Home / People / Postdocs / Wenju Zhao
Wenju Zhao
Post-doctoral
Research interest: Uncertainty quantification,Numerical methods for SPDES,Stochastic optimal control,Finite element methods, High performance parallel computing
26920864-8027
zhaowj@sustech.edu.cn

Education

  • Doctor of Philosophy, Computational Science, Florida State University, Tallahassee, FL, USA. 

  • Master of Philosophy, Computational Science, Florida State University, Tallahassee, FL, USA.

  • Master of Philosophy, Computational Mathematics, Jilin University, Changchun, Jilin, China.

  • Bachelor of Philosophy, Informational and Computational Mathematics, Shandong Normal University, Jinan, Shandong, China.


Woking experience

  • Lawrence Livermore National Laboratory, 201606–201608


Research Interest

  • Numerical methods for stochastic/deterministic partial differential equations

  • Stochastic computing,  Uncertainty quantification. 

  • stochastic PDEs constrained optimal control, shape optimization

  • maching learning, deep learning, quantum computation,  parallel computation.


Software

https://github.com/zwenju/CFLOW


Google Scholar

https://scholar.google.com/citations?user=VUBUnbwAAAAJ&hl=en


Publication

  1. 12. Wenju Zhao and Max Gunzburger. Auxiliary equations approach for the stochastic unsteady state Navier-Stokes equations with additive random noise. 

  2. Numerical Mathematics: Theory, Methods and Applications, 2019. 

  3. 11. Max Gunzburger and Wenju Zhao. Descriptions, Discretizations, and Comparisons of Time/Space Colored and White Noise Forcings of the Navier-Stokes Equations.  

  4. SIAM Journal on Scientific Computing, 2019; 41(4): A2579-A2602. https://doi.org/10.1137/18M1218005  . 

  5. 10. Yuping Wang, Wenju Zhao and Chung Tsun Shieh. Reconstruction for a class of the inverse transmission eigenvalue problem.  

  6. Mathematical Methods in the Applied Sciences, 2019; 1–12. https://doi.org/10.1002/mma.5770  . 

  7. 9. John Burkardt, Max Gunzburger and Wenju Zhao. High precision computation of the weak Galerkin methods for the fourth order problem.  

  8. Numerical Algorithms, 2019; 1-25.  https://doi.org/10.1007/s11075-019-00751-5  . 

  9. 8. Shimin Chai, Yongkui Zou, Chenguang Zhou and Wenju Zhao. Weak Galerkin finite element methods for a fourth order parabolic equation.  

  10. Numerical Methods for Partial Differential Equations, 2019; 35: 1745–1755.

  11. https://doi.org/10.1002/num.22373  . 

  12. 7. Shimin Chai, Yongkui Zou and Wenju Zhao. A weak Galerkin method with C0 Element for fourth order linear parabolic equation. 

  13. Advances in Applied Mathematics and Mechanics, 2019; 11(2): 467-485. 

  14. https://doi.org/10.4208/aamm.OA-2018-0028  . 

  15. 6. Qingguang Guan, Max Gunzburger and Wenju Zhao. Weak-Galerkin finite element methods for a second-order elliptic variational inequality.  

  16. Computer Methods in Applied Mechanics and Engineering, 2018; 337: 677-688. https://doi.org/10.1016/j.cma.2018.04.006  . 

  17. 5. Shimin Chai, Yanzhao Cao, Yongkui Zou and Wenju Zhao. Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation.  

  18. Applied Numerical Mathematics, Volume 124, 2018, Pages 44-56. https://doi.org/10.1016/j.apnum.2017.09.010  . 

  19. 4. Charanraj Thimmisetty, Wenju Zhao, Xiao Chen, Charles Tong and Joshua White. Efficient stochastic inversion using adjoint models and kernel-PCA. U.S. Department of Energy Office of Scientific and Technical Information, Technical Report, 2017-10-18. http://dx.doi.org/10.2172/1404854  .

  20. 3. Ling Bai, Jingshi Li, Kai Zhang and Wenju Zhao. Analysis of a stochastic ratio-dependent predator-prey model driven by Lévy noise.  

  21. Applied Mathematics and Computation, Volume 233, 1 May 2014, Pages 480-493. http://dx.doi.org/10.1016/j.amc.2013.12.187  . 

  22. 2. Ling Bai, Jingshi Li, Kai Zhang and Wenju Zhao. A class of stochastic nonlinear delay System with Jumps. 

  23. Journal of Applied Mathematics, Volume 2014, ID 458306, 11 pages. http://dx.doi.org/10.1155/2014/458306  . 

  24. 1. 王秀, 张稳, 赵文举. 一类线性随机Volterra 积分方程的数值方法.  吉林大学学报理学版, 2012; 50 (05): 854-858.