研究领域:
l 代数组合数学
l 置换群论
工作经验:
◆ 2016.06 – 至今, 南方科技大学 讲席教授
◆ 2013.01 – 2016.05, 北京大学 讲席教授
◆ 2008.01 – 2016.01, 云南大学 特聘教授
◆ 2006.01 – 2008.12, 南开大学组合数学中心 讲席教授
◆ 2005.01 – 2013.01, 西澳大学 副教授,教授
◆ 2004.01 – 2004.12, Ohio州立大学 副教授
◆ 2003.01 – 2008.01, 西澳大学 QEII研究员
◆ 2000.05 – 2002.12, 西澳大学 澳大利亚基金委博士后(合作导师C. Praeger)
◆ 1997.05 – 2000.04, 西澳大学 西澳大学博士后(合作导师C. Praeger)
获奖经历:
◆1998年, 数学及其应用协会“Kirkman奖章”
代表文章:
◆ Finite CI-groups are solvable, Bull. London Math. Soc. 31 (1999), 419-423.
◆ The finite vertex-primitive and vertex-biprimitive s-transitive graphs with s>3, Trans. Amer. Math. Soc. 353(2001), 3511-3529.
◆ On partitioning the orbitals of a transitivie permutation groups, Trans. Amer. Math. Soc. 355 (2003), 637-653.
◆ The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc. 87 (2003), 725-748.
◆ Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 356 (2004), 291-317. (with M. Giudici and C. E. Praeger).
◆ On orbital partitions and exceptionality of primitive permutation groups, Trans. Amer. Math. Soc. 356 (2004), 4857-4872 (with R. Guralnick, C.E. Praeger and J. Saxl).
◆ Finite edge-transitive Cayley graphs and rotary Cayley maps, Trans. Amer. Math. Soc. 358 (2006), 4605-4635.
◆ Mobius regular maps, J. Combin. Theory Ser. B, 97(2007), 57-73.
◆ Finite edge primitive graphs, J. Combin. Theory Ser. B 100 (2010), 275-298. (with M. Giudici).
◆ Finite primitive permutation groups with soluble stabilisers and edge-primitive 4-arc transitive graphs, Proc. London Math. Soc. (3) 103 (2011), 441-472 (with Hua Zhang).