1.
Moreira, Carlos; Zamudio, Alex; Erratum: A corrected proof of the scale recurrence lemma from the paper
"Stable intersections of regular Cantor sets with large Hausdorff dimensions''. Ann. of Math. (2) 195
(2022), no. 1, 363–374.
2.
Davi Lima, Carlos Matheus, Carlos Gustavo Moreira, Sandoel Vieira, M∖L is Not Closed, International
Mathematics Research Notices, Volume 2022, Issue 1, January 2022, Pages 265–311,
https://doi.org/10.1093/imrn/rnaa096
3.
Lima, Davi; Matheus, Carlos; Moreira, Carlos Gustavo; Vieira, Sandoel M∖L near 3. Mosc. Math. J. 21
(2021), no. 4, 767–788.
4.
Matheus, Carlos; Moreira, Carlos Gustavo Diophantine approximation, Lagrange and Markov spectra, and
dynamical Cantor sets. Notices Amer. Math. Soc. 68 (2021), no. 8, 1301–1311.
5.
Lima, Davi; Moreira, Carlos Gustavo Phase transitions on the Markov and Lagrange dynamical spectra.
Ann. Inst. H. Poincaré Anal. Non Linéaire 38 (2021), no. 5, 1429–1459.
6.
Kohayakawa, Yoshiharu; Lee, Sang June; Moreira, Carlos Gustavo; Rödl, Vojtěch On strong Sidon sets of
integers. J. Combin. Theory Ser. A 183 (2021), Paper No. 105490, 29 pp.
7.
Bednařík, Dušan; Marques, Diego; Moreira, Carlos Gustavo; Trojovský, Pavel On the maximal invariant
set for the x2 −2 restricted to intervals. Proyecciones 40 (2021), no. 2, 305–312.
8.
Brasil, Jader E.; Lopes, Artur O.; Mengue, Jairo K.; Moreira, Carlos G. Quantum spin probabilities at
positive temperature are Hölder Gibbs probabilities. Commun. Contemp. Math. 23 (2021), no. 1, Paper No.
1950050, 32 pp.
9.
Marques, Diego; Moreira, Carlos Gustavo On the exceptional set of transcendental functions with integer
coefficients in a prescribed set: the problems A and C of Mahler. J. Number Theory 218 (2021), 272–287.
10.
Matheus, Carlos; Moreira, Carlos Gustavo . Fractal geometry of the complement of Lagrange spectrum in
Markov spectrum. Comment. Math. Helv. 95 (2020), no. 3, 593–633.
11.
Alfaro Vigo, Daniel G.; Álvarez, Amaury C.; Chapiro, Grigori; García, Galina C.; Moreira, Carlos G.
Solving the inverse problem for an ordinary differential equation using conjugation. J. Comput. Dyn. 7
(2020), no. 2, 183–208.
12.
Delecroix, Vincent; Matheus, Carlos; Moreira, Carlos Gustavo. Approximations of the Lagrange and
Markov spectra. Math. Comp. 89 (2020), no. 325, 2521–2536.13.
Moreira, Carlos Gustavo T.; Pacifico, Maria José; Romaña Ibarra, Sergio; Hausdorff Dimension, Lagrange
and Markov Dynamical Spectra for Geometric Lorenz Attractors. Bull. Amer. Math. Soc. (N.S.) 57 (2020),
no. 2, 269–292.
14.
Mauduit, Christian; Moreira, Carlos Gustavo . Entropy ratio for infinite sequences with positive entropy.
Ergodic Theory and Dynamical Systems 40 (2020), 751-762.
15.
Marques, Diego ; Moreira, Carlos Gustavo . On exceptional sets of transcendental functions with integer
coefficients: solution of a problem of Mahler. Acta Arith. 192 (2020), no. 4, 313–327
16.
Mauduit, Christian; Moreira, Carlos Gustavo . Complexity and fractal dimensions for infinite sequences
with positive entropy. Commun. Contemp. Math. 21 (2019), no. 6, 1850068, 19 pp.
17.
Matheus, Carlos; Moreira, Carlos Gustavo . HD(M∖L)>0.353. Acta Arith. 188 (2019), no. 2, 183–208.
18.
Matheus, Carlos; Moreira, Carlos Gustavo . Markov spectrum near Freiman's isolated points in M∖L. J.
Number Theory 194 (2019), 390–408.
19.
Marques, Diego ; Moreira, Carlos Gustavo . On a stronger version of a question proposed by K. Mahler.
JOURNAL OF NUMBER THEORY, v. 194, p. 372-380, 2019.
20.
Moreira, Carlos Gustavo . Dynamical systems, fractal geometry and Diophantine
approximations. Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol.
I. Plenary lectures, 731–757, World Sci. Publ., Hackensack, NJ, 2018.
21.
Kohayakawa, Yoshiharu ; Lee, Sang June ; Moreira, Carlos Gustavo ; Rödl, Vojta . Infinite Sidon Sets
Contained in Sparse Random Sets of Integers. SIAM JOURNAL ON DISCRETE MATHEMATICS, v. 32,
p. 410-449, 2018.
22.
Moreira, Carlos Gustavo . Geometric properties of the Markov and Lagrange spectra. ANNALS OF
MATHEMATICS, v. 188, p. 145-170, 2018.
23.
Matheus, Carlos ; Moreira, Carlos Gustavo .; Palis, Jacob. Non-uniformly hyperbolic horseshoes in the
standard family. COMPTES RENDUS MATHEMATIQUE, v. 356(2), p. 146-149, 2018.
24.
Cerqueira, Aline ; Matheus, Carlos ; Moreira, Carlos Gustavo . Continuity of Hausdorff dimension across
generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, v. 12, p. 151-174, 2018.
25.
MARQUES, DIEGO ; Moreira, Carlos Gustavo . A note on a complete solution of a problem
posed by K. Mahler. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, v. 98, p.
60-63, 2018.26.
FERENCZI, SÉBASTIEN ; MAUDUIT, CHRISTIAN ; Moreira, Carlos Gustavo . An algorithm for the
word entropy. THEORETICAL COMPUTER SCIENCE, v. 743, p. 1-11, 2018.
27.
LOPES, ARTUR O. ; MENGUE, JAIRO K. ; MOHR, JOANA ; MOREIRA, CARLOS G. . Large
deviations for quantum spin probabilities at temperature zero. Stochastics and Dynamics, v. 18, p. 1850044,
2018.
28.
Matheus, Carlos ; Moreira, Carlos Gustavo . Markov spectrum near Freiman's isolated points in M --- L.
JOURNAL OF NUMBER THEORY, v. 194, p. 390-408, 2018.
29.
Marques, Diego; Moreira, Carlos Gustavo; On variations of the Liouville constant which are also Liouville
numbers. Proceedings of the Japan Academy. Series A Mathematical Sciences, v. 92, p. 39-40, 2016.
30.
Marques, Diego; Moreira, Carlos Gustavo; A positive answer for a question proposed by K. Mahler. Math.
Ann. 368 (2017), no. 3-4, 1059–1062.
31.
Romaña Ibarra, Sergio A.; Moreira, Carlos Gustavo; On the Lagrange and Markov dynamical spectra,
Ergodic Theory and Dynamical Systems 37 (2017), no. 5, 1570-1591.
32.
Bugeaud, Yann; Gustavo Moreira, Carlos; Variations autour d'un théorème métrique de Khintchine.
(French) [Variations on a metric theorem of Khintchine] Bull. Soc. Math. France 144 (2016), no. 3, 507–
538.
33.
Berger, Pierre; Moreira, Carlos Gustavo; Nested Cantor sets. Math. Z. 283 (2016), no. 1-2, 419–435.
34.
Marques, Diego; Moreira, Carlos Gustavo; On variations of the Liouville constant which are also Liouville
numbers. Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), no. 3, 39–40.
35.
Mauduit, Christian; Moreira, Carlos Gustavo; Phénomène de Moser-Newman pour les nombres sans
facteur carré. (French) [Moser-Newman phenomenon for square-free numbers] Bull. Soc. Math. France
143 (2015), no. 3, 599–617.
36.
López, Jorge Erick; Moreira, Carlos Gustavo; A generalization of Marstrand's theorem for projections of
cartesian products. Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 4, 833–840.
37.
Contiero, André; Moreira, Carlos Gustavo T. de A.; Veloso, Paula M.;
On the structure of numerical sparse semigroups and applications to Weierstrass points, J. Pure Appl.
Algebra 219 (2015), no. 9, 3946–3957.
38.
Marques, Diego; Moreira, Carlos Gustavo; On a variant of a question proposed by K. Mahler concerning
Liouville numbers. Bull. Aust. Math. Soc. 91 (2015), no. 1, 29–33.39.
MOREIRA, C. G. T. A. . Fractal geometry and dynamical bifurcations. Proceedings of the International
Congress of Mathematicians - Seoul 2014, vol. III – Invited Lectures, 647-659.
40.
MOREIRA, C. G. T. A. ; SMANIA, D. . Metric Stability for Random Walks (with applications in
renormalization theory)..Frontiers in complex Dynamics (Celebrating John Milnor's 80th birthday), 261–
322, Princeton Math. Ser., 51, Princeton Univ. Press, Princeton, NJ, 2014.
41.
MOREIRA, C. G. T. A. ; LUCA, F. ; POMERANCE, C. On integers which are the sum of a power of 2
and a polynomial value. Boletim da Sociedade Brasileira de Matemática 45 (2014), no. 3, 559–574.
42.
MOREIRA, C. G. T. A. ; LIMA, Y. . A Marstrand theorem for subsets of integers. Combinatorics,
probability & computing. , v.23, n.1, p.102 - 115, 2014.
43.
MOREIRA, C. G. T. A. ; MATHEUS, C. ; PUJALS, E. . Axiom A versus Newhouse phenomena for
Benedicks-Carleson toy models. Annales Scientifiques de l’École Normale Supérieure 46 (2013), fascicule
6, p. 857-878, 2013.
44.
MOREIRA, C. G. T. A. ; HOPPEN, C. ; KOHAYAKAWA, Y. ; RÁTH, B. ; SAMPAIO, R. M. . Limits of
permutation sequences. J. Combin. Theory Ser. B 103 (2013), No. 1, 93-113.
45.
MOREIRA, C. G. T. A., LABARCA, R., PUMARIÑO, A., RODRIGUEZ, J. A. . "On bifurcation sets for
symbolic dynamics in the Milnor-Thurston world". Communications in Contemporary Mathematics 14
(2012), 16 p..
46.
MOREIRA, C. G. T. A. ; GARCIA, I . On bounded distortions of maps in the real line. Dynamical Systems
27 (2012), 501-506.
47.
MOREIRA, C. G. T. A. ; MAUDUIT, C. . Generalized Hausdorff dimensions of sets of real numbers with
zero entropy expansion. Ergodic Theory and Dynamical Systems 32 (2012), 1073-1089.
48.
MOREIRA, C. G. T. A. ; BERGELSON, V. ; LEIBMAN, A. . From discrete- to continuous-time ergodic
theorems. Ergodic Theory and Dynamical Systems 32 (2012), 383-426.
49.
MOREIRA, C. G. T. A. . There are no C^1-stable intersections of regular Cantor sets. Acta Mathematica
206 (2011), no. 2, 311-323 .
50.
MOREIRA, C. G. T. A. ; BUGEAUD, Y. . Sets of exact approximation order by rational
numbers III. Acta Arithmetica 146 (2011), no. 2, 177-193 .
51..
MOREIRA, C. G. T. A. ; LIMA, Y. . A combinatorial proof of Marstrand's theorem for products of regular
Cantor sets. Expo. Math. 29 (2011), no. 2, 231-239 .52.
MOREIRA, C. G. T. A. ; HOPPEN, C. ; KOHAYAKAWA, Y. ; SAMPAIO, R. M. . Testing permutation
properties through subpermutations. Theor. Comput. Sci. 412, No. 29, 3555-3567. (2011).
53.
MOREIRA, C. G. T. A. ; LIMA, Y. . Yet another proof of Marstrand's theorem. Bulletin of the Brazilian
Mathematical Society 42 (2011), no. 2, 331-345 .
54.
MOREIRA, C. G. T. A. ; MAUDUIT, C. . Complexity of infinite sequences with zero entropy. Acta
Arithmetica 142 (2010), 331-346 .
55.
MOREIRA, C. G. T. A. ; YOCCOZ, J.C. . Tangences homoclines stables pour des ensembles
hyperboliques de grande dimension fractale. Annales Scientifiques de l'École Normale Supérieure, 43,
fascicule 1, p. 1-68, 2010.
56.
MOREIRA, C. G. T. A. ; HOPPEN, C. ; KOHAYAKAWA, Y. ; SAMPAIO, R. M. . Property testing and
parameter testing for permutations. Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, 66–75, SIAM, Philadelphia, PA (2010).
57.
ARBIETO, A. ; MATHEUS, C. ; MOREIRA, C. G. T. A.
The remarkable effectiveness of ergodic theory in number theory - Part I. Green-Tao theorem – Ensaios
Matemáticos, 17, p. 1-71, 2009
58.
MOREIRA, C. G. T. A. ; RUAS, M. A. S. . The curve selection lemma and the Morse-Sard theorem.
Manuscripta Mathematica 129, p. 401-408, 2009.
59.
ALON, N. ; KOHAYAKAWA, Y. ; MAUDUIT, C. ; MOREIRA, C. G. T. A. ; RODL, V. . Measures of
pseudorandomness for finite sequences: typical values. Proceedings of the London Mathematical Society,
v. 95(3), p. 778-812, 2007.
60.
MOREIRA, C. G. T. A., RODL, V., KOHAYAKAWA, Y., MAUDUIT, C., ALON, N.
Measures of pseudorandomness for finite sequences: minimal values. Combinatorics, probability &
computing. , v.15, n.1-2, p.1 - 29, 2006.
61.
MOREIRA, C. G. T. A., AVILA,A.
Statistical properties of unimodal maps:the quadratic family. Annals of Mathematics. , v.161, n.2, p.827 -
877, 2005.
62.
MOREIRA, C. G. T. A., AVILA,A.
Phase-parameter relation and sharp statistical properties for general families of unimodal maps.
Contemporary mathematics. , v.389, p.1 - 42, 2005.
63.
MOREIRA, C. G. T. A., AVILA,A.
Statistical properies of unimodal maps:physical measures, periodic orbits and pathological laminations.
Publications Mathématiques de L'Institut des Hautes Études Scientifiques. , v.101, n.1, p.1 - 67, 2005.
64.
MOREIRA, C. G. T. A., LABARCA, R.
Essential dynamics for Lorenz maps on the real line and the lexicographical world. Annales de L´Institut
Henri Poincaré-Analyse Non Linéaire. , 2005.
65.
MOREIRA, C. G. T. A., POURBARAT, M., HONARY, B.
Stable intersections of affine Cantor sets. Boletim da Sociedade Brasileira de Matemática. , v.36, n.3, p.363
- 378, 2005.
66.
MOREIRA, C. G. T. A., KOHAYAKAWA, Y.
Bounds for Optimal Coverings. Discrete Applied Mathematics. , v.141, n.1-3, p.263 - 276, 2004.
67.
MOREIRA, C. G. T. A., AVILA,A.
Quasisymmetric robustness of the Collet-Eckmann condition in the quadratic family. Boletim da Sociedade
Brasileira de Matemática. , v.35, n.2, p.291 - 331, 2004.
68.
MOREIRA, C. G. T. A., AVILA,A.
Statistical properies of unimodal maps:smooth families with negative Schwarzian derivative. Astérisque. ,
v.286, p.81 - 118, 2003.
Geometric Methods in Dynamics (I) - Volume in honor of Jacob Palis Welington de Melo - Marcelo Viana
- Jean-Christophe Yoccoz (Ed.)
69.
MOREIRA, C. G. T. A., MUNOZ, E.
Sums of Cantor sets whose sum of dimensions is close to one. Nonlinearity. , v.16, n.5, p.1641 - 1647,
2003.
70.
MOREIRA, C. G. T. A., AVILA,A.
Bifurcations of unimodal maps. Pubblicazioni del Centro De Giorgi. , p.1 - 22, 2003.
In `Dynamical Systems, Part II: Topological Geometrical and Ergodic Properties of Dynamics.''
Pubblicazioni della Classe di Scienze, Scuola Normale Superieure, Pisa. Centro di Ricerca Matematica
`Ennio De Giorgi'': Proceedings.
71.
MOREIRA, C. G. T. A., KOHAYAKAWA, Y., RODL, V., MAUDUIT, C.
Measures of pseudorandomness for finite sequences: minimum and typical values. TUCS General
Publication. Turku: , p.159 - 169, 2003.
Proceedings of WORDS'03 (Turku Cent. Comput. Sci., Turku)
72.
MOREIRA, C. G. T. A., LABARCA, R.
Bifurcation of the essential dynamics of Lorenz maps and applications to Lorenz-like flows:contributions to
the study of the expanding case. Boletim da Sociedade Brasileira de Matemática. , v.32, n.2, p.107 - 144,
2001.
73.
MOREIRA, C. G. T. A., LABARCA, R.
Bifurcations of the essential dynamics of Lorenz maps on the real line and the bifurcation scenario for the
linear family. Scientia - Series A - Mathematical Sciences - New Series. , v.7, p.13 - 29, 2001.
74.
MOREIRA, C. G. T. A.
Hausdorff measures and the Morse-Sard theorem. Publicacions Matematiques. Barcelona: , v.45, p.149 -
162, 2001.
75.
MOREIRA, C. G. T. A.
Maximal invariant sets for restrictions of unimodal and tent maps. Qualitative Theory Of Dynamical
Systems. , v.2, n.2, p.385 - 398, 2001.
76.
MOREIRA, C. G. T. A., YOCCOZ, J.C.
Stable intersections of regular Cantor sets with large Hausdorff dimensions. Annals Of Mathematics. ,
v.154, n.1, p.45 - 96, 2001.
(with a Corrigendum: "Stable intersections of regular Cantor sets with large Hausdorff dimensions",
published em Annals of Mathematics (2) 154 (2001), no. 2, 527)
77.
MOREIRA, C. G. T. A., KOHAYAKAWA, Y.
Bounds for optimal coverings. Electronic Notes in Discrete Mathematics. , 2001.
http://www.elsevier.nl/gej-ng/31/29/24/39/23/show/Products/notes/index.htt
Proceedings of the Brazilian Symposium on Graphs, Algorithms and Combinatorics (GRACO 2001)
78.
MOREIRA, C. G. T. A., BATES, S. M.
Des nouvelles perspectives sur le Théorème de Morse-Sard. Comptes Rendus des Seances de l´Académie
des Sciences de Paris - Serie I - Mathematique. , v.332, p.13 - 17, 2001.
79.
MOREIRA, C. G. T. A., PALIS, J., VIANA, M.
Homoclinic tangencies and fractal invariants in arbitrary dimension/Tangences homoclines et invariants
fractaux en dimension arbitraire. Comptés Rendus de L´Académie des Sciences Serie I - Mathematique.
Paris: , v.333, n.5, p.475 - 480, 2001.
80.
MOREIRA, C. G. T. A., EMANUEL, P.
An extremal problem in the hypercube and optimization of asynchronous circuits. European Journal of
Combinatorics. , v.21, n.4, p.529 - 531, 2000.
81.
MOREIRA, C. G. T. A., RIVERA, J., MUNOZ, E.
On the topology of arithmetic sums of regular Cantor sets. Nonlinearity. , v.13, n.6, p.2077 - 2087, 2000.
82.
MOREIRA, C. G. T. A.
Sums of regular Cantor sets, dynamics and applications to number theory. Periodica Mathematica
Hungarica. , v.37, n.1, p.55 - 63, 1998.
83.
MOREIRA, C. G. T. A., BAMON, R., PLAZA, S., VERA, J.
Differentiable structures of central Cantor sets. Journal Ergodic Theory Dynamical Systems. , v.17, n.5,
p.1027 - 1042, 1997.
84.
MOREIRA, C. G. T. A.
On asymptotic estimates for arithmetic cost functions. Proceedings of the American Mathematical Society.
, v.125, n.2, p.347 - 353, 1997.
85.
MOREIRA, C. G. T. A.
Stable intersections of Cantor sets and homoclinic bifurcations. Annales de l'Institut Henri Poincaré -
Analyse Non Linéaire. IHP, v.13, n.6, p.741 - 781, 1996.