- D. Li, Optimal Gevrey regularity for supercritical quasi-geostrophic equations.
**arXiv:2106.12439.****pdf** - X. Cheng, H. Kwon, D. Li, Non-uniqueness of steady-state weak solutions to the surface quasi-geostrophic equations.
*Comm. Math. Phys.*388 (2021), p.1281-1295.**pdf** - J. Bourgain, D. Li, Strong ill-posedness of the 3D incompressible Euler equation in borderline spaces.
*Int. Math. Res. Not. IMRN,*16(2021), p.12155–12264.**pdf**

(See also**https://academic.oup.com/imrn/pages/30years**) - D. Li, J. Rodrigo, Remarks on a nonlocal transport.
*Adv. Math.*374 (2020), 107345**pdf** - J. Bourgain, D. Li, Galilean boost and non-uniform continuity for incompressible Euler.
*Comm. Math. Phys.*372 (2019), p.261–280.**pdf** - B. Han, Z. Lei, D. Li, N. Zhao, Sharp one component regularity for Navier-Stokes.
*Arch. Ration. Mech. Anal.*231 (2019), p. 939–970.**pdf** - J. Bourgain, D. Li, Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces.
*Invent. Math.*201 (2015), p. 97–157.**pdf** - J. Bourgain, D. Li, Strong illposedness of the incompressible Euler equation in integer Cm spaces.
*Geom. Funct. Anal.*25 (2015), p.1–86.**pdf** - D. Li, Y. Wu, The Cauchy problem for the two dimensional Euler-Poisson system.
*J. Eur. Math. Soc.*16 (2014), p. 2211–2266.**pdf** - D. Li, X. Yu, Z. Zhai, On the Euler-Poincaré equation with non-zero dispersion.
*Arch. Ration. Mech. Anal.*210 (2013), p. 955–974.**pdf** - D. Li, Y.G. Sinai, Nonsymmetric bifurcations of solutions of the 2D Navier-Stokes system.
*Adv. Math.*229 (2012), p.1976–1999.**pdf** - H. Dong, D. Li, Spatial analyticity of the solutions to the subcritical dissipative quasi-geostrophic equations.
*Arch. Ration. Mech. Anal.*189 (2008), p. 131–158.**pdf**

- D. Li, Uniform estimates for 2D quasilinear wave.
**arXiv:2106.06419.****pdf** - D. Li, Global well-posedness of hedgehog solutions for the (3+1) Skyrme model.
*Duke Math. J.*170 (2021), p.1377–1418.**pdf** - D. Li, Y. Wu, The Cauchy problem for the two dimensional Euler-Poisson system.
*J. Eur. Math. Soc.*16 (2014), p. 2211–2266.**pdf** - D. Li, X. Zhang, Dynamics for the energy critical nonlinear wave equation in high dimensions.
*Trans. Amer. Math. Soc.*363 (2011), p. 1137–1160.**pdf** - D. Li, J.L. Rodrigo, X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem.
*Rev. Mat. Iberoam.*26 (2010), p. 295–332.**pdf** - D. Li, J.L. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation.
*Rev. Mat. Iberoam.*26 (2010), p.261–294.**pdf** - D. Li, X. Zhang, Dynamics for the energy critical nonlinear Schrödinger equation in high dimensions.
*J. Funct. Anal.*256 (2009), p.1928–1961.**pdf** - D. Li, J.L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation.
*Adv. Math.*220 (2009), p. 1717–1738.**pdf** - D. Li, X. Zhang, On the classification of minimal mass blowup solutions of the focusing mass-critical Hartree equation.
*Adv. Math.*220 (2009), p. 1171–1192.**pdf**

- D. Li, Y Sire, Remarks on the Bernstein inequality for higher order operators and related results.
*(to appear in Trans. AMS)*, (2022)**arXiv:2109.07952.** - D. Li, On fractional smoothness of modulus of functions.
*Ann. Appl. Math.*, 37 (2021), no. 3, p. 394–404.**pdf** - D. Li, Effective maximum principles for spectral methods.
*Ann. Appl. Math.,*37 (2021), p. 131–290.**pdf** - D. Li, On some conjectures of Heywood.
*Pacific J. Math.*306 (2020), p.221–263.**pdf** - D. Li, X. Zhang, A regularity upgrade of pressure.
*Contemp. Math.*, 725 (2019), p. 163–185.**pdf** - D. Li, On Kato-Ponce and fractional Leibniz.
*Rev. Mat. Iberoam.*35 (2019), p.23–100.**pdf** - T. Hmidi, D. Li, Small B
_{∞,∞}^{-1}implies regularity.*Dyn. Partial Differ. Equ.*14 (2017), p.1–4.**pdf** - J. Bourgain, D. Li, On an endpoint Kato-Ponce inequality.
*Differential Integral Equations,*27 (2014), p. 1037–1072.**pdf** - D. Li, On a frequency localized Bernstein inequality and some generalized Poincaré-type inequalities.
*Math. Res. Lett.*20 (2013), p.933–945.**pdf**

- J.F Cai, M. Huang, D. Li, Y. Wang, On smoothed amplitude flow models for phase retrieval.
**pdf** - D. Li, C. Quan, J. Xu, Stability and convergence of Strang splitting. Part I: Scalar Allen-Cahn equation.
*J. Comput. Phys.*, 458 (2022), No. 111087.**pdf** - D. Li, C. Quan, J. Xu, Stability and convergence of Strang splitting. Part II: Tensorial Allen-Cahn equations.
*J. Comput. Phys.*, 454 (2022), No. 110985.**pdf** - D. Li, C. Quan, T. Tang, Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation.
*Math. Comp.*, (2022) 91(334): 785-809.**pdf** - D. Li, C. Quan, The operator-splitting method for Cahn-Hilliard is stable.
*J. Sci. Comput.*, (2022) 90(1): 1-12.**pdf** - J.-F Cai, M. Huang, D. Li, Y. Wang, Solving phase retrieval with random initial guess is nearly as good as by spectral initialization.
*Appl. Comp. Harm. Anal.,*(2022) 58: 60–84.**pdf** - D. Li, C. Quan, W. Yang, The BDF3/EP3 scheme for MBE with no slope selection is stable.
*J. Sci. Comput,*(2021) 89:33.**pdf** - D. Li, Effective maximum principles for spectral methods.
*Ann. Appl. Math.,*37 (2021), p. 131–290.**pdf** - D. Li, Z. Qiao, T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations.
*SIAM J. Numer. Anal.*54 (2016), p.1653–1681.**pdf** - W. E, D. Li, On the crystallization of 2D hexagonal lattices.
*Comm. Math. Phys.*286 (2009), p.1099–1140.**pdf** - W. E, D. Li, The Andersen thermostat in molecular dynamics.
*Comm. Pure Appl. Math.*61 (2008), p. 96–136.**pdf** - D. Li, On the rate of convergence to equilibrium of the Andersen thermostat in molecular dynamics.
*J. Stat. Phys.*129 (2007), p. 265–287.**pdf**