclude that
(2'21) ”AOT(ujvvk)HLg(L;) 5 Z ||A0T(Quuj=QVUk)||Lg(Lg) .
W, VEL™

But since
Eep+Q, nev+QY, {+n=0(1) = p+v=0(1),

the sum can be restricted to the set of p, v such that |u + v| < C for some C
depending only on n. In fact, C' = 2(1+ +/n) will suffice. Since we are assuming
29 > 27(1+4 y/n) and |j — k| < 2, it is easily checked that

lul, [v] > 2°(1 + V/n),
and that

(2.22) P 2C = QA f=0, v¢2"C= Q,Ag=0.
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Hence, by (2.21), (2.16) and the Cauchy-Schwarz inequality,
AT (uy vi)ll parry S 27 NN A fll g 19 a8kl
B|<C «
S 278 fll e 1 kgl e
where «, § € Z™ and C depends only on n.

Assume
T - Hsfa/2 ~ Hsfa/2 N Hstn/27'yfa

for 0 < a < A. Then since
2s—n/2—y—a=n/2—n/r—1/q—a,

and since D? is bounded from H? to H° % iff o — 0 < 5, it follows that

D=oT - Hsfa/2 > Hsfa/Q N Hn/27n/r71/q
for 0 < a < A. Pick two sequences (f;) and (g,) in S which approximate f and
g in H*=%2 and let u; = P f; and v; = e’*Pg;. Then (D~*T(uj,v;)) is a
Cauchy sequence in Lg/ 2 (LQ/ 2) and therefore converges in this space to some
function F'. To show that F' = D~%T (u,v) in D’(R'*"), it then suffices to show
that D=%T (uj,v;) — D™%T(u,v) in D'(R'™™). But using the boundedness and
bilinearity of DT, we get

/R<D7‘IT(uj, vj) — D7 (u,v), ¢(t)) dt

< / D= a3, 03) = DT, 0) g sy 16O e
< / 15 (8) = 0l oo 110 1o GO fresssanso dt
Ol e / 105 8) = () oo 1O s sa e
<15 = Flliemare 19l oo / O P
15l e 195 = 0l e / O] P

and since we assume n/r+1/q¢—n/2 > —n/2, the last integral is bounded. O

2.2.2 Proof of (2.13)
By proposition 6 and (2.5), it suffices to prove that

HQMU . QVUHLZ”(LQ”)

S S el ) ( 3 19l )

lo|<C IBlI<C



2.2 Bilinear estimates 23

for some constant C. We use the following variation of the linear space-time
estimate (2.2), proved in [19]:

(2.24) 1= P f | Loy < Coran ™2 fll e for p0.

Since
2,0,=0 if |u—v|>C,
where C' depends only on n, the estimate (2.24) implies that

eiitDQH( > Qu+af)

lo|<C

< Z HeiitDQuQu-lrafHLg(Lr)
lal<C ’

ST A N [ PN [

la|<C

HeiitDQ

MfHLg(L;) LD

Hence, (2.23) follows after an application of Holder’s inequality.
Note that (2.18) follows from the fact that if

O§0,9<g and o+6 >0,
then the multiplication operator
m:8xS—8, m(fg)="fg

extends to a bounded operator

m: H” x HY — Fot0-—n/2,

2.2.3 Proof of (2.11)

In this case A = (n—1)/2 and with notation as in proposition 6, 2s = (n—1)/2,
so it suffices to prove that

[Que™P f - e Pgl| o SIS 2 19091l
for all u, v € Z™ such that
lw+v|<2(1++vn) and |u, [v] > 8(1+ v/n).
The space-time Fourier transform of Q,e®P f - Q,¢Pg evaluated at (7,&) is

~

2 [ 5(r ol ~ € = l) oule — ) (&~ mon ) dn,

so by Plancherel’s theorem and the Cauchy-Schwarz inequality, it is enough to
show that

Su?/XmLQ* (€ =M xvrq- (M) (T — |n| — € —n]) dn < oo.
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But the conditions on g and v imply that if £ —np € p+ Q* and n € v + Q*,
then
&=l ~ [0l ~ [ul ~ v and |§=n|+ 0] = 2]

Consequently, the ellipsoid
E={n:m=¢=nl+nl}

approximates a sphere of radius ~ 7, and

/ Xpta- (€ = M) xura- (8(r — ] — € = n]) dn

= /EX;HQ* (€ = mMxvrq-(n) <w> dA(n)

72— [¢”
~ /E Xu+@+ (€ = MXxw+q- (1) dA(n),

where dA is surface measure on E. For the calculation required to go from the
Dirac delta to surface measure, we refer to section 2.2.5 below.

The last integral is the surface area of the intersection of a unit cube with a
convex surface, and is therefore uniformly bounded.

2.2.4 Proof of (2.12)
In this case, the symbol of T is

1/4

k(&) = (IEl+Inl = 1€ +nl) ",

so with notation as in proposition 6, we have v = 1/4, and hence 2s = 3/4.
Since A = 1/2, we conclude that s — A/2 = 1/8. We must therefore prove

| T(2e™P £, Pg) | o < 1ul™® o1 192 £ 112 19091 2
for all u, v € Z™ such that
lu+v]<2(1++vn) and |ul, [v| = 8(1+ Vn).

It suffices to show that
[ €= nmuar (€ = e (3(r — lnl = I = al) dn S ']
uniformly in 7, £. But

/ K2 (€ — 0.0 X~ (€ — ) Xoror ()5 — 0l — 1€ — nl) dn

= [ s (€= mvenart (ES20) )

o a4 ] /E ot 0- (€ = M xwra- (n) dA(),
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and the last integral is uniformly bounded.

Since k(&,n) < 2 |§|1/8 |17|1/87 it follows that

T - H3/87a/2 > H3/87a/2 N H71/27a

for 0 <a<1/2.

2.2.5 Further remarks
Let us show that

o 1/2 1/2
Fm)3(6(n)) dy = Foy BN G4y,
T=|¢=n|Fn| ‘72 _ |§|2‘ /

where dA is surface measure on the hypersurface {n € R" : 7 = | — n| F |n|}.
We have

dA(n)
Jmo(r£nl—1&—n dn=/ f(n :
Jroitsn—te=aya=| e ey

Moreover,

5 n

and a straightforward calculation yields

N < SR
I€=nl  Inl 1€ = nlnl

_12: (1€ = nl + )2 — 1¢*
€=l |nl & —nl [n] '

From the proof of proposition 6, it is clear that we can replace the assump-
tion (2.15) by certain dyadic estimates. First, we need the off-diagonal dyadic
estimate

1T Cugy vi)ll ooy S WA N s 1BkGl e for |5 — k| > 2.

If ¢ = r = 2, this estimate follows if we can show that

[ et =i = bl = ke )

is uniformly bounded for all 7, £ and all j, k € Z satisfying the off-diagonal
condition |j —k| > 2. But this condition implies that the above integral is
bounded by

K2(€E—
(2.25) / AN Skl — e — nl) dn
e ||

2
—nl+nl<ciel 1€ —nl" |n
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Second, we need the low frequency diagonal estimate
AT (ujs vi)ll parry S NG f Nl e 1Akl g for j k< C,

where C' depends on n. But in this case we also have [€ — 7| + |n| < C|¢], so
again the estimate can be reduced to bounding (2.25).

For all the operators T' that we are interested in, the integral (2.25) is easy
to bound by explicit calculation, even when we choose the + sign in the delta
function, which of course corresponds to the estimate for uyv_. See [18], [9].
We are simplifying somewhat here, since |£ — 5| and |n| are not always taken to
the same power, cf. (2.10).

Thus, the off-diagonal estimate is in principle the easy part, and the inter-
esting part is the diagonal estimate (2.16). In this case we need to bound

xa@/k%g—mnnwﬁws—mxHmeaTimwﬁg—now

j€ — ' |n|"?

_ K2(E — 1, (€~ )Xo dA
m@l%w$n(§nmmm@ s ()= A

in terms of powers of ||, |v| for all u, v € Z™ such that
v <204+ va) and ul, ] = 81+ VD).

Let us denote by I = I(7,£) the above integral. If we are looking at u v, then

€ ="/ |n|"?

Xu+@+ (€ = M)xv+q- (1) e [ ~ X+ @+ (€ = M)Xv+@= (1),
2 _

and as we have seen, the estimate is then easy. In the case ujv_, on the other
hand,

j€ ="/l
|7'2— |§|2‘1/2
' ]2
~ xc(&)x E=Mxvro (M) 575
( ) n+Q ( ) +Q ( )(|€| — |T|)1/2

xe () xutr@- (€ — n)xvrq-(n)

and the factor (|¢| — |7|)~! is not bounded, so unless there is some cancellation
from the symbol x, we cannot bound the integral. In this case one must use a
further dyadic decomposition w.r.t. the angle between £ — 7 and 7. See [23].
For the estimate (2.12), however, we have sufficient cancellation from &, so the
proof is in principle the same for ujiv_ as the one we gave for uyvy. The only

difference is that for uyv_ we must take A = 1/4, since then I < |,u|1/2 |I/|1/2,

1/4

as opposed to I < |u| |1/|1/4 for uyvy.
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2.3 A quadrilinear estimate

In this section we aim to prove the following.

Theorem 7. Let uj, 1 < j <4, be solutions of Ouj = 0 on R*2, with Cauchy
data uj|t:0 = fj, atuj|t:0 = 0. Then the estimate

(2.26) D™D _(uyug) - ugug dt dz| S || fill oo [ F2ll g2 1 fsll 22 1 fall 22

R1+2

holds for 3/4 < a < 1.

The key point is that all the regularity is concentrated on u;. This makes the
proof much harder than in the case where the regularity is evenly distributed
among the four functions. This asymmetry makes it impossible to prove the
inequality by a reduction to bilinear L? estimates.

To use the full force of the cancellations coming from the operator D_, we
must combine the next lemma with a special change of variables which was first
used by Klainerman and Machedon in [15]. The following lemma is a sharper
version of similar results proved in [15] and [18].

Lemma 4. If 1 and no are two points on the ellipse |& —n| + |n| = 7 in R?,
where T > |€], € € R?, then

(2.27) I = mal = [lm| = nal| S (7 = €D min{ma[ 2, o]}
Moreover, if || > 2 |nz|, then

(2.28) m = n2| = [Im| = nal| < 7 I¢].

Proof. We first show that it suffices to prove

(2.29) Iml 2l —m -n2 S (7 — [€]) max{|m |, [n2] }-

This estimate would imply

i — | — [l — o] | < a2l =2

|771 - 772|
(2.30)
_ (= | max{|m], |21}
~ In1 — 2l

If || > 22| or |n2| > 2|m|, then |m — 2| ~ max{|n1| , |772|}, so (2.28) holds.
Next, assume || ~ |na|. Then if |p —no| < (7 — [€)Y2 |m|"?, (2.27) is

obviously satisfied, so we may assume |5 — 2| > (7 — |€))Y/2 [m|*?, which
combined with (2.30) implies (2.27).
It suffices to prove (2.29) for £ = (1,0), 7 > 1. Set r; = |n;|, w; = n;/ |n;|

T7°—1

and y; = £ -w; for j = 1, 2. A simple calculation reveals that r; = Plcnt
J

whence

— iy £ (- ) 21— 93)'?

1
r1r2(l = wi - wp) = (7% — 1) max{ry, ro} 2(7 — min{y1, y2})
- 1, 92
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Clearly,
L—yiya + (1= D)1= 93)"/? S 7 — min{yr, 2},
and this completes the proof. O

The first step in proving (2.26) is to observe that we may assume f;({) > 0 for
1 <j < 4. Indeed, if u = e®P f and v = e**Pg, then

T, €) = / 5(r £ nl — I — nl) F(€ — m)a(n) dn.

and 0(7 £ |n| — |€ — n|) dn is a positive measure on the hypersurface given by
+|n|+1€ — n| = 7. With this assumption, the integral in (2.26) is non-negative,
so we can forget about the absolute value from now on.

Notation. If T is a bilinear operator with Fourier symbol k, i.e.,

T(a, 0)(r,€) = / R(r = A& — A (T — A€ —n)a(\, ) dr dé dAdn,

and if A is a subset of R2T2" we let Ta be the operator whose symbol is KX A.

Define A = {(T,{,/\,n) cnl/2 < €] <2 |77|}, and write
U3U4 = (U3U4)A =+ (U3U4)Ac.

The first term on the right is the diagonal part, the second term the off-diagonal
part. We first show that the estimate for the off-diagonal part can be reduced
directly to bilinear estimates. By Plancherel’s theorem and Holder’s inequality,

D7 *D_(ujus) - (usug) ac dt dzx

R1+2

= D3_/2_a(u1u2) . DiaDa__1/2 (U3U4)Ac dtdz

R1+2

S HD3_/2_a(U1UQ)HL2 }’Da__l/2(Dia/QU3Dia/2’U,4)Ac

Lz’

Using the fact that

1€ =9l = lnl] — I¢l] < 2min{le — ], i},

we get

)

o] 0

L2
HD‘Z‘W(D*a/z’ugD*a/Qu@Ac

2 S HD];/ZL(Dig/S’U,g . Dig/gu;;)‘

Lz’

Now apply theorems 4 and 5.
Proving the estimate for the diagonal part is much harder, and we cannot
use Cauchy-Schwarz as above to reduce the estimate to bilinear estimates, since
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there is no L2 estimate for D_“D‘flﬂ(ugué;)A. Instead, we use the method
of dyadic decomposition. Since this was considered in detail in the previous
section, we can afford to be a bit less careful this time around. Thus, in the
sum (ugug)a = Elj_klg2(AjU3AkU4)A we only consider the terms where j = k.
Furthermore, we have

AjusAjuy = Z Aj(AjusAjug).

1<j+2
Note that if |l — j| < C, then
D7A(AjusAjug)
is comparable to
AYD™2Ajus D™ Ajuy),

so we can use the same proof as in the off-diagonal case. We may therefore
assume | < j.

Next, we write ujus = Ep,q ApuiAqus. Since the regularity is concentrated
on up, the worst possible case is clearly p < g. Again we simplify and assume
p = q in the diagonal case, whereas p < ¢ in the off-diagonal case. Thus, we
want to prove

(231) ZZZ D_“D_(ApulApug) . A[(AjUgAj’u,4) dtdz
jol<j p TR

S fillga—a 1202 1 f3ll 2 1 fall 22
and

(232) ZZZ Z D *D_ (Ap’u,lAq’UQ) . Al(AjU3AjU4) dtdzx

. . 142
JILi 9 pLyq R

S il oo 2l 2 N sl 2 1 fall 2 -

Observe that in (2.32) we must have |¢ — | < C. We therefore assume ¢ = [ in
(2.32). It should now be obvious that (2.31) and (2.32) follow from the dyadic
estimates

(233) D_ (ApulApug) . A[(AjUgAj’u,4) dtdz
R1+2
S22 A fill g2 1Ap foll 2 18 sl o 185 fall 2

where we assume [ < j, ] <p+ 3, and

(234) D_ (Ap'l,blAlUQ) . AZ(AJ'U3AJ"UJ4) dtdzx

R1+2

< 23495 N | AL Fi | o 1A foll o 18 F3ll o 1A Fall e
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where p < I < j. By scaling, we may assume [ = 0

To avoid cumbersome notation, we suppress the indices and assume f; =
fo=fs=f1=f, and we set u = (uy +u_)/2, where ux = eT*P f. This does
not restrict the generality of our proof, as the reader can easily convince himself.
In other words, the indices can be put back in without any modifications to the
proof.

Observe that v v and uyu_ have almost disjoint supports in Fourier space.
The first product we will say is of type ++, the second of type +—. Thus in
(2.33) and (2.34) the products are either both of type ++ or both of type +—.
There are no interactions between products of different types. Before we start
the proofs, we remark that the estimate (2.34) only makes sense for products of
type +—, since in the 4++ case, simple geometric considerations show that we
would necessarily have |p — j| < C, contradicting the assumption p < j.

2.3.1 Proof of (2.33) for products of type ++

In this case we must necessarily have [p — j| < C, so we may as well assume
p = j. By a further decomposition in unit cubes, we see that it suffices to prove

D_(Quuy - Q_puy) - (Quuy - Q_puy)dtde

S eI f g2 12— f N2 180 1 2 1920 fll 2

R1+2

where |p| ~ |v| > 1. Applying Cauchy-Schwarz, this reduces to proving
1/2 1/2
| P2 0|, S 112081 2 192

for all 4 € Z2, |u| > 1. By the usual Cauchy-Schwarz argument, this can be
reduced to proving that

(7= 1) [ s (€ = )87 = Inl = 1€ =) iy 5 .
But this is easy; see section 2.2.5.
2.3.2 Proof of (2.33) for products of type +—
Decomposing in unit cubes, we conclude that it suffices to prove
(2.35) D_(Quuy - Qu_) - (Qeuy - Q_pu_)dtde

R1+2
S eI f 2 11920 fll Lo 1192 fll g2 2-s fll 2 5

where || > 1 and either |pl|, |v] < C or |u| > 1 and v = —pu. If the first
alternative holds, there is no orthogonality, but summing is not a problem,
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since there is only a fixed, finite number of terms. Denote by I the integral in
(2.35). A calculation shows that I equals

[ (€= llml = 1 = ml1) 80¢ = el = el = 1€ = + ]
X B F (€ = 1) b0 (1) 6w f (—12) e f (2 — &) diy i dE.
Performing the linear change of variables (see [15], [18])

(2.36) (& n,m2) — (& =m0 —n2, =12, —1M1),

we find that I equals

/(|§—771—772|—}|772|—|§—771H)
x 6(1 = |m| = 1€ = m|)6 (7 — ma2| — € — n2])

-~ ~ ~ -~

X Ouf(&—=n)bu f(=n2)Pu f(m)D—r f(n2 — &) dn dng dE.
By lemma 4,
1€ —m — | — |2l — € —m] S (7 — |ENY2 |ul "2,

so applying Cauchy-Schwarz first w.r.t. 71, 2 and then w.r.t. 7, £, we find that
I is bounded by

il T 1 f N o 190 £l o 1920l o 12 f o
where
L = sup(r — [¢)/* / Xur@+ (€ = Mxaser (M3 (r — [nl = [€ = nl) dn

= [ N (€ — soe (=TIl
r& Jr=temnitm " (r =+ IeD

Clearly, I, x S min{|,u|1/2 , |/\|1/2}, and this finishes the proof.

2.3.3 Proof of (2.34) for products of type +—

In this case we only decompose the second product in unit cubes. Thus, we
must show

(2.37) D_(ApusAou_) - (QuuyQ_ju_)dtde

R1+2
S 2P A N2 180F 2 190 F N 2 190 f 2
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for p < 0 and |u| > 1. The integral I in (2.37) equals

[ = llml =t = mlD) 50 = el = el — 1€ = + ]

x B /2P) f(m)Bf(E —m)puf(—n2)d—pf(ne — &) dm dnz d€.

Performing the linear change of variables (2.36), we find that I equals

/(I&—m—nzl— 2l — 1€ — m]|)
X 0(7 — |m| =€ =ml)o(r — |m2| = |€ = n2])
X B(=n2/2) F(=n2) BF (€ — )by f(m) b f(n2 — €) dipy iz dE.
By lemma 4,
€ —m — 2| = [In2] — € = m| S (7 — |g])"/?2P/?

and proceeding as in the previous section, we find that I is bounded by

1/2
27212 T A F e 180 f 1o 192 £l 2 112 £l 2

where
Ty = SHE(T —lent2 /szc(f —MXu+q- (M8 (T = nl — € —nl) dn

& — "2 )"
— sup / xare(€ = Mxura (4.
re Jrole—nl+in g (r+ 1)

Assuming 2¢ < |y, it is clear that Ji, < 23%/2. This finishes the proof of
theorem 7.



Chapter 3

Hyperbolic Sobolev Spaces

In this chapter we define the basic spaces in which we will obtain solutions of
nonlinear wave equations. These spaces arise from L? Sobolev norms in space-
time, with weights adapted to the wave operator. We prove the basic principle
that a multilinear space-time estimate involving solutions of the homogeneous
wave equation implies a corresponding estimate for elements of the Sobolev
spaces referred to above, although these spaces themselves do not contain any
non-trivial solution of the homogeneous wave equation. Applying this principle
to the estimates from chapter two, we derive a number of useful estimates. We
then discuss the algebra property of these spaces, extending this to general
nonlinear functions. The remainder of the chapter is devoted to proving a
suitable version of the energy inequality for these spaces, a basic ingredient in
the well-posedness theorems of chapter four.

3.1 The space H*

For 5,0 € R, we let H*Y be the space of all u € &'(R'*") for which @ is a
tempered function such that

(3.1) (1,€) — ()" w? (7, )u(r, §)

is in L*(R'™), where (§) = 1+ [¢] and w_(7,§) = 1 + ||7] — [£]|. We denote
the L? norm of this function by [ull, 5. Then |||, , is a norm on H*? An
alternative definition is

3.2 HY ={ue & : AN uel?
(3.2)

33
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with norm ||u|\/59 = HAsAe,uHLm where A* and A? are continuous linear maps
of 8§’ to itself, defined by
Mu=(1+|¢*)"*a
2
- (7~ 1¢F)
1+

Ay = T
1+ 72+ ¢

0/2

In fact, since A=% = (AS)*1 and AZ% = (Aﬂ)fl, these maps are isomorphisms.
Since there are constants C7,Cy > 0 such that

(3.3) C1() <(1+[€)V? < Ca ()
(=-ret)"\ "
(33b) Clw_ (T, 5) S 1+ m S CQ’LU_ (T, ),

the two definitions are equivalent, as are the norms |-[|, , and HHlse We will
use both these norms, depending on whether we are working in physical or
frequency space, but since they are equivalent, it should cause no confusion to
denote both of them by ||-[| ,.

Since S is dense in L? and A*AY maps S onto itself, the definition (3.2)
shows immediately that S is dense in H*?.
For later use we also define

o 2 02} -
Nu=(1+72+1) " @

Like A® and A? , this map is an isomorphism of both S and &.

3.2 An integral representation

Given u € H*Y, there is a unique decomposition
U =up + U

such that @7 is supported in [0,00) x R™ and @_ in (—o0,0] x R™. Obviously,
2 2 2
ur € H?, and |Jull; g = ull5 o + llu-l} -
When 6 > 1/2, we have the following useful characterization of H*?.

Proposition 7. If 0 > 1/2, then:

(a) H*? C Cy(R, H®), in the sense that any tempered distribution u € H*?Y
has a unique representative t — u(t) in Cp(R, H*). Moreover,

(34) lu(®)ll e < Cllull,, for alit €R,

where C' depends only on 0.
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(b) w € H*? iff there exist f1, f— € L*(R, H®) such that

()€ =0 for [¢]<—p,
F()© =0 for |g<p
and

u(t)

_ 1 /°° ePED) £, (p)
B AP

Moreover, |luxll, , = ”fi”L?(]R,HS)'

Proof. We start by proving that a tempered distribution can have at most one

representative in Cp(R, H®). First note that by remark (ii) on p. 2, any element

of Cy(R, H?) is a tempered distribution. Now assume that u,v € Cy(R, H®) are

equal in the sense of distributions. We have to show that u(t) = v(t) for all ¢.
Fix ¢ € S(R™) and define f : R — C by

f(t) = (u(t) —ov(t),¢) for teR.
Then f is continuous, and for every ¢ € S(R),
[ 1w de= [ (ut) - v(o), wi)s) de = (u=v.¢) =0,
where ¢ € S(R'™) is given by ((t,x) = 1(t)¢(x). Hence, f(t) = 0 for all ¢.

The existence statement of part (a) follows from part (b), which also implies,
using theorem 1(a) and the Cauchy-Schwarz inequality, that

1+ (o) - 1/~ (o) -

Oy < | ————2-d —d
1Ol = ] T ) @
< O (W liaoarny + 1= Naqg o))
< Clul .

where the last constant equals 4 ([(1+ [p])~2 dp) 12,

We now proceed to prove part (b). Under the isometry
ue— F=FNN ), HY— L2

uy and u_ correspond to Fy = X[0,00)xre & and F_ = X (_oo 0] xR F-
We define another isometry

Fy «— fy, L*R'™) «— L*R, H®),

(1+[€)° F+(0)(€) = Fi(p+1€1,€)
(L+1€)° F-(0)(&) = F-(p— [¢],£).
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It is a straightforward exercise in measure theory to prove that, after redefining
f+ on a set of measure zero if necessary, f+ is in L?(R, H®) iff Fy is in L?(R*").
We omit the details. Thus, u € H*? iff f,, f_ € L?(R, H®), and we set

vy (t) =

1 /eit(P+D)f+(p) dp 1 /eit(P—D)f_(p) i

2 ) AT =O=5 | T

for t € R. By the dominated convergence theorem, vy,v_ € C(R, H®), and
since the H® norm of vy (¢) is bounded uniformly in ¢, vy and v_ are tempered
distributions. We will prove that u; = vy in the sense of distributions. The
proof that u_ = v_ is similar, and will be omitted.

Since the bilinear pairing (-,-) : H®* x H~% — C is continuous, it follows
from theorem 1(d) and Fubini’s theorem that

(v4:0) :/<v+<t>,¢<t>> i

- [ { G st} doa

/// ALl A0 FHo(1))(€) de dp dt

2m(1 4+ |p|)?

— [[] gz 0@ o+ 16, OF  (0l0) g dpds
// gy / e F T (6(1)) (€) dt dr dg

//u+T§ (¢) (7, &) dr d¢
(us,9)

for every ¢ € S(R'*"). This concludes the proof. O

3.3 Space-time estimates

In this section we prove a highly useful corollary to proposition 7, namely the
fact that a multilinear space-time estimate involving solutions of the linear wave
equation with data in H® in many cases implies a corresponding estimate for
elements of H*? with § > 1/2. We then apply this result to the estimates
of chapter 2, thereby immediately deriving a number of important inequalities
which are collected in theorems 8 and 9. Other estimates are then deduced
from these, and we also include a well-known bilinear estimate based on the
Cauchy-Schwarz inequality, see proposition 10 below.

Proposition 8. Assume that T : H*'(R") x --- x H%(R") — H(R") is
k-linear, and let 0 > 1/2.
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(a) If
36) TP far e P 1) Loy < Cllallge -+ Wl
where X is a fized k-tuple in {—1,1}%, then
(3.7) 1T Curs s w)ll oy < Cllually, g lulls, 0
for all (uy,...,ugx) € H*V x ... x H**% such that

[0,00) x R"  if A; =1,

(3.8) supp u; C oo
! (—00,0] x R™ if Xj=—

(b) If (3.6) holds for all A € {—1,1}%, then (3.7) holds for all

(uy,...,ug) € HVY x . x HO,

Proof. By proposition 7(b) and the condition (3.8), which is equivalent to

there exists f; € L*(R, H%') such that

Ooeltpe)\lth()
P = —d fi 1<i<k
1 /,m (T+lpp? @ 0 " =I=0

and we have Huszj,g = Hfj||L2(R7HSj).
Theorem 1(d) yields
T(ul, ey U

/ / ett(pr++pe)T ( MAD £ (p), ..., eA’““ka(Pk))
(L+[p[)? - (1 + |pwl)?

dpy - - - dpg,

and it follows from Minkowski’s integral inequality, (3.6) and the Cauchy-
Schwarz inequality that

17wl

/ / Cllfrlo)gor - W (o)l pren
(4 [po))7- - (1 + |px])?

S CONfillpz oy Ikl 2 prony -

dpy -+ - dpg

This concludes the proof of part (a), and to prove part (b) we simply write
uj = uj4 + u;_, use the multilinearity of T, and apply part (a). O
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Applying this proposition to the space-time estimates (2.2), (2.13), (2.11) and
(2.6), we obtain the following result.

Theorem 8. Assume 6 > 1/2.
(a) If

2
39 s=—--———- , —————<g<o0 and 2<r <o,

where y(r) = (n— 1) (3 = 1), then
(3.10) lull ey < Cllull -
(b) If (3.9) holds, (2/q,7) # (1,1) and 0 < a < 1—2/r, then
(3.11) HD_a(UU)HLgN(L;/?) <C ||u||sfa/2,0 ||’UH57¢1/2,9'
(c) Ifn >3 and 0 < a < (n—1)/2, then
(3.12) D™ (usv4)]| 2 S Nt 1) /a—ay2.0 104l (n1)/a—ay2.6 -
(d) If n >3 and 0 < a < (n —2)/2, then
(3.13) D™ (v 2 S Nt 1) /a—ay2.0 10Nl (n-1)/4—ay2.0 -
Note that (3.10) corresponds to the embedding
H*? C L{(L}),
which is the analog in the spaces H*? of the Sobolev embedding
H*(R™) C L"(R") for s= g - ; 2 <1< o0
The analog of the embedding
(3.14) H*(R") C L®*(R") for s> g
is
1

(3.15) H*O(R™) C L®°(R™*™) for s> g 0> 3.

The latter is easily proved by direct estimation or by combining (3.14) with
proposition 7(a).

Definition 2. We let ST be the symmetric bilinear operator given by

—

@10) ST = [[lle il nll - €] Fie - gt dn.



3.3 Space-time estimates 39

Theorem 9. Assume 6 > 1/2.
(a) Ifn=2 and 0 < a < 1/2, then

Caol/4
317 | o)) S T lasagen 1+ ljs—aaa
(b) If n=2 and 0 < a < 1/4, then

(3.18) HD‘@Si/“(qu,v_)’

L2 N ||u+||3/87a/2,9 ||U—||3/87a/2,9'

(¢) For anyn > 2,

1/2

(3.19a) |84 wasva)|] < Clluillog 0110
1/2

(3.190) 822w, < Clusllog o-laye-

Proof. Observe that
DY (P f . eFitD g) — Y (P f, FitD g,
Since
(3.20) 16 =l = Inl| = k1| < 2min{le — ], Inl}.
it follows that
Sjlt/4 : H3/8—a/2(Rn) % H3/87a/2(Rn) . Hfl/zfa(Rn)

for 0 <a < 1/2, and

SY? LA(R™) x HY2(R") — H V2R,

Therefore, applying proposition 8 to (2.12), (2.9) and (2.10), the theorem fol-
lows. |

Next, we define two bilinear operators which are ubiquitous in what follows.
These operators are intimately connected with the bilinear operator (u,v) +—
A_(uv), and basically correspond to the case where u and v concentrate on
the light cone, i.e., they are solutions of the homogeneous wave equation. Cf.
lemma 5 below.

Definition 3. Let RY be the symmetric bilinear operator given by
(3.21)  R"(u,v) = ST (uy,vq) + ST (u—,v_) + 57 (uy,v-) + ST (u_,vy).

Thus,

—

R, )(r, €) = / (= A€~ A m)a(r — A€ — )5\ ) dhdn,
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where

[l +Inl=1&+nl i 7A>0,

3.22 L E A ) = .
(322 &) {|€+n|—\|§|—ln|\ i oTA<0

Furthermore, let R} be the symmetric bilinear operator given by

R)(r.€) = [ 1= A€ = n Al = A& ~ )30\ ) dAdo,

where 1o(7,&,\,n) = (rxe)(T,§&,\,n) and xg is the characteristic function of
the set

(3.23) E= {(T,f,/\,n) cw_(1,8) Fw_(\n) < r(T,f,/\,n)}.

An important feature of the norm |[ju|,, is that it only depends on the
absolute value of u. To avoid having to pass to frequency space every time we
want to prove an estimate in this norm, we introduce some special notation.

Notation. We write
lu) = F~*al,

and
u=zv ff |ul<vae, viv iff Jul<CU ae.

Lemma 5. For any v > 0, we have

(3.24) AV (ww) 2 37(AY [u) - [v] + [u] - A [v]),

(3.25) A7 (uv) <37 (A:Y|r lu] - [v] + [u] - AL LUJ)

and

(3.26) AY (wv) 2 CV{AY |u] - [v] + [u] - AY [v] + R (|u], [v])},

where Ry is as in definition 3.
Proof. The inequality
(L€ < 3L+ 1€ —n*)7 + (1 + ")}
implies (3.24) and (3.25), whereas (3.26) follows from the inequality
327) w-(n) <w (r=AE—n) +w-_(An) +r(T—AE—nAn),
where r is given by (3.22). O

Based on theorem 9, part (c), we derive the basic estimates satisfied by the
operators R and Rjy.

Proposition 9. The operators RY and R} satisfy the following estimates.
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(a) If 61,02 > 0 and 6 = 61 + 02, then

(3.28) R (u,v) < 2°RY7O(A% [u], A% [v]) for 0<d<n,
(3.29) RY(u,v) < RITO (AT |u),A=% |v]) for 0<~.

(b) Assume vy >1/2. If

1 1
(3.30) 51,82 > 0, 81+Szzg+’7—§ and 6> 2,
then

(3.31) IR (u,v)[ 2 < Cllully, o vlls, .0,

where C' depends on vy, 0 and n.
(c) Assume 0 <~y < 1/2. If

1
(3.32) s1,82 >0, 51480 > g 61,62>7 and 61 +0:>7+ 7,
then

(3.33) RS (w,v)l 2 < Cllully, g, 105, 0, »

where C' depends on vy, 01, 02 and n.

Proof. Tt suffices to prove these inequalities for all © and v such that @, v > 0.
The inequality (3.28) follows immediately from (3.20), whereas (3.29) follows
from the fact that the Fourier symbol of R{ is restricted to the set (3.23).
Assume that v > 1/2 and (3.30) holds. Pick 0 < &7 < s1 and 0 < &3 < s9
such that v —1/2 = &1 +&2. Since $1 —e1 + s2 —e2 > n/2, it follows from (3.21)
and (3.19) that

HRI/Q(u,v)

Lo S Cllully, 6 ll0]

So—e2,0 °

By (3.28),
R (u,v) < 27" Y2RY2(A%1y, A%20),

and we conclude that (3.31) holds.
Now assume that 0 <y < 1/2 and (3.32) holds. Pick 1,2 > 0 such that

O14+¢e1>1/2, Oa4+e2>1/2 and e +e2=1/2—17.
By (3.29),
Ry(u,v) < RY* (A= u, A=%0) < RV2(A~*1u, A=20),

so (3.33) also follows from (3.21) and (3.19). O
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Proposition 10. Let s;,0; >0 for1 <j <3. If

1
51+82+53>g and 91+92+93>§,

then
HU’U”*Sl,*Hl S C ||u||s2,92 ||’UH53193 ’

where C depends on s; + so + s3, 01 + 02 + 03 and n. In fact, we can allow
s1+ s2 + 83 = n/2, provided s; # n/2 for 1 < j < 3. Similarly, we may take
01+ 02+ 65 =1/2, provided 0; #1/2 for 1 < j < 3.

Proof. By duality, the proposition is equivalent with the inequality
TSN NGl 1H ] o

where

I = / F(T_/\vé._n)G(/\vn)H(Tvg)
) (€ —m)* ()** w (1, )w?(r — X, € — n)w® (A, n)

dr d\d€ dn.

Applying the following lemma twice to the integral I, first in dimension d = 1
and then in dimension d = n, gives the desired inequality. O

Lemma 6. (a) Ife >0, then

f(x)g(y)h(x +y
/ ol 3/2(+a )dfdy <Cflgz llgllizz 1Rl 2
R xRd (z)

where C2? = [ (z)™%7* du.
(b) If 0 < 6 < d/2, then

f(@)g()h(x +y)
dedy < C||f g hllp2,
[ = 1715 gl 2

where C' depends on ¢ and d/2 — .

Proof. To prove (a), simply apply the Cauchy-Schwarz inequality twice, first
w.r.t. dz and then dy. For (b), it suffices to prove

/ f(@)g(y)h(z +y)
2] <yl

5 1d—o
|z Jy]

drdy < C|[fll 2 lgll L= 1All L2 -

Since f\w|<|u\ |x|726 dr < |y|2(d75), we can apply Cauchy-Schwarz as indicated

above. O

Next we prove a bilinear estimate which will be required later, but is of little
interest in itself.
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Proposition 11. Assumen > 2, s > n/2. If
1/2<f<s—(n—-1)/2, e<s—(n—-1)/2—0 and 1/4<6<1/2,
then
(3.34) H7=9 5 go—b=9 — g979,
Proof. By duality, this is equivalent to
H'=50 x {06 ., fri=sd,

so it suffices to prove the latter. By the usual reduction, it is enough to show

(3.35) AT Ry (u,0)|| .

~

Define

A={(n&xm)  E+n) <w_(\n)},
B={(r,&:\n): (€+n) > w_(An)}.
Since
RS 4(u,0) 3 A5 (A% A% 0),

it follows from proposition 10 that (3.35) holds with R replaced by R a- For
n > 3, we have

HAl SROB u, v HL2 < HAl s+0— 5(A‘su-/&‘fev)Hp.

Now we can apply (3.12) and (3.13), except in the off-diagonal case, where we
use the estimate

(3.36) uvllpe < HUH(n—1)/2+%9 HU||0,07

which holds for n > 3 and v > 0. By proposition 8, this estimate is a conse-
quence of the inequality

[P f - e | Lo Sl grn—v/2en [0l 2 -
In fact, if n > 4, then we can take v = 0; see [9].
If n = 2, then assuming—as we may—that s <1+ 6 — ¢, we get

14T R 5,0 o S [[Ro (e, AT 00

S "R1+9—S(U7A:0+5v)"L2

< HR1/4(A1+9_S_1/4U,A:9+6v)‘

)

L2

so in the diagonal case we can apply (3.17) and (3.18). The off diagonal case
reduces to
HR1/4(A671/4U, Alfsv)

3

L2
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and we apply

(3.37) HRl/‘l(u,v)‘

L2 5 ||u||3/47'y,9 ||’UH’y,97
valid for n = 2 and « > 0. By proposition 8, this follows from

HD1_/4(eith . e:tith)’

Lo S I llgraras 0l

which is just an asymmetric version of (2.9). (]

3.4 The algebra property

A crucial property of the space H*? is the algebra property. Recall that H*(R"™)
is an algebra when s > n/2. This fact has the following analog in the setting of
the space H*?.

Theorem 10. If

(3.38) n>2 s>n/2 and 1/2<0<1/2+s—n/2,
then H*Y is an algebra, i.e.,

(3.39) [uvlly g < Cllullsgllvllso

for all u,v € H*Y.

This was proved in [18], although the case n > 3 was implicitly contained in
[13].

Two remarks should be made at this point: First, in [18] the product in-
equality (3.39) was proved in the norm ||AiA9J‘HL2- An inspection of the proof
given in [18] shows that it works equally well, with some trivial modifications,
for the norm |lul|, , = HASAG,UHLQ. Second, the proof actually gives a stronger
inequality: if (3.38) holds and ¢ = § — 1/2, then

(3.40) [luv]

s0 < C(llul

50 1Vl yage + Nullyjoie o llvl50),

where C' depends on s, # and the space dimension n.

A further analogy between H® and H*? is that when these spaces are al-
gebras, they are preserved not only under multiplication, but by any smooth
nonlinear map leaving the origin fixed.

Theorem 11. Assume that F € C*(R?) and F(0) = 0. For any pair (s,0)
satisfying (3.38) and the additional condition 6 < 1, there exists a continuous
function f = fs9: Ry — Ry such that

IF @0 < f(Iull2se0) lulls 0

for all real-valued u € H‘li H*%, where e =6 —1/2.
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The proof is inspired by an argument in [22], and relies on the next two
results, the first of which is a generalization of the algebra inequality.

Proposition 12. Assume that (3.38) holds and that 0 <o <s,0<§ <60. Let
a be a real-valued function in H*?, and set A = A"A‘EMZ-,IA_‘TA:‘;, where M,
18 multiplication by ia. Then:

(a) A is bounded from L? to L?. In fact,
(3.41) luvlly s < Cllully g llvllys
where C' depends on s, 6 and n.

(b) (Smoothing) If we impose the additional restriction § < 1, and set e =
(6 —1/2), then

(3.42) [{((A+ A% u,u)| < CEy o5(u)llull.  for all y € [0, 5],

where

Evo0(u) = llally g llull,jo4er0 + all,/opae o lull—c o
Evo,8(u) = ||a||n/2+25,9 [[ul 0,—¢ "
5%0,6(11) = ||a||»y,9 (Hu||n/2+sf’y,0 + ||u||n/2+257'y,75)

+llall 24200 (1l o + llullo )

and the constant C depends only on s, 6 and n.
Lemma 7. Let A be a bounded linear operator on a Hilbert space H. If
((A+ A"z, x) <2F(z)||z|| forallz € H,

where F € C(H,R.), then any solution x € C*(Ry, H) of the ODE

(3.43) Z'(t) = Az(t) + o, x(0) =0
satisfies

(3.44) e < [ Pla(s)) ds+ fanlt
for allt > 0.

3.4.1 Proof of theorem 11

We split the proof into two steps.



46 Hyperbolic Sobolev Spaces

Step 1 We show that it suffices to prove the special case
(3.45) e = 1|, o < €l lully g PCIENNull, 2420,0)

where P(x) = E;VZO c;a) and e = (0 —1/2).
Assuming (3.45) holds, we can use Fourier inversion and the condition F'(0) =

0 to write
Fu) = (6F)(w) = g7 [ (€€ = DGF() de

for any ¢ € C>°(R?) which equals 1 on B(0, ||u|| ;). Define R = 1+ ||ul|;«, fix
¢ € C2°(B(0,2)) such that ¢ =1 on B(0,1), and set ¢ = ¢(-/R). Then

P@ < [ o€ 1], [5F )] d

N .
<> e lluljagaco el [
= B(0,2

)

€7 |GRE(€)| de
R)

N
< Cllulg {36 Nl asacs p {207 s 0%}

= la| <N+
Since
!
10°6nF)l < 30 g 0%0m-07F |,
Bty=a
<C RA-181 || 9B AF
< @g;a I ¢HL1{B<S£R>| I}

and R $ 1+ ||ull,, /249 ¢, the theorem follows.

Step 2 We prove (3.45). Since H*? is an algebra and

d
eiuf _ 1 — Heiu]fj _ 1 — Z H(eiuj'fj _ 1),
j=1 J jed
where the sum is over all nonempty subsets J of {1,...,d}, we may assume

d = 1. We therefore want to prove the existence of a polynomial P such that
(3.46) [l — 1,4 < tllall o P(tllall,/zyoe0)

for all t > 0 and all real-valued a € H*? a = a(xo,...,z,).
Let Ny, Ny and N3 be the smallest positive integers such that

Ny -

def S—Mn/2 —2¢ def 0
zc/7<5 and sgzc—gs.

“ N, - N3

€2
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For 0 < j < Ny 4+ Ny and 0 < k < N3 we define w; x(t) = T} 1 (e"™® — 1), where

T AJerpRes if <N,
gk = An/2+25+(j7N1)52A/i€3 if j> Ny
We also set w_1 = wj 1 = 0. Since H*Y is an algebra,

Heita _ 1” 5 < eClallso — 1 for t> 0,

so wj ,(t) € L% In fact, w;; belongs to C'(Ry, L?) and solves the ODE
w;-)k(t) = Aj pw; + Tjr(ia), w;r(0)=0,
where A, = Tj)kaijkl. Thus, by proposition 12 and lemma 7,
(3.47) t
s Ol < Cllallaineg [ 0+ Tt + ogams ()]52) d

if 7 < N, whereas

t
llw k()2 < Cllalln/z+25,9/ (wj—1w @) 2 + lwje—1 ()] 2) at’
(3.48) 0

t
+Cllalg [ 1+ o s(©)],) @
if j > Nj. In both these formulas, ¢ > 0 and the constant C' depends on s, 6

and n.
By a nested induction argument on j and k, (3.47) implies

(3.49) lews ()]l 2 < Pra(tllall,joyoeg) for <N,

where P; ;, is a polynomial of degree j + &k 4 1 with coefficients depending on s,
0 and n. Inserting (3.49) in (3.48) yields

t
[[wj k()] 2 < Cllalln/g+2€,9/0 (w1 () 2 + [lwjp—1 ()] 2 ) dt’

+ Ctlallg o Pe(tllall,/2400)

for j > Ni, where Py has degree N7 + k + 1. By the same induction scheme as
before, but now starting at j = Ny + 1, (3.50) and (3.49) imply (3.46), and we
are done.

(3.50)

3.4.2 Proof of proposition 12
We may assume @, 0 > 0. By (3.24) and (3.26),
[uvl[g s S NATw-vl[g 5+ [[u- A%0]g 5
SATAS w- v, + [[ATu- A2 w]|,, + [|A2 - A%,
+ [Ju- ATAC ||, + [[RO(ATu )] . + [|RY(u, ATV)][ . -
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The first four terms on the right hand side of the last inequality are easily
estimated by proposition 10, so it remains to estimate the last two terms, which
only occur if § > 0. By (3.29),

RS (A%u,v) < 2°RO(A7u, A°~ %), RY(u,A%) < 2°R%(u, A°"PA7v),

and now we can apply (3.31).
We now prove (3.42). Since a is real-valued, A* = A= A~°M_;,A°A° .
Therefore,

.7:{ (A + A*)’u,}(T, S) = /Ka,ti(Tv 57 /\7 n)ia(T - )‘75 - n)a()‘v 77) d)‘ d77,

where

_ (Ol (1,8 ()7 wl (A n)
Realn &A= i o)~ @R ()

Since we are assuming u > 0, it follows that

‘((A—FA*)u,u)‘ = |<]—"{(A—|—A*)u},]—"u>‘
f;/WKmao:axmnaur—A@—wnmngﬁuxnwhdaudn

We call this integral I. If E is a subset of R2T2" we denote by I the restriction
of I to E.

Case1l Assume (<o <y<sandd=0. Set

O ={(r.&,Am) :2(6) <(m},
(3.50) Qo= {(1.6,Am) : 2(n) < (&)},

O = {(r& A 3 <10 <20}
By symmetry, it suffices to estimate I, and Io,. Since

©° & E—n)
T S Sy

we have, by proposition 10,
I, <2°||A7 [a] - A7l o [Jull 2 < Cllal

It is readily verified that if 0 < % <y <2z and r > 0, then

N =

(352) |Ka-70| S on QQ,

o llljoyeryollullze-

(3.53) A ) Pt il P el 1
yr " x” €T
Hence,
| Kool <C° (€~ m) on g,

{©

so proposition 10 yields

Io, < C*[|Ala) - A | s flullpe < Cllall, o yoe lull o g llull 2 -
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Case 2 Assume o =0and 0 < 6 <6. Set

={(r,&, ) 2w_(1,6) <w_(A\n)},

={(n&XNn) 2w-(\n) <w_(1,6)},

={(n &) rw-(An) <w_(1,6) < 2w_(A\,n)},
1“4_{(75,)\,77) — (7, )_w—(%n)§2w—(ﬂ§)}'

It suffices to estimate Ir, and Ir,. By (3.27),

w*(ﬂ&)S2“’7(7_/\75_77)"’27"(7_)\’5_777)\,77) on F27

whence
w? (1,¢
Kool < 508
(3.54) w? (A, )
<w0—(7—_)‘7§_n) 7”9(7'—/\75—77,/\777)
S 7 7 on I's.
w? (A, m) w? (A,m)
Therefore, by proposition 10 and proposition 9, we have
Ir, S|AZ la) - AZ%u| o llull 2 + R (La) , AZ0)]| 2 [lull 2
S HaHn/2+2s,e Hu”o,fg llullpe -
y (3.53) and (3.27),
0
_ w_ A,
|K015|:|K05| |KO | <261 0)060| ( ) ( 77)|
(A n)
0 —NE— 0 _ _
wi(r = AE—m) (T AE—nAn) r,.

w? (A, n) - w? (A, )

Now proceed as for Ir,.

Case 3 Assume 0 <o <y <sand0<d <0. It suffices to estimate In, and
IQa. ‘We write IQ2 = Igz2mp2 + IQgﬁ(F1UF3UF4)- Since

v ) w67
Kss = Ko, om (&)° = Koo m * (m?

K0,57

it is clear that
|Ko5| <27 |K,0| +2°|Kos| onQyn (T UT3UTY) and Q,

so our previous estimates apply. By (3.52) and (3.54),

s<§—77>7 we—(T_)\7§_n) TG(T_)\ag_nv)‘an)
Hogl < C <n>”( o T W) )
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on Q5 N Ty, so proposition 10 and proposition 9 yield
Inary S [|AAa - ATVAZ |, fJull 2 + [|BY(AY [a) , AT AZ )| flull 2
5 ||a’||’y,9 Hu||n/2+257'y,75 ||u||L2

This concludes the proof of the lemma.

3.4.3 Proof of lemma 7
By (3.43), we have

d
@(HIH )

2,x)+ (x,2')

(
(Az,2) + (20, 2) + (2, A7) + (2,20)
((A4+ A%z, ) + 2R (a0, )

< 2F(z) [|z] + 2 |zl [l ,

whence
d |||

(3.55) y

< F(z) + [l

o~

for all ¢ > 0 such that z(¢) # 0.

Fix t > 0. If (t) = 0, (3.44) is trivially satisfied, so we assume x(t) # 0.
Now set a = sup{s € [0,t] : z(s) = 0}. Since z(0) = 0, we have a < t. Moreover,
z(a) = 0 and z(s) # 0 for a < s < t. Integrating (3.55) from a to ¢, we obtain
(3.44).

3.5 The space X%/

Henceforth it will be assumed that 1/2 < 6 < 1. We define
= {u cue HY and du € Hsfl’g} ,
and we equip this space with the norm
lulg g = llulls g + 10sull sy 4-
An equivalent definition is
o0 ={ueS AN N we L7},

and the corresponding norm HAS_lAJrA(iuHL2 is equivalent with |u|879. Thus
(xsf, |-|S70) is a Hilbert space containing the Schwartz class S as a dense sub-
space.

By propositions 7(a) and 2(b), we may identify X'*¢ with a subspace of the
Banach space

(3.56) Cy(R, H*) N CLH(R, H*™1)
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with norm
u— jtelnlg(IIU(t)lle + 10eu(®) || o)

Remark. The space X*? is the basic space in which we will obtain solutions to
nonlinear wave equations like the wave maps equation. The remark we want to
make here concerns the relation of X*? to the slightly different space

X0 ={ueS AN ueL?},

with norm HAiAe_uHLZ. This space was used by Klainerman-Machedon [13, 14,
16, 17], Klainerman-Selberg [18] and Klainerman-Tataru [19] to prove existence
for various nonlinear wave equations. It is clear that if s > 1, then X embeds
in X%Y with equality iff s = 1.

The space X*? has two major deficiencies, however. First, it embeds in the
space (3.56) iff s+ 60 > 3/2. In all the papers just mentioned, except [14], this
condition is satisfied. In [14], however, s is arbitrarily close to (n —2)/2 and 6
arbitrarily close to 1/2, so that in space dimension n = 3, which is the lowest
dimension considered in that paper, this condition may not be satisfied. In
fact, the problem considered in [14] is a model equation derived from a certain
formulation of the wave maps equation which is one of our main objects of study
in this thesis.

Second, the time scaling argument used in section 3.6.5, which allows us to
prove a genuine well-posedness result, does not work for X, unless s is close
to 1. The failure of this argument means that, using contraction maps, one can
only prove existence of solutions under the assumption that the norms of the
data are small, and one cannot prove uniqueness in the space X'*?.

3.6 The linear wave equation and X

Here we discuss how the space X' relates to solutions of the linear wave equa-
tion. The culmination of this discussion will be the following theorem.

Theorem 12. Consider the Cauchy problem (1.1) for the linear wave equation.
Assume that F € H5~10+e=1 where

%<9<L 0<e<1-6.

Then for any 0 < T < 1 there exists u = up € X*% with the properties:

(a) On the time interval [0,T], u agrees with the unique solution of (1.1) in
the class C([0,T], H*) N C*([0,T], H*1);

(b) (“Energy inequality”) u satisfies the estimate

|U|S,e < C(”f”Hs + 119l e + T/ HF||571,9+571)7

where C' only depends on 6.
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The proof can be found in section 3.6.5, where we restate the theorem in a
more precise form, giving an explicit formula for u. The problem is of course
to find a suitable extension to R'™™ of the solution of (1.1) on [0,T] x R™.
Certainly, we cannot let u be the global solution of (1.1), since this solution
fails to be in X*?; see the discussion below. The natural thing to try is to cut
the solution off smoothly outside the time interval [0,7]. Things are not quite
that simple, however: one has to split the solution into different parts, some of
which should be cut off and some of which should not. We start by splitting
the solution of (1.1) into its homogeneous and inhomogeneous parts.

3.6.1 The homogeneous solution

We denote by ug the homogeneous part of the solution of (1.1)—that is, ug solves
(1.1) with F = 0. Since the Fourier transform of u is not a tempered function—
it is supported on the light cone, which has measure zero—we conclude that ug
is not an element of X*?. In fact, ug is given by

ug(t) = cos(tD) - f + D™ sin(tD) - g
3.57 1 , 1 .
( ) = 5 (eztD + e—ztD) f+ Z (eztD _ e—ztD) D—lg,

whence

1, . , - 1 /. , _

wo(D)(&) = 5 (€ + 7 0) F(e) + - (e — e 141) ¢~ ),
)

and since the Fourier transform of

t— e R—C

is the measure 27(7 — a) dr, we conclude that the Fourier transform of wug is
the measure

Uy = w{8(r — [€]) + 8( + |€])} F(€) dr de

(3.58) ™ 1
+ {87 — €)= o(r + €D} el (&) dr de,
which is supported on the light cone {(7,£) € R**" : 7] = [¢[}.
Locally in time, however, ug does belong to X*?. That is, if y € C°(R),
then y(t)ug € X*%. The reason is that the function
t—s x(t)e™, R —C
has Fourier transform (7 — a), so that when wug is replaced by x(¢)ug, the Dirac
delta in (3.58) is in effect replaced by the Schwartz function X.
We have the following estimate for x(t)ug.

Proposition 13. If 0 > 1/2 and x € C°(R), the homogeneous solution ug of
(1.1) satisfies
IXx(t)uoly o < C(IF e + 9l o)
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where C' only depends on x and 0. More precisely,

C > |Ixll o + Nexll o + XNl gz 41X 170 -

The proof follows readily from the next proposition. Notice that in order
to estimate the X*%-norm of xup, we must estimate not only ||xul|,,, but
10: (xu)||, o as well. By Leibniz’ formula,

0 (xu) = x'u + xOru.

Both these terms can of course be estimated using the next proposition—after
all, dyu is a solution of (1.1) with Cauchy data (g, Af) at t = 0.

Proposition 14. If s€ R, 0 > 1/2, x € C=°(R) and (f,g) € H* x H*™, then

(3.59) Ix@®e P fI|, o < Ixllzzo 111 e 5

(3.60) Ix(t) cos(tD) - flls o < Xl gro 1f [l s

and

361 xOD " sin(D) gl , < (Il + Nexlie) e

If Ip] <1 and suppg C {€ : [¢] < ¢}, then
(362) (0P, , < (" Ixle + Il lgllge  Jor all o € R.

Proof. The Fourier transform of x(t)e*P f is Y(r F |§|)fA(§), and

/(1+|€|)25(1+|IT|—|§|D29\X = D7) dr de
< [@rlrF )" R6F 1P+ D> dr de

2 2
= Xl 1/ -

This proves (3.59), which in turn implies (3.60).
The proof of (3.62) is similar. We simply note that the Fourier transform of
X()e*P g equals X(7 — p[¢])g(€), and that

Il = lel| < |7 = plel] + (= pl) [€] < |7 = plé][ + ¢

for £ € suppg and |p| < 1.
To prove (3.61), we split ¢ = g1 + g2, where g1 is supported in the region
|€] < 1 and g3 is supported in || > 1. Since

1
D’lsin(tD):t/ H2=1)D g,
0
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we have )
x(t)D~tsin(tD) - g1 = / tx(t)et@P= DD g dp.
0

By (3.62),
[tx®e e DPg | Sl lgrll e for 0<p<1,

and by the dominated convergence theorem the map

it(2p—1)D

pr— tx(t)e 9

belongs to C([0, 1], H*?). Therefore, by theorem 1(a),

1
[x(®)D~ sin(tD) - gul], , < / |ex®e @02 g dp < el o gl s
0 )

This proves (3.61) with g replaced by its low frequency part g;.
Since |[D7 gzl ;. < 2|lgll -1, the estimate (3.61) with g replaced by go
follows immediately from (3.59). O

3.6.2 The inhomogeneous solution

Now consider the inhomogeneous equation Ou = F' with vanishing Cauchy data
at t = 0. Notice that O is a bounded linear operator from X% to Hs~1.0-1,
Thus, it seems natural to assume F € H* 19=1  Assume also that v € S’
satisfies Ou = F.

We first observe that u does not, in general, belong to X*?. For if it does,
then @ is a tempered function, and it follows from (1.1a) that

(3.63) mﬂgzi%ﬁ%.

But if, say, F' is nonzero and continuous at some point on the light cone, the
function given by (3.63) is evidently not tempered, and we have a contradiction.

Nevertheless, if F' is supported in the complement of the neighborhood
(3.64) N={re er* i |r| —fel| <1}
of the light cone, then clearly v € X*? and
|“|s,e <C ||FH571,971 :
This suggests writing

(3.65) F=¢A)F+ (1-¢(AL))F = Fy + I,
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where
(3.66) peCPR), ¢=1 on [-2C3,2C], supp¢ C (—4C5,4Cs)

and the constant Cy is as in (3.3). It is easily checked that
40, — ien
(3.67) supp F; C 7/\/ and supp Fo C R\ N,
1

where C is the other constant in (3.3).
Note that since
Fy e a0 < Llloc(Ra HS?I))

we may use Duhamel’s formula and define
t
(3.68) wn(t) = — / D'sin((t — #)D) - Fy(¢') di'.
0

We will prove the following estimate for x(¢)u;.

Proposition 15. Assume 1/2 <60 <1 and x € C(R). If Fy € H=40 and

24 ||r| = [¢l]| <e for (7,€) €supp
then
Ixulg g < ClF1llg_q 0,
where uy is given by (3.68) and
C = 2 (|Ixll gro-s + Xl gro + 16X N o—1 + (12X || o)
> Cana A PRI TN

+2 I i

Jj=1

+

SN | ST O e
- + S + T )
4! 7! J:

The proof, which is presented in section 3.6.4 below, relies on the following
characterization of wu;.

Proposition 16. Assume that Fy € H*~%° and
(3.69) 24|17 —[¢]| <c for (r.€) €suppFy,

and let uy be defined by (3.68). Then there exist fji € H¢, g; € C([0,1], H*™1)
for 3 > 1 such that

supp fE C {€: [¢] > ¢},

supp g;(p) € {&: €] < ¢},
HfjiHHs ’oiugl ng(p)HHr1 S e HFlefl,O
SpPS
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and

Y e 1D
wm(t) =Y — [ e 9;(p) dp
= I Jo
=, _itD e
+2 5 (5 TP+ R (8) + R (),

Jj=1

Here,

R (D) X(e,00) (I€]) /0 eitT _ gitlél
- Fy(r,€)dr,
47 |¢] T+ 1(7.€)

= o Xeoo)([8]) [T — el
R_(t)(¢) = Tr |§| /0 |T| n |§| Fi(r,&)dr

and X (c,00) 5 the characteristic function of the interval (c,00).
Moreover, there exist hji € H*~ 1 for j > 1 such that

B[]y S V2R,

and

iy I .
Oruy (t) =) T (e"Ph} + e "Ph;) —iDR(t) +iDR_(t),

with R+ as above.

The proof can be found in section 3.6.3 below.
In contrast with Fj, the distribution F, does not, in general, belong to
Li (R,H*™1). To see this, consider functions of the form f(t)g(z). Pick f so

that f € C°\ {0}, and choose g € H*=2\ H*~! with g supported so far away
from the origin that [¢| > 2|7| for all £ € suppg and 7 € suppf. Evidently,
f(t)g(x) belongs to H*~1~1 but not to L{ (R, H*~1).

Thus, we cannot plug F» into Duhamel’s formula. Instead we use the fact
that on the support of Fh, the symbol of the wave operator is smooth and
bounded away from zero. In fact, 0! (1 — QS(A_)) is a bounded linear operator

from H*~ 1071 to X% where 07! is the multiplier with symbol (72 — |§|2)71,
so we define

(3.70) us =07 ' .

Proposition 17. Assume that Fy € H*~ =1 and suppﬁ'; C R\ N, and
let ug be defined as in (3.70). Then

|U2|s,9 S HF2HS—1,9—1 :

Moreover, ug solves Oue = Fy with vanishing Cauchy data at t = 0.
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Proof. The only statement requiring a proof is the one about the data at t = 0.
First, since X*? embeds in Cy(R, H*) N C} (R, H*~!), the evaluation map

F— (u2|t20,8tu2|t20), Hs 101 g5 x g1

is bounded. Second, this map is the zero map on the dense subset S of
HS*1 =1 For if F € S, then F» € S C LL (R,H*!), so we can define

=— fo “Lsin((t—¢')D) - F5(t') dt’. Then u} has vanishing data at t = 0.
Moreover Oul, = Fy, so uz and u) have identical Fourier transforms, whence
Uz = ub. O

3.6.3 Proof of proposition 16

Both u; and dyu; are linear combinations of v (t) = fg eF =)D p (') dt’. For
a.e. &,

— t . ’ —
() = [ HORRE ar
0
t . ’ 1 i T
_ / pitt—tlel L / GV TE (7, €) dr df!
0 27
(3.71) eEitlE] Lo, —
— /(/0 oit (rﬂFlE)dt’) Fi(r,&)dr
etitle] / et (TFIED) 1 _~
— : Fy(r,¢&)dr
| Ty )
Since

et(TFIED) _ q °
z] 1 (rF
EE el

it follows that

— ﬂ:ltlﬁl
2 ()(€) = /Z VA e 5 ey F(r.€) dr
(3.72) St N
- Z L[ e s R ar
for a.e. &.

We write F} = Fy 1 + Fi 2, where F;(T, ¢) and 13:2(7', &) are supported in
the regions |€| < ¢ and |£] > ¢, respectively. Let us ; be defined as in (3.68), but
with F} replaced by Fy ; for j =1,2.



58 Hyperbolic Sobolev Spaces

Formula for u;

By (3.72), we have

—

u1,1(t)(§)
g [l = e ) R dn

47TZ [ @l - ot~ D) Far, € o
:%J—:ﬁ ] et v dpar
L=t [P —
=—>) — 7o’ (20 — 1) [€]) F1,1(7, ) dr dp,
=25 ), [ e - vie A

where a(r) = e (7 —r)7~1. Since

o (r) = ite?™ (1 — )7t — e (j — 1) (1 — )2,

where the second term only occurs for j > 2, we get

-5 [ e
'/ ’L] zt2p l)Dk, (p)dp
]

t3+1 ]+1 ] (it(2p—1)D
N O L

where k; € C(R, L?) is given by k;(p)(€) = [(r — (2p — 1) |¢])’ ' Fy (7, €) dr
Setting g; = (2m) "1/t (1 — j/(j + 1))k;, we have

tﬂ“
(3.73) s (t / 2= g (p) dp.

Since | — (20— 1) el] < [7] + [¢] < [I7l ~ €l] + 2[€] < I ~ [¢]| + 2¢ < 3¢ for
p € [0,1] and ¢ € supp g;(p), it follows by the Cauchy-Schwarz inequality and
(3.69) that lg;(0)l ;o1 S V2 il o for p € [0,1].

~
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Formula for u; o

Combining (3.71) and (3.72), we see that

— lt‘f‘

a0)(e Mm}j - Fratn e
e—itl¢]
4ﬁ|§|2 [ el ry e 9ar

et _ o it|§]
B 4w|§| /_oo e e

1 et _ o —itl§]
‘4w|s|/o T fe o

for a.e. £. Hence,

oo

walt) = 305 P17+ L) + Re(®) + R-(0),

where
FFE) = (dmfe]) / # (7| — €)Y/ Fra(r, ) dr
0
o~ 0 ) ) .
(€)= —(am e / (€] — |7 Fra(r, &) dr
o T zt\f\
R0 = 4w|§|/ TR e
and

P 1 00 pitT _ —zt|£|
R0 =5 ), g fr o

Formula for 0;u;

Since Opuy (t) = — fg cos((t—t')D)-Fy(t') dt’, the stated formula for d;u; follows
by a straightforward modification of the derivation of the formula for u; 2. Since
the factor D~! is not present, there is no need to consider separately low and
high frequencies in this case.

3.6.4 Proof of proposition 15

We must prove that the expressions |[xu1ll, 4, [X'uill,_; 4 and [[xOuill,_, 4
are all bounded by C'[|Fi[|,_; 4, with C' as in the statement of the proposition.
Since x is just an arbitrary C2° function at this point, we will in fact estimate
||XU1||5_179 rather than ||X/U1HS_179-
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For the purpose of estimating xu; it will be useful to split w4 (¢) into high and
low frequency parts. Thus, as in the previous section we write F1 = Fy 1 + Fi 2,

where F/'L\l(T, &) and F/'L\Q(T, &) are supported in the regions |£| < ¢ and [¢] > ¢,
respectively. Let u; ; be defined as in (3.68), but with Fy replaced by F} ; for
j=1,2.

Estimates for ||xui1l,, and ||xu11|,_;,

By proposition 16,

t3+1
uy, 1( / zt(2p l)D )d p.

Jj= 1

Thus, by (3.62),
Ixuialls o < CillFills—1 0

e = | S5 ]
Clﬁz . X|| go | X|| 2
=1 I =1 It
Similarly,
Ixurally_y 9 < CollFilly_ip,
where

= | 5 e

Co=} +2
j=1

.' ,'
! ~ !
Estimate for ||xui 2|, ,
By proposition 16,
<t _
walt) = 3 o (MPF T PT) + Bit) + B (1),
j=1

Since HfiH < ATV Ryl o, it follows from (3.59) that

D —itD o~ 2 x|
DI G it | I B e el YR
j=17" s,0 J=1 .
Next, since
(3.74) YRy (7,6) = / X |€|)F1 2(A, §) dA,
47r|§| |/\|+|€|

it follows from Minkowski’s inequality that

sl 5 [ 4000+ i) Fao o], i
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where

) i 9)/(\(7._)\)—)/(\(7'—|§|)
A_H(1+||| €1]) N+ [€]

L2

We claim that A < |[x|| go—r + [ltx]l e for (A, €) € supp Fy 5. This would give

IR llp S (Il zo-s + lxlg0) / [ER Sy SFIENS!
3

S A2 (Il ggo—r + Il ge) 1F1ls— 1.0

where we used the Cauchy-Schwarz inequality and (3.69) to obtain the last
inequality.
It remains to prove the claim. We have

X(T =) = X(r — [¢)

» IS e I ('3
S NFE el e
e R =N =R — e
il L
=A; + Ay + A3,
where
I=I(n6) = {reR: |r— ]| < 207 + )}
Since
R -N-Re—l) [
(3.75) S = [ R e+ o+ 1€D) o

an application of Minkowski’s inequality yields

1
A< [ el do= il
0
Using (3.75) again, as well as the fact that

(Il = lel| < |7 = I€l] < 2|7 — l&l + p(IA + 1€D)]

for 7 € R\ I, we get Az < ||tx|| go. Finally, since |7 — A| S |A| + €] for 7 € I,
and since 6 < 1, we have

Az S [OA+ 1D (RO = A) = RO = )| 2 oy
< H(T - )‘)0715(\(7 - )\)HLE(I) + H(T - |§|)071?(T - |§|)HL$(1)
TN,

This proves the claim.
By a similar argument,

IXB-Ils0 S 2 (I go—r + Nexllgro) IFLl,— -
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Estimate for |xuio|l, ,,

For this estimate we do not use proposition 16. Instead, we use (3.71) to write

T _ zt\E\ et _ o —it|&]
w00 = g {5 - P

which gives

Xu1, 2(T f

X(r=2A) =X(r =) X(r=A)-=XT+[ED| 7
47r|€| /{ — ¢ T }F1,2(/\,§)d/\

_—m//o {)’(\’(T—a)—Q’(T—b)}m(/\vf)dpd/\v

where a = || + p(A + |€]) and b = — |£] + p(A + |£]). We distinguish two cases.

Case 1 Assume |7| < 8|¢|. Then for (), &) € suppF/';g,

“Tl_ ,T—G|,|T—b|§|§|,

and since 6 < 1, we obtain

(L€~ (1 + [17] = 1€1])° [xara(n, €)|

(
<[/ {‘lT_Ta"“ ‘lT(Tb}fl}uﬂsw1|@<A,s>|dpdx.

Case 2 Assume |7| > 8|¢|. In this case we write

xu12(7,€)
/// X'(r—=b+o(b—a))(1— p)F12(), €) do dp dA
and use the fact that
[T =b+ob—a)| = || [p| = [b—a| > 7]~ 6] 2 |I7] - [¢]|
to get
L+ (L + 17 = fel])” [xara(r. )|
/// 1+ |7 = a)?[R"(r — )| (1 + |€)* " | Fr2(A, )| do dpd,

where « = b+ o(a — b).
In both cases we conclude, by Minkowski’s inequality, that

s—1,0 < Cl/2(||tX||H9*1 + Ht2X||H9) ||F1||5,170'
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Estimate for ||x0iu1ll,_, 4

A straightforward modification of the argument used to estimate ||xui2]|, ,
shows that

IxOrurll,_1 g S " (IIX gro-r + Il gze) 1F 10 -

3.6.5 Proof of theorem 12

Let us restate the theorem in a more precise form.

Theorem 13. Assume s €R, § € (1/2,1),e € (0,1 0], F € Hs~19%"1 qnd
(3.76) x€CXMR), x=1 on [-1,1], suppx C (-2,2).
Let 0 < T <1 and define
u(t) = x(H)uo + x(¢/T)ur + uz,
where
ug = cos(tD) - f + D~ 'sin(tD) - g
uy = / D~ 'sin((t —¢')D) - Fy(t') dt,
2 =

—1
Fy,
F=F +F=¢T"Y?A_)F + (1 - ¢(T*A_))F

u

and ¢ satisfies (3.66). Then

|U|s,0 < C(”f”H + gl gra—1r + T/ HF”s—l,O—i-a—l)’

where C' only depends on x and 6. Moreover, u is the unique solution of (1.1)
on [0,T] x R™ such that w € C([0,T], H*) N C*([0,T], H*~1).

Proof. By proposition 13,

Ix(t)uoly o < C(I N e + gl gres),

where C only depends on x and 6.
Define xr(t) = x(¢t/T) for t € R. With C; and Cs as in (3.3), and ¢
satisfying (3.66), it is easily checked that

4Cy —~
(377) ||T| - |§|| T1/2 for (7—7 5) € suppFla

whence (3.69) holds with ¢ = 2 4+ 4C,C{ T~ /2. Thus,

1Pl =10 < €PN E Ny 01
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and it follows from proposition 15 that
IXuilso S CrllFll—1 -1,
where

Or = 27 (Ixzll o + Itxrllgo + 160er) I gro-s + (|2 Ocr)'|| 7o)

N i(cﬂs/ze ||.tj+1XTHH9 . ci+3/2 HtJ.-JrleH[ﬂ
i=1 J! 4!
O g S e
" J! * 4!
N cit+1/2—6 HthT||H9 )
4!
Since
Ixtllgo < CTY* 0 x|l yo  for 0<T <1,
and
IxTllgo-r =T |Ix| goor for 6> 1/2,
we get

Cr S (@@~ (Il go—s + ltxll o + 116X N gro—r + 12X || o)
+i((CT)J+3/29 ||tj+1X||H9 N (CT)j+3/2 ||tj+1XHL2
j=1

i i
A A PN il LG P
i I
(eTy 2=t x| o
* j— )

Thus, since ¢ <T~1/2 and 6 < 1, we conclude that Cp < CXT1/4, where

Cy 2= lIxll gro—r + 1t || gro—s
oo
1 ; . .
2 5 (X + 117X o + 18] 1) -
j=1

Next, since it is readily verified that

(3.78) |7 - 1¢]] > for (r,€) € supp Fs,

1
T1/2
we have

uy 3TPATIAT'F,

whence |u2|5,9 S Te/? HF||571,0+571'

Clearly, u solves (1.1) on the time interval [0,7], and uniqueness follows
from the proof of proposition 1, which works equally well with R replaced by
[0,T]. O
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3.7 The restriction space X;’o
If T > 0, we define the equivalence relation ~7 on X*? by
U~ v — u(t) =v(t) for tel0,T],
and we set X" = X%%/ ~r and
ful g0 = inf {[il, g : 5 € X7, i g uf

A trivial but useful observation is that for a given u € X*?, we have |u|, , ; =
infge gy (u) |17|S79, where

(3.79) Er(u) = {a € X% T rvpu, [, 5 < |u|579} .
By proposition 7(a),
[u@)l| e < Cluls g for t€]0,T],

. . . . ] . .
which implies that |-|, , - is a norm on X;°. Moreover, since X* is complete,

so is X;’e. We call X;’G the restriction space of X*9 to time T. By proposition
7(a), the restriction space embeds in Gy ([0,7], H*) N CE([0,T], H*™1).






Chapter 4

Two Well-Posedness
Theorems

Our purpose in this chapter is to provide a general framework for proving strong
local well-posedness for nonlinear systems of wave equations of the form

(4.1a) Ou = F(u, 0u) (t,z) € R
(4.1b) ul,_,=f€H, dwu|_,=geH,

where Ju is the space-time gradient of w and F' is a smooth function satisfying
F(0) =0.

In section 4.1 we prove, using theorem 13, that well-posedness holds for data
in H° x H*~! under the assumption that

U +— F(u,@u), x50 s~ 1.0+e—1

is bounded for some choice of § > 1/2 and € > 0. We then apply this theorem
to recover three well-known well-posedness results: the classical local existence
theorem, a sharp local existence theorem of Ponce and Sideris, and the wave
maps equation in local coordinates.

In section 4.2 we motivate the need for a more general version of this result,
and we state an appropriate generalization.

4.1 First well-posedness theorem

Assume that for given

(4.2) seR, #e(1/2,1) and e€(0,1-0),
we have
(4.3) [ (u,0u)|l, 1 p1cq < Asllulgg)lul,, forallo>s

67
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and
(4.4) [ F'(u, 0u) — F(0,00)||y_q g4y < As(|ulg g+ (vl 0) [u—vl,4

for all u,v € X%Y where A, : R, — R, is increasing and locally Lipschitz
for every o > s. Under these assumptions, (4.1) is locally well-posed, in the
following precise sense.

Theorem 14. If (4.2), (4.3) and (4.4) hold, there exists u € X*% which solves
(4.1) on [0,T] x R", where T = T(||f|l g= + lgll ys—1) > 0 depends continuously

on (| f e + gl pre-s-
The solution is unique in the class X*9, in the sense that if u,v € X*% are
solutions of (4.1) on [0,T] x R™ for some T > 0, then
u(t) =v(t) for tel0,T].
Moreover, the solution map
(f’ g) — u, H® % Hs—l _ Xs,@
is locally Lipschitz, and if the data have the additional reqularity

feH, geH° ' where o>s,

then
we C([0,T), H") N C*([0,T), H*~*)

for any T > 0 such that u solves (4.1) on [0,T] x R™. In particular, if f,g € S,
then u is C* on [0,T] x R™.

Proof. The proof splits naturally into several steps.
Step 1: Existence Let x be asin (3.76), and define
du = x(t)(cos(tD) - f + D~ 'sin(tD) - g)
(4.5) —x(t/T) /t D Ysin((t — t')D) - (§(TY2A_)F(u, du))(t) dt’
+071(1 —O¢(T1/2A_))F(u, ou),
for u € X*?. Then by theorem 13,

Odu = F(u,0u) on [0,T] xR"
qm‘t:o =/ 3,5(I)u’t:0 =9

so any fixed point of ® is a solution of (4.1) on [0,7] x R™. Furthermore,
combining theorem 13 with (4.3) and (4.4), we have

1ul, g < CU Nz + 19l roms + T2 As(lul ) lul, )
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and
(46) |(I)U - (I)’Ulsﬂ < CT6/2AS(|U’|5,9 + |v|s,9) |U - ’Ulsﬁ :

Therefore, if we let T = Ty(|| f|| = + |9 gys-1), where
. —2/e
(4.7) T, (r) = min {1, (2CA,(4Cr)) } for r >0,

then it follows that ® is a contraction of the closed ball in X*¢ centered at 0
and with radius 2C(|| f|| z= + ||9]/ ys—1)- Let us denote this ball by X. Since X
is a complete metric space, ® has a unique fixed point v in X.

Step 2: Uniqueness Assume that u,v € X*% are solutions of (4.1) on [0, T| x
R"™ for some T > 0. By a continuity argument, we see that it is enough to show
(4.26) for arbitrarily small T' > 0. This amounts to showing that v = v in the
restriction space X;’e. To this end, assume that @ ~7 u and v ~p v. Then by
theorem (13), u ~p ®u and v ~p ®v, and it follows from (4.6) that

(4.8) lu =l o <|Pu— D[, < CT8/2A8(|6|5,9 + |:J|s,9) [u—,,-
Recall that
(4.9) ju— 0], g :mf{msﬁ ‘w e ET(U_U)},
where Ep(u — v) is defined in (3.79). Given w € Ep(u — v), set & = u and
v =u—w. Then [v], o <lul, o+ |u—], 5, and since A; is increasing, it follows
from (4.8) that

lu — U|s,e,T < CT€/2A5(2 |“|s,e + fu— U|s,e) |ﬁ|s,9 .
Taking the infimum over w € Er(u — v) and using (4.9), we get

lu—|, g7 < CT?A(2]ul, o+ u—v|, ) [t —v], 47

Hence, if we choose T' > 0 so small that
e/2 1
CT/7A,(2 |U|s,9 +lu— U|s,9) < 3
then we must have |u — |, 7 = 0.

Step 3: Lipschitz continuity Here we prove that the dependence of the
fixed point w on the data (f,g) is locally Lipschitz continuous. Let v be the
fixed point corresponding to another set of data (£, g.). We want to show that
there exists a neighborhood U of (f,g) in H* x H*~! such that

lu=vl,o SN = Fellge +1lg = gellgon for (fu,9.) €U.
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Setting T' = T (I fll grs + 9]l go—r) and To = T5(|| £
is defined by (4.7), we have

u—v = x(t)(cos(tD) - (f = f.) + D~ 'sin(tD) - (g — g.))
_ X(t/T*)/ D™ 'sin((t —¢')D)
0
x (H(TH>A){F(u, du) — F(v,00)}) () dt’

+ 071 = (T M) {F(u, du) — F(v, v)}
+ a(T*) - a(T) - ﬁ(T*) + ﬁ(T)a

s + 119+l ge—1), where T

where
a(T)_X(t/T)/O D~ 'sin((t — ¢')D) - (¢(T?A)F(u, 0u))(t') dt’

and

B(T) =071 (1 - ¢(T2A_)) F(u, Ou).
We claim that « and § are locally Lipschitz . Granting this, it follows from
theorem 13 and (4.4) that

(410)  Ju—vl, o < C(If = fill e + 19 = gell gres
+ T2 Allul g + [0l g) =l ) + €T =T

for (f«, g«) sufficiently close to (f,g). Since
lulgg <200 f g + 119l ggo-1)  and ol 5 < 2C([| full s + [lg+]

and since CT/2A; (4C(|| fll o + lgllgge—1)) < 1/2, it follows by the continuity
of A; and T, that

H5*1)7

CTZAs(ful g+ 0],.0) < 3/4
for all (fy, g«) in some neighborhood U of (f, g). Hence, by (4.10),
lu vl SAC(If = fllge + llg = gullgrer) +4C" T = T

for (f«,g«) € U. It remains to prove that by making U even smaller if necessary,
we have

T =TSN = Fellge + 119 = gell o -
This follows from the easily established fact that the function defined by (4.7)

is locally Lipschitz.
We now prove that a and § are locally Lipschitz. We have

a(T) = a(Ty) = {x(t/T) — x(t/T.)}
/ D~ 'sin((t — ¢')D) - (§(TY2A_)F(u, du))(t) dt’

+ x(t/T%) /0 D~ 'sin((t —t')D)
x ({(T°A) = G(T A )Y F (u, 0u)) (1) ',
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and since

X(t/T) = x(t/T) = (T — T)/O X (T* T p(tT — T*)> (T, + p(; - T*))2dp

and

(4.11)  @(TH2A_) — ¢(T2/°A)

1
= (@2 =10 [T - A A dp,
0

it follows from proposition 15 that
[a(T) — (Tl o < T = T C|[F(u, 0u)|,_y o,

for all T, sufficiently close to T, where C' depends on x, ¢ and T'.
Furthermore,

B(T.) = B(T) = O H(TV2A) = §(TL* A )} F(u, Ou),
and using (4.11), we get
1B(T) = B(T) 9 < |T = Tu| C | F(u, Ou)ll,_y g4

for T, close to T, with C again depending on x, ¢ and 7.

Step 4: Higher regularity If the data have the additional regularity (f, g) €
H° x H°~! for some o > s, then by theorem 13 and (4.3),

1ul, g < C(IFllzre + N9l ror + T2 As(Jul, ) lul,p)-

Hence, if T = min{Ty(1f 7. + lgllzos)» To (1 fll . + lgll o)}, then @ is
a contraction of the ball X defined above, and ®(X,) C X,, where

Xp =X 0 {uuly g <201 o + lglie) } -

Since X, is a closed subset of X, it follows that the fixed point of ® must belong
to X,.

Now let u € X*? be a solution of (4.1) on [0,7] x R", where T' > 0. By
what we just showed, and using the translation invariance of the equation, it
follows that for every ¢, € [0, 7] such that

(u(ts),du(ty)) € H” x H7 ',
there exists u, € X%? which solves

Ous = F(tus,0us) on  (te — 0y, te + 04) x R?
Ui (ts) = uts), Opuw(ts) = Opults),
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where

. = min{ T ([u(t)l| - + 100t |z ) To () g + [0 gro0)}-

Since [[u(t)|l e + 10u(®)lge—r < Colul,y for all ¢, we conclude that d, is

bounded away from 0, and we set § = inf,, J..
By the uniqueness statement proved above, we have

ue(t) = u(t) for ¢€[0,T]N (tx — 0t +9).

Starting with ¢, = 0 and then moving in steps of length d/2, say, we conclude
that (4.27) holds. O

Remark. We make a general observation concerning (4.3) and (4.4) when the
nonlinearity is multilinear, that is, F'(u,0u) = T'(u, ..., u), where T is a k-linear
operator given by

f{T(ul,...,uk)}(T,g) = //@(7’1,51,...,Tk,fk)fﬁ(ﬁ,él)--'u/\k(Tk,fk)du,

where 71 = 7 — Y b 75, & = € — Y ¢; and dp = dr d€ dry dEs - - - dry, dEj,. We
claim that (4.3) and (4.4) follow if we can show that

(4.12) T (us s um)ll sy pren S luals - Tunlsg

for all uq,...,ux € X% such that @; > 0, 1 < j < k, where |T'| denotes the
operator with symbol |«|. First, since the norms on H*? and X*? only depend
on the absolute value of the Fourier transform, and since

T(uis.oosup) 2T ([wa] - [un]),
it follows from (4.12) that
1T (ury -l g g ey Slurlgg - lukly g forall ug,...,ux € a0,

Therefore, (4.3) holds for o = s, and (4.4) follows by multilinearity. To prove
(4.3) for o > s, we simply note that (cf. (3.24))

ANT(ug, - yuk) ST (AN ug,ug, . oyug) + -+ | T (ur, - o ug—1, Aug)

for v > 0, assuming @; > 0, 1 < j < k. These facts will be used throughout the
remainder of the dissertation, without further mention.

Let us look at some examples of equations to which theorem 14 can be applied.

4.1.1 The classical local existence theorem

Here we want to show that the classical local existence theorem for nonlinear
hyperbolic equations, which states that (4.1) is well posed for s > 1+ n/2, can
be proved using theorem 14.
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Assume s > 1+n/2,1/2 <0 <min(l,s —1/2—-n/2),0 <e <1—0 and
n > 2. Let F be any smooth function satisfying F/(0) = 0. In this example we
only consider real-valued v € X*?. By theorem 11, for any o > s there exists
a continuous function A, : Ry — R4, which we may assume is increasing and
locally Lipschitz, such that

1F (0l p < Aol Dull,_y o) sl for all o > s,
and this implies that (4.3) holds. Similarly, since
F(u,0u) — F(v,0v)
= /1{dF(v + p(u—v),0v + p(du — Ov)) — dF(0)} - (u—v,0u — dv) dp
—I—OdF(O) (u— v, 0u — ),

it follows from theorem 11 and the algebra property of H*~%¢ that (4.4) also
holds.

4.1.2 Sharp local existence

Here we reprove, using theorem 14, a sharp local well-posedness theorem of
Ponce and Sideris for nonlinearities of the form

(4.13) F(u,0u) = T'(u)(0u),

where I' € C*° and a = (ag,...,qy) is a multi-index. We assume that n = 3
and |a] = ag+ -+ a, > 2.

By the classical local existence theorem, (4.1) with F' given by (4.13) is well
posed for s > 5/2. We will show, using an asymmetric bilinear version of the
L* Strichartz inequality in space dimension 3, that this can be improved to

§ > max q 2 ok — T
k-2
where k = |a|. This result was proved by Ponce and Sideris [21], and is sharp.
Lindblad [20] proved that (4.1) is not well posed for s = 2 when k = 2, and the
number (5k — 7)/(2k — 2) is the critical exponent associated to (4.1) with F' =

(Ou)®, so the problem is certainly not locally well posed for s < (5k—7)/(2k—2).
In fact, if u is a solution of (4.1), then

2—k
u(t,z) = Mu(\t, \x), where = P

solves the same equation with data
ur|,_y =N F(N),  Bua|,_, = APg(N).
Since

AP F O e = X320 Mgy NP9 ams = X722 gl e
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we see that the H® x H* ! norm of the data is invariant under this scaling
iff s =3/2— 8= (5k—"7)/(2k —2), and the H* x H*~! norm of the scaled
data remains bounded as A — oo if s < (5k — 7)/(2k — 2). On the other hand,
if the lifespan of w is T' < oo, then wy has lifespan T'/A, which approaches 0
as A — oo. If we take a = (k,0,...,0), i.e., F = (0u)¥, then we can find
smooth and compactly supported data such that (4.1a) blows up in finite time,
by using the fact that the ODE 3’ = 4* blows up at time 1/(k — 1) for k > 2.
Since the data are compactly supported, we can even produce a sequence (f)
of data supported in mutually disjoint balls, and add these up to produce data
for which there is no local existence in a strip [0, €] x R™.

Assume s >2,1/2<0<1,0<e<1—06and 6+e < 3/4. We must prove
(4.3) and (4.4). We first prove the special case I' = 1, and then at the end e
show how to reduce the general case to this.

We start by proving the result in the case k¥ = 2. By the above remark, it
suffices to prove

IAst- Aol o S Julyg fol, -

By (3.24), this reduces to proving
||AS*1A+U : A+U||Lz N |U|S,9 |U|S,97

but this follows immediately from the estimate

(4.14) ||U”||L2(R1+3) S ||U||1+7,9 [[v] 0,0

which holds for any v > 0. This estimate is just a non-sharp, asymmetric
bilinear version of the classical Strichartz estimate ||ul|pagisy S [lull;/o,9-
Now assume k > 3. We assume that

S5k — 17 . S5k — 17
S>2k—2, O<4€<m1n{1,s——2k—2},

and we set § = 1/2 + e. It suffices to prove
AT Ay - A Al gy Sl g
which would follow from

(4.15) [|urwg - - - u

0.0+e—1 = llutllo g lluall—y g llunlls—y -
Set Fy(r,¢) = w? (1, &)ui(r,€) and
Fi(1,6) = () wl(r.9)i;(r,€) for 2>j<k.
Then by the self-duality of L2, (4.15) holds iff
/ G(r,§)F1 (1, 6)Fa(72, &2) - - Fi(T, §k)

= - dp
w07 (7, Owl (11, 61) (&) w? (r2,62) -+ ()T w? (7, &)
< C||Fil 2| Frll,2 forall G >0 with |G|, <1,
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where 71 = 7 — Sk 75, &1 = € = S5 & and dp = dr d€ dry dEy - - - dry, dEy.. Let us
name this integral I.
By symmetry we may assume that I is restricted to the region

(4.16) (§2) > (&3) =+ > (&) -

We then write I = I1 + I, where I; and I> are obtained by further restricting
the domain of integration to the regions

w(7,§) 2 (§2) and w_(7,§) < (&2),

respectively.
Since
3k—5 k-3

and 1 — 0 —e =1/2 — 2¢, we have

1—0—a+s—1—(1+5)
k-2 k-2

k-3 1 (1 1 (k-3
144 LY (P IR S (A
s E+2k—2+k—2<2 €)+k—2<2k—2+ 5)
k-3 1 3

L
Sh—o T k_1 2%

s—1+

=1+4e+

Thus, on the domain of integration of I,

w07 (7, €) (€2)° T (€) T 2 () T ()P ()Y

so if we define v1,..., v by
PO TN Fy N F; .
= —, Gy=——— and 0 =—r=>l— for 3<j<k
w? () w? SR

it follows from Holder’s inequality, the Strichartz inequality (4.14) and the em-
bedding H?3/2t%0 C [>°(R'*3) that
I < |Gl g2 [lorva -+ vell
< [lorvallpe losll poe - - - lowll e

< Clloillggllvalliseollvsllssares - vellsjaie
=ClFllpz - lFll = -

By (4.17),s—1—-3e > 1+e+(k—3)/(2k —2), so it follows from (4.16) that

k—1)

(€2) 717 ()" > () T () () - ()
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Since s — 14+ 1/(k —1) > 3/2 + ¢, it follows that on the domain of integration
of Ig,

wl_/2—2€(7_7 5) <§2>571 . <§k>sfl > w1_/2+8 <€2>1+s <€3>1+5 <§4>3/2+s . <§k>3/2+5 )

Therefore, defining vy, . .., v; by

-1, _ ¥ o~ _ 11 . j -
F UO_wﬂ’ L= ’UJ—<.>1+Ew0 for 7=2,3
and 7
~ j .
v = for 4<j5<k
J <.>3/2+8 w? ’
we get
I < /]—'_11}0-_7-'(1)1 cvg) dr d€
= /vovl --up dtde
< llvovall 2 llorvall 2 [[vall oo - -~ [0kl oo
< Cllwollo,g lv2llyyeollvillop lvslly e llvallsjaeo - 1okllz/24e.0

= ClG 2 1 2 - (1% 2 -

This concludes the proof in the special case I' = 1. We now show how to reduce
the general case to this.
First note that

IT()(0u)*llo—1 91e—1 S ITo(w)(Ou)*llg_y gye—y + ITOIOW)* |51 p1e—1 >
where I'g(u) = T'(u) — T'(0). By (3.24),
(4.18)  [[To(w)(0u)*[l,—1 641
o—1 « o—1 a
S HA Lo(u) - (Ou) H0,9+s—1 + HFO(“) A7 (Ou) H0,9+571 :
By part (a) of proposition 12,
HS—E,G % H0,1—9—€ N H0,1—9—€
and by duality this implies
(419) Hs—a,@ % H0,9+8—1 _ H0’9+€_1.

Applying this estimate to the second term on the right side of (4.18) and esti-
mating the first term via proposition 11, we get

ITo(u)(0u)*[| 5 _1 641
< To(@)llgp [1(0)*[|s—1,p4e—1 + [To(u)ll o 1051 p1c
S 9(llulls o) lullgo 0001 gyer + gUlulls o) (0w Moy 1y
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where we used theorem 11 to obtain the last inequality.
Since

() — T(v) = /Ol{df(v 4 plu—)) — dT(0)} - (u— v) dp
+dD(0) - (u— o),
we have
I0@) = Tl o S {A(u
and it follows that
[T () (Ou)™ = T'(v)(O0)* ||, gye1

S Q(HUHS,e) [ (Ou)* — (6U)O[H571,9+571
+ {h(llull, g + l[0llsq) + 1dTO)} [ = 0]l 6 (0w pyes

where h is continuous.

so Hvllse) + 10O} lu— vl 4,

4.1.3 The wave map equation

In local coordinates on the target manifold N, the equation for a wave map u
from Minkowski space R*" to N reads

(4.20a) Ou’ + Dl (w)Qo(u”, u™) =0,

where the I'},.’s are the Christoffel symbols on N, and Qg is the null form
Qo(u,v) = dyu - v = —0udv + E?:l O;ud;v. We impose initial conditions

(4.20b) ul,_,=feH® dwu|_,=geH "

Note that v is now a vector in R?, where d is the dimension of the target manifold
N. To simplify the notation, we drop the indices and treat the equation as a
scalar equation.

By the result of Ponce and Sideris, (4.20) is well posed for s > 2 in dimen-
sion n = 3. Using the cancellation properties of the null form @, Klainerman
and Machedon [10] improved this to s = 2, and then in [13] they proved local
existence for data with small H* x H* '-norm for s > 3/2. Klainerman and
Selberg [18] extended this result to all dimensions n > 2, proving local existence
for small data when s > n/2. Here we will prove that (4.3) and (4.4) are sat-
isfied, thereby improving the results in [13], [18] to strong local well-posedness.
Moreover, by applying theorem 11, we dispose of the assumption of analyticity
of the Christoffel symbols which was made in [13] and [18].

Note that n/2 is the scaling limit for this equation. What happens in the
exact limiting case s = n/2 is still open. One expects that data (f, g) € H™/? %
H™/2-1 with small norm should give global existence, at least in space dimension
two. A recent result in this direction can be found in Tataru [23].
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We assume n > 2, s > n/2 and pick 8 and ¢ satisfying

-1
1/2<6<1, 0<e<1l-6 and nT+9+a<s.

By the analysis in the previous section, we may assume I' = 1. Note that

ol 0)(1,€) ~ / Qo(r — M€ — 1 A n)(r — A€ — )B(An) dAdn,

where qo(7,&,\,n) = 717X\ — & -n. Since I' = 1, we may assume u, 0 > 0. From
the identity

1
TA=En =g {(T+ N2 = e+ =72+ [ = X+ |nf*}
and the trivial estimate |go(7,&, A, n)| < 2(|7] + [£])(|A] + |n]), we conclude that

Qo(u,v) ZALAY (A Yu- A7) + A A w- A Yo+ A Tu - Ay AT
=Ay+ B, +C,
for all 0 < v < 1. The factors A” give cancellations on the null cone in frequency
space, and this is why we can obtain more favorable estimates for Qo (u, v) than
for a generic product d,u0,v, for which there is no such cancellation.

By symmetry, it suffices to estimate the terms A;_. and B;_.. Using (3.24),
(3.25) and (3.26), we get

ATIATTET A A AT A u - Ao+ ADATIAS - A
AT A AP AT+ ATIA - A AL
+ RN Ay u, ASw) + RO(ASTIAS u, Ajo)
+ symmetric terms,

and we can apply propositions 10 and 9. By (3.24), (4.19) and (3.34),

IBiclly 1 ppe1 S AT ALAT Su AS o[y
+[[A AT AS_lAiUHO,HJrsfl
S A A AT [[AS Y]

nrec

s—e,0

s—1,0+e—1 HAS?lAivulfs,H '

We conclude that [|Qo(u, )ll; 1 gye 1 S luls g0l -

4.2 Second well-posedness theorem
Consider (4.1) as a system with nonlinear terms

FI=Q%(u’,u®), 1<TI<N,
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where each Q/ is a linear combination of the null forms
Qij(u,v) = Qud;v — djud;v.

The scaling exponent for this problem is /2, and Klainerman and Mache-
don [16] have proved local existence for s > n/2 in dimensions n > 3, under the
assumption that the H* x H* !'-norm of the data is small. However, the esti-
mates (4.3) and (4.4) fail to hold for s close to n/2; see [13]. The same problem
arises when we try to apply theorem 14 to hyperbolic model problems derived
from the Maxwell-Klein-Gordon equations, the Yang-Mills equations and a cer-
tain coordinate-free formulation of the wave maps equation. Thus, among all
the nonlinear field equations that interest us, it is only the wave maps equation
in its local formulation which is amenable to analysis by the methods of the
previous section.

The failure of (4.3) and (4.4) means that the solution operator ®, defined
in (4.5), is not a contraction map of X*?. Note that proving existence by the
contraction mapping principle amounts to showing that the sequence of Picard
iterates (u;) is Cauchy. The iterates are given by

Uu—1 = 0, Uj = (I)’U,j,1 fOI‘ j Z O

The first step is to show that the sequence is bounded, and to do this we
have to be able to control the norm of u; in terms of the norms of the previous
iterates:

ujlyg < G(luj-1lsgs--sluol,g)-

If (4.3) holds, this means that we can control the norm of u;4q in terms of
just the norm of u;. It should not be surprising if this is the exception rather
than the rule. It is convenient to introduce the following terminology. We will
say that the iteration argument for the Cauchy problem (4.1) can be closed in
k steps if the X*%-norm of the j-th iterate can be controlled in terms of the
norms of the preceding k iterates, where k is independent of j. Of course, k will
in general depend on the size of s, and it may be infinite. The smallest such &
we will refer to as the iteration depth.

Even if the iteration argument cannot be closed in one step, it is often pos-
sible to cast the iteration in the form of a contraction argument. This requires
that one can find a suitable subspace of X*? in which ® is a contraction. For
the above system, which we will refer to as the Q;;-system, Klainerman and
Machedon [16] managed, by a rather ingenious construction, to do just this.
For this problem the iteration depth becomes unbounded as s approaches the
scaling exponent n/2, but Klainerman and Machedon were able to construct a
single subspace which works for the entire range s > n/2.

We now state the second well-posedness theorem, which is sufficiently general
to handle the Q;;-problem. In the next chapter, this theorem will be applied to
a model problem for wave maps.

Given s, 6 and ¢ satisfying (4.2), assume that ||-|| is a semi-norm on some
subspace of &’ containing S, and define

(4.21) X ={u:|ully <oo}, Y ={F:|F|y <o},
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where
(422)  Jully = lulyg +lul, 1Fly = 1Fll, 1 gpomy + AT AT

We assume that (X, ||-|| ) is a complete space.
Assume that (cf. theorem 16 below)

(4.23) lull < C(IF gz + gl gre—s + T2 | Flly)

forall F € Y and 0 < T < 1, with u as in theorem 13. Combined with the
estimate in theorem 13, (4.23) gives

lulx < CU N gre + gl gems + TN FNly)-

Assume, moreover, that

(4.24) |A°"*F(u, 8u)||y < As(JJull ) HA"fSuHX forall o > s
and
(425) [P, 0u) — F(,00)ly < Au(lull + [0l ) 1 — ol

for all u,v € X, where A, : Ry — R, is increasing and locally Lipschitz for
every o > s.

Theorem 15. If (4.2),(4.23), (4.24) and (4.25) hold, there exists u € X which
solves (4.1) on [0,T] x R"™, where T' = T(|| f|l = + 9]l gs=1) > 0 depends con-
tinuously on || f|| g« + |9l gre—1-

The solution is unique in the class X, in the sense that if u, v € X are
solutions of (4.1) on [0,T] x R™ for some T > 0, then

(4.26) u(t) =wv(t) for tel0,T].
Moreover, the solution map
(f,g) —u, H xH '—X
is locally Lipschitz, and if the data have the additional reqularity
feH’, geH°' where o> s,
then
(4.27) uwe C([0,T),H°)nC*([0,T],H ")

for any T > 0 such that u solves (4.1) on [0,T] x R™. In particular, if f,g € S,
then u is C* on [0,T] x R™.

The proof is a straightforward modification of the proof of theorem 14, and
is therefore omitted.

The next result gives a sufficient condition for (4.23) to hold, and will prove
quite useful later on.
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Theorem 16. Assume that the semi-norm ||-|| has the properties:
(a) u v implics lul) < [lo]];

(b) There exists 1 <~y < 0/2+¢/2+5/4 such that for any v € X*° satisfying
u =,

(4.28) lull S [14)° w2 (7, 03, )| 2 1)

Then (4.23) holds.
The proof, which can be found in section 4.2.1, requires the following lemma.
We define D7 : §'(R) — S'(R) to be the operator with Fourier symbol (1 +
/2
|T|2)'Y .

Lemma 8. If x € C°(R) and (f,g) € H® x H*™', then

(4.29) X (e £ < 1D7X| e 111

(4.30) Ix(t) cos(tD) - f1| < | D7l o |11

and

(431)  [x®D " sin@D) - gl| S (DX oo + D7 ) gz -

Moreover, if |p| <1 and suppg C {£: |¢| < ¢}, then
(4.32) e Pg]| S e (e IR0 + D7 ) gl o

Proof. Since the Fourier transform of x(t)eXP f is X(r F [€])F(€), it follows
from (4.28) that

= D7 o £ -

~ ‘

Ix®e P £l 5 [Brxir % leh) (€)° Fe)

L2(Lg)

This proves (4.29), which in turn implies (4.30).
The proof of (4.32) is similar. We simply note that the Fourier transform of
x()e?tP g equals X (7 — p|€)g(€), and that

Il = Iel] < |7 = plel| + (1 = lp) €] < |7 = plé][ + ¢
for £ € suppg and |p| < 1.

To prove (4.31), we split ¢ = g1 + g2, where g1 is supported in the region
|€] < 1 and g3 is supported in || > 1. Since

1
D™ tsin(tD) = t/ et2p=1D g,
0
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we have .
x(t)D ™' sin(tD) - g1 = / tx(t)et PP g dp.
By (4.32), O
Htx(t)eit@p—l)Dng < Hﬁ(?x)”m lgill e for 0<p<1,
and it follows that

[x(®) D~ sin(tD) - g1|| < |D7(EX)|| oo g2l e s -
This proves (4.31) with g replaced by its low frequency part g;.

Since |[D7 gzl ;. < 2lgll -1, the estimate (4.31) with g replaced by go
follows immediately from (4.29). O
4.2.1 Proof of theorem 16
We must prove that
(433)  [Ix(®)uo + x(t/T)ur + szl < C(IF gz + gl g +T* [ Flly)
forall F €Y and 0 < T < 1, where

ug = cos(tD) - f + D sin(tD) - g

/D sin((t —t')D) - Fy(t') dt’,
11_7‘2

ui
Uz =
and
F=F+F=¢T"*A_)F+ (1 - ¢(T*?A_))F
Lemma 8 yields
(4.34) Ix(@)uoll < (IIWHW + Hm)HLw) (Wl gre + llgllgra-s)-
y (3.78), us 3 T/2ATTAZ'TEF, whence
(4.35) uo|| < T°/2 ||AZTAZTTEF|.

It remains to estimate ||x(¢/T)u1|. By proposition 16,

tJJrl t(2 1)D
uy (t / P %g;(p)dp

o0

n Z %(eith;- + e P f) 4 Ry (t) + R_(t)

=31+ Yo+ Ry () + R-(1),
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where

(4.36) 195 (D)l o s 157y S T2V F Y g
and

(4.37) suppg;(p) C {€: |6l ST1/2).

Using lemma 8, (4.36), (4.37) and the fact that

(4.38) H]-'D“’{tj (t/T) }HL < 7= WHDv (tix HLOO

for j >0and 0 < T < 1, we get
(4.39) IX(t/T) (£1 + o) || < CT2HAT Ry gy,

where

= [T,

To get the required decay, we must therefore have 2y < §+e+5/2. In particular,
~v < 2, and since x is supported in (—2,2), we have

1270 e < 1D 0] 0 S 7227 {IXl e + X e+ X"l e -

whence C S {|x| L + X[l e + X"l L~
Finally, notice that (3.75) implies

X(T =) = X(7 - [€])]
Al +[€]

@10)  wl(ne). <15 + [P0

so by (3.74), (3.77) and the Cauchy-Schwarz inequality,

()" w2 (r.€) [\ R+ (7,9)|
S (I 1200 (f 0 e Boef @)
The same estimate holds for R_. Hence, (4.28) yields

IXOR=] S (D77 o + 1D7 @0 ) T2,y
Using (4.38), we conclude that

(441) (/DR S (17X o + D@ o ) T AN Py -

The estimates (4.34), (4.35), (4.39) and (4.41) collectively prove (4.33).






Chapter 5

A Coordinate-Free
Formulation of Wave Maps

In this chapter we study the local existence properties of the system

(5.1a) 0" A, =0
(51b) aMAV - auAp, — [AU7 Au]a

where A, is a Lie algebra-valued 1-form on the Minkowski space (R'*", g) with

metric g, equal to the diagonal matrix with entries —1,1,...,1. We use stan-

dard coordinates z°,...,2" and set t = 2°. The summation convention is in

effect, and Roman indices run from 1 to n, Greek indices from 0 to n.
We assume that A, is matrix-valued, and [-, -] the matrix commutator. The
initial condition is

(5.2) A#|t:0 =ay € H*(R"),
where we must require that the compatibility condition
(53) (“)iaj — (“)jai = [aj, ai]

is satisfied.
Following Klainerman and Machedon [14], we define

where R, = D~'9,. Then it follows from (5.1),(5.2) that the 1-form Agdz® +
A;dz? satisfies the system

(55&) DAO = 8i[A0, Az - RoRle]
(5.5b) 2'A; =0
(5.5C) (r“)lA7 — ain = [AJ — RoRjAo, Ai - RoRiAo]

85
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with Cauchy data

(5.6) Ao|,_, =ao € H*(R"), 8Ao|,_,=0"a; € H'(R").

Note that A; satisfies an elliptic Hodge system in the space variables, and hence
no initial values are specified for A;. For this system the critical Sobolev expo-
nent for the data is s, = (n —2)/2.

Our main interest is the hyperbolic model problem obtained by setting A;
identically zero in the above system. In dimensions n > 3, this model prob-
lem was studied by Klainerman and Machedon [14]. Here we analyze the two-
dimensional case, which has not been tackled before. We prove that the model
problem is well posed for s > 1/4 in the two-dimensional case, and we write
down some conjectures which would give well-posedness for s > 0.

We then extend the 3D result of Klainerman and Machedon to the full system
(5.5). As one would expect, the estimates for the “elliptic” variable A; are less
delicate than those for Ag.

5.1 The connection with wave maps

Let G be a Lie group with a bi-invariant metric h, and let u be a wave map
from (R, g) into (G,h), i.e., u is a critical point of the Lagrangian L[u] =
Jgisn (du, du).

Following the notation in Christodoulou and Tahvildar-Zadeh [2], we let
{Q} be an orthonormal basis of the Lie algebra of G, and {w’} the dual basis
of left invariant 1-forms on G. Now define 1-forms ¢! on R'*" by

(5.7) dji = wé(u)ﬁﬂu“,
and set
(5.8) Ay =,

A computation (see [2, Section 3.1]) shows that the forms ¢! satisfy a Hodge
system, and when we express this system in terms of the Lie algebra-valued
form A, we get

0" A, = [A" AL, 0,A, —0,A, = [A,, A).

Since [A*, A,] = 0, we obtain the system (5.1). This system is equivalent to the
Euler-Lagrange equation for wave maps, which in local coordinates on G is the
equation (4.20), in the sense that a given map u : (R'T", g) — (G, h) is a wave
map iff (5.1) holds.

The formulation (5.1) has the inherent advantage over (4.20) that it is global
as opposed to local, and this fact was used by Christodoulou and Tahvildar-
Zadeh in [2], where they establish the global regularity of spherically symmetric
wave maps for smooth data of any size. A related system was also used by Freire,
Miiller and Struwe [3] to prove weak convergence of wave maps for n = 2, and
by Helein [6] to prove regularity of weakly harmonic maps.
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5.2 Hyperbolic model problem

Consider the Cauchy problem for the system

(5.9a) Ou! = a}Qu’, u™) (t,z) € RM™
(5.9b) ul,_,=fe€H* dwu|_,=geH ",

where the aﬂ s are constants, () is the bilinear operator given by

(5.10) Q(u,v) = i 0i(RoR;u-v —u- RyR;v)
i=1

and Ry = D7'0,, R; = D~'9;. Notice that the Fourier symbol of Q is

qrE ) = (E+7)- (—5 _ ﬁ) |
€2 Tl

The new result proved in this section is the following.

Theorem 17. In dimension n = 2, the system (5.9) is locally well-posed for
s> 1/4.

Klainerman and Machedon [14] proved local existence for (5.9) when s >
S¢ = (n —2)/2 in dimensions n > 3. The new idea introduced in their proof is
to use information from two previous Picard iterates to estimate the subsequent
iterate. Applying this idea to the 2D problem we obtain the s > 1/4 result.
In contrast with the higher dimensional case, however, we can show that it is
not possible to go all the way to the scaling limit s. using two iterates. In fact,
we prove that if s < 1/8 one must use information from at least three previous
iterates. This gives some indication of the difficulty of the problem in 2D. We
then dicuss a strategy for proving well-posedness in 2D for all s > 0, subject
to some conjectures. This is where the quadrilinear estimate proved in chapter
two comes into the picture.

As a by-product of our approach to the two-dimensional problem, we also
obtain a considerably simplified proof of the result of Klainerman and Machedon
[14]. In dimensions n > 3 we have the L} (L2°) product estimate proved in [19],
and this fact makes life much simpler than in the two-dimensional case, where
no such estimate holds.

5.2.1 Outline of proof

The plan is to prove well-posedness for s > 1/4 in 2D and for s > s, in higher
dimensions by applying theorem 15 with a suitably defined seminorm ||-|| which
satisfies the properties:

D QW 1 gye1 S (ulgg+ |lul)? for all s > s. and n > 2;

(I1) HAflA:HEQ(u,u)H < |u|§79 for s > 1/4if n =2 (resp. s > s. if n > 3).
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The norm ||-|| depends on s, 8 and e, and the above properties hold for sufficiently
small € > 0 and § > 1/2, depending on s.
It is obvious that (I) and (IT) imply

||Q(U,U)||S,179+5,1 + "AilAzl—’_aQ(u?u)H 5 (|u|s,0 + H’u’”)2

for s > 1/4if n = 2 (resp. s > s, if n > 3). By theorem 15, this implies
well-posedness.

In section 5.2.8 we prove that in dimension two, property (II) fails to hold
for s < 1/8. This means that to prove well-posedness for s < 1/8, we must use
at least three iterates.

We remark that if s > s, + 1/2, n > 2, then the estimate in property (I)
holds without the semi-norm ||-|| on the right hand side. This fact follows easily
from Holder’s inequality and Sobolev embeddings; we omit the proof. It should
be noted, however, that in two dimensions, even this last result requires the
null structure of the bilinear operator ), in contrast with the case of higher
dimensions.

5.2.2 Strategy for proving well-posedness below 1/4

Consider the two-dimensional case. The idea is to define a sequence of semi-
norms |[|-||;, j > 1, where the norm corresponding to j = 1 coincides with the
norm appearing in the previous section, and satisfying

(D) [[A=IAZ2Qu,w),_, S [uf2, forall s> &, j > 2.

Since this property generalizes property (II) of the previous section, in the case
n = 2, we denote them by the same Roman numeral.
Now assume we could prove that

(CJ) "AilA:l—i_EQ(u?u)ijl 5 (|u|s,9 + HU’HJ)2 fOI' a“u 5> Sc

holds for 2 < j < k, and that we are given

1
T
Having chosen appropriate § > 1/2 and ¢ > 0 depending on s and k, we set
l[ull = flully 4+ -+ llull; -

The plan is to apply theorem 15 with this semi-norm. But it is immediate from
properties (I), (II) and (C;) that

1Qw )41 ey + [ATAZFQu,w)| S (Jul g + [lul)’,

and this gives well-posedness for s > m
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5.2.3 Three lemmas
Definition 4. Let T}, j > 2, be the sequence of operators given by
To(u,v) = uv,
Tivi(ut,...,ujq1) = ulA_lTj(ug, e Uj1).
The first lemma is crucial to the proof of property (II).
Lemma 9. In space dimension n = 2,
(5.11) AT Tyralun, .o ug,0)|| o S lwally, g llug-ally, | g lugllo g 0l p2 s

where o and the s’s are strictly positive, 0 +s1 + -+ s;-1 > 1,0 > 1/2 and
j=2.

Proof. By duality, (5.11) is equivalent to
(5-12) Ty (ugs - un, w2 Sllually, g llui—ally, g luill g llwllo-

We will prove (5.12) by induction. To prove the case j = 2, we note that
proposition 10 yields

[uz A" (wrw) || 2 S lluzllg g [IA°(wrw)]l 2
for any € > 0, and since s; + o > 1, (3.24) and proposition 10 give
A= (uaw)l 2 S llually, g llwll 40

for € sufficiently small.
Now assume (5.12) holds for some j > 2. We must show that it holds for
j+1. Set w= A" (ujw). By (5.12),

1T (uje s ug, W)l e S llujallg g lluslly, o lualls, o lwll o
where 1 — sg — - — s; <y <min{l, s; + o}. Thus, it suffices to show
olly o S lunl g ol
But this follows from proposition 10. O

To verify property (b) of theorem 16, we need the next two lemmas. We denote
by B the space
—1f72/71
FHLEL}
with norm ||ul|z = ||u(r, §)||L§(L1). Notice that |lullz < [[ully g for 6 > 1/2.

Lemma 10. In any dimension n > 2,

HA7"/275 (uv)

< ||lu v
S lulls ol

for all e > 0.
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Proof. This reduces to the fact that

19l gr—nsa—= S NI fll 2 g1l
for any € > 0, where f and ¢ are functions on R™. O

Lemma 11. In space dimension n = 2,
(5.13) AT Tjpa(ua, - uj 01, 00)|| g S A%l A% g v 5 2l 5
foralle >0 and j > 1.
Proof. The proof is by induction. The case j = 1 follows from the estimate
(5.14) AT - AT ) (| e S WM Nl (1B 2
where f, g and h are functions on R?. By duality, (5.14) is equivalent to
1= A7 gm) o S I le Ngllge 1Al s -
To prove the latter, we use lemma 6 to obtain
1 - A7 g || o S W F e llghllgrere S UFN 2 gl e 1Rl s -
Now assume (5.13) holds for some j > 1. If we can show that
(5.15) A7 w) 5 < [A=ullg 0]l

then clearly it follows that (5.13) holds also for j + 1. But (5.15) is yet another
trivial consequence of lemma 6. We omit the details. o

5.2.4 Definition of the semi-norms

Let (m;), 7 > 1, be the sequence defined by
m1=1, mj41 = My +.77

and set
Ej _ A20+mj8_1Aj€,

Since 6 will be close to 1/2 and € close to 0, the latter operator should be thought
of as a small perturbation of the identity. Using (3.24) and the estimate

(5.16) AZ (uv) ZAAZu- A% v,
which is a consequence of (3.26) and (3.20), we find that
(517) Ej (’U/U) j Ej+1A:E’U, . Ej’l},

where it is assumed that « and v have non-negative Fourier transforms.
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Now define

3

Hqu = sup ‘/ A20FTE2N _y - vwdtda
R1+n

where the supremum is taken over all v,w € H%% with unit norms. In the case
of space dimension n = 2 we also define, for j > 2,

3

||’U,H] = sup ‘/ A_lAlfisEj’UJ . Tj+1(Ej,1w1, ey Ele,l,wj, ’LUjJrl) dtdz
R1+2

where the supremum is taken over all
s,0 0,0
wl,...,’LUJ;lGH s wj,wj+1€H

with unit norms.
Clearly, [[ull; < [[v[|; whenever u < v, so we may assume that all functions
have non-negative Fourier transform. Assuming

§>8.+20+2—1,
it follows from lemma 10 that

uzv = Jul, $ [FOAD)EO .

Similarly, in the two-dimensional case, if s > 0 and j > 2 are given, choose
6 >1/2 and € > 0 so that

52>20+mje—1

and
E,(H*?) C HOY?* for k=1,...,5—1.

It then follows from lemma 11 that

wzv = ul; SIFAATOT 0@ ]| e

Thus, the hypotheses of theorem 16 are satisfied.
Moreover, since in general

we conclude that
(5.18) uxv =l S EAT] g

forj >1,n=2.
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5.2.5 Proof of property (I)

Let us denote by uy the low-frequency part of w, i.e., uyp = ¥(A)u, where
¥ € C*([-2,2]) and ¢ = 1 on [—1,1]. Let D, be the multiplier with symbol
|7]. We emphasize that in this section we consider all dimensions n > 2.
By [14, Lemmas 2.3 and 2.4],
Q(u,v) 2 D(D'Dyur, -v) + D(A'A_u - v)

(5.19) . )
+ DRp(A™ " u,v) + symmetric terms,

where E = {(7,&,A,n) : (§) < (n)} and R is the operator defined by (3.21). For
an explanation of the notation Rg we refer to p. 28.
Using (3.24), we thus obtain

1Qu, V)|l gye 1 ST+ L2+ I3 + Iy + symmetric terms,

where

I = |[|[D7'Dyug, - A*vl|,,,

I = ||AYT N AT A _u - 0) e |
Iy = | AP H AT A_u - A%) ||,
I = || AT R(A u, A%) |,

(5.20)

Notation. If B is a subset of R>T2" we denote by I, p the expression obtained
by replacing the multiplication operator in I; by the restricted multiplication
operator (u,v) — (uv)p, defined on p. 28.

Setting
(5.21) B={(r,&, \n) cw_(T+ X\ E+n) > ()},

we write I; < I; p+ I; ge for j =2, 3 and 4.

Estimates for I; g and I3 p Since
Ly < ||ATPAN wv||,,, Isp < [|ATTPALA w- A,
it follows from proposition 10 that I; g < |ul, 4 ||v] 4 4 for j = 2, 3, provided

n—2

2

§>8.+¢e= +e.

Estimate for I, g By proposition 9,

L S ||RY2(ATH/20, A%)

L2 S llullsgllvllse-
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Estimate for I; gc Notice that

Lope < HA:UQ*E(ASA_U . A0+2€—3/2,U)‘

L2’
We claim that the right side is bounded by ||u|| , ||v]|, o- This would follow
from
HO—1/2 o prs—06-2+3/2,0 __ pp0.—1/2—¢
which by duality is equivalent to
O 1/24e o ps—0—2c+3/2,0 __ [y0,1/2

The latter follows from part (a) of proposition 12.

Estimate for Iy g Since (see [14, Corollary 1])
(5.22) RY(u,v) IA (wo) + ATu-v+u-Av,
we get

Lipe < I + HR1/2(A0+2€_3/QU’ASU)HLQ n HA:1/2—5(A9+25—3/2u ] ASA_U)HL2 ,

and we just showed that the second and third terms are both bounded by

||U’Hs,9 HUHS,G'
Estimate for I3 p- It turns out that the estimate I3 pe < [ul, 4 |v], 4 fails for

s < 8¢+ 1/2. Define

. Ig Be
[[ull = sup

vz [0l

Then the estimate I3 pe < [|ul| ||v]|, 4 holds by definition, and since
I3 pe < ||AZP(A* 75 2A_u- A%)|) .
a duality argument shows that [|-|| < [|-]|;.
Estimate for I; By Holder’s inequality,
-1 -1
L <||b atuLHLg(L;o) [A* V]| peo(12) S |D 3tULHL%(L;o) [0l -
If n > 3, Sobolev embedding gives
-1
HD atuLHLg(L;o) < ||6tu||571,9’
but this is no longer true in dimension two. However, we can certainly get

[0 9]

—-1/2

s—1/2,6
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We therefore redefine the space X*?, setting

[l = llull o + || D720

s—1/2,6

Theorem 13 still holds, but the main estimate obviously changes to

ulyg S Wl + D72 w72 DR

Hs—1/2 s-1/2,04e—1

Thus, we have to require that D~'/2¢g € H*~1/2. This is not a limitation,
however, since in the original problem one actually has D~'g € H?; cf. (5.6).
Moreover, since every term in (5.19) is of the form DT '(u,v), it is clear that

< I + I + I3 + Iy + symmetric terms,

D—1/2
H Qu,v) s—1/2,0+e—1

with the I; defined exactly as before.
5.2.6 Proof of property (II) when n =2
In this section we assume n =2, j > 2 and s > % By (5.19),
HA_lAilJFEQ(u,v)Hj_l S 1+ Jo + Js + symmetric terms,
where
J = ||A:1+8(D71Dt’UJL 'U)Hj—l )
Jo = HA:HE(A_lA_u . ’U)Hjil ,
J3 = ||A:1+5R(A_1u,v)||j_1 .
Estimate for J; By (5.17) and (5.18),
Ji S | DDAV Ve, Ej 10|y 12
Thus, applying Holder’s inequality and Sobolev embedding,
_ j—1
TS DT DAY 5| o 1B 10l S Tl 101l

for appropriate € and 6.

Estimate for J, Applying (5.17), we see that

Jo < sup

/ AilAl_isEj’UJ . Ejfll) . AilAjfl dtdzx y
R1+2

where
Aj1 =Tj(Ejowr, ..., Bywj_a,wj—1,w;)
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and the supremum is taken over all
s,0 0,0
wl,...,’LUj,QGH s wjfl,ijH

with unit norms.
For appropriate € and 6,

AE B < AT HAY A u < AVETE AT LA,
whence

J2 S sup

/ AS_1A+A9,’U/ . Ail/zi% (Ej_l’l} . A_lAj_l) dtdz|.
R1+2

By lemma 9,
A2 3 (B v AT A ) € L2,

and the Cauchy-Schwarz inequality yields Jao < |ul, o ||V, 4-
Estimate for J; With notation as above,

J3 S sup

/1+2 R(A_lA:EEj’U,, Ej_l’U) . A_lAj_l dtdzx
R

By proposition 9,

J3 S sup

/ AVITYRRYZ(NY PN Bju, By qv) - ATV A, dtdx
R1+2

and )
A1/]—1/2+€R1/2(A_1/2A:8Ejuu Ej—lv) €L

Moreover, lemma 9 (or proposition 10 if j = 2) implies that
A—8—1/2—1/jAj_1 c L27
and we conclude that J3 < |lul|, o [|ull, -

5.2.7 Proof of property (II) when n >3

In this section we assume n > 3 and s > s.. For technical reasons we will use a

slight modification of the norm ||-||. Define
[[ul| = sup :
w0 [Vl 50
By duality,

(5.23) lu]| = sup ‘/A‘lAu v - ATy dt da
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where the supremum is over all v € H%? and w € L? with unit norms.
By Plancherel’s theorem, Holder’s inequality and the Hausdorfl-Young in-
equality,

(5.24) AT L2 — AR for (3/2—-60-¢) ' < g <2
This implies

Iy S [|A7 A A%|| g 1) < [JAT Al g g 1A 0N e 1)

where
1 3

(5.25) 2-92-c<-<2-0-c and —<r<o.
q 2 €

We conclude that

(5.26) llu| < HA—HEA,uHLg(L;).

For later use, notice that the lower bound on 1/¢ implies
(5.27) 2s+1—-3¢>n—-—n/r—1/q.

We now turn to the estimate for HA’lA:HEQ(u, v)H In fact, this estimate
requires no null structure, and we simply use the obvious fact that

Q(u,v) 2 D(D 0wy -v) + D(u-D o) + DA Ayu- A1A ).

The low frequency terms are trivial to estimate, and we ignore them. In view
of (5.26), we are thus left with the expression
—1+
HA E(UV)HL;’(L;)’
where U = A"1TA Ay and V = A=A A v. By (5.27) and (3.11), this
expression is bounded by

||UH |V|| < |u|s,9 |v|s,9'

s—e,0—e | s—e,0—e

5.2.8 A counterexample

In this section we prove that in dimension two, property (II) on p. 87 fails to
hold for s < 1/8. In fact, we can produce bounded sequences (u;) and (v;) in
X% such that HA’lAilQ(uj,vj)H blows up as j — oco. Moreover, the Fourier
supports of these functions will be such that [u;[_ , ~ [lu;ll, 5. [vjl, 4 ~ Vil 4
and

fQ(’U,j, ’Uj) ~ fA(AilA_Uj . ’Uj),

so in effect we are proving that the estimate Jo < ||ull, 4 [[v]] 4 fails.

A basic fact is that a product of two solutions of the wave equation with
bounded L? data can concentrate in a null hyperplane in frequency space. The
precise version of this statement that we use here is as follows:
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Lemma 12. Given a large positive parameter L, there exist wi,ws € H%? such
that Hw1||019 = ||w2||079 =1 and

wiwa(r,§) ~ 1
for all (7,€) satisfying
(5.28) P&l <1, L2<lE <o
Proof. Let wy and w3 be the characteristic functions of the regions
|T+€l] <30, —4L® <& < —LP/4, |¢'] < 3L,

and
A—Inl| <1, L*/2<m <20 |<L

respectively, where & denotes (&2,...,&,) for any € € R™. Let A be the set
determined by (5.28). We claim that if (A,n) € suppws and (7,€) € A, then
(1 — X\, & —n) € suppw; for sufficiently large L. Clearly this would imply that

wiwy(r,€) = [suppwz| for (7,€) € A,

and since [supp wz| ~ L™ ~ [Jwy |y o lwallg 4, We only have to normalize w;
and ws to have unit norms. The claim is easily checked. If (A, 1) € supp w3 and
(1,€) € A, then clearly

LP/a<m —& <AL?, |¢ —0/|<3L
for L sufficiently large. We have
T =X+ =l <lr=&l+ [A=Inl|+ Il —m+ & —nl = (& —m),
and since )
/
/AR
Inl +m
and, similarly, |€ —n| — (& —n1) < 18, it follows that ‘T — A+ € 77|‘ <21. O

Inl —m =

Given any sufficiently large parameter L, we will construct functions v and v
such that |u|, , = |v],, =1 and

/ AP 2Q(u,v) - A (wywe) dt daz > LO72571/4,
R1+2

where wy and wy are as above, except that in (5.28) we replace L by 100L. If
s < 1/8, the right hand side of the above inequality — oo as L — oo, and this
establishes the counterexample.

Let A be the set of all (7,€) such that

F—&]<1, 9L <& <10L, 99L <& < 100L.
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By the choice of wy, wa,

[ 2200 A e dtds 2 1 [ Qlaco)(r € dr e
R1+2 A

If we can find u, v such that |u[, , = |v], =1 and

(5.29) Quv)(r.€) ~ L2 for (1,6) €A,

it follows that

L20—3/ m)(ﬂ €)dr de > [0—25—1/4-2 |A] ~ Lo-2s-1/4
A

which is what we want.
We now construct the functions v and v. Let & and © be the characteristic
functions of the regions

T—&]<3, 8L<& <I10L, 98L <& < 100L,

and 999
— <1, —L<m<L <n2 < VL
A—Inl| <1, Tooo L Sm =1L, 0<n <VL
respectively. If (7,€) € A and (\,n) € supp@, then (1 — X\,§ — ) € suppu.
Indeed,
[T = A= (& —m) < |r =&l + A= nl| +[nl —m <3,

and it is clear that
8L <& —m <10L, 98L <& —n2 < 100L.

Now we have to estimate the symbol of Q. Assume (7,¢) € supp@ and (\,n) €
supp v. Then

‘(f-ﬁ-n)- (T—g—)\—z>‘= ‘T_)\<1+§1_7721> —)\52—7722-1-75.—;7
11" Inl || || €]

> T—/\<1+—§1n21> —/\—&7722 —Tm
In| In| €]
=a—b—c.
We have VI
100L+v/ L 2L L
b<2L——— < L < 10L)— < —
< 271 < 800VL, < (3+10L) s < 7,
and

L Am

a>A—|T=&| =& 3
Ul
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For L sufficiently large,

998 1001, 999 1001
=L <A< L, ——L<|n<-——L,
1000 1000 " 1000 1000
which implies
1 - 211 <1100,

We conclude that a > L/2, whereas b+ ¢ < L/3 for L large enough. Hence,
Qu,v)(r,€) ~ Llsuppd| ~ L¥? for (r,€) € A,
and since |ul,, ~ L*™ |supp al'’? ~ L¥H*1 and [v|,9 ~ L° supp d|'/? ~

L5+3/% we can simply normalize v and v to have unit norms, and (5.29) is
proved.

Remark. The above counterexample does not show that the estimate
[ATTAZIQ(u, v) || < lull vl 6

fails. With u, v, w; and ws as in the previous section, it is clear that
/A20_2A,’UJ Wi ws dt dz Z L29+1,
which implies [ju| ~ L?*+1, whereas |u|, , ~ L*T0F1.

5.2.9 Remarks on the conjecture (C})

Proceeding as in section 5.2.6, we have to estimate Jy and Js.

Estimate for J, We have

JQ 5 sup / AilAl_isEj’UJ . Ejfl’U . AilAjfl dtdz y
R1+2

where
Aj_l = Tj (Ej_z’wl, N ,Ele_g, wj_l,wj)

and the supremum is taken over all
wl,...,wj_geﬂs"g, ’wj_l,’ijHO’e
with unit norms. It is therefore clear from the definition of ||-|; that

Jo Sl [olls 6
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Estimate for J; Let us take j = 2. Then, essentially,

J3 < sup

/ R(A ™ u,v) - A (wywe) dt dz |
R1+2

where u,v € H*? and wy,wy € H%?. Denote by I the integral on the right
hand side.
At first glance, one might think that the estimate

Ty S lull, g lloll,, foralls>0

follows from the quadrilinear estimate (2.26) via proposition 8. This is not so,
however, since the absolute value is outside the integral I. Thus we would need
the following generalization of (2.26): if 3/4 < a < 1 and ug, 1 < k < 4, are
solutions of (uy = 0 on R'*2, with Cauchy data uk’t:o = fr 8tuk‘t:0 =0,
then

/ " D™D _(uruz) - usus dt dz| < C|frll oo [ foll 2 [ fall 2 1 fall 2
R1+2

with C independent of p. This estimate fails. However, if we restrict the region
of integration in Fourier space (after applying Plancherel) so that p is small
compared to the symbol of D_, then our proof can be adapted, and we do
indeed have the above estimate.

This means that if, in the integral I, all four functions are supported near
the light cone in Fourier space, relative to the size of the symbol of R, we do
have the estimate |I| < [|ull, 4 [|v]|, o for all s > 0.

The bad case is when either v or v not concentrated on the cone, but the
remaining three functions are. The three functions which concentrate can be
treated as solutions of the homogeneous wave equation. Thus, if we apply
Cauchy-Schwarz, we get trilinear L? expressions of the form

HD*G (D*bulD*C(ugUg)) HL2(]R1+2)

where a+b+c = 3/2 and the uy, are solutions of the homogeneous wave equation
with L? initial data. Recall that the Strichartz estimate in 2D is L®, so this
makes sense. However, a simplified version of the counterexample in section
5.2.8 shows that no such estimate is true. The reason is that the product usug
can concentrate on a null hyperplane in Fourier space. Thus a reduction to
trilinear estimates is out of the question.

If w does not concentrate, we basically have

R(A 'u,v) ~ A™PA -,

so in this case J3 < Js, and there is no problem. The remaining case is when v
does not concentrate. Then we could have

R(A™'u,v) ~ At - A v,
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and if v is at much higher frequency than u, we could be in trouble. However, if
we go back to the bilinear operator Q(u,v), which is what we actually have to
estimate, we see that this potentially bad configuration can only occur when v
concentrates near the cone and yet is supported far from the cone relative to the
other functions. It should be relatively straightforward to determine how bad
this can be, but the time limitation forces us to let this subject rest for now.

5.3 Preliminary analysis of (5.5)

Note that (5.5b), (5.5¢) can be written

(5.30a) §A=0
(5.30b) dA =F,

where A = flid:vi, F = F(Ao, A) = —[Al — RoR; Ao, AJ‘ — RQRjAO]d.Ti Adzd and
§ is the codifferential operator. If A solves (5.30), the 2-form F must be closed,
whence PF = F, where P is the projection onto the space of closed 2-forms.
Note that P = —(—A)~'dé is a pseudodifferential operator of order zero.

We therefore replace (5.5) with the system

(5.31&) DAO = 6i[A0, /L' — RoRiAo]
(5.31b) §A=0
(5.31c) dA = PF(Ag, A).

From now on we assume n = 3. Under the standard identification of 1-forms
and 2-forms on R?® with vector fields on R3, we have 64 = div A, dA = curl 4
and

PF = (-A) ! curlcurl F.

Thus, P is simply the projection onto the space of divergence free vector fields,
and acts on a vector v = (vy,v2,v3) according to the rule

Pv); =v; + D‘26i6jv<.
J

In particular, if A, dz" solves (5.1), then A; = (PA);. Of course, our forms are
matrix-valued, so we must understand the vector operators as being applied at
each entry of the matrix.

The first step in solving any nonlinear problem is to solve the corresponding
linear problem. We must therefore find the solution operator S for the linearized
version of (5.31b), (5.31c). Given a vector field v on R?, it is easily checked that
the solution u = Sv of the system

divu =0

curlu = Pv

is given by Sv = (—A)~! curlv. In terms of the Fourier transform,

Su(e) = #(52@ £ — 1T, 158 — Ea).
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We must determine the space in which the iteration can be carried out.
First of all, notice that all the A,,’s satisfy nonlinear wave equations with data
in H® x H*~1. Hence, we should have A, € X*% Moreover, since 0, Ag = 0" A;,
we should have D~19;Ag € H*?. By (5.4) we must then have A; € H*?Y.

To further determine the natural regularity properties of Ag and A, we must
examine the structure of the nonlinearities. The following discussion is strictly
informal. The details will be supplied later. Let us start with the right hand
side of (5.31c). A typical entry of the matrix [A; — RoR; Ao, A; — RoR; Ag] is of
the form wv, with u,v € H*?. Hence, the entries of A; are schematically of the
form D~!(uv), so the estimates (3.11), (3.12) and (3.13) show that A; should
have the regularity
A; € LULE)N LI(HY) N H?,
where ¢ is close to 1.

Thus, the entries of the matrix 9¢[Ag, A; — RoR; Ag] are of the form D(uw)+
Q(u,v), where

u,v € H¥Y,  we LYL®)N LA(HL) N HY

and @ is the null form given by (5.10). As we saw in section 5.2, the natural
regularity assumption on Ag is

(5.32) Ag e X% ATTA_Ay € LYLE),

where ¢ again is close to 1.

5.4 Existence theorem

Before stating our result, we need a precise definition of the space in which the
contraction argument will take place. First, we must redefine X*?, setting

|“|s,9 = ||u||s,9 + HD_lat“Hs,e'

The results in section 5.2 remain valid for this redefined space, provided that
the initial condition (5.9b) is changed to

u|t:0 =/ atu|t:o = Dy,

where both f and g are in H*. Comparing with (5.6), we see that this is precisely
the type of initial condition we have for Ay.
We assume

(5.33) 1/2<6<1, s>20-1/2.
Denote by ||-||; the norm defined in (5.23) with ¢ = 0, and set

Xo={u: llull x, < oo}, Yo={G: 1Glly, < 0o},
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where
lullxy = lulgg + llully s Gy, = 1Gl 101+ |ATTAZIGY|, -

Define
leally = inf{ [0 g ey : 0 € B0, 0 <0,

where ¢ satisfies (5.25) and (5.27) with r = co and € = 0. Now set
X1 ={u:ullx, <oo}, Y1={G:|G,, <o},

where

lullx, = llully g + lullr /2,0 + llully

and

Gy, = [1D7*Cl, o + 1D7*Cl, 1100 + 1D7C,-

s+1/2,0

Theorem 18. Ifn =3, s > 1/2 and (5.33) is satisfied, there exists € > 0 such
that for any matriz-valued data (ag,a1,a9,a3) € H® satisfying

3
Z lapllgs <e,
0

there is a solution

(Ao,A) € Xo X Xf
of (5.31), (5.6) on [0,1] x R3, and the solution map

(au) — (Ao, A), B(0,e) C H® — Xo x X}

1s Lipschitz continuous.

5.5 Proofs of the bilinear estimates

In this section we aim to prove the estimates

(5.34) 10" Ao, Ai — RoRi Aol < ldollx, [| 4]l x, + 1 4oll%,
and
(5.35) I14; = RoR; Ao, A; — RoRiAdlly, S (1ol o+ |14l )"

As usual, we may assume that all functions have non-negative Fourier trans-
forms.
We first prove (5.34). By bilinearity,

8i [A(), Al — RoRle] = 81 [Ao, Az] — 81 [A(), RoRle]
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The entries of the matrix 9°[RoR; Ag, Ag] are of the form Q(u,v), where u and
v are entries of Ap and @ is the null form given by (5.10). In section 5.2 we
proved that

1Qw, v)ly, S llullx, l1vllx, -

Any entry of the matrix 8;[Ao, 4;] is 3 D(uv), where u is an entry of Ag
and v is an entry of A;. Thus, u € X and v € X;. By (3.24),

IDo)ll, 1 gy S A vllgy s + Hu CASFL/Z =0+ D

—1/2,6—1

By (5.24) and the Holder and Sobolev inequalities,
I S A vl papey S AUl peo 2y V]l Lo poey -

and since we could have replaced v by any w € H*t1/2.0 such that v < w, we
conclude that Iy < [lull, 4 [[v]]-

With notation as on p. 92, we write Iy < I3 p + I3 e, where B is defined in
(5.21). Since

I g < HAG*lU . ASH/QUH ;
~1/2,0

it follows from proposition 10 that I> 5 < [[ull; ¢ [[V]l541/2,0-
Next, we have

I pe < HAze—lu.AsH/%H '
’ —1/2,—6

We now use the classical Strichartz inequality
(5.36) HY20 5 H'Y/?0 — L2,
which by duality is equivalent to

HY/20 o 12, g-1/2.-6

Thus, I2,5e < llullg g 1] 541/2,0-
Inequality (5.26) implies

AT AZD(o)]|, S (AT ()| g g -
By (5.27), (3.11) and the Sobolev inequality,
(5.37) 1A )| ey S Nl 0]

This concludes the proof of (5.34).
Proving (5.35) reduces to proving

(5.38) [ D7 (uv)]], 5 S llully g 10l
(539) HD_l(U’U)HS_’_l/ZO 5 ||’LL| s,0 HU| 5,00
(5.40) D™ (wo)ly < llull o 101l -
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First notice that (5.40) follows from (5.37).
By (3.24) and (3.26),
1D~ o)l S DM ATALu- 0| o + [ D7 (A% AL0)

+ ||D AR (u,v ||L2 + symmetric terms.

QP

The first two terms on the right side of the inequality can be estimated directly
by applying proposition 10. For the third term we estimate

ID7 AR (w,0)| o S| D7H R (w,0)| o + (| D77 R ()
S |prra e a%)|| [ A 2 A%
L2

2’
To bound the first term on the right side of the last inequality, we apply propo-
sition 10, while for the second term we apply (3.12) and (3.13).
To prove (5.39), we estimate
||D_ Yuw

0 S D7 @)+ [ D 2|

Masryo, ;-

For the first term we apply proposition 10, and for the second term we use (3.24)
and (5.36).

5.6 Proof of existence theorem

Here we prove theorem 18. Define

d = (Bg,®1): Xo x X{ — Xo x X3

by
(I)O(AOa A)
= x(t)(cos(tD) - ap + D~ ' sin(tD) - 0'a;)

- X / D~ sm t —1 )D) ((b(A,)aZ [Ao, Az - RoRle])(tl) dt/

+071(1 = ¢(A-))0'[Ao, Ai — RoR; Ao)
and - - -

‘I)l(Ao, A) = S([A] — RQR]‘AO, Ai — RQRlAQ])

To save space, we write ||(Ag, A)|| = Aol x, + HAHXI. By the estimates proved
in the previous section,
(5.41) (|0, D < (D laullye + [[(A0, D]l [ (4o, D)
and
(5.4) (940, 4) — 0(Bo, B)|

< O ([|(40, | +[[(Bo, B)[) [|(40 — Bo, A= B)|.
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Set £ = CY |lau|l .. It is clear from (5.41) and (5.42) that if 8CE€ < 1,
then @ is a contraction of the closed ball A" = B(0,2€) in X, x X3;. Hence ®
has a fixed point (Ao, A) in N, and this fixed point is a solution of (5.31), (5.6)
on [0,1] x R3.

Next, we prove that the dependence of the solution on the data is Lipschitz.

We denote by @, the solution operator corresponding to data (a,,). If (Ao, A)

and (By, B) are fixed points of ®(,,) and @, ) respectively, where

1
> llaulle D 10alle < g5

then

[(Ao, 4) = (Bo, B)|| < C Y llay = byl .
+ 0 ([[(Ao, Q)| + [[(Bo, B)|)) [| (4o = Bo, A= B)]| -

But C(||(Ao, A)|| + ||(Bo, B)||) < 1/2, whence

H(AOVA) - (B(JuB)H < 202 ”au - bMHHS :

This concludes the proof of theorem 18.
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